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Load sequence effects in fatigue crack growth, such as retardation and acceleration due to a 

large overload (OL) and underload (UL), can dramatically change the (remaining) fatigue life. 

These effects can be determined using analytical and numerical tools, often trading accuracy 

for a steep increase in required calculation time. This paper describes a novel analytical 

model that includes these load sequence effects, with reasonable accuracy and with 

significantly less computation time as compared to numerical tools. This analytical 

description is based on observations from numerical simulation and fatigue crack growth 

experiments. The model uses simple and scalable equations for the OL effect on the crack 

openings stress. It also accounts for the effect of very low stress valleys, ULs, that can (partly) 

cancel this effect. This UL effect is treated independently of the OL. This adopted modular 

approach provides the model with the required flexibility to describe (semi-) variable 

amplitude signals. The model is calibrated with a set of experiments and compared against 

the experimental results and analytical models from literature. 

Keywords: Fatigue, load sequence effects, overloads, underloads, crack growth, offshore wind 

turbines 

1 Introduction 

In offshore wind turbine (OWT) substructure design, fatigue damage estimations are 

usually made using the Palmer-Miner rule of linear cumulative damage. While this 

approach considers the contribution of both small and large stress cycles to the total 
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estimated damage, it does not consider load sequence effects. It is experimentally observed 

that the crack growth rate of small cycles reduces when they have been preceded by a 

relatively large stress cycle, called an overload (OL). This is, for example, illustrated by the 

experimental results by (Maljaars et al., 2015), see Figure 1. This figure shows the crack 

growth versus the number of cycles. The loading signal consists of constant amplitude 

(CA) loading with a four OLs, as indicated by the arrows. The experimental results show 

lower crack growth rates for the CA cycles following each of the OLs, a phenomenon 

called crack retardation. This behaviour is experimentally shown for various materials, for 

example aluminium (Yisheng and Schijve, 1995) and steel (Maljaars et al., 2015). 

 

                                  

Figure 1: Crack length as a function of the number of cycles. The loading signal consists of 

CA loading with one OL. The dotted line represents the test results, the grey line a simulation not 

taking OL effects into account. Figure taken from Maljaars et al. (2015). 

 

However, a loading signal consisting of solely CA and a single OL loading is not 

representative for the complex stress histories that OWT structures experience. A realistic 

load pattern is random with a certain bandwidth, and in this paper referred to as Variable 

Amplitude (VA) loading. The effect that load sequences can have on the fatigue life of 

OWT substructures subjected to VA loading has been investigated in the joint industry 

project ”Fatigue life Load Sequence effects and Failure probability driven Inspection” 

(FeLoSeFI). This project aimed to understand the effects of load sequences and to develop 

models for the estimation of the load sequence dependent fatigue damage in order to 

optimize maintenance intervals. Dedicated finite element models have been developed to 

understand the mechanics governing the retardation and acceleration effects. However 
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accurate, these models also come with substantial calculation times, making them 

impractical for engineering assessments. Therefore, a novel fracture mechanics model is 

developed to estimate the crack growth including load sequences, consisting of analytical 

equations only. The developed model improves on accuracy and flexibility when 

compared to existing analytical models and requires significantly less computation time as 

compared to numerical models. This paper describes the complete version of this model. 

Earlier work describing parts of the model has been published in (Dragt et al., 2016, 2017, 

2018). 

1.1 Behaviour after an OL 

Various explanations for the crack growth behaviour after an OL exist in literature. 

Anderson (2017) provides a summary of the three main explanations. These are 

summarized below and schematically shown in Figure 2. 

 

1. The first concept is based on the creation of a plastic zone by the OL, which is located 

in front of the crack tip. This plastic zone contains residual stresses which reduce the 

effective stress of the subsequent, smaller amplitude. This effect is present as long as 

the crack is within the plastic zone. This mechanism is called the plastic zone concept. 

 

2. The second concept is based on a plastic wake along the flanks of the crack tip. This 

plastic wake increases the stress required to open the crack and thereby reduces the 

crack growth rate of subsequent cycles. This concept is called the plasticity induced 

crack closure concept. 

 

3. The final concept states that the crack blunts after an OL and needs to re-sharpen or re-

initiate, thereby slowing the crack growth rate after the OL. 

 

 

      

      Plastic zone ahead of crack tip      Plastic zone at crack flanks       Crack tip blunting 

       

      Figure 2: Schematic presentations of retardation concept (Maljaars et al., 2015) 
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Figure 3: Effect of an OL on the crack growth (left) and the opening stress (right). The signal 

consists of CA loading ( Smax = 100 MPa, Smin = 0 MPa) with an OL ( Smax = 200 MPa) 

(Yisheng and Schijve, 1995).  

 

The OL effect is most likely a combination the effects described above, but the plasticity 

induced crack closure is often mentioned as being the most important contributor 

(Anderson, 2017). This mechanism is the basis of the remainder of this paper. 

 

The plasticity induced crack closure concept is based on the definition of the opening 

stress oS , which represents the threshold stress above which the crack physically opens. 

Stresses up to oS are assumed not to contribute to the fatigue damage during that cycle. 

Experiments with CA loading and discrete OLs have shown that the crack opening stress 

after an OL first drops, after which it increases to its maximum value and slowly decays 

back to the normal CA value, see Figure 3 (right). This figure shows the crack opening 

stress over the number of cycles, with the OL applied around 76,000 cycles. The left side of 

the figure shows the corresponding crack length, over the number of cycles. This figure 

also shows the reduced crack growth rate after the OL is applied. 

 

The relative size of the OL compared to the CA cycles, the OL-ratio ( SmaxOL / SmaxCA ), is 

a key influence factor for retardation, as has been shown by Ding et al. (2017). Higher OL 

ratios induce more severe retardation effects. Furthermore, Yuen and Taheri (2006) 

reported that multiple OLs, relatively close to each other, increase the retardation effect. 

Too close, however, will decrease the total retardation effect, as the initial acceleration 

outweighs the retardation effect. 
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1.2 Influence of underloads 

The application of a large load valley, or Underload (UL), may reduce or cancel out the 

retardation effect of a preceding OL. The mechanism is as follows: The large load valley 

reduces the compressive stress in front of the crack tip (plastic zone concept) and/or the 

flattening of the plasticity induced bulging in the crack wake (plasticity induced crack 

closure concept). Finally, when a UL is applied in a CA signal (without preceding OL), 

acceleration can be seen, but the effect is much smaller than the retardation following the 

OL (Ding et al., 2017). The net retardation or acceleration effect of OLs and ULs is highly 

dependent on the sequence of cycles with OLs and ULs, their relative size (e.g. the OL-

ratio) and subsequent cycles. 

