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Volume 51 (2006), issue 2/3, of HERON was a Special Issue ‘Ponding of Roof Structures’ with 

contributions from the universities in Delft and Eindhoven and parties from the business 

community. It appeared that a major difference occurs between very flexible flat roof systems 

and stiffer ones, and also behaviour differs between flat roofs with and without slopes. At 

that time, the present author discussed the matter of slope-less flat roofs with the aid of a 

simple model, but applied a rather complicated model for sloping roofs. Lecturers need a 

simple instructional model that covers all possible roof systems, with or without slope, both 

very flexible and rather stiff ones. Such an instructional model can be devised as an extension 

of the simple model in the 2006 issue. In addition, it is discussed how to prevent unstable 

computations for roof structures not failing by strength, but by stability. The proposed 

solution is to perform the analysis volume-controlled instead of control by water level. 
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1 Introduction 

Ponding on flexible lightweight flat roofs may occur after a heavy downpour in 

combination with failing emergency drain systems. Wijte (2006) explained that the 

phenomenon particularly applies to roofs with low stiffness, moderate permanent loading 

and large roof areas. Severe structural damage occurs when the regular rain water 

drainage system is failing or is not adequate for the structure and the emergency drain 

system does not take over and function as intended. It is also necessary that much rain falls 

in a short time. Wijte also introduced the notion of water raising capacity for a class of roofs 

which are very vulnerable to ponding. 

 

Structural engineers are used to designing structures for conservative loads such as dead 

weight, wind and snow, which are not dependent on the deformation of the structure. 
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However, the case of rainwater load is not conservative; the water load does not depend on 

rainfall alone, but also on the roof deformations. This has embarrassed many a structural 

designer. Bouwen met Staal, the Dutch organisation for the steel construction industry, 

distributed a special publication Technisch Dossier (2006) on the subject of ponding (“water 

accumulation”) on flat roofs. And the Dutch Standard Organization NEN issued a design 

directive NPR 6703 (2006), an attachment to the norm NEN 6702 (2006). The present author 

addressed the subject in Heron (2006), ranging from a simple model to an advanced one, 

all material intended for analysis by hand. 

 

Now, some 15 years later, flat, lightweight roofs still collapse, albeit in substantially 

smaller annual numbers. It is to be expected that attention to the subject may again 

increase in time due to climate change and energy transition. Two new phenomena are 

relevant: (i) short showers are expected to have increased intensity, and (ii) roofs will more 

often carry solar panels for energy generation. Insurance companies will require sound 

analyses, if the lifetime load of a roof changes. 

 

The question arises whether the average structural engineer is really aware of the 

seriousness of the tricky load case of sudden downpours. Notwithstanding all efforts, 

listed above, the subject appears to be complex and non-linear, and still demands 

demystification. The intention of the present paper is to discuss the subject with a 

minimum of math and mechanics and a maximum of understanding. The number of 

pictures will be maximized at the cost of complexity. It is hoped that professional lecturers 

may benefit in the classroom from the plain, uncomplicated instructional model that is 

demonstrated. This paper is certainly also aimed at software providers who have to 

explain the matter to their clients. Providers will receive hints on how to adapt their 

packages. 

 

We will first briefly call to mind the simplest model in Heron (2006). The intention is not to 

really change that model, but to deal with it in a different way. This limited recapitulation 

only applies to flat roofs without slope, after which the alternate look will be effected for 

both slope-less and sloping roofs. 
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2 Short recapitulation 

In the 2006 paper, the flat roof is supposed to exist of simply-supported primary members 

(beams, trusses) at centre-to-centre distance a. For the present, secondary beams and 

profiled steel sheeting are considered sufficiently stiff to ignore their deformation. The 

primary beams have bending stiffness EI and span l. It is supposed that camber cancels out 

the deflection due to permanent loading. The considered load on the roof is rainwater, 

only. For the moment, we assume that the primary beams run horizontally and the water is 

flowing in a stationary state through emergency drainage outlets at the vertical edges of 

the roof. The water surface is at a distance d above the roof supports. Hereafter, we will 

refer to d as water level. If the beam has infinite bending stiffness, the water depth is d over 

the whole span, so the load is homogeneously distributed. If the beam has a finite bending 

stiffness, the load varies over length, because of beam deflection, the largest value 

occurring at mid-span. 

 
Figure 1. Modelling of the real beam (left-hand picture) to the piston-spring model (right-hand 

picture) 

 

In the 2006 paper, the beam and water loading were replaced by a piston-spring model, in 

which the piston can slide frictionless in a rectangular tube. Figure 1 depicts how the real 

beam (left-hand picture) is modelled (right-hand picture). The weightless piston is 

supposed to be of infinitely stiff material. The length of the piston is equal to the span l, 

and its width to the centre-to-centre distance a of the primary beams. Therefore, the area of 

the piston is a l. In empty state, the emergency discharge outlet is at a distance d above the 

piston, and the position of the piston surface is at roof edge level. In the 2006 paper, a 

stationary state is considered of continuous rain which fills the tube above the piston, 

while water flows through the outlet. Because of the weight of water, the real beam will 

displace with a maximum deflection û, and the piston in the model over an equivalent 
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distance u. The water column on the piston has the height h, the sum of d and u. Stated 

popularly, the displacement u can be considered the ‘average’ deflection of the beam. We 

arrived in 2006 at the relation: 
 

u = 0.8 û (1) 
 

For the derivation we refer to Appendix A. An infinitely stiff spring will lead to u = 0, so d 

will be equal to h, but in practice roof stiffness is never infinitely large, so the height h of 

the water column on the piston becomes larger than the water level d. The two quantities d 

and h will play a leading role in the development of the instructional model.   

