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On the 17th of October 2021, a concrete grandstand element collapsed at the Goffert football 

stadium in the Netherlands under a jumping crowd load. In this paper the cause for the 

collapse is investigated from a probabilistic point of view. Various investigations raised some 

belief that the actual loads were larger than the design loads for the grandstand elements, also 

questioning the general reliability of these elements. There are also indications towards 

construction errors. This paper presents a full probabilistic method to determine the failure 

probability of the collapsed element in the Goffert stadium, subjected to dynamical crowd 

loads. Suitable distribution types and parameters of stochastic variables related to forces 

generated by jumping are derived. Randomly generated excitation signals are created that are 

used to excite the structure, which is modelled as a non-linear single-degree-of-freedom 

system with a bi-linear force-displacement relationship. A Monte Carlo simulation shows 

that 0 of about 105 simulations lead to failure of the structure under the crowd loading present 

during the collapse, if we would model it according to the design drawings. This result makes 

it unrealistic that the actual loads were higher than the design loads or that the design is 

unsafe since then we would expect a relatively large failure probability. In situ inspection of 

the concrete cover on other elements in the stadium show that large variation exists in this 

parameter, suggesting that the collapsed element could have had a large cover, which reduced 

its capacity. A sensitivity analysis concludes that the post-yielding stiffness highly influences 

the failure probability of the grandstand element. These two points combined make it more 

plausible that the element failed because the actual resistance of the structure was weaker 

than intended by the design drawings. 

Key words: Structural reliability, forensic engineering, jumping loads, concrete grandstand 

elements, non-linear dynamical analysis 
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1 Introduction 

This paper presents a method to probabilistically determine the failure cause of a concrete 

grandstand element which is subjected to dynamical crowd loads. Cause for this study is 

the collapse of an element in the Goffert stadium. At the time of the collapse 93 people 

were standing on the element. Luckily nobody got injured, but it resulted in an uproar in 

the Dutch media nevertheless. In the current paper a probabilistic model is derived for 

both the dynamic crowd load as for the resistance of the concrete element which enables us 

to draw realistic conclusions about the failure case. 

2 Literature overview 

In this section an overview of the models for jumping crowd loads are given. A difference 

is made between analytical models and measurement data. Special attention will be given 

to possibility of probabilistic quantification. Since only the number of persons on the 

collapsed element is known from photos (n = 93) , for the other parameters describing the 

dynamic effects we need accurate probabilistic models. 

2.1 An introduction to loads induced by jumping 

When a person jumps on a body, they generate a force on it. Figure 2.1 visualizes this in a 

schematized manner. A person can be schematized as a point mass with mass 𝑚𝑚 and 

spring stiffness 𝑘𝑘. During the landing and the offset of a jumping motion, the centre of 

mass drops, resulting in a compression of the spring. The resulting force follows through 
 

 𝐹𝐹(𝑡𝑡) = 𝑘𝑘 𝑢𝑢(𝑡𝑡) (1) 
 

where 𝐹𝐹(𝑡𝑡) is the dynamic force of a jump at time 𝑡𝑡, 𝑘𝑘 is the equivalent spring stiffness of 

the persons legs and 𝑢𝑢(𝑡𝑡) is the displacement of the point mass at time 𝑡𝑡. 

 
Figure 2.1 A schematization of a person jumping on a rigid body (image from Spanenburg, 2022) 
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2.2 Loads generated on a rigid body by a jumping individual 
The load an individual excites on a structure is usually normalized with respect to that 

person’s static weight. 
 

 𝐹𝐹�(𝑡𝑡) =
𝐹𝐹(𝑡𝑡)
𝐺𝐺  (2) 

 

where  𝐹𝐹�(𝑡𝑡) is the weight normalized load, 𝐹𝐹(𝑡𝑡) is the actual force and 𝐺𝐺 is that person’s 

static weight.  For data analysis purposes, the maximum value of each normalized jump is 

the point of interest, therefore 𝐹𝐹�(𝑡𝑡) is often abbreviated to 𝐹𝐹� = max �𝐹𝐹�(𝑡𝑡)�.  
 

Present load models use Fourier series to describe jumping loads (ISO 10137 (2007), British 

Standard (1996), Canadian National Building Code (2005), Stichting Bouwresearch (2005)). 

These models are based on research by Ji & Ellis (1994), who propose the following 

equation to describe jumping loads 
 

 𝐹𝐹(𝑡𝑡) = 𝐺𝐺 �1.0 + �𝑟𝑟𝑛𝑛

∞

𝑛𝑛=1

sin�
2𝑛𝑛𝑛𝑛
𝑇𝑇𝑝𝑝

𝑡𝑡 + 𝜙𝜙𝑛𝑛�� (3) 

 

where 𝑛𝑛 is the number of the 𝑛𝑛-th harmonic,  𝑟𝑟𝑛𝑛 is the Fourier coefficient of the 𝑛𝑛-th 

harmonic, 𝑇𝑇𝑝𝑝 is the period of the activity (i.e., jump period) and 𝜙𝜙𝑛𝑛 is the phase lag of the 𝑛𝑛-

th harmonic. Ji & Ellis (1994) established a relation between the jump factor and the contact 

ratio and determined the Fourier coefficients of the first six terms. The contact ratio is 

defined as 
 

 𝛼𝛼 =
𝑡𝑡𝑝𝑝
𝑇𝑇𝑝𝑝
≤ 1.0 (4) 

where 𝛼𝛼 is the contact ratio, 𝑡𝑡𝑝𝑝 is the contact duration between the person and the ground 

and 𝑇𝑇𝑝𝑝 is the period of the jump. A lower contact ratio means that the airtime is higher, 

from which analogously follows that the jump factor will be higher. Based on physiology, 

Bachmann & Ammann (1987) found a lower bound for 𝑡𝑡𝑝𝑝 of 0.15 s. Commonly used 

contact ratios are  𝛼𝛼 = 1
3
, 𝛼𝛼 = 1

2
, and 𝛼𝛼 = 2

3
, which results in jump factors of  𝐹𝐹� = 4.8, 𝐹𝐹� = 3.2 

and 𝐹𝐹� = 2.3, respectively (Ji & Ellis, 1994). Figure 2.2 shows this signal for the three contact 

ratios at a jumping frequency of 2 Hz. 
 

