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Optimal number of load combinations 
in structural analysis 
P.C.J. Hoogenboom                      
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Netherlands 

In this paper, the optimal number of load combinations is calculated for analysing 

engineering structures. This number depends on the quantity of load cases, the cost of the 

structure and the cost of analysing one load combination. The problem can be reduced to a 

geometrical challenge: find polytopes that fit a sphere in hyperspace. Three examples show 

that the optimal number can be much larger than the number applied in current practice. 
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1 Introduction 

For most structural types, the partial factors and load combinations are specified in codes 

of practice [1, 2]. They were determined based on good practice, theoretical research and 

engineering judgement. However, these specified load combinations are probably not 

optimal. Other combinations could guarantee an equally safe design while the structural 

cost might be less [3]. For example, the software CodeCal [4] can optimise partial factors 

 

 
Figure 1. Probability density function and load combinations. A design can be checked by three 

large load combinations or by seven smaller load combinations. In both cases, accepted designs have 

sufficient safety. 
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for three load cases and two load combinations. When more load combinations are used 

the partial factors can be a bit smaller and the structural cost will be less (Fig. 1). On the 

other hand, analysing more load combinations gives extra design costs. In fact, there is a 

trade-off between structural costs and design costs. The optimal set of load combinations 

provides the minimal total cost. 

2 Geometrical description 

A load combination can be interpreted as a point in the space of load cases. Figure 2 gives 

an example of two load cases L and W and four load combinations. Only the first quadrant 

is plotted because partial factors always have positive values. 

 

  
Figure 2. Load combinations in the space of load cases 
 

A limit state function is the boundary in the space of load cases at which a structure fails. 

Failure is defined as not fulfilling a performance requirement, which can be related to the 

ultimate limit state or the serviceability limit state. For a well-designed structure, all load 

combinations are in the area enclosed by the limit state function. Many limit state functions 

are peace wise linear. Each linear part represents a failure mechanism. Moreover, for 

structures made of ductile components and joints, it can be proved that the limit state 

function is convex [5]. In theory, if a design would be structurally optimal the limit state 

function would be the convex envelope of the load combinations (Fig. 3). 

 

  
Figure 3. Limit state function and convex envelope of the load combinations 
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For two load cases a convex envelope of the load combinations is a polygon. For three load 

cases it is a polyhedron. For four or more load cases the convex envelope is a polytope [6]. 

 

In the space of load cases the probability density function can be plotted too (Fig. 4). The 

failure probability is the integral of the probability density outside the limit state function. 

For the failure probability to be small, the limit state function should be at sufficient 

distance from the origin. However, the structural cost is proportional to the values of the 

partial factors. For the structural cost to be small, the limit state function should be close to 

the origin. 

 

 
Figure 4. Contour plot of the probability density function of the load cases. Part of this function is 

outside the limit state function. The volume of this part is the failure probability. 

 

The situation is idealised as follows (Fig. 5). Consider a sphere in a space of d dimensions. 

Middle point of the sphere is the origin and its radius is Ri. We consider part of the space 

for which all co-ordinate values are larger than or equal to zero. The sphere is enclosed by 

a polytope. This polytope is the convex hull of n points. A second sphere encloses the 

polytope. This sphere has a radius Re and its middle point is in the origin too. The 

challenge is to optimise the point co-ordinates such that Re/Ri obtains its smallest value 

(Fig. 6). The in-sphere represents a sufficiently safe limit state function while the circum-

sphere represents the actual limit state function. 

 

    
Figure 5. Geometrical model             Figure 6. Optimal point positions for d = 2 and n = 4 
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min
δ =

Re
Ri

 (1) 

For d = 2 this problem can be solved graphically (Fig. 6), the solution is 
 

1

cos
4( 1)

δ =
π
−n

 (2) 

For 3≥d , the problem is more complicated. It will be solved in Sections 4 and 5. 