 

Two parameters D and W appear to be important in the 2006-paper, of which D is the 

stiffness of the spring and W is the weight of a water column on the piston of unit height. 

For D and W the following formulas were derived: 

= 396 EID
l

;     W = γ a l (2) 

where γ is the specific weight of water. We refer to Appendix A again. The parameters D 

and W have the same stiffness dimension kN/m. It appeared useful to define a stiffness 

factor n, being the quotient of D and W: 

=
Dn
W

 (3) 

This ratio does not have a unit, it is dimension free. In the classical ponding theory, a 

slightly different definition of n is often used. That definition reads n = / crEI EI . If we use 

= γ 41
96crEI a l , see Appendix A, this alternate definition results in the same value of n. 

 

In 2006, the water accumulation problem was posed as follows:  

Choose a drain at some height d above the beam supports, so select a water level d, and calculate 

which deformation u of the piston will result, or rather, which water column h, being the sum of d 

and u, will determine the load on the piston.  

The analysis proceeds as follows. The water load waterF (= W h) must equalize the spring 

reaction force springF (= Du): 
 

Du = W h (4) 
 

yielding, in view of Equation 3, the relation between the piston displacement u and the 

water column h: 

n u = h (5) 
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In Figure 1 we read u = h − d. Substitution of this relation in Equation 5 leads to the relation 

n (h − d) = h. After reordering, we obtain a relation between the water column h and the 

water level d, depending on n: 

=
− 1
nh d

n
 (6) 

In the classic ponding theory for flat roofs, this relation is a main result, and the magnification 

factor n/(n - 1) plays an important role in classic ponding studies. 

 

In words, Equation 6 states that a water level d at the edge of the roof is magnified to a 

water column h due to accumulated water in the deflected roof structure. Many a code 

refers to this magnification factor. 

3 Interpretation for flat roofs without slope 

Figure 2 depicts the relation between the water surface d and water column h for different 

values of the stiffness ratio n. The figure shows graphs for n-values larger and smaller than 

unity. Note that n-values larger than 1 result in a positive d, so water levels above the roof 

edge, and n-values smaller than 1 in a negative d, so water levels below the roof edge. A 

familiar interpretation is that h becomes infinitely large for n = 1, and it is commonly 

concluded that no horizontal flat roofs can be built for n < 1. In this chapter, discussion of 

the graphs is restricted to n > 1. 
 

                        
Figure 2. Relation between water level d and water column h for different n-values of flat roofs 
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The impact of Figure 2 is better understood if a fixed value d is chosen (said in another 

way, a fixed position of the discharge is supposed) and we examine how the piston-spring 

model predicts the water column h for different n-values. This is done in Figure 3. The 

clear message is that the piston carries a water column h, which is larger than expected by 

the water level d, and that the water column h rapidly becomes higher for decreasing n-

values. Four cases with the same d result in huge differences of water volume. 

 

In real practice, ponding analyses are performed with computer programs, where the 

value of h is obtained in an iterative procedure (in fact the deflection û). If the stiffness ratio 

n is close to 1, a huge number of iterations may be needed, or no solution is obtained due 

to divergence problems. 

4 Alternate interpretation for slope-less flat roofs 

An alternate interpretation is obtained if we use the described model in a slightly different 

way. Again, Figure 1 is the starting point, but now the water accumulation problem is 

posed in a reversed way. 
 

Above, we fixed d and calculated the water column h, but now we fix h and calculate d.                                                  
 

Fixing h means that we consider a given volume of water. Now, Equation 6 appears in 

reciprocal kind: 

 
 

      
         Figure 3. Water column h for decreasing stiffness ratios n (same discharge position) 

n = 2

roof edge

1 3n = . 1 1.n =n → ∞

h d=
2h = d

4 33h = . d

11h = d

roof edge



 131 

−
=

1nd h
n

 (7) 

Figure 4 depicts the relation between h and d for different n-values. Curves for n < 0.5 are 

left out again, because they will not easily occur in practice. In the plot, again four 

combinations of d and h are selected by a dot, now all with the same water column h. The 

choice of a fixed h means that the four dots represent cases of different n-value, but all with 

the same volume of water. 