Sim et al. (2008) showed that a sine-squared function better describes jumping-induced 

loads than a sine function. Additionally, people will not jump perfectly periodic but with 

(among others) different jump factors and contact ratios. These phenomena are not 
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included in Equation 3. This makes the model presented in Equation 4 unsuited to use in 

an accurate failure probability assessment. 

2.3 Loads generated on a rigid body by a jumping crowd 

Loads generated by a crowd cannot be obtained by simply multiplying the load of an 

individual by the number of people. The load is attenuated because peaks of everyone’s 

excitation do not align perfectly. Therefore we use a dataset of measured force signals 

under jumping crowd loads. In Figure 2.3, measured force signals of jumping individuals 

are presented, clearly showing the difference between perfectly periodic signals (i.e., using 

Equation 2) and actual signals. 

 

 

 
       Figure 2.2 Synthetic excitation signal of an individual jumping at 2 Hz  

                      (model from Ji & Ellis, 1994) 

 

 
      Figure 2.3 Actual excitation signal of three individuals jumping at 2 Hz 

      (data Xiong & Chen, 2021) 

 

Time(s)

Time(s)

Jump factor (-)

Jump factor (-)
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An easy and often used method to tackle this phenomenon is by incorporating a 

coordination factor. This factor reduced the load of a group by accounting for the lack of 

coordination between individuals. The total excitation signal of a group would then be 

equal to the excitation signal of an individual (i.e., using Equation 3) multiplied by the 

number of people and the coordination factor. 

 

Multiple studies agree that the value of the coordination factor depends on the group size 

(Ebrahimpour & Sack (1989), Ellis & Ji (2004), Chen et al. (2019)). The value of this factor, 

however, is highly disputed, e.g. Ellis & Ji (2004) report a value of around 0.6, while Chen 

et al. (2019) found a factor of 0.9. 

 

A consequence of using Equation 3, combined with a coordination factor is that the total 

excitation signal is a perfect periodic function. In a dynamical analysis, the harmonics of 

this function could match one of the eigenfrequencies of the structure, which would result 

in a resonant response. Brownjohn et al. (2004) have shown that there is some energy 

leakage to adjacent frequencies when jumping. This leakage becomes more profound for 

increasing harmonics. A resonant response would therefore be artificial. Preference should 

be given to randomizing the phase lag between individuals, but scientific substantiation 

for this variable is not presented yet. 

2.4 Stochastic quantification based on jumping data 

The previous paragraphs have presented present load models for jumping individuals and 

crowds, as well as their flaws. Therefore, in this study we prefer to base the assessment on 

measured signals rather than on models. In Figure 2.4, measurements of excitation signals 

are presented. These signals are part of a large database, which is the result from work 

executed by Xiong & Chen (2021). This database contains 334 signals of jumping 

individuals and 92 signals of jumping crowds, up to 48 people. Figure 4 presents an 

example of such a signal. 

 

Basing ourselves on the measured data, also stochastic quantification of relevant 

parameters becomes possible. The next chapter provides the distribution type and 

parameters related to jumping motions. 
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                Figure 2.4 Excitation signal of an individual jumping at 2 Hz 

                (data from Xiong and Chen, 2021) 

 

3 Stochastic quantification of random variables related to jumping 

3.1 Jump factor  𝑭𝑭�  

The jump factor describes the ratio between the dynamic force excited by a jump 𝐹𝐹(𝑡𝑡) and 

that person’s static weight 𝐺𝐺 (see Equation 2). In this assessment, it is assumed to be the 

sum of two separate variables: (1) one that describes the series-to-series difference between 

peaks 𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠 (i.e., the difference between two individuals’ average jump factor), and (2) one 

that describes the difference in peaks within a series  𝐹𝐹�𝑤𝑤𝑠𝑠 (i.e., the difference between 

subsequent jumps of a single individual): 
 

 𝐹𝐹� = 𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠 + 𝐹𝐹�𝑤𝑤𝑠𝑠 (5) 
 

After cleaning the data, 236 out of the 334 are deemed useful. Faulty datasets included 

non-metronome-guided jumping or too many missed jumps. For each of the 236 remaining 

excitation signals, the mean value and the standard deviation of the jump factor is 

determined. The result is shown in Figure 3.1. 

 

Series-to-series jump factor 𝑭𝑭�𝒔𝒔𝒔𝒔𝒔𝒔 

The distribution type and parameters that best describe the series-to-series jump 

factor, 𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠, is a normal distribution with the following parameters: 
 

 𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠~N(loc = 3.09, scale = 0.51)  

 

Jump factor (-)
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Figure 3.1 Mean value (blue) ± 1 standard deviation (green) of all peaks of the jump factor 

 

Within-series jump factor 𝑭𝑭�𝒘𝒘𝒔𝒔 

The distribution type and parameters that best describe the within-series jump factor, 𝐹𝐹�𝑤𝑤𝑠𝑠, 

is a Weibull distribution with the following parameters: 
 

 𝐹𝐹�𝑤𝑤𝑠𝑠~Weib(shape = 68.9 ⋅ 106, loc = 51.3 ⋅ 106, scale = 51.3 ⋅ 106)  
 

 

No correlation between the series-to-series and within-series jump factors  

With the marginal distributions defined, only the correlation between 𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠 and 𝐹𝐹�𝑤𝑤𝑠𝑠 needs to 

be defined to fully describe the jump factor  𝐹𝐹�. Correlation between two random samples 𝑋𝑋 

and 𝑌𝑌 can be determined through 
 

 𝜌𝜌𝑥𝑥,𝑦𝑦 =
∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)𝑛𝑛
𝑖𝑖=1

�∑ (𝑥𝑥𝑖𝑖 − 𝑥𝑥)2𝑛𝑛
𝑖𝑖=1 ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦)2𝑛𝑛

𝑖𝑖=1
 (5) 

 

where 𝜌𝜌𝑥𝑥,𝑦𝑦 is the Pierson correlation coefficient, 𝑛𝑛 is the sample size, 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 are the sampled 

points of random variables 𝑋𝑋 and 𝑌𝑌, and �̅�𝑥,𝑦𝑦� are the sampled means of variable 𝑋𝑋 and 𝑌𝑌. 