2 Fracture mechanics models 

Fracture mechanics methods enable the determination of the crack length, based on every 

loading cycle experienced and the current (updated) size of the crack. As this method 

requires a given crack length, the process of crack initiation is not taken into account and 

(small) initial cracks are assumed to be present at the start of the process. This is a valid 

assumption for welded structures, as the welding process itself introduces small defects in 

the structure. This section gives an overview of the governing equations and provides a 

number of variants on the basic fracture mechanics method. First, the Linear Elastic 

Fracture Mechanics (LEFM) theory is explained, as this is the basis of many fracture 

mechanics models. This theory, however, does not take retardation or acceleration effects 

into account. Therefore, the Willenborg model and the State-Space model that enable 

retardation to be considered, are subsequently introduced. 

2.1 Linear Elastic Fracture Mechanics 

The LEFM method states that the crack growth is governed by stress intensity factor, K, 

which describes the local stress field near a crack tip. Equivalently to a stress range (S = 

Smax – Smin ), K can be defined as a range, see Equation 1. 

 

K K K Y S S amin max max min( )       (1) 

 

In this equation, Smin and Smax are the minimum and maximum stress, respectively, 

describing the current stress cycle, a is the current crack size and Y is the geometry 

correction factor. Several methods exist to determine Y, for example by use of finite 
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element analysis or, for specific geometries, through empirical formulations. In this work, 

an empiric geometric correction factor for a SENB4 bending specimen according to Tada et 

al. (1973) is used, see Equation 2. 
 

Y
40.923 0.199(1 sin ) tan

cos

   


 
 (2) 

In which a W(2 )   and W is the width of the specimen. The actual crack growth per 

cycle, da/dn, is described by Paris (1964) as a function of the stress intensity range, K and 

the material specific parameters C and m. The simple crack growth relation used is given in 

Equation 3 and features a threshold stress intensity range, Kth , below which there is no 

crack growth. 
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In addition, Elber (1971) showed that the ratio of minimum to maximum stress (R = 

Smin / Smax ) further influences the crack growth. Therefore, the variables C and Kth are 

also stress cycle dependent. 

2.2 Small scale plasticity and the concept of crack opening 

The above mentioned equations are valid for LEFM as they assumes a singular stress field 

at the crack tip. In metals, however, local plasticity can change this stress field and cause 

the crack to remain (partly) closed during part of the loading cycle. This is modelled by the 

concept of the stress opening stress So . Stresses lower than So are assumed not to 

contribute to the fatigue damage during that cycle. Elber (1971) states that the remaining 

part of the stress cycle is contributing to the fatigue crack growth and is called the effective 

stress range, Seff = Smax – So . This concept is schematically shown in Figure 4, where 

Smin , Smax , and So are shown. These define the stress cycle S and effective stress cycle 

Seff . Generally speaking, a higher stress ratio R leads to less plasticity and reduces the 

difference between So and Smin . Consequently, this leads to a higher crack growth rate. 

This can be incorporated by the effective stress intensity range, Keff : 
 

K U Keff    (4) 

 

In which the effect of plasticity is accounted for by the stress range effectivity ratio, U, see 

Equation 5. 
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Incorporating Keff , instead of K, in Equation 3 has the advantage that C and Kth are 

then material dependent variables, i.e. not related to R. The problem is now reduced to 

finding the material and ratio dependent variable U. This can be done by using empirical 

data for CA loading or through use of detailed finite element models. 

 

A commonly used empirical method adopted to estimate U is the Forman-Mettu 

relationship, see Equations 6 - 8 (Koçak et al., 2008). These equations relate the crack 

opening function, f , to Smin , Smax , the constraint factor  and the yield stress y . 

 

                               

Figure 4: Schematic stress cycle showing Smin , Smax and So as well as the stress ranges S 

and effective stress range Seff  
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Equations 7 and 8 describe the determination of So and U. 

S f So max  (7) 

Stress

N
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The crack growth rate is then determined using Equation 9: 
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Equation 9 determines the crack growth rate per cycle da/dN, as a function of empirical 

material parameters C, m, p and q. They are obtained through curve fitting of CA crack 

growth tests. The stress intensity factor cK is the critical stress intensity factor at which 

failure occurs. The final term in Equation 9 describes the near threshold crack growth 

behaviour through the ratio Kth /K and the near failure behaviour through the ratio 

cK /K. Combining Equations 7-9 shows that an increase in openings stress So results in 

a decrease in crack growth rate, as expected. 

2.3 Willenborg model 

The plastic zone concept (see Figure 2a) is the basis of the Generalized Willenborg model 

Willenborg et al. (1971); Gallagher (1974). This simple analytical model predicts the 

retardation effect of an OL as a function of the size of the plastic zone in front of the crack 

tip. For each subsequent cycle of which the plastic zone is within this large plastic zone, a 

compressive stress intensity factor is considered which reduces the effective cycle. This 

means that the crack growth rate reduces. Once the plastic zone of a cycle exceeds the 

plastic zone of the OL, the original steady state crack growth is obtained. Although 

computational inexpensive, the Generalized Willenborg model is only able to include the 

effect of discrete OLs. The cancellation effects seen by ULs is not included and neither are 

the concepts of initial acceleration and delayed retardation. However, the model is still 

adopted as reference case in the current paper because of its wide application. 

2.4 State-Space Model 

Ray and Patankar (2001) have developed the State-Space model, which aims to include the 

effects of OLs and ULs in a computationally inexpensive way. The model is based on the 

plasticity induced crack closure approach (see Figure 2b) and treats the opening stress, So , 

and the current crack length, a, as state variables. In the State-Space model, So is a function 

of the current cycle and the stress history. 
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Different from the definition given in Figure 4, the State-Space model defines a stress cycle 

as the maximum stress, Smax , and its following (instead of preceding) minimum stress, 

Smin . The opening stress in the Kth cycle is determined by: 
 

k k k k k k k
o

k k k k k k

S S S S S H S S

S S H S S H S S

1 1 1
o oCA oCA o oCA o

1 1
oCA oCAp min min oCA o

1 1
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( ) ( )[1 ( )]

1

  

 


      

  

     


 (10) 

Where,  is the decay factor describing the decay of the retardation effect. The opening 

stress of the current cycle is a function of the opening stress of the previous cycle, kS 1
o
 , the 

opening stress for the current CA loading, kSoCA and two Heaviside functions, H(), to allow 

for the quick rise and slow decay of the opening stress (third term) and the cancellation 

effect by ULs (fourth term). The latter includes the openings stress of the previous cycle, 

which is determined using R = k kS S1
min max/ . 

 

The state-space model does describe the retardation, initial acceleration and cancellation 

effects. However, the latter is only the case when the UL directly follows the OL, which is 

an important limitation to the State-Space model as this restricts the approach from 

capturing realistic VA loading signals. This model is used as a second reference case in this 

paper. 

 

3 New ’SECOD’ Model 

A new Simple Equation based Crack Opening Determination (SECOD) model is developed 

in this paper to estimate the fatigue crack growth, including the effects of OLs and ULs. 