3 Optimal number of load combinations 

The total construction cost C can be expressed as 
 

= δ + +s a oC C nC C . (3) 

The term δ sC is the cost of the load carrying structure. It includes all costs that increase 

when the partial factors are increased in design, for example structural dimensions, 

material qualities, crane capacity and construction time. It can also include non-structural 

components. For example, when the floor thickness of a high-rise building is increased also 

the surface of the facade is increased. The factor sC represents the structural costs if the 

design were evaluated by accurate probability analyses and were optimised in a number of 

design cycles (reliability based optimisation). The factor δ describes the extra safety margin 

– included in partial factors – that accounts for the finite number of load combination that 

is used instead of probability analysis. The definition of sC is rather impractical, however, 

it can be estimated well as the structural cost of an already completed similar project. 
 

The term anC is the cost of computer analysis of the structural design. It includes all costs 

that increase when the number of load combinations are increased in design, for example 

computer capacity, waiting time of the design team, checking the output and possible 

delays in construction. The cost of one analysis is aC and it is repeated – by a computer – 

for all n load combinations. 
 

The term oC represents all other costs that do not depend on the partial factors or the 

number of load combinations. 
 

We are looking for the minimal total cost C with respect to the number of load 

combinations n. Therefore, the following condition should hold. 
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0
=

=
n n

dC
dn

 (4) 

where optn is the optimal number of load combinations. Substitution of Eq. 3 in Eq. 4 gives 

0
=

δ
= +

opt
s a

n n

d C C
dn

. (5) 

Substituting Eq. 2, which is for just two load cases, in Eq. 5 we obtain  

opt
22 opt

opt

sin
4( 1)

0
4( 1)cos

4( 1)

π
−

− −π
= +

π −−
−

s a
n

C C
n

n

. (6) 

A closed form solution of optn  does not exist. The solution can be accurately 

approximated by 
 

2
3opt 1

16
π

= + s

a

Cn
C

 (7) 

 

which has an error less than 1. Eq. 7 is valid for two load cases d = 2. 

4 Solutions for few load combinations 

For small n, the solutions of δ as function of n and d are shown in Table 1. Each value δ 

represents a set of optimal point positions. The values have been analytically derived or 

were found by computer programs [7, 8]. As common in nonlinear optimisation it is not 

always certain whether the global minimum has been found. For d = 3 the result can be 

visually inspected (Fig. 7, Table 2). For 4≥d this is not possible and the true minimum 

could have been overlooked. Therefore, future improvements to the table can be expected. 

In Table 1, a simple rule can be observed for the accuracy of few load combinations. 

 

An extra load case d can be compensated by two extra load combinations n. 

 

For example, initially 6 load cases and 7 load combinations are used. If the number of load 

cases is increased to 7 the number of load combinations needs to be increased to 9 in order 

to obtain the same δ. If the partial factors do not change, the same structural safety is 

obtained. 



  Table 1. M
argin δ as a function of n and d 
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1.41 
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1.00 
1.08 

1.73 
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1.00 
1.04 

1.41 
2.00 

 
 

 
 

 
 

 
 

 
 

 

 
5 

1.00 
1.02 

1.41 
1.73 

2.24 
 

 
 

 
 

 
 

 
 

 

 
6 

1.00 
1.01 

1.22 
1.73 

2.00 
2.45 

 
 

 
 

 
 

 
 

 

n, num
ber 

7 
1.00 

1.01 
1.13 

1.73 
1.78 

2.24 
2.65 

 
 

 
 

 
 

 
 

of load 
8 

1.00 
1.01 

1.13 
1.41 

1.78 
2.00 

2.45 
2.83 

 
 

 
 

 
 

 

com
binations 

9 
1.00 

1.00 
1.08 

1.41 
1.78 

1.87 
2.24 

2.65 
3.00 

 
 

 
 

 
 

 
10 

1.00 
1.00 

1.08 
1.41 

1.63 
 

2.08 
2.45 

2.83 
3.16 

 
 

 
 

 