The resulting correlation coefficient is 0.20, indicating low correlation. In modelling the 

jump factor 𝐹𝐹�, the two variables are therefore assumed to be uncorrelated. 

The jump factor from the data set shows similar results to values that the literature 

describe. 

3.2 Contact ratio 𝜶𝜶 

The contact ratio is the contact duration between the person and the ground, relative to the 

jump period (see Equation 4). For each participant, the average contact ratio is determined.  

Time(s)

Jump factor (-)

Participant ID (-)

Jump factor (-)
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The distribution type and parameters that best describe the contact ratio 𝛼𝛼 is a normal 

distribution with the following parameters: 
 

 𝛼𝛼~𝑁𝑁(loc = 0.66, scale = 0.08)  
 

According to the data set, the expected value of the contact ratio is 0.66. When compared to 

literature (e.g. Ellis et al, 2000), this is on the high side. The origin of this difference is not 

investigated. A possible explanation could be that these studies base their results on 

mathematical models instead of a data set, which might correctly estimate the jump factor, 

but underestimates the contact ratio. To prevent too lenient results, the expected value of 

the contact ratio is chosen to be in line with what is found in literature. This is a 

conservative approach. 
 

 𝛼𝛼~𝑁𝑁(loc = 0.33, scale = 0.08)  

3.3 Correlation between the jump factor  𝑭𝑭� and the contact ratio 𝜶𝜶 

Section 2.2 mentioned the negative relation that exists between the jump factor and the 

contact ratio. In Figure 3.2 the relation between 𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠 and 𝛼𝛼 and between  𝐹𝐹�𝑤𝑤𝑠𝑠 and 𝛼𝛼 are 

illustrated, respectively. The Pierson correlation coefficients are included in the figure. 

The figure clearly illustrated the correlation between 𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠 and 𝛼𝛼 and therefore it needs to be 

included when generating an excitation signal. The correlation between 𝐹𝐹�𝑤𝑤𝑠𝑠 and 𝛼𝛼 is so low 

that it can be ignored. 

 

 

 

Figure 3.2 Correlation analysis between the contact ratio and the series-to-series jump factor, and 

within-series jump factor, respectively 

−Series-to-series jump factor ( ) −Within-series jump factor ( )

−Contact ratio ( )
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3.4 Autocorrelation 

Autocorrelation measures the dependence of a variable with a lagged version of itself. In 

this study the lag follows from a time difference between subsequent jumps. The 

autocorrelation function for both the jump factor 𝐹𝐹� and the contact ratio 𝛼𝛼 are examined. 

Because the peak values resulting from the data set are a realization of the series-to-series 

jump factor and the within-series jump factor, it is only possible to determine the 

autocorrelation function for the combination of the two variables. 

 

Figure 3.3 presents the temporal autocorrelation functions of  𝐹𝐹� and 𝛼𝛼, respectively, for the 

first 10 lags. Both variables show a quick, steep drop in autocorrelation. 

Although both are so low that autocorrelation could be neglected, the first lag is 

considered. The autocorrelation for the jump factor is 𝜌𝜌𝐹𝐹�𝑖𝑖,𝐹𝐹�𝑖𝑖+1 = 0.28. For the contact ratio 

this value is 𝜌𝜌𝛼𝛼𝑖𝑖,𝛼𝛼𝑖𝑖+1 = 0.20. 

 

            Figure 3.3 Temporal autocorrelation functions for the jump factor and the contact ratio 

 

3.5  Jump period 𝑻𝑻𝒑𝒑 

The jump period describes the duration of a single jump. The period at time 𝑖𝑖, (i.e. 𝑇𝑇𝑝𝑝,𝑖𝑖) 

depends on the previous 𝑖𝑖 − 1 realisations (Ellis & Ji (2004), Sim et al. (2008)). Literature 

has shown that currently no equivocal distribution type and parameters exist for 𝑇𝑇𝑝𝑝. 

Evaluation of the data set shows that the coefficient of variation of the jumping period is 

0.10 at 2 Hz. For larger frequencies, the value tends to converge to 0.08. A coefficient of 

variation of 0.10 means that the standard deviation of a 2 Hz guided jump is 0.05 s. 

Shifts (-) Shifts (-)

Autocorrelation (-)
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Because of the disagreements in literature, a safer value for the standard deviation is 

chosen: 0.02. This is a conservative approach. 

 

The distribution type and parameters that best describe the jump period,  𝑇𝑇𝑝𝑝, is a normal 

distribution with the following parameters: 
 

 𝑇𝑇𝑝𝑝,𝑛𝑛~N(loc = � �𝑛𝑛 ⋅ 𝜇𝜇 − 𝑇𝑇𝑝𝑝,𝑖𝑖�
𝑛𝑛

𝑖𝑖=1
, scale = 0.02)  

 

where 𝜇𝜇 is the mean value of the jump period. 

3.6 Phase lag 𝝓𝝓 

The phase lag represents the natural difference in timing between individuals. No 

conclusive literature was found on the distribution type and parameters of this variable. 