The model is created such, that it is suited for realistic (semi)-VA loading with an 

improved accuracy over other existing simple models, such as the State-Space model. The 

SECOD model is based on the principles of plasticity induced crack closing, as discussed in 

Section 2. The model is inspired by the State-Space model and uses the same concept of 

state variables to describe the effect of stress history on the current crack growth rate. The 

model is semi-empirical in nature and is calibrated based on a set of tests, which are briefly 

described in Section 5. 
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 (a) CA                                                                        (b) OL 

 

(c) UL                                                                         (d) Mean change 

Figure 5: Considered cyclic loading conditions 

 

The SECOD model uses a basic stress cycle description, as described in Section 2 and 

Figure 4, and incorporates the Forman-Mettu approach to determine the opening stress, 

see Equations 6-8. As these equations describe the crack opening stress in CA loading they 

receive the subscript ss (steady state). 

The effect of OLs and ULs on subsequent cycles is captured by modifying the opening 

stress by a factor So , see Equation 11. Finally, the crack growth rate is determined using 

equations 8 and 9. 
 

S S So oss o   (11) 

3.1 Modular approach 

The opening stress So changes constantly in a VA load, depending on the plastic wake that 

has been formed by preceding cycles. The main challenge is to find the appropriate values 

for So . This requires a level of flexibility which is included through a modular approach, 

where four types of cyclic loading are specified: a) CA loading, b) OL, c) UL and d) mean 

change. These four types are shown schematically in Figure 5. By combining these four 

types, e.g. an OL and mean change at the same time, every type of loading sequence one 

might encounter in VA loading can be described. This also means that a new event may be 

introduced before the effect of a previous event is completely decayed. The following 

combinations are described later in this paper: 
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• An OL results in retardation of the crack growth due to the effects described in the 

previous sections. An UL can cancel the effect of an OL, thereby reducing the amount 

of retardation. Furthermore, it is assumed that a single UL (with no preceding OL) 

does not induce acceleration. 

 

• Overlapping OLs can have a combined retardation effect. 

 

• If an OL is followed by more than one UL, subsequent ULs further reduce retardation. 

 

• A mean change, see Figure 5(d), is considered as a change in stress ratio and/or range, 

combined with an OL and/or UL. The latter depends on whether the values 

for Smin and Smax shift up or down. 

 

The SECOD model as described here is flexible enough to process a variable amplitude 

signal and track the load sequence effects. 

4 Step by step description 

In this section, the SECOD model is described step-by-step. Figure 6 shows a summary of 

the model. It exists of eight steps which will be discussed in detail in the following 

subsections. The presented scheme is used for every single stress cycle in the loading 

history, in a cycle-by- cycle crack growth calculation. The procedure starts with the 

initiation of a new cycle in block 1. Block 2 checks whether or not the cycle is fully in 

compression. The effect of a possible OL, UL and mean change is determined in blocks 3, 4 

and 5. Next, block 6 determines the crack growth of the current cycle. In parallel, block 7  

 

        

                                 Figure 6: Flowchart of the complete model 
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determines whether or not the compressive cycle is an UL. Finally, block 8 saves the state 

variables and finishes the current cycle. In the following subsections, the working of the 

model and the rationale behind the modelling choices are explained. The flowcharts show 

the equations in rectangular shapes and choices are represented by diamond shapes. 

 

Block 1: Initiating a new cycle 

For a new cycle, the far field minimum stress Smin and the subsequent (far field) maximum 

stress Smax of the cycle are determined. Based on the workflow explained in Section 2, the 

current length of the crack, a, and the geometry factor Y, the stress intensity factors Kmin  

and Kmax are determined, using Equations 1 and 2. 

 

Block 2: Is the cycle in tension? 

The assumption is made that a completely compressive cycle, i.e. Kmax < 0, does not result 

in  crack propagation. Therefore, no further crack growth increment is calculated and 

blocks 3-6 are not executed. A completely compressive cycle can be an UL, however, so the 

workflow continues to the UL-check in block 7. 

 

Block 3: Detecting potential OL 

This subsection describes the detection of an OL and the implementation of the OL effect. 

This is one of the most important parts of the model and contains several choices to 

account for the various scenarios that can occur in VA loading. This subsection starts with 

a basic description of the OL model and the underlying assumptions. Next, the SECOD 

implementation is described. 

 

The OL effect 

The implementation of the OL effect is based on the general behaviour after an OL, as 

visualized by Anderson (2017) in Figure 7. This figure shows the crack growth rate per 

cycle as a function of the distance from the OL, which accelerates directly after the OL. This 

is followed by a longer period of crack growth retardation. 

 

The OL behaviour is modelled numerically by Voormeeren et al. (2017) using the Thick 

Level Set method. This method is used to gain insight into the shape of the retardation 

zone, as well as in the magnitude of retardation over a range of OLs and R-ratios. 

Furthermore, the effect of applying a second OL, within the retardation zone of the first OL 

was investigated. 
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For this paper, SENB4 specimens (as described in Section 5) with an initial crack are 

modelled. The plane strain model uses a S355 steel description that includes both isotropic 

and kinematic hardening. The material parameters are taken from Nip et al. (2010) and 

have also been used as input for other finite element analyses within the FeLoSeFI project, 

as described by Maljaars and Tang (2019). The model itself is explained in detail in 

Voormeeren et al. (2017). As for the application in the current paper, the model itself and 

input parameters remain similar to the description in the paper, the load cases are new as 

to include the OLs and ULs at various distances. 

 

        

 

 

 

 

 

 

  

                            Figure 7: Crack growth rate versus distance after application of an OL 

                                           Redrawn after Anderson (2017)  

 

 

Figure 8: So versus a, as calculated with the Thick Level Set method 

                 (Voormeeren et al., 2017) 
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For the creation of the SECOD model, the evolution of So after an OL event is of particular 

interest. Next to variations of CA loading with a single OL, also overlapping OL events are 

modelled. For example, figure 8 shows the effect of two overlapping OLs in terms of the 

opening stress, So , versus the crack size a. The loading signal consists of CA loading 

( Smin = 65 MPa, Smax = 216 MPa and R = 0.3) with two OLs ( Smin = 65 MPa, Smax = 367 

MPa) applied at a = 5 mm and 5.4 mm. The figure shows the initial acceleration due to the 

decrease of So and de delayed retardation that follows. It also shows that the influence of 

the second OL is only slightly larger than that of the first, even though So is still elevated 

due to the first OL. 

Based on observations from literature and the numerical variation study, the following 

three governing assumptions drive the OL effect within the SECOD model: 
 

• The OL effect results from the plasticity induced by a relatively large loading cycle, 

when compared to subsequent stress cycles. Therefore, the magnitude of the OL effect 

is solely dependent on the height of the OL, which is captured by the maximum stress 

of the cycle, Smax , relative to the height of the preceding cycle, Sprev
max . 

• The length of the influence zone of an OL is dependent on the magnitude of the OL 

and is assumed to scale with the size of the plastic zone. 

• The OL effect So has a predefined shape, which scales with the magnitude of the OL 

effect and length of the influence zone, as described above. 
 

