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Finds and ideas with a surprising element similar to the 

playful inventions of Heron of Alexandria, after whom 

this journal is named 

 

 

 

200 Years old Cauchy concept pointed the route to optimizing 

concrete porosimetry in virtual reality  
         

The solution of a technical problem is in many cases potentially available however 

probably somewhat hidden in the literature. At least, research engineers in concrete 

technology have the tendency not to search for it but to come up with their own ideas. 

Unfortunately, not always of the same standard as guaranteed by the original source. 

Interestingly, many powerful theoretical concepts relevant for concrete technology are of 

stereological nature, although in many cases (much) older than stereology itself (Stroeven 

and Hu, 2006; Stroeven et al., 2009). With the development of stereology as a science since 

the foundation of the society for stereology in 1963, old roots became apparent: stereology 

avant la lettre. As a concrete technologist the second author of this fountain enjoyed several 

playful discoveries over the years that in some cases constituted old but reliable milestones 

along the route to solving popular problems in our field. Baron Augustin-Louis Cauchy (21 

August 1789 – 23 May 1857) formed such a milestone. He was a French mathematician 

reputed as a pioneer of analysis. He was one of the first to state and prove theorems of 

calculus rigorously. Of the extensive oeuvre of Cauchy, two formulas – almost two 

centuries old – are of significance for concrete technology (and other branches of science) 

(Cauchy, 1882; Stroeven and Hu, 2006) 
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Eq. (1) states that the length of an artificially curved line in a plane, L, equals π/2 times the 

average value of its total projected length, L’, in a series of random or systematic directions 

(Fig. 2).  Eq. (1) found interesting applications for the orientation and effciency of fibres in 
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concrete (Stroeven, 1977; Stroeven, 2015). Noteworthy is that also here geometric avaraging 

proofed difficult (Romualdi and  Mandel, 1964; Souroushian and Lee, 1990). 

Eq. (2) states that the surface area of an artificially curved element in space, S, equals 2 

times the average value of its total projected area, A’, in a series of randomly or 

systematicly oriented planes. Eqs. (1) and (2) were earlier used for the analysis of damage 

in concrete (Stroeven, 1979; 2000). 

 

       

Figure 1. Cauchy around 1840.  Figure 2. Illustration of Equation (1) 

Lithography by Zéphirin Belliard after  L is the length of a curved line, 

a painting by Jean Roller (source: Wikipedia) ′L stands for its total projected length. 

1 Global geometric averaging 

Before we will enter the complicated field of permeability estimation, we first proof that 

Eq. (1) is correct for a straight fiber. Figure 3 shows this fiber with a length L. It is projected 

onto a line with angle θ . This angle can have any value between 0 and π. The projection  

has the length ′ = θcosL L . The average ′L of all ′L is the integral over all θ divided by π. 

π
θ θ

′ = =
π π

0 cos 2L d
L L  (3)                        

We now proof that Eq. (2) is correct for a sphere. A sphere has a surface area = π 24S r . 

The total projection of this sphere on a plane is ′ = π + π2 2A r r . Hence, both top and 
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bottom sides of the sphere are accounted for in the projection plane. Since all projections 

are similar, the average ′A of all possible projections is equal to ′A . Consequently, 

=
′
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S
A

 (4) 

Hence, for a straight fiber and a sphere the derivation of Eqs. (1) and (2) is relatively 

simple. 

Subsequently, we use the Cauchy principles in Eq. (2) to deal with dispersed surfaces that 

enclose pore space. For this global averaging operation (required to go from micro-level to 

the engineering one), we can use a unit sphere model as presented in Fig. 4. The surfaces in 

space can be subdivided into small, flat elements, ∆S, that can be translated towards the 

unit sphere so that they touch this unit sphere’s surface. The projection A’ on the 

horizontal plane is 
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The 3D situation of global geometric averaging has in concrete technology practice resulted 

in quite some confusion. What we will consider next is a case of global geometric 

averaging of pore microstructure in hardened virtual cement paste. 

 

               

Figure 3. Straight fiber projected on a line Figure 4. Unit sphere with infinitely small 

surface element ∆S (from a crack or pore) 

attached to it 
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2 Generation of pore microstructure in virtual cement paste 

The details of the generation of pore microstructure are described in the international 

literature (Stroeven et al., 2012; Le, 2015). Here we will just present a survey, so that the 

reader can imagine what has to be done. In the first place, the cement is modelled by a 

range of spherical particles with a specified (Rosin-Rammler type) size distribution. Next, 

the virtual cement is packed by a discrete element method (HADES) in a cubic container. 

To do so, the container is enlarged and the spherical particles dispersed in it by a random 

generator. Next, the particles are set to linearly move and collide mutually and with the 

surfaces of the container, which is gradually reduced to the desired size. When this 

dynamic stage is terminated, the particle mixture has its required density, so that the 

addition of water leads to the objected w/c ratio. 