Therefore, the phase lag 𝜙𝜙 is assumed to be modelled as a normal distribution with the 

following parameters: 
 

 

 𝜙𝜙~N(loc = 0, scale = 0.05)  

3.7 Overview of the parameters 

Tables 3.1-3.3 present the variables that are used to generate normalized excitation signals. 

In order to create a single excitation signal, the normalized excitation signal needs to be 

multiplied with a static weight 𝐺𝐺 = 𝑚𝑚𝑚𝑚, where 𝑚𝑚 is the mass of a person. To create 

excitation signals for a group of size 𝑛𝑛, this process needs to be repeated 𝑛𝑛 times. The 

differences in the jump period 𝑇𝑇𝑝𝑝, the contact ratio 𝛼𝛼 and the phase lag 𝜙𝜙 ensure that a 

narrow banded signal is created. 

 

Table 3.1. Stochastic quantification of variables relevant to the generation of excitation signals 

Variable Distribution type 

Jump factor 

(between series) 

𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠 Normal (loc = 3.09, scale = 0.51) 

Jump factor 

(within series) 

𝐹𝐹�𝑤𝑤𝑠𝑠 Weibull (k = 68.9∙106, loc = 51.3∙106, scale = 51.3∙106) 

Contact ratio 𝛼𝛼 Normal(loc = 0.33, scale = 0.08) 

Jump period 𝑇𝑇𝑝𝑝 Normal(loc = 𝑇𝑇𝑝𝑝, scale = 0.02) 

Phase lag  𝜙𝜙 Normal(loc = 0, scale = 0.05) 
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Table 3.2 Correlation table                Table 3.3 Temporal autocorrelation table 

 𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠 𝐹𝐹�𝑤𝑤𝑠𝑠 𝛼𝛼   𝐹𝐹�𝑖𝑖   𝛼𝛼𝑖𝑖 

𝐹𝐹�𝑠𝑠𝑠𝑠𝑠𝑠 1 0 -0.82  𝐹𝐹�𝑖𝑖+1 0.28 - 

𝐹𝐹�𝑤𝑤𝑠𝑠 0 1 0  𝛼𝛼𝑖𝑖+1 - 0.20 

𝛼𝛼 -0.82 0 1     

 

 

 
Figure 3.4 A random realisation of the synthetically generated and an experimentally obtained 

excitation signal 

Time (s)

Frequency (Hz)

Jump factor (-)

Fourier
amplitude
spectrum (s)
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Figure 3.4 presents a random realisation of the excitation signal and a randomly picked 

signal from the experiments, both with an excitation frequency of 2 Hz. In the time 

domain, the results look quite similar. The frequency domain shows larger contributions  

around the harmonics in the experimental data compared to the synthetic data. 

 

 

Figure 3.5 Linear elastic response of a system to an experimentally obtained (red) and synthetically 

generated (blue) excitation signal. The structure’s natural frequency is 10 Hz (top), 6 Hz (middle) 

or 4 Hz (bottom). 

Time (s)

Displacement (-)

Displacement (-)

Displacement (-)
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To compare the effects of the different load signals the linear elastic response is computed 

for three systems with natural frequencies equal to 𝑓𝑓𝑒𝑒 = 10 Hz, 6 Hz and 4 Hz, see Figure 

3.5. As can be depicted from this figure, the result is that for decreasing natural 

frequencies, the displacement is overestimated. Based on that it seems that the synthetic 

excitation signals lead to an overestimate of the structural response. It is not investigated if 

this conclusion can be drawn in general or of this if it is related to this specific outcome.  

4 Method 

4.1 The dynamical system 

A non-linear dynamical system is introduced to describe the behaviour of the grandstand 

element. If human-structure interaction (HIS) is ignored, the element can be modelled as a  

single degree of freedom (SDOF) system (Ellis et al., 2000). Inclusion of HIS, leads to a 

reduced response for individuals jumping (Shahabpoor & Pavic (2016), Yao et al. (2002), 

Gaspar et al. (2020). However, a study on the interaction between groups and a structure 

show that the net reduction is negligible for lightweight structures (Appelman, 2022). No 

literature was found that describes the influence of HSI of a group on a heavier structure 

was found. Further research in this matter is required. For now, HSI is ignored in this 

dynamical system. 

 

The non-linear spring in the dynamical system is characterized by a force-displacement 

relationship, which describes its behaviour up to the point of failure. A bi-linear force-

displacement relationship with strength hardening is adopted (see Figure 4). To include 

the non-linear region in the analysis, the design criteria change from the usual strength- 
 

 
Figure 4.1 A bilinear force-displacement relationship 

The subscripts 𝑦𝑦 and 𝑢𝑢 indicate the yield- and failure point of the structure 

uuyu

uF

yFForce (kN)
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basis to a displacement-basis, where the ultimate displacement 𝑢𝑢𝑢𝑢 cannot be exceeded. 

This is a commonly used design criterion in e.g. seismic design (Tsouvalas 2020), but it can 

also be applied to this analysis. 

 

For each dynamical system an equation of motion (EOM) needs to be derived to describe 

its behaviour. The EOM of a non-linear SDOF is given as (Tsouvalas 2020) 
 

 𝑚𝑚
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑡𝑡2  + 𝑐𝑐

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡 + 𝑓𝑓𝑠𝑠 �𝑢𝑢, sgn �

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡
�� = 𝐹𝐹(𝑡𝑡) (6) 

where 𝑚𝑚, 𝑐𝑐 and 𝑘𝑘 are the mass, the viscous damping, and the stiffness of the system, 

respectively, 𝑢𝑢 is the midspan displacement of the system,  𝜕𝜕
𝜕𝜕𝑠𝑠

 indicates a derivative with 

respect to time, 𝑓𝑓𝑠𝑠( ) is the restoring force of the system, sgn( ) is the signum function 

(which returns −1 for arguments smaller than 0, returns 0 if the argument is 0, and returns 

+1 for arguments larger than 0), and 𝐹𝐹(𝑡𝑡) is the force in the system. Figure 5 presents the 

equivalent mass-damper-spring system of the concrete grandstand element. The restoring 

force (i.e. 𝑓𝑓𝑠𝑠( )) is modelled as a parallel combination of a linear spring and a hysteretic 

spring. 