An OL is triggered on hindsight. Hereby, it is assumed that in a cycle-by-cycle approach, 

information is available on the previous cycle (history), but not always on the future cycles 

(e.g. in real-time analyses) So, at the current cycle, an OL at the previous cycle is triggered 

when two conditions are met: a) the maximum stress of previous cycle, Sprev
max is higher than 

the Smax of the current cycle, and b) the opening stress Sprev
o of the previous cycle is higher 

than the current So . The first condition triggers a possible OL effect at previous cycle and 

the second condition checks whether the induced plasticity of the OL is larger than the 

plasticity currently present. If this is not the case, it means that an earlier OL is still 

dominant. The latter is important in VA loading, otherwise every slightly larger cycle 

would trigger a new OL effect. 

 

After an OL, So decreases which results in an initial crack acceleration, similar to the effect 

described in Figure 7. This decrease is realized by an initially negative So . When the 

crack grows, So slowly increases to maximum value, So peak . At this point, the OL effect 
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is at its maximum. Afterwards, So decays to So = 0 using a power law. The length of the 

OL effect zone, rOL , scales with the magnitude of the OL. Equations 12 and 13 describe the 

function for So due to the OL. 

 

S So o peak 1 2min( , )       (12) 
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In these equations, cacc , c 1 and c 2 are fitting constants describing the magnitude of initial 

acceleration and the increase and decrease of the retardation effect. The length of the OL 

influence zone is inspired by the equation by (Toribio and Kharin, 2013) for the plastic 

zone size: 

y

K K K
r

S

max max min
OL 2

( )
0.14


  (14) 

The maximum opening stress, So peak occurs at distance xtop , which is fitted according to 

xtop = c rtop OL using numerical simulations. All distances x are measured from the aOL , 

which represents the crack length when the OL event takes place, see Figure 9. 

 

So peak is a function of Smax of the OL and Smax of the following cycle. Evaluating the 

experiments, it is observed that both the difference between, and the ratio of, maxima 

influence the value of So peak . These effects are captured in Equation 15, in which c1 and 

c2 are (experimentally and numerically) calibrated coefficients. 
 

S
S c c S S

S

OL
OLmax

o peak 1 2 max max
max

( ( 1))( )      (15) 

Finally, the OL effect is assumed present as long as: The crack has not grown outside of the 

OL influence zone (a  ( aOL + rOL ) and So has not decayed to zero. The implementation 

of the OL, as discussed in this paragraph is shown schematically in a flowchart (Figure 10). 

The following paragraphs will discuss the blocks one-by-one. Again, the paragraph 

numbering refers to the numbers in the blocks. 
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Block 3 

 

Block 3.1: Calculating the stresses, stress intensities stress range affectivity ratio 

In this block, the stress ratio, R and the stress intensity factors Kmin and Kmax (see Equation 

1) are calculated. Furthermore, both the stress range effective ratio U (see Equation 8) and 

the opening stress So (see Equation 7) are determined. As future stresses are not yet known, 

these are now treated as steady state (assuming the rest of the signal consist of similar VA 

cycles) and receive the subscript ss. 

                                                

       Figure 9: Schematic representation of the change in Sok after an OL applied at aOL  

The value So peak is determined, assuming that the previous cycle was indeed an OL, 

with respect to the current cycle. As this assumption is checked later, it is treated as a 

temporary value: S
temp
o peak , see Equation 16. Physically speaking, a plastic zone is created 

which is larger than the plasticity currently present, and therefore governs the crack 

growth behaviour from here on forwards. 
 

S
S c c S S

S

prev
temp prevmax

1 2 max maxo peak
max

( ( 1))( )      (16) 

 

Block 3.2, 3.3 and 3.4: Is the current cycle in an OL influence zone?  

If an OL effect is present, this is represented by the state variable Sprev
o , which is the 

increase in opening stress So from the previous cycle. Sprev
o is used to check whether or 

not the current cycle is already within an OL influence zone, by comparing the state 

variable Sprev
o with the potentially new OL, S

temp
o peak  (as calculated in block 3.1). When 

the potential new OL effect is higher than the existing opening stress, a new OL is defined. 

Otherwise, the current cycle is treated as a regular cycle. The blocks 3.2, 3.3 and 3.4 are 

explained one-by-one in the next paragraphs. 

So peak
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Block 3.2: Is the current cycle in an OL influence zone? 

Delayed retardation is considered in the current modelling approach. During this part of 

the retardation zone, So slowly increases until the peak value is reached (see Figure 9). So, 

if this value of So would be used to compare with the potential new OL effect, a new OL 

would be defined very often, as So is not yet fully developed. The current cycle is within 

the delayed retardation zone when the crack growth since the OL, x, is less than the 

distance to So peak , xtop . 

 

Block 3.3: Is the current cycle outside of a delayed retardation zone? (x > xtop ) 

With the potential OL in the regular retardation regime, this decision block determines 

whether or not a new OL event is created. This is done when the following condition is 

true: 

S S
temp prev

oo peak    (17) 

In which Sprev
o = 0 in case no OL is present. In other words, the current cycle would result 

in more retardation then the amount of retardation currently in the system. If so, the new 

OL will reset the currently present OL ( Sprev
o ) and define a new retardation event purely 

based on this new OL. Otherwise, the currently present Sprev
o is higher than that of the 

potential new OL, and the current cycle is not treated as a new event. This is an exit-

condition for block 3, the routine continues assuming this cycle is a regular stress cycle. 

Both options are shown in Figure 11, where the lower figure shows the stress history and 

the upper figure describes the evolution of So . In the left event, a new OL is created. In 

the right event, no new OL is started. 

 

Block 3.4: Is the current cycle within the delayed retardation regime? (x < xtop ) 

In case the current cycle is within the delayed retardation area, a new OL event is defined 

if S S
temp

o peako peak    

 

Block 3.5: Initiating a new OL 

The following steps are executed when a new OL event is introduced: 

• The aOL is updated to the current crack length aOL = a. 

• The minimum of the current cycle is assigned to Smin
min . This is required to later 

incorporate the UL effect (see block 4). 

• The UL correction factor, ULcorr , is set to 1, thereby resetting the cancellation effect of 
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previous ULs. 

• rOL is calculated using Equation 14. 

• The new OL completely replaces any OL effects currently present. Physically, 

additional interaction might be present. However, by resetting the retardation of the 

combined OLs effect is possibly (slightly) underestimated. 
 

 

         

                                                 Figure 10: The implementation of an OL 
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Block 3.6: Is the current maximum stress above the maximum calculated stress? 

Equation 15 describes the peak opening stress of the OL effect. This equation, however, is 

not monotonously increasing, which is shown by plotting So peak as a function of Sprev
max in 

Figure 12. This means that for very high OLs, a lower value for So peak is found. This is 

unrealistic and avoided by taking the maximum value of Equation 15 instead. This block 

calculates the maximum value of Equation 15, Smax
max , according to Equation 18 and 

compares this with the maximum stress of the OL, Sprev
max  

 

c c
S S

c
max 1 2
max max

2

2

2

 
  (18) 

 

Block 3.7: The maximum stress is below Smax
max . 

The value for So peak is calculated with Equation 15. 