                          
       Figure 4. Relation between water column h and water level d for different n-values 

 

Figure 5 depicts which position the piston takes in the four chosen cases. Now the message 

is that the piston (and the water column h) displaces further down for smaller n-values, 

and that states are possible where the water level becomes equal to or even below the roof 

edge. The water level stays above roof edge if n > 1, will be at roof edge for n = 1, and goes 

down the roof edge for n < 1. And, importantly, all four demonstrated cases are stable 

equilibrium states. The message is: Choosing a value of h, or in other words controlling by 

 
  

 
                  Figure 5.  Water surface d for decreasing stiffness ratios n (same water column h) 
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volume, always yields a stable analysis. If applied in computer programs, no divergence 

will ever occur. 

 

In the first paragraph of Section 3, we recalled the common conclusion that no horizontal 

flat roofs can be built for n < 1. Returning back to that conclusion, strictly speaking, the 

statement is not the whole truth. On the basis of the plots in Figure 5, one can only 

conclude that for n < 1 the water surface will become lower than the roof edge, since d is 

negative. Flow of water through an emergency outlet above the support is no longer 

possible, but due to the deflection of the primary roof beams, water will still be stored. If 

the regular water drainage option could be installed halfway along the roof span, the 

location where the deflection in the real beam is maximal, a well-functioning roof system 

might be obtained. The same applies for the emergency outlet system. However, such 

illogical solutions for extremely flexible roofs would require well-organized inspections on 

a regular basis and at well-chosen time intervals. There are more adequate solutions in 

practise, as we are to show hereafter. That solution is the application of a sloping roof. 

5 Sloping roof  

Having studied flat roofs without slope, a simple model for sloping roofs is close at hand 

to examine the occurrence of n-values below 1. The same primary beams, secondary beams 

and steel sheeting are considered, and the same supports. The only difference is a 

moderate slope of a small percentage. Structural designers should notice that the definition 

of the n-value does not change if roofs have such a slope. It is calculated in the same way 

as for slope-less flat roofs. Equations 2 and 3 remain in full force. 
 

Similar to the flat roof without slope, the span is l, the centre-to-centre distance of the 

primary beams is a, and the considered roof area is a l. The slope is introduced by lifting 

the right-hand support over the distance od with respect to the left-hand support. And 

again, the deflection due to permanent load is supposed to be annulled by an appropriate 

camber. 

The spring-piston model for the sloping roof is depicted in Figure 6. For drawing reasons, 

the vertical scale in the figure is exaggerated. In reality the slope angle is small, choosing 

od only a few percent of the span l, in The Netherlands at minimum 1.6%. In dry state, the 

roof beam in Figure 6 is the inclined straight dashed line from the lower to the upper 

support. The only difference with the model for the horizontal flat roof is the slight 
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inclination of the piston. The way in which the slope is realized, implies that the left-hand 

part of the roof will start to fill with water. Therefore, the left-hand end of the piston is now 

called the roof edge. 

 

  

Figure 6. Modelling of the real sloping beam (left-hand picture) to the inclined piston-spring model 

(right-hand picture)  

 

If the water level has risen to d, the beam will be partly covered by water, will deflect, and 

due to the deflection will store additional water. In the model, the inclined piston will 

move downwards parallel to its original dry position (dashed line), and tensions the 

spring. Similar to the flat roof without slope, the maximum deflection of the real beam is û 

and the piston displacement is u, see Figure 6. 

 

In Section 4 we had chosen a fixed water column h and derived the value of d. Doing so, 

we followed a volume-controlled procedure, because the water surface had a constant value 

a l independent of the water level. This does not hold true anymore for the inclined piston. 

Yet, we can choose a volume-controlled procedure, which is explained on the basis of 

Figure 7. 

 

        
      Figure 7. Introduction of dimensionless parameter p 
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We consider a triangular volume of water with height h as depicted in the left-hand part of 

the figure, but must now account for the fact that the height of the water varies over the 

roof. Note that the water column h is a measure for the water volume V, but the relation 

will not be a constant factor anymore. 
 

It is convenient to introduce a dimensionless parameter p, which is zero at the lower end of 

the piston and takes the value 1 at the upper end. Then, for values 0 ≤ h ≤ od , the height h 

is op d and the length of the water surface is p l.  Hence, because of the centre-to-centre 

distance a of the primary beams, the area of the water surface is p a l. With this information, 

we calculate the piston displacement for the considered water volume. The volume of the 

water is V = ⋅ ⋅½ op d pal  and the weight is waterF = γ ( )⋅ ⋅½ op d pal . In view of W = γ a l we 

arrive at the water weight ½ 2
op d W . The resistance springF to this weight is Du, so the 

equilibrium equation becomes: 
 

= 21
2 oDu p d W  (8) 

After division by D, accounting for n = D/W, we can rewrite the equilibrium equation as: 

=
2

2 o
pu d

n
 (9) 

Again, u = h − d , in which we substitute h = op d . The result is a relation between u and d: 

u = op d – d. Substituting this expression of u in Equation 9, and solving for d, leads to the 

end result: 

= −
2

( )
2 o
pd p d
n

            (0 < p ≤ 1) (10) 