 
Figure 4.2 The equivalent mass-damper-spring system of the concrete grandstand element 

 

The restoring force stores all inelastic characteristics that the system has in it (Tsouvalas 

2020). In this system the non-linear behaviour of the restoring force is based on two 

phenomena: (1) strength hardening, and (2) hysteresis. Strength hardening means that the 

post-yielding stiffness has a positive value, which is depicted in Figure 4.1. Hysteresis 

indicates that there is a delay between the input and the output of a system. In structural 

dynamics, hysteresis loops are found when comparing the force exciting the system (input) 

F t( )

u t( )
m

chysklink
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with the displacement (output). The displacement lags the force, ensuring that loops are 

formed. Each enclosed loop is equal to the energy dissipation of the system. 

 

Sivalsevan & Reinhorn (1999) propose the following equation to model a hysteretic spring 
 

 𝑘𝑘ℎ𝑦𝑦𝑠𝑠 = (1 − 𝑟𝑟𝑘𝑘)𝑘𝑘0 �1 − �
𝐹𝐹∗

𝐹𝐹𝑦𝑦∗
�
𝑁𝑁

�𝜂𝜂1sgn �𝐹𝐹∗
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡
� + 𝜂𝜂2�� (7) 

where 𝑟𝑟𝑘𝑘 is the ratio between the elastic and the post-yielding stiffness, 𝑘𝑘0 is the eastic 

stiffness of the system, 𝐹𝐹∗ is the portion of applied force shared by the hysteretic spring, 

𝐹𝐹𝑦𝑦∗is the yield force of the hysteretic spring, 𝑁𝑁 is a parameter controlling the smoothness of 

the transition from elastic to inelastic, 𝜂𝜂1 is a parameter controlling the shape of the 

unloading curve (0 < 𝜂𝜂1 < 1), and 𝜂𝜂2 = 1 − 𝜂𝜂1. This yields a combined stiffness of: 
 

 𝑘𝑘𝑠𝑠𝑦𝑦𝑠𝑠 = 𝑘𝑘𝑙𝑙𝑖𝑖𝑛𝑛 + 𝑘𝑘ℎ𝑦𝑦𝑠𝑠 = 𝑟𝑟𝑘𝑘𝑘𝑘0 + (1 − 𝑟𝑟𝑘𝑘)𝑘𝑘0 �1 − �
𝐹𝐹∗

𝐹𝐹𝑦𝑦∗
�
𝑁𝑁

�𝜂𝜂1sgn �𝐹𝐹∗
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡
�+ 𝜂𝜂2�� (8) 

4.2 The reliability analysis 
Failure of a structure is described by introducing a limit state function (LSF) 
 

 𝑍𝑍(𝑢𝑢, 𝑡𝑡) = 𝑅𝑅(𝑢𝑢)− 𝑆𝑆(�̈�𝑢, 𝑡𝑡) (9) 
 

where 𝑍𝑍(𝑢𝑢, 𝑡𝑡) is the limit state function, 𝑅𝑅(𝑢𝑢) is the resistance function and 𝑆𝑆(�̈�𝑢, 𝑡𝑡) is the 

solicitation function. Failure occurs in the region where the solicitation is larger than the 

resistance, i.e., when 𝑍𝑍 < 0. The design criterion of this non-linear dynamical system is 

displacement based, making the limit state function a function of both displacement and 

time. The solicitation function 𝑆𝑆(�̈�𝑢, 𝑡𝑡) is equal to the excitation a crowd induces on the 

element. The resistance function 𝑅𝑅(𝑢𝑢) is described using a bi-linear force-displacement 

relationship. 

 

The solicitation function 𝑆𝑆(�̈�𝑢, 𝑡𝑡) is constructed by using the stochastic variables, mentioned 

in Tables 3.1-3.3. The normalized ground reaction forces are translated to an acceleration 

through (Racic et al., 2010) 
 

 𝐹𝐹�(𝑡𝑡) = �̈�𝑢(𝑡𝑡)/𝑚𝑚 + 1 (10) 
 

where 𝑚𝑚 is the gravitational acceleration constant. This is done for every individual. The 

total excitation signal is the superposition of each individual’s signal, multiplied with an 
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influence factor that corrects for each person’s location at the grandstand. As the database 

of Xiong & Chen (2021) consists of 30-second excitation signals, the artificially generated 

signals are also 30 seconds. 

 

It is assumed that crowds are uniformly distributed, which is a reasonable take (Ellis & Ji, 

2002). The influence factor is determined using The Maxwell-Betti reciprocal work 

theorem. The Maxwell-Betti reciprocal work theorem states that the influence line of the 

displacement at midspan of a structure, given the spatial coordinate of the unity load, is 

equal to the displacement line of the structure, given a midspan unity load. Under the 

assumption that the grandstand element can be modelled as a simply supported, slender 

beam with a constant bending stiffness, the displacement of the structure given a midspan 

load is obtained using the Euler-Bernoulli beam theory 
 

. 

 
𝜕𝜕2

𝜕𝜕𝑥𝑥2 �𝐸𝐸𝐸𝐸
𝜕𝜕2𝑢𝑢(𝑥𝑥)
𝑑𝑑𝑥𝑥2 � = 𝑞𝑞(𝑥𝑥) (11) 

 

where 𝐸𝐸𝐸𝐸 is the bending stiffness of the structure, 𝑢𝑢(𝑥𝑥) is the displacement of the structure 

at position 𝑥𝑥 (0 < 𝑥𝑥 < 𝐿𝐿), and 𝑞𝑞(𝑥𝑥) is the applied lateral load at position 𝑥𝑥. 

