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Pore tortuosity is one of the relevant parameters in concrete technology underlying 

porosimetry. The same holds for crack tortuosity in damage analysis. Hence, this paper 

concentrates on an engineering approach to obtain geometrical-statistical information on 

tortuosity. It is stipulated that the model parameters in such analytical methods have old 

roots. The presented approach as well as comparable data in the international literature point 

toward an upper limit of tortuosity of 2 for the linear as well as the planar index, so for 

porosimetry as well as damage analysis on micro-level. Results are depending on 

magnification in experiments or sensitivity in theoretical approaches. A reduction in 

magnification finally results in a mono-size, meso-level concept. When pore depercolation is 

advanced in the cementitious materials, nano-cracking is recognized contributing to porosity 

and thus to tortuosity. A fractal concept is proposed for modelling this phenomenon yielding 

enhanced tortuosity in accordance with experimental data in the literature.   
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1 Introduction 

Long-term material behaviour is governed by damage evolution and (polluted) water 

transport through the pore system, or a combination of both.  Damage evolution is based 

on initially small cracks that are forced to grow and coalesce under loadings, to lead 

ultimately to an unacceptable state of damage. Damage evolution can also be the result of 

water transport through the body of the material.  The freezing water causes mechanical 

damage; however, the water can also be polluted thereby gradually destroying the 

integrity of the material, also involving the reinforcement.  Pores are inherent to 

cementitious materials. They are formed during the hydration process and give rise to a 

certain level of permeability in the cement paste that is pocketed between the aggregate 
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grains, and thereby to the concrete as employed in engineering practice. Of course, the 

degree of permeability depends on the specific combination of technological parameters 

characterizing the materials on both levels of the microstructure. Further, the degree of 

water saturation has been shown of crucial importance (Li, et al., 2016; 2017; Kameche, et 

al., 2014). The pores in cementitious materials form a network structure in which the main 

channels account for the fluid transport through the material. Hence, the number of such 

channels, and their size, shape and tortuosity are relevant parameters in that transport 

process. Yet, herein we will focus on tortuosity.  

The cracks form similar spatial network structures under external or internal influences. 

Researchers in damage mechanics are interested in describing the evolution of the damage 

structure. Quite some attention has been given in our work to experiments in the direct 

tension and direct compression domains (Stroeven, 1973; 1979). See also Ringot (1988) for 

an alternative stereological approach. In fracture mechanics, the internal stress situation is 

more complicated and the crack structure is therefore significantly schematized (final 

report of RILEM TC QFS). 

Figure 1. Tortuous and complex 3D pore structure in the vector-based DEM approach to hydrated 

cement paste after removal of the hydrated particles (Stroeven, M., 1999) (left), and concrete damage 

in direct compression, visualized in a vertical section. Surface of the specimen’s section is sprayed by 

a fluorescent and photographed under UV light (Stroeven, 1973) (right). 
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Figure. 2. Double Random Multiple Tree Structuring (DRaMuTS) exploration of virtual cement 

paste yielded the tree network structure of pores in the case of a specimen with two rigid (left and 

right) and four permeable surfaces. Pores meander in the 100 μm cube space at 90 days of hydration: 

w/c = 0.4 and Blaine surface area 300 m2/kg. Porosity is 19%. All detected capillary pores are 

shown (left)), as well as only the continuous channels connecting the bottom and top surfaces 

(right) (Stroeven and Li, 2017). Note that 105 nodes were distributed in pore space; they form the 

joints between the straight-line elements building up the pore network skeleton.  

Pore tortuosity, as we have used it here, is defined as the ratio of the length of the route of 

the fluid through a pore channel divided by the straight-line distance between its entrance 

points on the opposite specimen surfaces.  Pore tortuosity assessment offers a linear 

problem. It has been reported in various studies using different approaches to vary 

between certain limits (Bathia, 1985; Haughey and Beveridge, 1969; Peterson, 1958; 

Promentilla, et al., 2009; 2016; Sobiesky, 2016; Sun, et al., 2011; Wong. et al., 2006). In our 

virtual DEM-based approaches to cementitious systems, information on pore tortuosity 

can be obtained (Stroeven, et al., 2009; 2012; 2015; Stroeven and Li, 2017; 2018).  The bulk of 

our virtual data on tortuosity is in statu nascendi and will be presented in a separate paper 

with Chinese co-author K. Li, who contributed as PhD student at DUT to the development 

of the very DEM approach (Li, 2017). Preliminary values of experimental data were found 

within the range of available data in the literature (indicated later in this publication), and 

below the herein developed theoretical upper bound value. 