Each n-value in Equation 10 yields a parabolic function of d in p. These functions are 

plotted in Figure 8, where the horizontal coordinate is p = / oh d . For 0 ≤ / oh d ≤ 1 the plots 

represent water columns smaller than od ; for / oh d  > 1, the plots represent water columns 

higher than od . In fact, the part larger than od is based on Equation 7, so then the 

multiplication factor (n - 1)/n applies. The figure only shows plots for n-values smaller 

than or equal to 1.00. Each of the plots has a limit value d̂ , for which – as previously stated 

− Wijte (2006) introduced the term water raising capacity. These extremes occur for the value 

p = n, so for the value of h: 
 

h = n od    ≤( 1)n  (11) 
 

If n is close to 1.00, the limit point is in the immediate neighbourhood of the right-hand 
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Figure 8. Relation between water level d and the water column h for low n-values of sloping roofs 

 

upper support. For n-values approaching zero, the limit point is close to the left-hand 

lower support. The value of the extreme, the water raising capacity, is: 

= 1
2

ˆ
od nd    ≤( 1)n  (12) 

The phenomenon of a limit water level d̂ only occurs if n ≤ 1. For these n-values, the water 

level cannot surpass the limit in any rain shower. And, because of Equation 12, for no 

stiffness constant n ≤ 1 the raising capacity d̂ can become larger than ½ od . Stated in words: 
 

When n ≤ 1, the water level can never raise higher than halfway along the slope. 
 

The volume V at which the limit point occurs, is in practical cases still small, such that the 

steel members are far from yielding or local instability problems. The structure does not 

fail due to lack of strength but due to loss of global stability. This observation was reason for 

the Dutch code writers to use in NEN 6702 and NPR 6703 the name ,hw stabd where here d̂ is 

used. 

 

Practically all software packages that are able to run ponding analyses require specification 

of the water level d and compute in an iterative way what volume of water will be stored 

on the roof, and what steel stresses occur. If n < 1, programs cannot converge for specified 

d-values larger than the raising capacity d̂ . No equilibrium solution does exist in those 

cases.  
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It is instructive to visualize which position of the water column in the piston-spring model 

is associated with the plots of Figure 8. For this purpose, Figure 9 is added, where we 

depict for graph n = 0.5 the position of the water level and the position of the piston for six 

values of / oh d (i.e. six volume values). The first four plotted bold bars hold for the domain 

in which the water column at the roof edge is smaller than or equal to od . The last two hold 

for the domain where the water column is larger than od . The piston is below the roof edge 

in all six cases, and the water surface will also be below when the water column h is larger 

than od . After passing the water raising capacity, all plots have a descending branch and 

somewhere on this branch the water load has increased such that the structure, as yet, will 

fail by strength. 

 

                          
Figure 9. Position of water level and piston for n = 0.5 and six h-values. 

               The number in the bold bars is the value of / oh d . 

5.1 Extension to all n-values  
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between d and h becomes linear. Then, the gradient conforms with the multiplication factor 

(n - 1)/n for slope-less roofs, according to Equation 7. 
 

                   
   Figure 10. Repetition of Figure 8, completed with graphs for n > 1 

6 Volume control 

Similarly to the findings for slope-less flat roofs, the procedure for sloping roofs on the 

basis of a chosen volume always yields a stable solution; no danger of divergence exists 

any more. We may prefer to present Figure 8 in a slightly different way, knowing that the 

variable h at the horizontal coordinate axis is a measure for the volume V. In Section 5, we 

obtained the expression = ⋅ ⋅1
2 oV pd pal . If we introduce the reference volume 

=o oV al d  (13) 

the expression = ⋅ ⋅1
2 oV pd pal is transferred into: 

       = 21
2o

V p
V

             (0 < p < 1) (14) 

Hence, the horizontal coordinate p = / oh d  in Figure 8 can be replaced by / oV V , which 

will change the scale of the graphs in a horizontal direction. As a consequence, the shape of 

the graphs will change. Figure 11 shows the plots for different n-values. The left-hand half 

of the figure (0 ≤ / oV V  ≤ 0.5) holds for volumes at which the piston is partly or just 

completely filled to its upper end. In the right-hand part (0.5 ≤ / oV V ≤ 1) the upper piston 

end is always fully submerged. 
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Again, to support proper understanding, the plot for n = 0.50 in Figure 11 is clarified in 

Figure 12. The position of the piston and the water filling are depicted for four different 

volumes / oV V :  0, 0.125, 0.5 and 1, which is a selection from the six cases of Figure 9. In the 

 

 

                 
      Figure 11. Relation between d and the volume V of sloping roofs for different values n ≤ 1 

 

 

first plot, the piston carries no water at all and does not displace, in the second one the 

piston is filled to half the height of the slope and has a downward displacement 0.25 od , in 

the third one the piston is filled up to its upper end and the piston displaces downwards 

od  below the roof edge. In the fourth plot the upper end of the piston is completely 

submerged and the displacement of the piston below the roof edge is 2 od . 
  