 

For the resistance function 𝑅𝑅(𝑢𝑢) we use the finite element model presented in (Royal 

HaskoningDHV, 2022). This yields a deterministic parameter. Therefore, a model 

uncertainty parameter 𝜃𝜃 is introduced. Failure of concrete beams due to the yielding of the 

reinforcement steel shows a coefficient of variation of around 5% (Schlune et al. (2012), 

Casas et al. (2007). These findings are based on static analyses, however. No literature was 

found regarding a model uncertainty factor of concrete structures subjected to dynamical 

analysis. To account for this uncertainty, the coefficient of variation is doubled to 10%. 

Future studies should verify this assumption. No bias is expected in the numerically 

obtained resistance. Therefore a normal distribution with a mean value of 𝜇𝜇 = 1 is 

proposed to account for the model uncertainty 
 

 𝑅𝑅(𝑢𝑢) = 𝜃𝜃 𝑅𝑅nm(𝑢𝑢) (12) 
 

where 𝜃𝜃~𝑁𝑁(1, 0.12) is the model uncertainty parameter, and 𝑅𝑅nm(𝑢𝑢) is the numerically 

obtained force-displacement relationship. Because degradation effects are neglected in this 

study, the resistance function is independent of time. 
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A Monte Carlo simulation is proposed to determine the reliability, due to the complexity of 

the analysis (i.e., non-linear and dynamical). This is a type III reliability method, indicating 

that it can be deployed to determine the true probability of failure. Monte Carlo relies on 

repeated random sampling over many experiments. Each simulation has its own unique 

set of randomly sampled variables. Therefore, each outcome is different. 

 

The outcome of each analysis are two values: (1) a maximum structure displacement 𝑢𝑢max, 

resulting from the solicitation function 𝑆𝑆(�̈�𝑢, 𝑡𝑡), and an ultimate displacement 𝑢𝑢𝑢𝑢, which 

follows from the resistance function 𝑅𝑅(𝑢𝑢). If the structure’s maximum displacement 

exceeds its ultimate displacement, the structure is considered to have failed (see Equation 

9, where 𝑍𝑍 becomes smaller than 0). The probability of failure follows from the ratio of 

failed number of experiments 𝑛𝑛𝑓𝑓 over the total number of experiments 𝑛𝑛 
 

 𝑃𝑃𝑓𝑓 =
𝑛𝑛𝑓𝑓
𝑛𝑛  (13) 

4.3 The collapsed element in the Goffert stadium 
In this section a probabilistic forensic assessment is performed to the collapsed element in 

the Goffert stadium. Table 4.1 presents the parameters that are used in the probabilistic 

forensic assessment. The grandstand element collapsed in reality after about 8 seconds of 

rhythmic jumping at 2 Hz. At the moment of collapse, 93 people were present on the 

grandstand element, divided over 3 rows. The structure broke in two, with a break line in 

the middle. This indicates that its bending moment capacity was exceeded. Section 4.2 

explained how the location dependent influence factors are determined. They are shown in 

Table 4.2. Because of geometrical symmetry of the beam, only the first half of the influence 

factor is presented. The number of people on these locations are doubled (i.e., 6 people 

instead of 3). Their excitation signals are still unique, though. The multiplication at location 

𝑥𝑥𝑖𝑖  is assumed to be equal to the ratio between the displacement at that location, 𝑤𝑤𝑥𝑥𝑖𝑖 and the 

maximum displacement of the beam, 𝑤𝑤max. 

 

The ultimate bending capacity of a concrete structure is linearly related to the internal lever 

arm between the centre of the concrete compressive zone and the location of the 

reinforcement steel. The collapsed element had a thickness of 120 mm, which means that 

the internal lever arm is somewhere in the range of 95 mm (assuming 𝑧𝑧 = 0.8ℎ, where 𝑧𝑧 is 

the internal lever arm, and ℎ is the thickness of the beam). Small deviations in the concrete 

cover could result in significant changes in the ultimate bending capacity. In the FEM 
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analysis, a concrete cover of 40 mm was applied based on the design drawings. The FEM 

analysis is performed to determine the structural capacity of the grandstand element. No 

measurements of the collapsed element are shared in (Royal HaskoningDHV, 2020), thus it 

is not possible to determine if the collapsed structure might have been subjected to a 

 
Table 4.1 Assessment parameters 

Load parameters Symbol Value Units Reference 

Number of people 𝑛𝑛  93 - 1 

Mass of a person 𝑚𝑚𝑝𝑝  85 kg 2 

Gravity constant 𝑚𝑚   9.81 m/s2 2 

     

Grandstand structural properties 

Mass 𝑚𝑚𝐺𝐺  14.2 ⋅ 103 kg 1 

Yield strength 𝐹𝐹𝑦𝑦  249 ⋅ 103 N 1 

Yield displacement 𝑢𝑢𝑦𝑦  6 ⋅ 10-3 m 1 

Elastic stiffness 𝑘𝑘0  41.5 ⋅ 106 N/m 1 

Ultimate strength 𝐹𝐹𝑢𝑢  376 ⋅ 103 N 1 

Ultimate displacement 𝑢𝑢𝑢𝑢  40 ⋅ 10-3 m 1 

Post-yielding stiffness 𝑘𝑘𝑛𝑛𝑙𝑙   3.74 ⋅ 106 N/m 1 

Stiffness ratio 𝑟𝑟𝑘𝑘  0.09 - 1 

     

Damping properties 

Damping ratio 𝜁𝜁  0.05 - 1 

Stiffness-proportional 

damping coefficient  

𝛼𝛼  1.86 ⋅ 103 - 2 

Mass-proportional   

damping coefficient 

𝛽𝛽  0 - 2 

Smoothness parameter 𝑁𝑁  10 - 2 

Unloading shape parameter 𝜂𝜂1  0.5 - 2 

Unloading shape parameter 𝜂𝜂2  0.5 - 2 

Reference 1: Royal HaskoningDHV (2022) 

Reference 2: For these parameters, no (definite) value could be obtained from Royal HaskoningDHV (2022). 