 

Block 3.8: The maximum stress is above Smax
max  

Combining Equations 18 and 15 gives the new description of So peak , representing the 

maximum of Equation 18 ( Smax
max ): 

c
S c S

c

2
1

o peak 1 max
2

( )
4

    (19) 

 

 

(a) A new event is started                                           (b) No new event is created 

Figure 11: Graphical representation of decision to initiate a new OL event 

 

                     

                             Figure 12: Definition of Smax
max  

Sprev
max

So peak

Smax
max

Smax Smax
Smax

max

oStemp

oS
oS

oStemp
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Block 4: Including the effect of ULs 

As explained at the start of this section, an UL applied after an OL will reduce the 

retardation effect. This section describes the effect on an UL and how this is included in the 

SECOD model. 

 

The UL effect 

The UL effect has been investigated with the Thick Level Set method (by Voormeeren et al. 

(2017), see Subsection 4). Four SENB4 specimen (made of S355 steel) have been subjected to 

CA loading ( Smin = 65 MPa, Smax = 216 MPa and R = 0.3) in combination with an OL 

( Smin = 65 MPa, Smax = 367 MPa) applied at a = 5 mm. Subsequently, a single UL ( Smin = 0 

MPa, Smax = 216 MPa) is applied at a = 5.01 mm, 5.1 mm and 5.2 mm respectively. The 

simulation results of these three cases together with a case without UL are shown in Figure 

13, which provides So versus a. This figure shows that the magnitude of the retardation 

effect drops instantaneously with the application of the UL, while the length of the 

retardation zone remains the same. 

 

 

Figure 13: Opening stress versus crack length for three UL scenarios 

 

This behaviour is included in the SECOD model through an instantaneous reduction of 

So at the application of an UL. This is based on the following assumptions: 

• An UL reduces the OL-effects, but does not introduce acceleration. 
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• An UL reduces the magnitude of So , but does not influence the length of the OL 

influence zone rOL . 

• Multiple ULs can have a cumulative reducing effect, in case the current UL is lower 

than all previous ULs within the OL influence zone. This approach assumes that when 

the plasticity induced bulging due to an OL is flattened by an UL, it can only be 

flattened further by an even lower UL. 

 

                         

                             Figure 14: Schematic view of So after an OL event with 

                                              (solid line) and without UL effect (dashed line) 

 

The reduction effect is introduced through the correction factor, ULcorr . When no 

cancellation is present, ULcorr = 1 and when the OL-effect is completely cancelled ULcorr = 

0. The actual value of the correction factor is in between these extremes and is calculated 

by Equation 20. 
 

S S
UL c

S

min
min min

corr UL
o peak

1


 


 (20) 

where cUL is a fitting parameter and Smin
min is the lowest UL in the current OL influence 

zone. Multiple ULs, each only slightly smaller than the previous, could conceivably cause 

unrealistically rapid cancellation of the OL effect. Therefore, a threshold value cthres is 

included. Cancellation only takes place when ULcorr < cthres , where cthres is a fitting 

parameter. It is advised to use 0.95 as cancellation threshold. The UL effect is schematically 

shown in Figure 14, where So is plotted as a function of a for an OL scenario including UL 

(solid line) and excluding UL (dashed line). The implementation of the UL effect in the 

SECOD model is shown in Figure 16. 

 

Finally, the assumptions presented above have one exception: the numerical simulation 

with the Thick Level Set method showed that two large but equal ULs do have a 

xxUL

0

So
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cumulative cancellation effect. The cancellation effect by the second UL is, however, 

considerably smaller than by the first. To be able to include this behaviour, the state 

variable Smin
min is updated, after the UL effect is determined, according to Equation 21. 

 

S S c S Smin min min
min min min min min( )    (21) 

In which cmin is a fitting parameter. The state variable Smin
min is lowered by a small 

fraction, cmin , of the difference Smin
min - Smin . This way, a second UL with equal Smin as the 

first will still slightly cancel the retardation effect, see Equation 20. The amount of 

cancellation, ULcorr will, however, decrease exponentially with every equally sized UL 

until it is below the threshold value. Figure 15 gives an overview of the variables used to 

determine the UL effect. In the following paragraphs, each block from the flowchart is 

explained. 

 

 

Figure 15: Schematic overview of an OL / UL combination and the correction of Smin
min  

        

                                           Figure 16: The implementation of an UL 
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Block 4.1: Is the current cycle an UL? 

The current cycle is an UL when the minimum stress of the current cycle, Smin , is lower 

than the lowest minimum stress in the current OL influence zone, Smin
min . 

 

Block 4.2: Calculating of the reduction factor based on the current UL 

When a new UL is encountered, the correction factor of the current cycle, ULt , is calculated 

with Equation 22. It is a function of the ratio between the difference in minimum stress and 

So peak . This relates the size of the UL to the amount of plasticity that was introduced by 

the OL. 

S S
UL c

S

UL

UL UL

UL

min
min min

t UL
o peak

t

t t

t

1

1 if 1

0 if 0

otherwise


 






 



 (22) 

 

Block 4.3: Comparing ULt with the threshold 

In case of multiple small ULs, every UL will results in a small correction factor. Adding all 

these small factors results in an unrealistic large reduction of the retardation effect. 

Therefore, the threshold cthres is introduced. 

 

Figure 17a: Schematic representation of the                     Figure 17b: Schematic representation of the 

                   downwards mean change                                                   upward mean change 

 

Block 4.4: No cancellation effect 

When the current cycle does not meet the criteria for an UL, or does not exceed the 

threshold value cthres , the correction factor ULt is set to 1. This means that there is no 

cancellation included for the current cycle. 

 

Block 4.5: Updating Smin
min  

To include the effect of multiple large ULs, Smin
min is corrected according to Equation 21. 
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Block 4.6: Calculating total UL correction factor ULcorr  

A cumulative correction factor is determined as state variable, covering the combined 

cancellation effect of all ULs: 

UL UL ULprev
corr t corr   (23) 

Furthermore, the crack length since overload is updated: 

x a aOL   (24) 

 

Block 5: Detecting upward mean changes 

Block 5 handles a special but important exception: the mean change upwards. This 

subsection first provides an overview of this mean change and the implementation, after 

which the flowchart for block 5 is presented and discussed block-by-block. 

 

The effect of mean changes 

Two types of mean change have been defined, downwards and upwards, see Figure 17. A 

downward mean change is characterized by a decrease in Smax , which is recognized by 

block 3 as an OL event of the previous cycles. If Smin (also) decreases, this is included as 

UL by block 4. The combined effect provides the response to a downward mean change. 

An upward mean change, on the contrary, does not introduce any OL or UL events and 

can thus be treated as a separate load cycle. However, with one exception is defined: when 

the upward mean change occurs within the OL influence zone. 