Contrary, cracks are planar elements, so will present a planar tortuosity problem. Yet, 

cracks visualized in sections offer a pattern of lineal elements. In direct tension and 
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compression cases, sampling will be in sections that are properly adjusted to the loading 

system. Hence, one section will be oriented in the loading direction and in compression 

also one perpendicular to it (Stroeven, 1973; 1979). This renders possible a complete 

analysis of damage characteristics also involving total crack surface area, S, per unit of 

volume, V, yielding S/V = SV. In the section plane, also linear tortuosity can be assessed, of 

course. 

This paper will concentrate on the modelling of pore and crack structures, so that a concept 

for tortuosity is obtained. Resulting data will be compared with available data in the 

literature. The complexity of linear pores and planar cracks in concrete is demonstrated in 

Figure 1. The pore system developed in hydrating virtual cement paste is revealed at the 

left after removal of all solid material. At the right is displayed a section of a much larger 

specimen (some aggregate grains are showing up in grey tones) subjected to uniaxial 

compression. After spraying with a fluorescent (Stroeven, 1973), the cracks become 

observable under UV light. At higher magnification, observable crack density is increased, 

of course. These examples are presented to demonstrate that the tortuosity in both cases 

needs some simplification. This will be highlighted when the analytical models are 

developed. 

2 Geometrical-statistical approach 

First of all, the definition of tortuosity used in this paper (and, generally, throughout 

concrete technology) should be specified, because different concepts are in use. We have 

two different cases. In damage analysis we deal with a planar phenomenon. Hence, the 

appropriate 2D definition of tortuosity is the total 2D extent of the damage plane, cS , 

divided by the extent of its projection on a plane, cA , associated with the damage 

phenomenon (hence parallel with the middle plane). This is illustrated in Figure 3, at the 

left.  The aggregate grains are supposed spherical in the geometrical-statistical treatment of 

the problem. So, the planar tortuosity index equals =s c cR S A . The damage plane is 

modelled on meso-level as a so-called middle plane from which the particles protrude. Of 

course, largest part of grains is still embedded, so the smaller part is debonded, as depicted 

in Figure 3. Hence, the cracks are supposed to follow the middle plane and the surfaces of 

the aggregate particles protruding from the middle plane. 
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Additionally, a 1D tortuosity index is needed when confronted with, e.g., pores in concrete. 

The definition is analogous to the 2D one. Figure 3, at the right, illustrates the simplest 

approach to the problem. Hence, the length of the line following the middle plane and the 

surfaces of the aggregate grains, pL , is divided by the length of its projection on the middle 

plane, pl . So, the linear tortuosity index amounts to =L p pR L l . A more appropriate linear 

concept for porosity, but equally practical for porosimetry is only a bit more complicated. 

Herein, the linear parts of the line do not have to follow a similar direction (they leave the 

middle plane). Hence, the connecting lines between the particles are composed of smaller 

straight parts between nodes and can run in arbitrary directions. This is accounted for in 

the projected length, of course. It is the concept closely simulating the pore distributions 

derived in the DEM-based simulation set up (Fig. 2), in which a very large number of 

nodes (105) is originally uniformly random (UR) dispersed inside the pores formed in 100 

µm cube space. 

In Stroeven (2000a,b), the complete geometrical statistical treatment of the problem is 

developed. For relevant details readers are therefore referred to these publications. In the 

present paper, we will outline the highlights, making use of these publications, so that we 

can concentrate more on the engineering interest of users less familiar with (and interested 

in) geometrical-statistical theory. We will start with the simplest model that embodies the 

notion of cracks going around aggregate grains under loadings, as well as of pores having 

to traverse around the hydrating cement particles. Figure 3 shows the two simple concepts. 

Yet, even the selected simple structural concepts will demonstrate the quite complicated 

type of geometrical-statistical problems that should be solved. In a later stage of treatment 

of the damage evolution as well as the porosimetry problem, the structural concepts will 

be modified somewhat (based on the same geometrical-statistical basis) to get closer to 

actual situations.   

An arbitrary spherical cap in the fracture surface can be characterized by its height h, which 

can be at maximum half the diameter (D/2) of the very sphere, and the diameter of the 

intersection circle with the middle plane, x. The latter equals at maximum the diameter of 

the sphere, D.  The surface area of this cap is given in Equation (1). 