Multiple masses are used throughout the study, of which 85 kg is the heaviest. Structural damping in the 

system is modelled as Rayleigh damping, where all damping is assumed to result from the stiffness-

proportional damping coefficient. The smoothness parameter 𝑁𝑁 and the parameters that control the shape of 

the unloading curve, 𝜂𝜂1 and 𝜂𝜂2 are taken such that energy dissipation by hysteresis is insignificantly small.    
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lower than intended internal lever arm. However, concrete cover measurements on 23 

other elements in the stadium have been shared in the same report, see Table 4.3. These 

measurements show large deviations in the concrete cover at midspan. Of all these 

measurements the average minimum, mean and maximum concrete cover is measured. 

When taking the average of the largest concrete covers, this value is 16 mm larger than its 

mean value. With an element thickness of 120 mm, a loss of internal lever arm of 16 mm 

would prove very significant. 

 

Higher concrete covers result in a lower internal lever arm, reducing the ultimate bending 

moment capacity of the structure. Up until the yielding point of the reinforcement steel, the 

structure is assumed to be uninfluenced by this, because the concrete tensile strength is 

largely responsible for the pre-yielding stiffness. This characteristic is unaffected by a 

change in the concrete cover. 

 

 

Table 4.2 Location dependent load multiplication factors 

Number of people 𝑥𝑥 (m) 𝑤𝑤(𝑥𝑥)/𝐸𝐸𝐸𝐸  Influence factor  

6 0.00 0.00 0.000 

6 0.28 1.28 0.100 

6 0.57 2.54 0.199 

6 0.85 3.79 0.296 

6 1.13 5.00 0.397 

6 1.42 6.16 0.481 

6 1.70 7.27 0.568 

6 1.98 8.31 0.649 

6 2.27 9.26 0.724 

6 2.55 10.13 0.792 

6 2.83 10.90 0.852 

6 3.12 11.55 0.903 

6 3.40 12.08 0.944 

6 3.68 12.47 0.975 

6 3.97 12.71 0.993 

3 4.24 12.79 1.000 

Σ = 93    
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Table 4.3 Minimum, average and maximum measured concrete cover on other grandstand elements 

in the Goffert stadium (Royal HaskoningDHV, 2022) 

Element 

type 

Measured concrete cover  

(mm) 

Minimum and maximum deviation 

 min average max (mm) (%) (mm) (%) 

1 41 52 72 20 38 -11 -21 

2 42 48 60 12 25 -6 -13 

2a 33 43 65 22 51 -10 -23 

3 41 46 52 6 13 -5 -11 

4 44 57 72 15 26 -13 -23 

5 38 58 83 25 43 -20 -34 

6 33 41 69 28 68 -8 -20 

8 25 41 59 18 44 -16 -39 

9 27 34 48 14 41 -7 -21 

10s 26 38 54 16 42 -12 -32 

11s 21 37 56 19 51 -16 -43 

13s 26 36 47 11 31 -10 -28 

14s 21 34 62 28 82 -13 -38 

15 34 39 58 19 49 -5 -13 

16 32 41 55 14 34 -9 -22 

17 27 34 39 5 15 -7 -21 

18 24 34 69 35 103 -10 -29 

19 19 38 54 16 42 -19 -50 

20 29 38 51 13 34 -9 -24 

21 24 34 49 15 44 -10 -29 

22 25 28 34 6 21 -3 -11 

23 33 36 49 13 36 -3 -8 

24 38 41 45 5 10 -3 -7 

Average deviation 16 41 -10 -24 

Extreme deviation 35 103 -19 -50 
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A sensitivity study on the structure is performed in which the post-yielding stiffness is 

reduced. In total, two sensitivity studies are performed where the non-linear resistance is 

reduced by 10% and 20%, respectively. The values of the yield- and ultimate points can be 

found in Table 4.4, whereas Figure 4.3 shows the force-displacement relationships. The 

actual influence of a different concrete cover on the bending capacity is much more 

complex and should follow from a non-linear analysis. These values therefore no longer 

represent the actual structure: they are chosen to demonstrate the influence the post-

yielding stiffness has on the probability of failure. 

 

 

Table 4.4 Calculation parameters used for the weakened force-displacement relationship 

Weakened  𝑢𝑢𝑦𝑦 (m) 𝐹𝐹𝑦𝑦 (N) 𝑢𝑢𝑢𝑢 (m) 𝐹𝐹𝑢𝑢 (N) 

0% 6 ⋅ 10-3 249 ⋅ 103 40 ⋅ 10-3 376 ⋅ 103 

10% 6 ⋅ 10-3 249 ⋅ 103 40 ⋅ 10-3 363.3 ⋅ 103 

20% 6 ⋅ 10-3 249 ⋅ 103 40 ⋅ 10-3 350.6 ⋅ 103 

 

 

 

 
Figure 4.3 Weakened force-displacement relationship used in the probabilistic forensic assessment 

 

Displacement (mm)

Force (kN)
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5 Results and discussion 

This section presents the results of the study. A total of 94,221 randomly generated 

excitation signals of 93 people jumping at 2 Hz were created. The routine generates 

excitation signals of 30 seconds, whereas the actual structure collapsed after about 8 

seconds. Thus, the signals have a significant duration: if failure happens within 8 seconds, 

it also happens within 30 seconds, but if failure happens within 30 seconds, it does 

necessarily happen within 8 seconds. The presented failure probabilities are therefore to be 

interpreted as an upper bound to the real situation. 