 

In this special case, an increasing mean shift will cause a higher So due to the increase in 

the steady state opening stress (the opening stress of the current cycle, without OL or UL 

effects) Soss as shown in Figure 18. The figure shows an OL with an upward mean change 

applied when the retardation effect is decaying. This mean change will cause an increase of 

the steady state crack opening stress Soss . However, So remains unchanged, as it is a 

function of the OL, such that the total opening stress will increase (see blue curve in Figure 

18). From a physical point of view this is not feasible, because this would mean that an 

increasing mean change will also increase the amount of plasticity in the wake of the crack 

and thus the amount of retardation. Alternatively, forcing So to remain unchanged 

provides a situation where the retardation zone is shortened dramatically and this 

introduces a much shorter OL influence zone (dashed line). To overcome this, a new 

(artificial) OL is determined, with a plastic zone size edge that coincides with the original 
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plastic zone edge and with the new Soss as baseline. This will reduce the amount of 

retardation, without shortening the influence zone (dash-dot line). 

 

 

Figure 18: The effect of an increasing mean shift in the OL-influence zone 

 

The new OL effect is introduced in such a way that the crack starts at xtop of the new 

plastic zone. This is illustrated in Figure 19 by a green line. This approach avoids inclusion 

of a second delayed retardation phenomenon and ensures a smooth So curve. This is 

explained in more detail with the following equations, in which the superscript b and g 

represent the previous (blue) OL event and the new (green) event, respectively. First, the 

new plastic zone size is created based on the previous plastic zone size and the current 

position, x: 

r x
r

c

b b
g OL
OL

top1





 (25) 

Subsequently, a new x, xtop and aOL can be determined: 

x c r
g g

toptop OL   (26) 

a a x
g gprev

topOL    (27) 

x a a
gg prev
OL   (28) 

A new value for the maximum openings stress So peak is determined based on the 

previous and current opening stress, as shown schematically in Figure 19. 
 

S S Sprev
o peak o o     (29) 

The procedure is summarized in Figure 20 and is explained block by block in the next 

paragraphs. 

So peak
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Block 5.1: Is an increasing mean change present within an OL event? 

This decision block detects upward mean changes ( Smax > Sprev
max ) and checks whether or 

not a retardation effect is present, ( So  0). 

 

                                        

                Figure 19: Schematization of new calculated plastic zone in case of a mean shift 

 

Block 5.2: Calculating So  

In case of a mean shift, the associated increase in Soss is calculated. This value is 

called Soss and used in blocks 5.4 and 5.5. 
 

Block 5.3: Is the current cycle within a delayed retardation regime (x < xtop )? 

Similarly to block 3.4, the distinction is made between the delayed retardation (x < xtop ) or 

regular decaying retardation zones (x xtop ). 
 

Block 5.4: Determining the equivalent OL (x xtop ) 

This block calculates the new OL. 
 

Block 5.5: Determining the equivalent OL (x < xtop ) 

When the mean change takes place in the acceleration or delayed retardation phase, the 

value for So peak is lowered by the increase in steady state opening stress So , to avoid 

the increase in peak opening stress. 

So peak

So peak
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                    Figure 20: Correction for upward mean changes during the OL effect 

 

Block 6: Calculating the crack growth 

Block 6 calculates the crack growth for the current cycle, taking the possible OL and UL 

effects into account. First, the implementation of the crack growth equations is explained, 

after which each separate block is elaborated upon. 

 

Calculating the crack growth 

The crack growth depends on whether or not an OL effect is present. When present, the 

shape function equations (Equations 12 and 13) are used to determine So and thus the 

current crack opening stress So = S Soss o . Otherwise, when no OL effect is 

present, So = 0 and So = Soss . This is used to calculate the opening stress intensity 

factor Ko and the effective stress intensity factor, Keff : 
 

K YS ao o   (30) 

K K K Keff max o minmax( , )    (31) 

With Keff , the crack growth is determined using the following equation in 

which
m
ss

C
C

U
eff  : 

 

m
eff

da
C K

dN
eff

eff ( )   (32) 

Finally, the total crack length can be updated (as this is done every cycle, N = 1): 

da
a a N

dN
prev

    (33) 
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The entire procedure is visualized in Figure 21 and is explained in the next paragraphs. 

 

Block 6.1: Is an OL effect present? 

To make sure the correct opening stress equations are used, a check is performed to see 

whether or not any OL effects are present. 

 

                   

                                                    Figure 21: Calculation of the crack growth 

 

Block 6.2: Calculating the opening stress in case an OL effect is present 

Using the shape functions of the OL description, the opening stress ( So ) is calculated. 

 

Block 6.3: Calculating the opening stress in case no OL effect is present 

When no OL effect is present, So = 0 and the steady state opening stress, So ss is used to 

determine the crack growth. 

 

Block 6.4: Calculating the effective stress intensity factor and crack growth 

The final step is to determine the effective stress intensity factor, Keff , based on the 

opening stress, So . Then, the crack growth per cycle is determined and the total crack 

length is updated (for every cycle, thus N = 1). 

 

Block 7: Checking for compressive ULs 

Whenever a cycle is in full compression, Kmax < 0, it is assumed that there is no crack 

growth. However, if this cycle is still an UL it can reduce the amount of retardation in the 
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system. Therefore block 4 is repeated in this part and the state variables describing the UL 

effect (i.e. Smin
min and ULcorr ) are updated for use at a subsequent cycle. 

 

Block 8: Preparing for the next cycle 

The final block saves all relevant state variables so they can be used with the next cycle. 

Furthermore, this block is also used to save parameters to a suited output format. An 

overview of the state variables used by the SECOD model is given in Table 1. 

5 Comparison with experiments 

Numerous small scale four-point-bending (SENB4) fatigue tests are used to develop and 

calibrate the SECOD model. These experiments are described by Pijpers et al. (2019). First, 

a short summary is given of the experimental set-up. Second, the calibration procedure for 

the SECOD model is discussed. Finally, the effectiveness of the SECOD model is showed 

by comparing the results from the SECOD model with the results from the experiments 

and the predictions from the State-Space and Willenborg models. 

 

Table 1: Overview of state variables 

State variable Governs effect of 

K
prev
min  Minimum stress intensity of the previous cycle 

Kprev
max  Maximum stress intensity of the previous cycle 

oSprev
  Value of the opening stress of the previous cycle 

oS  peak  Peak openings stress in the OL influence zone 

a Crack length 

rOL  Length of OL influence zone 

Sprev
max  Maximum stress of the previous cycle 

Smin
min  Lowest Smin in the current OL influence zone 

ULcorr  UL correction factor 

xtop  Location of Sprev
max relative to the OL event 

xOL  Length of the OL influence zone 
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5.1 Description of the experimental set-up 

The experimental set-up for the small scale fatigue tests, as described by Pijpers et al. 

(2019), was built at the TNO Structural Dynamics Lab in Delft. The set-up consists of 

standard SENB4 single edge notched specimens in four-point bending, made of 

S355G10+M base material. The SENB4 specimens are 25 mm wide and have a height of 50 

mm. The specimen is loaded by a hydraulic cylinder and is supported by rollers, with a 

distance between them of 140 mm and 280 mm. These dimensions are chosen such that 

local plasticity at the roller is avoided. The test set-up is shown in Figure 22. 