= π +2 21
4( )S h x (1)
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Figure 3. Meso-scale model underlying the planar (left) and linear tortuosity index (right). The 

cracks, at the left, supposedly circumvent the spherical particles in an UR dispersion of the grains 

that come in the course of a dividing plane (cracking in concrete due to unidirectional loading). 

Micro-scale model, at the right, of a pore running through the cementitious matrix and going 

around the aggregate grains on its way (porosity in concrete). 

For mono-size aggregate grains, we see that h fluctuates between 0 and D/2 and x between 

0 and D. The average value of h is obviously D/4, because it is linearly fluctuating. The 

underlying probabilistic operation is more complicated for x, however, as demonstrated in 

the publications indicated above. Moreover, we are interested in average morphological 

characteristics of the fracture surface. So, we have to assess the average surface area in 

Equation (1), yielding 

= π +2 21
4( )S h x  (2) 

A bar on top of an expression implies an average. Therefore, determination is required of 

average values of 2h and 2x .  For cap height h we readily obtain 

π

π

= =

= =

∫

∫

/2
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Dh h dh
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Dh h dh
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Unfortunately, these average values (or moments) for x require considerably more efforts. 

Readers are therefore referred to the two indicated publications, which delineate the road 

that can be followed, also for multi-size aggregate concrete. Fortunately, the literature 



33 

(Kendall and Moran, 1963) presents a direct relationship between the moments of the 

generation functions of D and x. Here D represents particle size in the mono-size aggregate 

mixture.   

The particle size distribution function (psd) of continuously graded aggregate mixtures in 

concrete is given by (Stroeven, 1982) 

+
= 1( )

q
o

q
Df D q

D
(4) 

in which oD stands for minimum grain size in a highly sensitive experimental approach. At 

a lower sensitivity level, oD should be associated with the smallest particle size observed. The 

parameter q defines the size distribution curve. As examples, q = 2.5 and q = 3 yield the so-

called Fuller and equal volume fraction curves, respectively. 

However, objective was an engineering approach. Hence, we take up again the line of 

operating for mono-size aggregates. As stipulated earlier, Kendall and Moran (1963) offer a 

direct way to also assess the moments of x by 

π
+= α α∫

/2
1

0
( ) ( ) (sin )nn nm x M D d (5) 

For the mono-size aggregate, Equation (5) yields 

π π
= = =1 1( ) ( )

4 4
x m x M D D  (6) 

= = =2 2
2 2

2 2( ) ( )
3 3

x m x M D D (7) 

Equation (2) yields as a consequence 

π
= π + =2 2 21

4( )
4

S h x D  (8) 

The involved cap density in the dividing surface amounts to 

= = =
π π 22

6

6

V V
A

V VN N
A DD

(9)
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with N, A and VV as the number of caps in the middle plane (N), A as the total area 

(through the intersecting grains) of the middle plane and VV as the volume fraction of 

mono-size grains. Finally, the product of Equations (8) and (9) yields the required 

information; yet, still for mono-size aggregate alone. Hence, we obtain after all those 

geometrical-statistical manipulations the simple result 
 

3
2A A VS N S V= =  (10) 

 

The last part of the engineering approach is reasoning on the basis of plain logic. Equation 

(10) holds for all separate fractions in the two different mixes considered. Hence, we finally 

obtain ( )1 2 1 23 2A A A AN V V VNS S S S V V V= + + + + = + + +   assuming N fractions in the 

aggregate mixture. Summarizing, the final result can be formulated as 
 

3
2A VS V=  (11) 

 

To avoid misunderstandings, the psd in Equation (4) does not represent the grains 

intersecting the middle plane! Of course, larger grains are more probable to intersect with 

the middle plane. So, Equation (4) transforms into 
 

( ) ( )c
c

Dg D f D
D

=  (12) 

 

where ( )cg D is given for the Fuller and the equal volume fraction mixtures by 
 

1.5
3
2 2.5( ) ( )c o
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c

D Dg D f D
D D

= =   and  
2

3( ) ( ) 2c o
c EV EV

c

D Dg D f D
D D
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The required moments of these size distribution functions are readily obtained. For the 

Fuller distribution we find: 3c oD D= and 2 1.5 0.53c o mD D D= . Similarly, for the equal volume 

fraction distribution: 2c oD D= and 2 22 ln( )c o m oD D D D= .  Herein, oD and mD are the 

smallest (observed) and largest particles in the mixture, respectively. These data can 

directly be compared with the moments of Equation (4) for appropriate q values 

demonstrating the relative roughening of the fracture surface. 
 