 
11 

1.00 
1.00 

1.08 
1.22 

1.58 
 

 
2.27 

2.65 
3.00 

3.32 
 

 
 

 

 
12 

1.00 
1.00 

1.06 
1.22 

1.58 
 

 
 

2.45 
2.83 

3.16 
3.46 

 
 

 

 
13 

1.00 
1.00 

1.06 
1.22 

1.53 
 

 
 

2.35 
2.65 

3.00 
3.32 

3.61 
 

 

 
14 

1.00 
1.00 

1.06 
1.18 

1.53 
1.73 

 
 

 
2.52 

2.83 
3.16 

3.46 
3.74 

 

 
15 

1.00 
1.00 

1.04 
1.16 

1.41 
1.63 

 
 

 
2.42 

2.68 
3.00 

3.32 
3.61 

3.87 
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Table 2. Optimal point co-ordinates 

for d = 3 and n = 9 

 1x  2x  3x  

1 1.08239 0 0 

2 0 1.08239 0 

3 0 0 1.08239 

4 0.76537 0.76537 0 

5 0.76537 0 0.76537 

6 0 0.76537 0.76537 

7 0.91136 0.41291 0.41291 

8 0.41291 0.91136 0.41291 

9 0.41291 0.41291 0.91136 

 

For large numbers of d and n, the computation of the optimal point co-ordinates requires 

much time. This is caused by the many relations that exist in multi-dimensional spaces. For 

example, for d = 10 and n = 100, 17310309456440 possible facets need to be processed to 

compute the in-radius. Moreover, this needs to be repeated for every of the thousands of 

changes in the point co-ordinates to find the optimal positions. It will take many years 

before computers can do this quickly. 
 

The point coordinates in this paper are not the same as the sensitivity factors in probability 

theory. If they were, the calculation of partial factors would be easy [2, Annex E]. On the 

other hand, the interpretation of sC would be difficult. In this paper, it is not attempted to 

calculate partial factors too. Consequently, the formulation can be simple for now. In the 

future, it may be extended. 

5 Solution for many load combinations 

As far as the author knows, an analytical solution of δ(d, n) has not been found. In this 

section an approximation is derived for large numbers of points n. The derivation consists 

of three steps. First the number of facets F of the polytope is approximated from the 

number of vertices n. Second, the circum-radius ρ of the facets is approximated. Third, the 

circum-radius Re of the polytope is derived. 

 

Figure 7. Optimal point co-ordinates 

for d = 3 and n = 9 
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If the points of a polytope are uniformly distributed on a sphere the expected number of 

facets F can be calculated from [9] 

−
γ −

= +
γ −

2

1
(( 1) )2 ( (1))
( 1)d

dF n O
d d

 (8) 

where function γ is defined recursively by 

γ =

γ =
π γ −

1
2(0)

1( )
2 ( 1)

p
p p

 (9) 

Constant value O(1) can be neglected for large values of n. 

 

A uniform distribution of points is clearly not the optimal distribution with respect to 

deviations from the sphere. However, it is assumed that the optimal number of facets will 

not be much different. After all, for a polygon on a circle even for small numbers of 

vertices the number of facets is the same for both randomly generated points and optimally 

distributed points. 

 

Consider a sphere in d-space. Its surface A area is [10], 

−π
=

2 1

2 !

d

d
dA d R  (10) 

where R is the radius of the sphere. Consider a simplex in d-space. Its surface area is [11] 
 

+
=

1
!2

d

d
d aA

d
 (11) 

where a is the length of each side. This area can also be expressed in the radius ρ of its 

circum-sphere. 

+ + = ρ 
 

21 1
!

d
dd dA

d d
 (12) 

When d = 2 the simplex reduces to an equilateral triangle with area = ρ23 3
4

A . 

 

Suppose that a d-sphere is completely covered by (d - 1)-simplices. The number of 

simplices is F. The simplices are approximately of the same size and form a convex 

envelope tightly around the sphere (Fig. 8). 
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The total surface area of the simplices is approximately equal to the area of the sphere. 