 

The loading is applied at a frequency of 4 Hz and the applied loading is measured, 

together with the crack propagation. The latter is monitored with Vishay crack gauges, 

with a 0.25 mm spacing (see Figure 22). In addition, visual methods are used to estimate 

the crack length at discrete intervals. 

 

This paper uses a subset of the entire experimental program discussed by Pijpers et al. 

(2019) for comparison with the SECOD model, see Table 2. Because only a limited set of  

 

                             

                  Figure 22: Side view of the SENB4 specimen, including instrumentation 

 

Table 2: Overview of tests discussed in this paper 

Specimen ID Signal type 

BM1235 CA loading with OL-UL combinations 

BM1535 CA loading with OL events 

BM1735 CA loading blocks with OL and mean changes 

BM2535 CA loading with OL and OL-UL combination 
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experiments is available, these four are used to calibrate the SECOD model and also to 

show the merits of using it. For future work, it is recommended to expand the 

experimental program and use these new experiments for ’blind validation’ purposes. 

5.2 Calibration SECOD model 

The model parameters have been calibrated using the following experiments: 

 

1. CA 

The material parameters C and m are based on CA tests or parts of the signal that feature 

CA signal without being in the OL or UL influence zone. 

2. CA + OL 

The retardation zone parameters, ctop ; cx ; c 1 and c 2 are calibrated based on CA + OL 

signals by fitting the OL influence zone to the experimentally determined one. When 

multiple OL-ratios are available, these can be used to fit calibration factors c1 and c2 . 
 

3. CA+OL+UL 

A block type signal is used to calibrate cacc and cUL . When multiple UL are available, these 

can be used to calibrate cmin . 

4. VA 

A VA loading signal can be used to calibrate the threshold value cthres . 

This calibration has resulted in the model properties described in Table 3 and Table 4. A 

two stage crack growth versus stress intensity description is used, providing two sets of 

parameters, C1 and m1 for relatively small stress ranges and C2 and m2 for larger stress 

cycles. The constant amplitude crack growth rate is: da/dN = min( mC K 1
1 ; mC K 2

2 ). In 

order to provide the most accurate crack growth estimation for each specimen, the 

parameters C1 ; C2 ; m1 and m2 have been determined for each of the specimens, instead of 

an average value for all specimens. 

5.3 Calibration other models 

The three analytical models, the crack growth without any OL and UL effects, the 

Generalized Willenborg model and the State-Space model are calibrated to fit the 

experiments. To start with, all three models use the crack growth parameters that are 

determined based on the experiments (see Table 4). For the first model, the crack growth 

representation without OL and UL effects, no further calibration is required. Secondly the 

Generalized Willenborg model, which does not allow for further calibration and solely 
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Table 3: Overview of calibration parameters 

Factor Governs the effect of Value 

c1  Difference between Sss
max and SOL

max on So  0.65 

c2  Ratio between Sss
max and SOL

max on So  0.43 

cacc  Initial acceleration 0.05 

cmin  Correction for large ULs 0.90 

ctop  Location of maximum retardation peak 0.05 

cUL  Cancelling effect of an UL 0.19 

cthres  Threshold value for the UL effect 0.95 

xc  Length of the influence zone 0.14 

c 1  Increase function of oS  0.50 

c 2  Decay function of oS  3.00 

 

 

Table 4: Overview of material parameters for all specimens (using a two-stage crack growth 

Specimen ID a0 C1 m1 C2 m2 

BM1235 2.5 6.5· 10−17 4.3 N/A N/A 

BM1535 2.5 1.8· 10−16 4.2 3.3· 10−8 1.3 

BM1735 2.5 4.6· 10−18 5.0 1.1· 10−9 1.8 

BM2535 4.0 1.8· 10−16 4.2 3.3· 10−8 1.3 

For all specimens: q = 1.0 and p = 0.2 

 

depends on the ratio of the OL to the CA cycles and the constraint parameters. Finally, the 

State-Space model does allow for further calibration through the decay parameter , which 

controls length and magnitude of the retardation effect, see Equation 10, Section 2. For the 

following analysis, this parameter has been fitted such that the length of the OL zone (in 

terms of da/dN over crack growth) fits best with the experiments. Unfortunately, a single 

value for  proved insufficient to properly fit all measurement data. 

5.4 Validation with the experiments 

Each of the four experiments used to validate the model contains CA loading with 

variations in the events: a) two OLs (BM1535), b) two OL-UL combinations (BM1235), c) 
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OL and OL-UL combination (BM2535) and d) OL followed by various mean shifts 

(BM1735). The comparison with the analytical models is visualized in Figures 23 through 

26. On the left side of these figures, the crack growth versus the number of cycles is shown. 

The second y-axis shows the stress input and corresponds to the grey lines in the figure. 

These represent the upper and lower bounds of the input signal, as actual loading is 

sinusoidal. The black curve represents the crack growth without taking any OL and UL 

effects into account. The coloured curves represent the retardation models: Generalized 

Willenborg model (green), State-Space model (red) and SECOD model (blue). The 

experimental data are indicated with crosses at 0.25 mm crack growth intervals. The crack 

growth at the location of the OL is (also) estimated visually. 

 

To make the models easier to compare, the events (OLs, ULs and mean changes) have been 

applied in the models at set crack sizes (e.g. a = 5.5 mm). This means that cumulative errors 

may occur when considering the crack growth over number of cycles. This is, however, not 

the case for the crack growth per cycle da/dN versus crack length, which is shown on the 

right side of Figures 23 through 26. This figure provides insight into the estimated crack 

growth and especially into the behaviour after an event is included. The following 

paragraphs discuss the results for each experiment separately. 

 

Two OLs 

Figure 23 shows the results of specimen BM1535. This specimen features a CA loading 

with an R-ratio of 0.3 and two discrete OL effects. The experimental results clearly show 

initial acceleration behaviour, directly followed by distinct retardation zones. The final part 

of the loading signal is again CA loading. The figure demonstrates that the SECOD model 

follows the experimental data well, providing a slightly conservative estimation of the 

crack growth over the number of cycles. Both the Generalized Willenborg and State-Space 

models underestimate the crack growth behaviour, but the mechanism is different, as is 

shown in the right-hand graph of Figure 23. The length of the retardation zone is 

underestimated in the Generalized Willenborg model. This means that the crack growth 

rate has returned to the CA values long before this is the case in the experiment. The peak 

value, however, is in line with the experimental values. On the other hand, the peak value 

is underestimated in the State-space model, but the retardation zone is much longer than 

experimentally determined. 

 



 142 

 

                  

     Figure 23: Specimen BM1535, showing crack growth versus number of cycles (left) and crack 

                      growth per cycle versus crack length (right)  

 

Two OL-UL combinations 

The second experiment is specimen BM1235, see Figure 24. This specimen features CA 

loading, combined with two sets each containing an OL directly followed by an UL. 

Furthermore, the two OL have a different OL-ratio, while both ULs are equal. The OLs are 

immediately followed by the ULs. The SECOD model follows the first OL/UL combination 

well and underestimates the retardation induced by the second combination. Similar to 

specimen BM1535, the Generalized Willenborg model estimates the magnitude of the 

retardation effect reasonably well, but underestimates the length of the retardation zone. 