 

 

 



35 

3 Tortuosity 

Equation (11) brings us very close to the solution for planar tortuosity. We have for the 

planar tortuosity index SR (with reference to Fig. 3 – at the left) 

= + = − + = +3 1
2 21 1S Am A V V VR A S V V V (14) 

in which AmA is the area fraction of the middle plane “between” the protruding caps (the 

matrix portion). 

The linear tortuosity index follows from the following expression 

β
= − +

β1 1
sinL LR L L (15) 

in which ( −1 LL ) equals the linear fraction of the line in the middle plane, and LL equals 

volume fraction of aggregate particles, VV . The term β/sinβ equals the length ratio of 

curve over the cap and its projected length on the middle plane (Fig. 3 – at the right). These 

are readily given by 
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(16) 

Substitution of these results in Equation (15) finally yields 

π π
= − + = + −

2 2
1 1 ( 1)

8 8L L L LR L L L (17) 

with LL (lineal fraction) = AA (areal fraction) = VV (volume fraction). 

In the foregoing, the different tortuosity indexes are both derived by geometrical-statistical 

logic. In practice, it is popular to take the simplest route that starts from the straight-

forwardly derived linear tortuosity index and use an available estimate to also obtain the 

planar tortuosity index. This is also sketched in Stroeven (2000a,b). An interesting concept 

is that of Coster and Chermant (1987), who proposed 
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≈ − 37
4 4S LR R (18) 

This yields as approximation = +1 0.44S VR V , which is not too far off the derived 

expression in Equation (14). Hence, a practical engineering approach! 

4 Improved tortuosity concepts 

In fractography, the following improved relationship has been developed for the planar 

tortuosity index (Stroeven, 2000a) 

= + − ω3
41 2 (1 )S VR V  (19) 

in which ω could be interpreted for the present purpose as the fraction of in-plane crack 

elements of the middle plane only. Hence, the dividing plane is not flat anymore, so is 

transformed into a dividing surface; closer to actual situations. For ω = 1 the flat dividing 

plane as model for cracking is regained.  In quantitative damage analysis in the tension-

dominated domain the total crack surface area is mostly assumed consisting of two 

components, a 3D set of IUR distributed cracks and a 2D one in which all cracks are UR 

distributed parallel to a plane. Alternatively, a two-component mixture of 3D and 1D 

cracks is used in the compression-dominated domain, whereby the latter cracks are all 

parallel to an axis. The way to assess the value of ω in experimental settings is extensively 

discussed in the literature on damage analysis (Stroeven, 1973; 1979). 

When cracks coalesce somewhat away from the dividing plane, ω declines. Under strain-

controlled conditions, ω will be reduced. When a value of 0.5 is assumed, Equation (19) 

will yield = +1 5 4S VR V . Hence, for high volume fraction concrete, a planar tortuosity 

index of about 2 is attained as an upper bound (declining at lower aggregate content). 

However, here we have to mention again that the experimental approach should be based 

on the same sensitivity as assumed in the theoretical set up. So, cracks should be recorded 

on the level of minimum grain size. At lower sensitivity, the tortuosity value will decline 

appropriately. Finally, the mono-size concept is regained at lowest sensitivity level. 

As mentioned earlier, the geometric efficiency factor of steel fibre reinforced concrete will 

offer a relevant improved model for the porosimetry topic. It upgrades the model for linear 

tortuosity from the 2D one in Figure 3, at the right, into a 3D one. The fibre efficiency is the 

reversed of the tortuosity index. Figure 4 illustrates this case. The actual fibre dispersion is 
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modelled as a mixture of a 3D IUR component and a 2D one (UR distributed parallel to a 

plane). We have for the geometric fibre efficiency in a direction in the orientation plane of 

the 2D fibre portion (Stroeven, 2009; Li and Stroeven, 2020). 

( )π
= + − ω1 2 1

2 2( ) VVL L (20) 

in which ω is the total length ratio of the 2D fibre oriented portion over that of the total 

amount of fibres. VL is the total fibre length per unit of volume in the orientation plane of 

the 2D portion. Since linear tortuosity is given by V VL L , its values range between 2 and 

π/2. This is a situation comparable with the linear tortuosity index earlier used for 

porosimetry, however the latter is more relevant for the porosimetry case.  All values 

mentioned so far are in the range reported in the literature, i.e., √2 (Peterson,1958), √(π/2) 

(Haughey and Beveridge, 1969) and √3 (Bathia, 1958), these values also referred to by 

Wong et al. (2006), or generally stated as between 1 and 2 (Sun, et al., 2011). 