Using Eq. 10 and 12 we obtain 

−
−− π  ρ ≈ − − 

1
22 11

2
1 ( 1)! !

dd
dd

d
d dF d Ri

d d
. (13) 

 

 
Figure 8. Triangles covering a sphere part in three-dimensional space (geodetic dome) 

 

This approximation becomes better when the number of simplices is increased. The latter 

equation can be rewritten as 

−−ρ π   ≈ −   
   

11
2 2

2

1 ! ( 1)
!

d dd

d
d d

Ri F d
 (14) 

 

Consider a sphere with radius Re. 

=
= ∑2 2

1

d
i

i
Re x  (15) 

where ix are the space coordinates. The sphere is cut by a hyper plane at a distance Ri of 

the origin. 

=
= + = +ρ∑2 2 2 2 2

1
2

d
i

i
Re x x Ri  (16) 

This can be written as 

ρ
δ = = +

2 2
2

2 21Re
Ri Ri

 (17) 

Substitution of Eq. 8 and 14 into Eq. 17 gives   
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−

δ ≈ +

−
2

1

1

( )d

a

n b

 (18) 

where 

−
− −

 
 γ −π  = −      γ −−    

2
11 1

2 2
2

( 1)! ( 1)
(( 1) )1 !

2

dd d ddda d
d d d

 (19) 

and 

b = O(1) (20) 
 

Eq. 18 shows how δ depends on n for large n. However, in the previous derivation a full 

sphere is considered and we are only interested in the part of space for which values of are 

positive. Therefore, the number of points n needs to be reduced to 2dn and boundary 

points need to be added. These corrections do not change Eq. 18 only the values of the 

coefficients a and b are changed. 
 

Substitution of Eq. 18 in Eq. 5 gives 1 

+
−

−
= +

δ − −
1
1opt opt

0

( 1)( )
s ad

d

a C C

d n b

 (21) 

from which optn can be solved. 

−
+ 

 = +
 δ − 

1
1

opt ( 1)

d
ds

opt a

Can b
d C

 (22) 

where 

 

( ) −

δ = +

−
opt 2

1opt

1
d

a

n b

. (23) 

 
1 In personal emails, Prof. I. Bárány (University College London) suggested the below approximation of δ for 

large n. In this, c is a small positive constant. Unfortunately, this relation is too complicated for solving the 

optimum number of load combinations. 

−

δ ≈

 −  
 

2
1

1

log1 dc n
n
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6 Approximation formula 

In this section the coefficients a and b of Eq. 18 are determined. The approach is to fit Eq. 18 

as well as possible to the solutions for few load combinations. 

 

A particular polytope has the following point co-ordinates. 

( )
( )
( )

( )

1 1
2 2
1 1 1
3 3 3

1 1 1 1 1

1,0,0,0 ...,0

2 , 2 ,0,0 ...,0

3 , 3 , 3 ,0 ...,0

...

, , , ...,d d d d dd d d d d

  (24) 

The numbers can have any position between the brackets, so also (0,1,0,0 …,0), (0,0,1,0 

…,0), (0,0,0,1 …,0) and (0,0,0,0 …,1) are points of the polytope. The total number of points 

of this polytope is −2 1d . The ratio Re/Ri is (See appendix) 
 

( )
=

= − −∑
2

1
1

d

i

Re i i
Ri

  (25) 

It is expected that this is an optimal polytope in the sense that the point co-ordinates are 

such that Re/Ri has the smallest value. This is suggested by the fact all facets have the 

same shape and the same distance to the origin. This has been confirmed for d = 2, 3, 4, 5 

and 6. 
 

The constant b is only important for few load combinations. Selected is b = d - 1. With this 

choice Eq. 18 gives realistic results for small d and n. The constant a is determined by 

matching Eq. 18 to the solution of the polytope of this section, 
 

( )
− =

+ = − −
−

∑2
1

2

1
1 1

(2 )d

d

d i

a i i
d

 (26) 

from which a can be solved. 