 
Figure 12. Position of piston and measure of water filling for four volumes, for n = 0.5 
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6.1 Converging computer simulations 

In the same way as Figure 8 was extended to Figure 10, extension of Figure 11 to Figure 13 

can be made. It is an important message of the figures that computer simulations will 

always converge if a volume V (value on the horizontal axis) is specified, and the 

corresponding water level d (value on the vertical axis) is computed. 

 

          
                   Figure 13. Repetition of Figure 11, complete with graphs for n > 1 

 

In reality, there is a small difference between real roof beams and the piston-spring model. 

In the model the water volume stays unchanged, when the piston displaces, but for real 

roof beams the stored water volume may not stay at the specified value if the beam 

deflection increases. Therefore, in each volume step a refining iterative procedure is 

necessary to keep the volume unchanged, but success is guaranteed. Diverging analyses 

belong to the past. 

An otherwise good procedure avoids the need for refinement within a volume step. Then 

we accept the outcome of the first result in a volume step, and save the obtained (V, d) 

couple. We increase the obtained V by the intended ∆V and proceed immediately to the 

analysis for the next volume step, obtaining a new (V, d) couple. Thus, we can still plot a 

graph in which the water level d is a function of volume V, the only difference being that 

no equal steps of volume are used. We run the program as often as the specified number of 

volume steps. The pertinent goal is anyhow reached: if n > 1, we obtain the specified d;  if n 

< 1, the water raising capacity d̂ . Again, no more diverging analysis. 
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6.2 Comparison with computer analyses 

Figure 13 has been obtained on the basis of the simple inclined piston-spring model 

depicted in Figure 6. In Appendix B the figure is repeated and compared with the output 

of computational analysis. From that comparison we conclude, that the difference in the 

water raising capacity between the plain model and the computations is small if n keeps 

close to 1. More importantly, the water raising capacity in the computations is larger than 

in the plain model for all n-values, so the model produces safe results. 

7 Combination of dead load and water live load 

Until now, we have supposed that deformation due to permanent loads is compensated by 

camber. If camber is not applied, the structure has an initial deformation, of which we call 

the displacement mid-span ˆiu . The initial displacement in the piston-spring model is 

indicated by iu , and is related to ˆiu by iu = 0.8 ˆiu . We will discuss how the initial 

deformation changes the analysis, both for flat roofs without and with slope. 

7.1 Slope-less flat roofs 

Figure 14 shows in what way the spring-piston model is adapted. In dry state the position 

of the piston is iu lower than the supports of the beam. If a water column h is chosen, the 

piston moves down over a distance u. The water column h is composed of three parts, from 

bottom to water surface: u, iu and d. Herein, the water level d is the distance from the roof 

edge to the water surface, as we defined before. Equation 4 still holds true: D u = W h.  

 

 

Figure 14. Extension of model for slope-less flat roof by initial displacement iu due to 

permanent load. Left: Undeformed. Right: Deformed. Left and Right: Same water column h.  
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Instead of u = h – d we now substitute u = h – (d + iu ). Accounting again for n = D / W, the 

relation D u = W h transforms into: 

−
+ =

1
i

nd u h
n

 (15) 

If compared with Equation 5 for beams with camber, we just replaced d with d + iu . That is 

to say: for a specified water column h, the water level d will become iu lower; the same 

holds for the position of the piston. Therefore, in Figure 2 the origin O shifts over a 

distance iu upward, and in Figure 4 to the right. 

7.2 Sloping flat roof 

Figure 15 depicts in which way the sloping spring-piston model is adapted if an initial 

displacement iu is involved. Accounting for iu in the derivation of Section 5 yields the same 

conclusion as was obtained for slope-less roofs. We must simply replace d with d + iu  in 

Equation 10. In Figures 8 to 11 and Figure 13 the origin must shift upwards, and the value 

of d̂ in Equation 12 must be diminished by iu . 

8 Composed roofs 

In Section 2, for the time being, secondary beams and profiled steel sheeting were 

considered sufficiently stiff in order to ignore their deformation. In reality, their 

deformation may contribute noticeably to the deflection of the roof structure, at least to 

some extent the secondary beams. The effect of deformable secondary beams an d steel 

sheeting is easily accounted for by adapting the value of n as discussed in the special 

HERON edition on ponding, see Blaauwendraad (2006), at least for regular rectangular  

 

         

Figure 15. Extension of model for sloping flat roofs by initial displacement iu due to permanent load 

Left: Spring not yet deformed. Right: Spring deformed. Left and Right: Same water level h. 
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roof plans. Then, the integral model consists of three different piston-spring models in line, 

of which the three springs are chained in series, see Figure 16. The pistons of the primary 

and secondary members are perforated in order to have the water pass to the steel sheeting 

piston. In that way, the sheeting carries all the water load and the three springs form a 

chain. The three piston-spring models have each their own n-value ( pn , sn and shn , 

respectively). The integral value n is computed with the formula:  

 

= + +
1 1 1 1

p s shn n n n
 (16) 

 

               
Figure 16. Composed model of primary members, secondary members and profiled steel sheeting 

9 Discussion 

9.1 Failure by strength or stability 

For students and structural designers, the advantage of the model is its simplicity. High-

school mathematics is sufficient to understand what is happening when sloping roofs have 

n-values below unity. The model is safe, as it is conservative. Particularly, the prediction of 

the water raising capacity d̂ is important. For values n > 1, the raising capacity is not 

relevant, because d will always increase for growing volume V. So, the water level can 

keep raising until structural strength is surpassed. This failure type is strength-controlled. 
 