Figure 4. X-ray projection of a slice of steel fibre reinforced concrete. Aggregate grains are “visible” 

as fibre-free areas. For the present modelling concept, the fibres are supposedly moved by translation 

and connected at end points yielding a 3D structure resembling the zig-zag shaped pore structure in 

the DEM-based virtual cement paste as displayed in Figure 2. 



5 Discussion 

The frequently occurring coefficients in all these formulas, i.e. 2 and π/2 (or the reverse), 

are directly linked up with almost one and a half centuries old Cauchy concepts. For lineal 

elements we can transform this in the following way. Consider a so called unit sphere (Fig. 

5). Herein, the unit sub-lengths, L, of all lineal connections between nodes are implanted in 

such a way that one end point is in the origin, O, of the sphere. In the 2D case of Equations. 

(1) and (2), the other end points cover uniformly random (UR) the perimeter circle of a

plane through O. The average projected length of all lineal connections between nodes

amounts therefore

π

π

θ θ

′ = =
π

θ

∫

∫

/2

0
/2

0

cos
2

d

L L L

d

(21) 

This result is obtained for ω = 0 in Equation (20). So, only valid for 2D oriented fibres. 

For 3D dispersed node-connecting lines, the end points of the unit sub-length of these lines 

cover UR the surface area of the unit sphere. The average projected length of L along on 

axis of the sphere is given by 

π π

π π

θ θ θ β

′ = =

θ β

∫ ∫

∫ ∫

/2 /2

0 0 1
/2 /2 2

0 0

sin cos d d

L L L

d d

(22) 

This result is obtained for ω = 1 in Equation (20), so for 3D dispersed fibres only. Hence, it 

is interesting to note here that a collection of extremely tortuous pores (Fig. 2) connecting 

opposite surfaces of a concrete specimen are supposedly composed of a spatial IUR system 

of straight short line elements, as argued in the caption of Figures 4 and 5. Average value of 

their total projections on the respective connecting lines between end points of the 

individual pores would be precisely twice the average lengths of the connecting lines, 

according to the Cauchy concept (Cauchy, 1882; Stroeven and Słowik, 2020; Li and 

Stroeven, 2020).  Since one can expect a portion of line elements in the direction of the 

connecting line (other than contained in the IUR system), the factor of 2 can be considered 

an upper bound. Of course, pore depercolation due to prolonged hardening will lead to 

increasing tortuosity. This upper bound value and the effect of hydration are also reported 

38  
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by Promentilla, et al. (2009; 2016). The approach is realistic for the hardened cement paste 

investigated in virtual reality. These pockets of hardened cement are located between 

aggregate grains in the actual concrete. The tortuosity inside the cement paste pockets can 

be expected the dominating feature in concrete, too, also seeing the relatively small value 

of tortuosity predicted by Equation (17) for relevant volume fractions of grains. Just a 

minor enhancement could be expected. 

But at further declining porosity, when pore depercolation is advanced, pores should 

additionally be considered that make on nano-level additional detours through so far 

considered crack free material. This transforms the concept into a quasi-fractal system 

(Stroeven, 1991; 1992). In the high-density hydrate structure, these pores can still contribute 

to porosity and so to tortuosity. A fractal concept could be employed in the porosity case of 

the concept underlying Equation (17). However, also in fractography this is a relevant 

development. Hence, we have selected Equation (19) for demonstration purposes 

( )+ − ω = − +3
4log 1 2 ( )(1 ) ( 1)logVV M D M C (23) 

Figure 5. Visualization by sphere model of orientation distribution of mono-size fibre elements in 

SFRC specimen (Fig. 4). Fibre elements are considered translated from bulk to join in one of their 

ends in point O. As a consequence, other ends will UR cover the surface of the sphere with unit 

radius, L. In the present case, fibres are replaced by approximately linear elements of the pore 

system. In the earlier mentioned DEM-based virtual cement paste, the pores are sampled by such 

straight-line elements that are the result of infinitely small robots moving along pore length in a 

slightly zig-zag course (Stroeven, et al., 2012; Stroeven and Li, 2017). 

x
βy

z

θ

O
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with D as fractal dimension and M as magnification (so, reflecting sensitivity).  We have 

recorded D values between 1.10 and 1.13, close to experimental data published by El-