( ) ( ) −

=

 
= − − − −  
 
∑

2
12

1
1 1 2 d

d
d

i
a i i d   (27) 

Table 3 contains values of a. For d < 13 coefficient a can be approximated by 
 

= −
+
7.543.37
0.807

a
d

. (28) 
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Figure 9 shows the approximation formula (line) and the exact values (dots). For small n 

the deviations are considerable. For > 2dn there is a good agreement. In Section 7 it is 

shown that n is usually very large. 
 

Table 3. Values of coefficient a as a function of the number of dimensions d 

d 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

a 0 0.69 1.4 1.8 2.1 2.3 2.4 2.5 2.6 2.7 2.7 2.8 2.9 2.9 3.0 

 

 
Figure 9. Curve fit of  δ for d = 2, d = 3 and d = 4 

 

The structural cost sC is for a design optimised in a number of cycles and evaluated by 

accurate probability analyses (reliability based optimisation). This is hardly ever done, of 

course. Therefore, it is convenient to introduce the cost of a similar previous project. 
 

′ = δpres sC C  (29) 

where 

( ) −

δ ≈ +
−

2
1

pre

pre

1
d

a

n b
 (30) 

7 Examples 

A high-rise building will cost approximately 610 euros of which 20% is for the steel structure. 

In design 10 independent load cases need to be considered including dead load, live load 

in varying proportions on the floors, wind loads from several directions (mutually 

exclusive) and accidental loads, therefore, d = 10. An extra structural analysis 

(geometrically non-linear) takes 1 minute of computation time and costs approximately 3 
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euros. We approximate δpre = δopt = 1.0. The coefficients are a = 2.7 and b = 9. The optimal 

number of load combinations is approximately (Eq. 22 ) 
 

 ×
= +   = × × 

9
116

opt
2.7 0.2 109 3300

1.0 1.0 9 3
n  

The analyses would take two days of computation time. 

 

A storm surge barrier costs approximately × 72 10 euros. Water pressure and ship impact 

need to be considered in design of the steel structure. Self-weight can be calculated 

accurately and requires no partial factor. Consequently, only two load cases have partial 

factors and d = 2. Each finite element analysis takes approximately two hours and costs 700 

euros. The optimal number of load combinations is (Eq. 7) 
 

π ×
= + =

2 7
3

opt
2 201 27

16 700
n  . 

This means that instead of one collision with a large ship rather 27 different collisions 

should be analysed each with a somewhat smaller ship in order to obtain the smallest 

project costs. Equation 2 can be used to show that the largest of the somewhat smaller 

ships is 8% smaller than for 3 load combinations. 

 

An offshore platform will cost approximately 810 euros. The number of load cases that need 

to be considered in design is 8. The cost of analysing one load combination is 100 euros. 

The structural cost is based on a previously constructed platform that has been designed 

with 16 load combinations. The constants are a = 2.5 and b = 7. The previous margin δ is 

(Eq. 18) 
 

( )
δ = + =

−
2
7

pre
2.51 1.5

16 7
. 

We estimate the optimum margin to be δopt = 1.1. The optimum number of load 

combinations is approximately (Eq. 22) 
 

 
= +   = × × 

7
98

opt
2.5 107 14000

1.5 1.1 7 100
n . 

Therefore, the optimum margin is 
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δ = + =
−

2
7

opt
2.51 1.08

(14000 7)
. 

The reduction of the structure cost compared to the previous project is 
 

8 81.5 1.08 10 (14000 16) 100 0.27 10
1.5
−

− − = × , 

 

which is 27%. 

8 Discussion 

This paper estimates the number of load combinations that should be used in design. It 

does not give the values of the partial factors that need to be used in these optimal load 

combinations. At present, computing optimal partial factors is only possible for few load 

cases and few load combinations. For many cases and combinations the computation takes 

more than a week on a modern computer, which is impractical. Without optimal partial 

factors, the theory in this paper cannot be used in practice. 