On the contrary, for n-values below unity, the structural failure is stability-controlled. When 

the water volume approaches the value at which the water level reaches the raising 

capacity, stresses are still moderate. If the volume V keeps growing, after passing the limit 

point, the water level will go down until the water volume surpasses the strength capacity 
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of the roof structure, inducing failure. As was seen, the water level can even end up below 

the roof edge. 
 

The message for the structural engineer is to be suspicious of extremely slender roofs.  
 

If water can pour in freely, the structure will definitely fail after passing the limit point. In 

case such roofs are not to be avoided, the emergency outlets should be positioned low at 

the roof edge. They also must have enough capacity, in order to have the water flowing 

freely. In critical cases − the roof edges not being sufficiently high − the emergency outlets 

have to be installed in the roof surface itself. This must be done at some distance from the 

roof edge, where the deflection is expected to be maximal. Again, such flexible roofs would 

require well-organized inspections on a regular basis and at well-chosen time intervals. 

9.2 Model factor 

In the Dutch Code NEN 6702 (2006), load factors for permanent load and variable load and 

a material factor warrant the safety of the structure. Naturally, this typically refers to 

structures failing by strength. However, load factors and material factors are not a proper 

way to warrant safety in structures that fail by stability. Then, stress levels are still low. It 

was a main reason in The Netherlands for introducing an additional factor of safety, called 

model factor γM, in the guidelines for practice NPR 6703 (2006), a supplementary of NEN 

6702 (2006) with additional and simplified rules. 

The model factor is 1.3 for the design of new building structures and 1.1 for existing ones. 

The factor must be applied to the stiffness of all roof members (primary, secondary and 

sheeting) dividing the stiffness by the model factor. The goal is to gain an extra safety 

margin in real life of the roof structure by using a reduced structural stiffness in the design 

phase. The effect of the model factor for roof structures n < 1 can be seen from Equation 12 

for the water raising capacity. The capacity is linearly dependent on n, which in its turn is 

linearly dependent on the bending stiffness EI. So, reducing the bending stiffness by a 

factor 1.3 directly decreases the computed raising capacity d̂ by a factor 1.3. As a reminder, 

Equation 12 holds for the situation that initial deformation by permanent loads is 

compensated by a camber. Otherwise, we still must distract iu . 

9.3 Combinations of model factor and camber 

In this section we investigate the effect on the water raising capacity for possible 

combinations of model factor and camber. The model factor is varied, for two camber 
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states, applying it and omitting it. For this purpose, we consider two graphs in Figure 13, 

one with stiffness ratio n = 1 and one with n = 0.75. We think the value 1 applicable for a 

real structure, and the value 0.75 the design value prescribed by the model factor of a local 

code. The ratio of the two n-values is 4/3. Therefore, we consider combinations with the 

model factor γM = 4/3, which is close to the Dutch value 1.3. If camber is applied and no 

model factor is required, according to graph n = 1 in Figure 13, the water raising capacity is 

0.5 od . If the model factor 4/3 must be applied (still in combination with camber), 

according to graph n = 0.75, the raising capacity is 0.375 od . The application of the model 

factor yields a reduction in the water raising capacity of 0.125 od . 
 

What reduction will be found if no camber is applied? In that case we must account for the 

initial displacement iu due to permanent load. Here, we assume the size of iu in the order 

of magnitude l / 250, so iu = 0.004 l. For the size of the slope, we adopt the Dutch rule that 

(at minimum) od is 1.6% of the span l, so od = 0.016 l. Hence, iu = 0.25 od . In Figure 13 this 

means shifting the horizontal axis over a distance 0.25 upward, which has substantial 

influence on the water raising capacity. For all graphs n ≤ 1.0, the capacity is reduced by 

0.25 od , and for all values n ≤ 0.5 the water level d even becomes equal or smaller than zero. 
 

For n = 0.75, the water raising capacity reduces from 0.375 to 0.125, and for n = 1 from 0.5 

to 0.25. With the model factor γM = 4/3 the graph n = 0.75 applies, which has the raising 

capacity 0.125 od . 

 

Table 1. Values ˆ / od d of water raising capacity 

              Camber 

  Yes No Diff. 

 

Model factor 

No 0.500 0.250 0.250 

Yes 0.375 0.125 0.250 

Diff. 0.125 0.125  

 

 

The water raising capacities ˆ / od d of the considered combinations are assembled in Table 1. 