Saouma (1990). In Stroeven (1992) this operation is performed on the linear roughness 

index, revealing for the two mentioned psd’s slightly curved lines in the loglog plot 

of LR versus M. This can equally be realized for Equation (23) demonstrating SR to be 

depending on sensitivity of the approach.  However, the underlying geometrical concept of 

interpretation in the current case may start with Koch’s snowflake (McWorter and 

Tazelaar, 1987) with D = 1.26. However, the idea can also be used for cracking or porosity 

in concrete visualized on a high level of magnification. The four mono-size straight lines of 

the snowflake have three nodes as joints. The outer lines run in the same direction and the 

couple in the middle forms a mountain peak. The idea is that at increasing magnification, 

the same mountain peak concept is superimposed on all line elements, thereby increasing 

tortuosity. This can again be accomplished for still increasing magnifications.  

For that purpose, we can use the Cauchy solutions in a more intuitive approach. In the case 

of the linear tortuosity index, we start with at nodes connected line elements that are 

approximately 3D (IUR) dispersed between end points in the outer surfaces of the 

specimen. This is the fibre dispersion concept illustrated in Figure 4. For that case, we have 

seen that the planar tortuosity index should be at most 2. Suppose now that at a more 

advanced depercolation state, say at p = 0.2~2.5, detours are formed in a large number of 

locations in the main pore channels. When globally speaking, we can treat them as 

spherical, the average contribution on this higher magnification level to tortuosity will be 

at most 2 again. Hence, the tortuosity plateau at 2 for low density cases (say, at p = 0.4) will 

start to rise to a value of 4 (at, say, p = 0.25). At higher magnification this process may 

continue in a similar fashion until the pore depercolation process is completed leading to 

an additional increase of tortuosity by a factor of 2. We see this behavior reflected in a 

publication of Promentilla, et al. (2009), in which indeed the tortuosity level of 2 at p ~ 0.4 

starts to bend upward terminating at a level of about 8 at very high material density. 

A final note on the virtual cement paste to which we referred a number of times. Details 

can be found in papers referred at. Yet, for the interested reader just a number of 

characteristics that make the link more obvious with quantitative porosimetry, in the 

present case to assess tortuosity. The spherical cement particles are distributed by well-

known discrete element method (Stroeven and Li, 2017; 2018) and thereupon hydrated 
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with an upgraded concept of IPKM (Navi and Pignat, 1996; Le, et al., 2013). The pores 

visualized in Figure 2 are delineated by DRaMuTS, which is an upgraded robotics concept 

of LaValle and Kuffner (2001). Pore size is obtained by star probing (Stroeven, 2019), a 

method used in life science experimental settings. A traditional pore network analysis is 

finally performed on a somewhat simplified pore network. Specifically, the lineal pore 

elements between nodes are schematizes as cylinders (Le, et al., 2013). This renders possible 

estimating the flow through the pore network structure. However, this is valid only for 

fully saturated concrete. For practical situations of partly saturated concrete, we have 

designed obstruction objects in pores, simulating the effect of water in the pores (Li and 

Stroeven, 2016; 2017; Kameche, et al., 2014).  

6 Conclusions 

This paper presents an engineering approach to tortuosity that is a major parameter in 

spatial models of damage and porosity in concrete. The geometrical-statistical background 

for deriving the linear and planar tortuosity index, LR and SR , respectively, is discussed. 

Since the derivation of the planar index goes deeper into this for concrete technologists 

quite alien piece of science, an approximate assessment is available in the international 

literature, and thus also presented herein. The underlying geometrical concept may be 

considered in some cases too simple. Therefore, the steel fibre dispersion analog is 

advocated, yielding an improved expression for the linear tortuosity index. For damage 

assessment also a somewhat improved concept is presented, whereby the original flatness 

of the middle plane is cancelled. Hence, in direct tension or compression tests, the major 

part of damage evolution may be assumed consisting of 2D cracks, in accordance with the 

original set up constituting a flat middle plane and running around the aggregate grains 

intersecting with the middle plane. The improvement consists of adding an IUR system of, 

so called, 3D cracks. 

It is stressed that all constants in such models were originally derived by Cauchy, almost 

1.5 century ago. The above-mentioned improved concepts for linear and planar tortuosity 

point to an upper bound value of 2. Some results available in the international literature 

are mentioned, revealing a range of values with 2 as upper bound. Advanced testing for 

porosity at low porosity values (so very advanced depercolation) have revealed higher 

values that can be explained by nano-cracking in experiments and a fractal concept in 

modelling.  
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