This leads to an underestimation of the retardation effect. It should be noted that this 

behaviour is partially attributed to the fact that the Generalized Willenborg model does not 

include the UL effect: Figure 24 therefore provides a too optimistic representation of the 

accuracy of the Generalized Willenborg model. The State-Space model does include the 

cancellation effect induced by the UL, but overestimates the cancellation effect, resulting in 

a severe underestimation of the final retardation effect. 

 

OL and OL-UL combination 

Figure 25 shows the results from specimen BM2335. This is an interesting specimen, as the 

combination of a single OL and the OL/UL combination clearly show the effect of an UL  
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           Figure 24: Specimen BM1235, showing crack growth versus number of cycles (left) and 

                             crack growth per cycle versus crack length (right) 

 

 

 

                

          Figure 25: Specimen BM2535, showing crack growth versus number of cycles (left) and 

                            crack growth per cycle versus crack length (right) 
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on the net retardation effect. The retardation effect of the OLUL combination is much 

smaller, compared to that of the single OL event. The SECOD model predicts a slightly 

smaller retardation effect than the experimental data for both events. Again, both the 

Generalized Willenborg model and the State-Space model severely underestimate the 

retardation effect due to their mismatch of the magnitude and length of the retardation 

zone, respectively. 

 

OL and mean changes 

The most complicated signal has been tested with specimen BM1735 and shown by Figure 

26. An OL is followed by a series of mean changes. Comparison of the experiments with 

the No Retardation approach shows that both the OL and the downward mean changes 

induce retardation. The SECOD model is able to reasonably follow this complicated signal, 

with the exception of the first mean change which is not captured well. This results in a 

cumulative error over the remainder of the signal. The mismatch at the first mean change 

is attributed to a particular combination of So and R-ratio. This makes that the SECOD 

model provides a worse overall fit than the State-Space for this experiment. However, the 

right-hand graph provides a different picture. Similarly to the other experiments, the State-

Space model overestimates the length of the retardation zone whereas the SECOD model  

 

 

                 

            Figure 26: Specimen BM1735, showing crack growth versus number of cycles (left) and 

                             crack growth per cycle versus crack length (right) 
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follows the experimentally determined da/dN curve with reasonable accuracy. The 

Generalized Willenborg model predicts almost no retardation effect. 

6 Discussion new SECOD model 

The SECOD model shows reasonably to good agreement with the four experiments it has 

been compared against. It provides a decent match over a range of R-ratios and OL/UL 

effects. Furthermore, it provides a more uniform match than the Generalized Willenborg or 

State-Space models, which can be fitted to a particular experiment but if so, do show large 

differences with the other ones. In this section, the key features and limitations of the 

SECOD model are discussed. 

 

Pattern of the opening stress 

The basis of the SECOD model is a set of equations describing the decrease, increase and 

again decrease of the opening stress caused by a single OL, causing initial acceleration and 

(delayed) retardation of the crack growth rate. The figures presented above show the 

effectiveness of this approach, as the OL effect is captured rather well over the whole range 

of experiments performed. 

The shape of the OL influence zone scales well with the events presented, both in terms of 

the magnitude of the retardation effect and the length of the influence zone. Generally, the 

current description is conservative in comparison with the experiments, underestimating 

the retardation effect. 

 

The UL effect 

The current set of experiments contains a number of discrete ULs, the effect of which is 

captured reasonably well by the SECOD model. Furthermore, due to the description of the 

model, the UL can be applied at any given moment providing the flexibility required to 

describe (semi-) VA signals. This is a big benefit compared to, for example, the State-Space 

model, where the UL must follow the OL directly. 

 

Mean changes 

Figure 26 shows that mean changes introduce a net retardation effect which is captures 

reasonably well by the SECOD model. This provides confidence in the chosen approach to 

combine OL and UL effects separately. Again, this opens the possibility to describe (semi-) 

VA signals. 
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VA loading 

From the start, the SECOD model has been developed with VA loading in mind. Due to 

the modular design, each of the four defined events (CA, OL, UL and mean changes) can 

be included in an arbitrary manner. This flexibility is achieved through use of state 

variables to capture the history and by predefining the shape of the OL effect. Finally, the 

decoupling between the OL and UL effects allow for arbitrary inclusion of either one of 

them. 

This is illustrated by the following example: When an OL is directly followed by an UL, it 

should provide a very similar crack growth as when the same OL is followed by several 

small CA cycles and the UL. In terms of the physical processes, the inclusion of several 

small cycles will cause negligible crack growth and will not reduce of the plasticity in the 

wake of the crack. Such, the crack growth after both event should be almost the same. The 

current model approach allows for this behaviour and thereby the arbitrarily inclusion of 

OL and UL. Furthermore, as mean changes consists of a combined OL/UL effect, the same 

reasoning holds for these events. 

 

Limitations of the SECOD model 

The SECOD model has been calibrated based on a limited set of experiments, thereby 

inherently limiting the application area in which the model is valid. More tests are 

required to validate the model for a wider range of loading conditions. These calibration 

and validation experiments are recommended to include VA signals, to check the validity 

of the method for these as well. The main challenge when testing VA signals is the 

measurement resolution of the crack growth. Currently, it is not possible to measure the 

crack growth with sufficient accuracy to trace individual events during a VA loading. This 

makes that it is only possible to validate for general trends, but not to improve on the crack 

growth due to specific combinations of stress cycles. 

 

The SECOD model has been developed and calibrated for base material tests. However, 

the focus for fatigue of practical structures are welded details, as this is the part of the 

structure where fatigue cracks normally initiate. In this area, large pre-stresses, due to the 

welding process, are present and will influence the fatigue behaviour. The current model 

allows for inclusion of pre-stresses (as a function of the crack length) to Smin and Smax but 

the model needs to be validated based on a similar set of experiments, performed on 

welded specimens. 
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7 Conclusions 

The Simple Equation based Crack Opening Determination (SECOD) model is developed to 

estimate the fatigue crack growth rate in steel, including retardation and acceleration 

effects caused by (combinations) of Overload (OL)s and Underload (UL)s. The model is 

developed in a modular fashion, such that it can facilitate (semi-)Variable Amplitude (VA) 

loading histories. This analytical model is developed by using a combination of numerical 

simulations and crack growth experiments. The main idea behind the SECOD model is a 

set of scaleable equations that describe the effect of an OL on the crack opening stress and 

the cancellation of the retardation effect associated with ULs. By treating the OLs and ULs 

separately, the model has the potential to describe realistic, VA load patterns. 

 

The SECOD model has been calibrated to a set of experiments. It simulates the crack 

growth with reasonable accuracy. Compared to similar analytical models, it provides 

better accuracy over a wider range of loading conditions. 

 

For future work, it is recommended to further generalize and validate the model for a 

larger set of loading conditions, through more experiments. Similarly, based on 

experimental data, the model parameters can be calibrated for welded details and include 

pre stress. 
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