Also the differences are calculated in vertical and horizontal table direction. Four 

conclusions can be drawn: 
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1 The water raising capacity of the cases ‘no model factor + yes camber’ and ‘yes model 

factor + no camber’ differs by a factor of 4. 

2 The difference in raising capacity is 0.250 od between camber and no camber, 

regardless of the value of the model factor. The difference is 0.125 od  between ‘yes 

model factor’ and ‘no model factor’, regardless of yes or no camber.   

3 If safety is expressed in terms of the water raising capacity, the contribution of camber 

to the safety (0.250 od ) is two times larger than the contribution of the model factor 

(0.125 od ).    

4 Structural engineers should not forget to account for initial displacements due to 

permanent loads in their ponding analyses. 

9.4 Sensitivity to construction inaccuracies 

One of the reasons to introduce the model factor is to account for construction inaccuracies. 

Therefore, in the calibration procedure for the correct value of the model factor, also the 

slope and water level have been treated as stochastic quantities. Van Herwijnen et al. (2006) 

approached the subject in a different way when they discussed the impact of construction 

inaccuracies on the safety in the case of ponding. In their findings, inaccuracies in the 

height of the emergency drains and the roof slope exert a large influence on the safety of 

roof structures for the load case water ponding. They advised to design roof structures 

with a value n ≥ 1.5 only, because lower values yield extremely sensitive structures to 

inaccuracies, regarding of course the height of emergency drains and roof slope. 

 

Regardless the probabilistic calibration studies, the recommendation n ≥ 1.5 yet deserves 

sympathy. This advice combats the flaw at source, really excluding roof structures that 

may fail by stability. The present author has suggested the same solution in the 

preparation phase of the guideline NPR 6703 (2006). The costs of additional kilograms of 

steel will be small if compared to the integral building costs. On the contrary, costs of 

reconstruction of a damaged roof may approach the order of initial building costs. Should 

not all structural engineers consider it beneath their station to be the designer of such 

vulnerable roofs? A decision not to allow roof structures n < 1.5 may make sense, but raises 

another problem. Now the structural engineer is faced with the question how to compute 

in a reliable way the n-value for composed steel roof grids of primary and secondary 

members covered by steel sheeting. The computation is straight forward for regular 
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rectangular roof plans (refer to Chapter 8), but not for irregular ones. Apart of that, even 

the analysis for regular plans is an approximation. 

9.5 No misunderstanding! 

The proposal to operate volume-controlled should not be misunderstood. It is no plea at all 

to start from an ahead specified volume of rainwater on the roof. Instead, we stay thinking 

in terms of codes that specify a height d of the emergency discharge. These codes expect 

the structural engineer to prove that the structure is safely able to carry the water load of 

that level d. 

 

Why yet control by volume? The answer is to avoid a twofold problem. The first is related 

to roofs that fail by stability. Then, starting with a specified value of d may easily result in 

diverging computer runs. The second problem is – as said above – that the value of n is not 

known at start of the analysis. So, we do anyhow not know whether the roof structure is of 

the type failure by strength or by stability.  

 

To be clear once more, we recommend a computational procedure that delivers a plot, 

showing how the level d develops if the volume V is increased, starting at zero. If the plot 

shows an ever rising graph, the specified level d can be reached, and strength-control must 

be executed. If the plot shows a limit point, the structure is of the type failing by stability, 

and the structural engineer has the information he needs to yes or no adapt the structure 

and/or the emergency discharge system. 

9.6 Software challenge 

Nowadays the average package for structural analysis with ponding functionality is of the 

type discussed in Section 3. The water level d is input and the accumulated water load 

(water column h in the model) is output, or rather, the displacements, resulting in 

information to check strength. This is indeed the way which used to be recommended in 

the Dutch code NEN 6702 (2006). Such analysis is water level controlled. 

 

No very drastic programming intervention is needed to also make a volume-controlled 

version of programs. As stated in Section 9.5, the structural engineer should be able to 

check if any limit in the water level is due. For that purpose, an analysis has to be 

performed for a number of volumes, and for each volume the water level must be 

computed. The computed d-values are presented in a graph as a function of the volume V, 
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which makes it easier for the structural engineer to check the occurrence of a limit point. 

And if it occurs, the engineer knows what water raising capacity the roof has. If the 

capacity is not sufficiently large, the structure must be adapted or the emergency drainage 

system reconsidered. 

 

The proposed procedure requires a number of computations. Different water volumes V 

must be considered for which d is computed, and each pair (V, d) may need iterations, 

dependent on the preferred procedure (refer to Section 6.1). The good news is, that the 

global stiffness matrix in the set of equations does not change. In fact, regardless the 

preferred procedure (Section 6.1), it is a matter of several load vectors. Hopefully, software 

providers feel challenged. 

9.7 Alert function 

The main aim of this HERON article is the provision of an instructional model for use in 

the education of structural engineers. A spin-off, nevertheless, is the application of the 

simple model in structural practice as a rule of thumb to estimate the water raising 

capacity, and as an alert for calling in more sophisticated ponding analysis expertise or 

software where necessary. 
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Appendix A 

A1. Equivalent displacement u = 0.8 û 

It is assumed that a stable equilibrium state exists with a water level d above the support as 

shown in Figure A1. This water depth is the initial depth before the member starts to bend. 