 

Figure 6 presents the results of the initial analysis and the two sensitivity analyses. On the 

horizontal axis unity checks are presented (see Equation 14) in bins with a width of 0.05. 

The vertical axis shows the height of each bin. The unity check is the ratio the structure’s 

maximum displacement and its ultimate displacement 
 

 uc =
𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥

𝑢𝑢𝑢𝑢
 (14) 

 

A unity check larger than 1.0 indicates that 𝑍𝑍 is smaller than 0, and thus failure. A unity 

check larger than 1.0 indicates the opposite. 

 

When the post-yielding stiffness conforms the numerically determined stiffness (i.e., 0% 

reduced), 0 out of the 94,221 simulations failed. A 10% reduction in the post-yielding 

stiffness results in 6 failed cases out of the 94,221. When the post-yielding stiffness is 

reduced by 20%, 219 out of the 94,221 simulations failed. 

 

This sensitivity analysis proves that the post-yielding capacity of a structure is a key 

parameter when investigating the reliability of a grandstand element. With a resistance 

function based on the design drawings and design loads, 0 out of 94,221 simulations failed 

after 30 seconds of jumping. In reality, 1 out of 30-40 elements failed after 8 seconds. A 

high discrepancy is found between the failure probability of the actual structure and the 

failure probability of the structure based on the design drawings. If the structure was built 

as based on the design drawings, it fails to explain the true probability of failure of this 

system: a much higher probability of failure is to be expected. This indicates that either the 

model or the input was incorrect. 
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Figure 5.1 The resulting unity checks for each simulation for the structure with a 0%, 10%, and 

20% reduced post-yielding stiffness 

 

The proposed dynamical system is a commonly used method to model a grandstand 

element. The dynamical system is therefore judged to lead to unbiased results for this 

analysis. 
 

The excitation signals are state of the art. They are generated such that they describe the 

jumping behaviour of a crowd as accurately as possible. Stochastic variables were 

determined, and the excitation signals were randomly sampled. There is no reason to 

assume that the database that was used to determine the stochastic variables is unreliable, 

therefore there is also no reason to assume the excitation signals are unreliable. 
 

The coefficient of variation of the resistance uncertainty parameter 𝜃𝜃 is assumed to be 10%. 

5% could be linked to tests performed on failure of concrete beams where failure occurred 

as a result of the yielding of steel. The influence of the dynamical basis of this analysis 

stond could not be expressed in terms of an additional coefficient of variation that was 

based on literature. Therefore, the choice was made to double the uncertainty. This 

assumption is not unreasonable. 
 

The force-displacement relationship based on the technical drawings presented in (Royal 

HaskoningDHV, 2020) is determined using generally accepted software was used in their 

analyses. There is no reason to assume that the force-displacement relationship based on 

the technical drawings was wrongly determined by (Royal HaskoningDHV, 2020).  

Bin height
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Although no measurements of the concrete cover of the collapsed element were shared, 

large deviations on other elements were measured. If this were also the case for the 

collapsed element, it would have been incorrect to assume that the resistance of the 

structure conforms to the resistance based on the technical drawings. Although it cannot be 

determined if this element was, in fact, also subjected to large deviations, it is not 

unreasonable to assume that it was. Additionally, a sensitivity study showed that the post-

yielding stiffness, which is linearly related to the internal lever arm between the centre of 

the concrete compressive force and the location of the reinforcement steel, highly 

influences the reliability of the structure. 
 

A combination of a proper modelling of the dynamical system, accurately modelled 

excitation signals and a numerically determined resistance conform the technical drawings 

fails to explain the observed collapse. The sensitivity study has shown the influence of the 

non-linear capacity of an element with respect to its reliability index, while concrete 

measurements of other elements has given the impression that the collapsed element was 

subjected to deviations in its cover. These points combined indicate that the failed 

grandstand element in the stadium was likely subjected to large variations in the concrete 

cover. The three presented reliability assessments have shown that the collapse of the 

element in the Goffert stadium cannot be explained by the actually occurred loads being 

higher than the design loads, but rather by a weaker than intended resistance of the 

element resulting from execution errors in the concrete cover and the positioning of the 

main reinforcement. 

6 Conclusions 

In this paper a probabilistic forensic assessment on the collapsed element in the Goffert 

stadium was performed. Stochastic variables related to jump type loads were quantified. 

These variables were used to generate excitation signals. The following conclusions can be 

drawn from this study: 

• When using the structural properties resulting from the design drawings, the 

assessment was unable to explain why the collapsed element failed with such a high 

probability. The proposed dynamical model, combined with a state of the art 

excitation signal and a resistance function as intended based on technical drawings 

give no cause for the very large observed failure probability. 
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• Concrete cover measurements of other elements combined with the sensitivity of the 

post-yielding capacity to the structure’s reliability make it more plausible that the 

actual structure was weaker than intended, rather than the actual loads being  higher 

than the design loads. 

 

While this paper developed a novel method to perform a probabilistic forensic assessment 

on a collapsed grandstand element, there are still areas for improvement and future 

research. The following are recommendations for future work: 

• The influence human structure interaction has on the response needs further 

investigation. In particularly, the interaction between a group of people and the 

structure should be explored. 

• The choice of damping parameters is a critical factor in determining the structure’s 

response, making the present model conservative. In this paper, damping due to 

hysteresis was assumed to be negligibly small which is also conservative. Further 

work can be carried out to obtain reliable parameters which would improve the 

model’s accuracy.  

• The probabilistic model in this paper was intended to find a most likely cause for 

failure in a forensic assessment. The method can be extended to a reliability based 

calibration of design loads in order to establish the jumping load value coupled to a 

certain required reliability level. So the current paper does not deal with the question 

which design loads to use but deals only with the question of the failure cause. 
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