 

The value of the failure probability is represented by the diameter of the in-sphere. This 

value has no influence on the optimal number of load combinations. In addition, it does 

not matter whether the failure probability is an annual maximum value to protect individual 

citizens or a design live target value to protect society and investments. 

 

A parametric structural design can be optimised such that the costs, including failure costs, 

are smallest, while the failure probability is acceptable. In this method, there is no need for 

load combinations or partial factors. This computation requires many probabilistic 

analyses which takes much time. The examples in this paper show that when this 

optimisation becomes available in practice, substantial material savings can be obtained. 

 

Nevertheless, structural analysis according to codes of practice with partial factors and 

load combinations is a clever system, which is difficult to improve upon. It is definitely 

appropriate to credit the generation of engineers that developed this successful system. 
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9 Conclusion 

A geometrical model is made of load combinations used in structural analysis including 

limit state function and reliability requirement. It is shown that the load combinations can 

be optimised to obtain the least cost without compromising the required reliability. From 

this concept, a formula is derived for the optimum number of load combinations. 
 

−
+ ′

 = +
 δ δ − 

1
1

opt
pre opt( 1)

d
d

s

a

Can b
d C

 

where d is the number of load cases, ′sC is the cost of the structure and aC is the cost of 

analysing one extra load combination. The coefficients are = −
+
7.543.37
0.807

a
d

 ,  b = d – 1. 

The margins δpre and δopt are 

 

( )

( )

−

−

δ = +
−

δ = +
−

2
1

2
1

pre

pre

opt

opt

1

1

d

d

a

n b

a

n b

 

where pren is the number of load combinations used in the previous similar structure from 

which the structural costs ′sC are derived. 
 

Examples show that the optimal number of combinations can be much larger than used in 

practice. 
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Appendix 

In this appendix, equation 25 is derived. The equation gives the ratio of the circum-sphere 

Re over in-sphere Ri of the polytope in Chapter 6. The circum-sphere has radius 1. All 

points are on this sphere. This can be verified by calculating the distances of the points to 

the origin. For example: 

( ) ( ) ( )+ + + + =
2 2 21 1 1

3 3 33 3 3 0 ... 0 1  

 A plane goes through d points. These points are 

( )
( )
( )

( )

1 1
2 2
1 1 1
3 3 3

1 1 1 1 1

1,0,0,0 ...,0

2 , 2 ,0,0 ...,0

3 , 3 , 3 ,0 ...,0

...

, , , ...,d d d d dd d d d d

 

The function of this plane is 

( ) ( ) ( )+ − + − + − − =1 2 32 1 3 2 ... 1 1dx x x d d x . 

This can be verified by substituting any point into the function. For example, 

( ) ( ) ( )+ − + − + − − =1 1
2 22 2 1 2 3 2 0 ... 1 0 1d d  

In general [10], a point ( , , )o o ox y z has a distance Ri to plane + + + = 0Ax By Cz D , of 

+ + +
=

+ +2 2 2
o o oAx By Cz D

Ri
A B C

. 

Therefore, the distance of the origin to the present plane is  

( ) ( ) ( )
=

+ − + − + − −
2 2 2

1

1 2 1 3 2 ... 1
Ri

d d
 . 

This can be written as 

( )
=

=

− −∑
2

1

1

1
d

i

Ri

i i

 . 

Since Re = 1, 

 ( )
=

= − −∑
2

1
1

d

i

Re i i
Ri

 

Q.E.D. 
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The perpendicular projection of the origin onto the plane could have negative coordinates. 

If it were, the in-sphere is not constrained by the plane but by an edge. It has been verified 

that this is not the case. 

The polytope is the convex hull of n = d + d (d-1)/2 + d (d-1)(d-2)/(2 × 3) … + 1 = −2 1d  

points. For d = 2 and d = 3 the shape has been visually inspected. For d = 4 and higher this 

is obviously not possible. The author is aware that the proof in this appendix lacks 

mathematical rigor. Mathematicians are kindly invited to do a better job than me. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