 

 

 

        Figure A1. Undeormed beam (left). Deformed (mid). Idealized waterloading (right) 

 

The beam will deflect over a distance û and the deflected shape is filled with water as is 

shown in the middle part of the figure. The water load on the beam now consists of two 

parts, one homogeneously distributed over the span (initial water depth d) and one 

varying over the span (additional water with maximum depth û). From here, it is the 

intention to work with homogeneously distributed loads only, and we substitute the 

varying part by a statically equivalent constant part with water depth u. Statically 

equivalent means that the same bending moment occurs in the middle of the span. 

Assuming a sine shape of the deflection and introducing the specific water weight γ results 

in a half-wave sine-shaped bending diagram with maximum value = γ π2 2ˆ( )M a l u . 

Herein, a is the centre-to-centre distance of the beams. The equivalent homogeneously 

distributed load causes the maximum bending moment = γ 2( ) 8M a l u . Equating these 

moments yields, with about 1% accuracy u = 0.8 û. The factor 0.8 does not hold true for 

simply supported members only, but is also applied, with sufficient accuracy, for other 

support conditions. 
 

A2. Spring stiffness D 

The stiffness D defines the relationship between the homogeneously distributed total water 

load F on the considered roof (part) and the equivalent displacement u: 
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F = D u A(1) 

 

The stiffness D depends on the support conditions. For the time being, we restrict 

ourselves here to a simply supported member. The relation between F and the 

displacement u is derived in the following way. It holds = 4ˆ (5 384)( )u ql EI , where = γq a , 

and γ the specific weight of water. Multiplication of both members of this relation by 0.8 

yields = 4(1 96)( )u q l EI . Next, we replace q l by F and rearrange the relation, ending up 

with = 396( )F EI l u . Hence: 
 

= 396 EID
l

 A(2) 

 

A3. Classic stiffness factor n 

We repeat the definition of D and W of Section 2: 

= 396 EID
l

;        = γW al  A(3) 

In Section 2 the definition of n reads: 

=
Dn
W

 A(4) 

Substitution of Equation A(3) in Equation A(4) leads to: 

=
γ 4
96EIn

al
 A(5) 

In classic ponding publications a critical bending stiffness crEI is defined: 

γ
=

4

96cr
a lEI  A(6) 

Then, an alternate definition of the stiffness ratio n comes into being, because we can write   

Equation A(5) as: 

=
cr

EIn
EI

 A(7) 

The critical stiffness crEI is determined by two geometrical data a and l, and the specific 

weight of water γ. The division of roofs in the types n > 1 (failure by strength) and n < 1 

(failure by stability) is now replaced by the types EI > crEI and EI < crEI . The classic 

derivation of n leads to the quotient crEI EI and the derivation in this Heron article to 

D/W, but the result is the same n-value. 
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However, also another change occurs in the definition of n. The constant 96 in Equation 

A(6) is π4 in the classic definition. Then, the n-values of the two definitions are not the 

same anymore. The difference between the two constants, 96 and 98.7, is almost 3%, and 

both constants are approximations. The origin of the difference is the different starting 

point of the definitions. A homogeneously distributed water load is approximated by a 

sine-shape load in the classic derivation of crEI EI , whereas in the actual derivation of 

D/W a (more or less) sine-shaped water load is replaced by an equivalent homogeneously 

distributed load. 
 

Equation A(2) can be generalized in order to apply the definition of the stiffness also to 

other boundary conditions, refer to Blaauwendraad (2006). Then, it holds: 

= ⋅ 396 EID m
l

 A(8) 

To mention two values of the factor m: 

 m = 1, for simply supported members. 

 m = 5, for clamp ends of the member. 



 152 

Appendix B 

Comparison of plain model with computer analysis 

In Section 6.2 it is stated that the plain model is conservative. The prove of this statement is 

the subject of this Appendix. In the figure below we reproduce Figure 11 of Section 6.2 as 

Plain model. The corresponding set of graphs from computational analyses are shown as 

Computation. 

 

We performed the analysis for a simply-supported primary beam of constant bending 

stiffness over the span. The beam is modelled with a series of 15 rigid bars interconnected 

by lumped rotational springs. We searched the beam stiffness for which the graph has the 

horizontal line / od d = 0.5 as an asymptote. We assigned to this graph the stiffness ratio 

n = 1. Thereafter, we multiplied the stiffness by 0.75, 0.50 and 0.25, respectively, to produce 

the other graphs.  
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Corresponding graphs in the two figure parts have roughly a similar shape. The 

correspondence is close for n-values near 1.00, and less for n ≤ 0.50. The water raising 

capacity of each graph is shown in the picture. Comparison of the two figure parts justifies 

the conclusion that the raising capacity of the computational analysis is always larger than 

predicted by the plain model. This supports the statement that the model is conservative. 
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