 

The cement particle packing is thereupon hydrated with the advanced hydration simula-

tion package XIPKM (Le et al., 2013). This leads to complicated interferences of cement par-

ticles expanding by the deposition of CSH at their free surface. The remaining phase is 

pore space that is reduced by the hydrating particles. Further, pore continuity is reduced 

by depercolation. Finally, DRaMuTS (Stroeven et al., 2012) is applied as an improved 

version of the rapidly-exploring random tree (RRT) procedure in robotics. It imaginary 

involves large numbers of infinitely small robots to find their way from surface-to-surface 

through the cubic specimen. The result is a multiple tree-like structure of zig-zag-shaped 

routes (Fig. 5, left). Removal of the dead-end braches and isolated pores yields the continu-

ous channels (Fig. 5, right). The zig-zag lines in the main channels are finally smoothed by 

mathematical techniques. Hence, full topology of the pore network structure is known, 

only the pore size distribution function, required for permeability assessment, is missing. 

For the latter purpose, a system of about 105 points is dispersed in pore space whereupon 

pore size is assessed in all points by star volume measuring, SVM (Stroeven et al., 2010). 

This involves having a series of randomly or systematically oriented pikes running from 

the point to the pore surface. These pikes jl are measured per point i and used in Eq. (6) 

= 332i jd l  (6) 

whereby id is the diameter of the local representative sphere. All these local pore size 

measures are used for constructing a volume-based pore size distribution function, PoSD. 

This could be used as input for the pore network model. Yet, for fluid or gas transport in  
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Figure 5. (left) All pores in 90 days hydrated cement paste with w/c = 0.4 and Blaine surface area of 

300 m2/kg. Porosity is 19%. (right) Only main pore channels of the same cement paste. 

 

the pores, the diameter of the smallest section was considered a better measure for ‘size’. 

Hence, in all 105 points 2D pore sections were considered. They were ‘randomly’ rotated 

around all the points, whereby size (of the representative circle) was determined in all 

cases per point. The section with smallest area was denoted the throat section and used in 

the pore network model. It rendered possible constructing a throat size distribution 

function, ToSD. It must be obvious, however, that the process of finding the throat area 

in all the points is a time-consuming operation. In fact, all successive operations (DEM 

packing, hydration simulation by XIPKM, pore delineation by DRaMuTS and pore 

measuring by SVM) required about one hour. The question to be solved herein is whether 

Cauchy could help us reducing the SVM stage significantly. 

3 Playful discovery by Cauchy application to SVM 

In search for an easier SVM solution – unaware of Cauchy – Le (2015) tried only using a 

single IUR pore section per dispersed point. This would offer a dramatic reduction in 

efforts, of course. The resulting random section size distribution function (TrSD) shifted to 

somewhat larger pore values than the ToSD, with curves of quite similar shape. Promising 

was that the ratio of median pore size values of the two curves seemed stable. To find a 

theoretical basis for this SVM concept, we will apply Cauchy’s solution in Eq. (2) for the 

‘average projected surface area in space’ to the pore microstructure case. Note that the 

standard approach yields throat sizes in 105 points. So, these results could be classified in, 

say, 300 very narrow classes of successive pore sizes. Let’s consider such a class of 

(average) throat size d. This fraction of (almost) mono-size throats is in the short approach 
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replaced by an IUR set of larger pore sections.  When we represent the real throat section 

by that of its representative circle, the pore neighborhood could be approximated by a 

cylinder with diameter d (Fig. 6, right). The IUR set of sections in the short approach could 

be replaced by elliptical sections of the cylinder through the center of the circle, while 

maintaining their spatial orientation. This completes the Cauchy set up. The area of the 

throat section is A’. The other sections iA are projections in the direction of the cylinder 

axes on a IUR set of planes. So, projecting all IUR sections onto the throat section would 

imply the average projected section area to be twice the throat area - according to Cauchy 

(Fig. 6, left). This holds for all 300 classes of throat areas. Hence, the conclusion can be 

drawn that the average value of the IUR set of section areas would be twice that of the 

throat area. This Cauchy factor of 2 correlates the two approaches. More common is a 

comparison in terms of size, which would obviously lead to a correlation factor of √2. 

This Cauchy solution for SVM is checked for various cases of which the results are plotted 

in Fig. 7. It depicts the ratio of median size values of pore sections in the standard 

approach (throats) and in the short one. These data present clear evidence for the reliability 

of the short method. Cauchy pointed the road to finding such a solution. It reduces the 

time-consumption to about 15% of that of the standard approach.   

 

 

Figure 6. Schematized situation at a throat section in the pore microstructure. The throat is 

represented by its representative circle of size d and the local pore by a cylinder of equal width. A 

single randomly oriented pore section from the short approach pertaining to the same throat size is 

indicated (right). Infinitely small random pore section elements of all random sections pertaining to 

the same throat size are collected on the surface of the unit sphere (left).  
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Figure 7. Ratio of median pore size values obtained by the short “random”, d0.5, rand, and by the 

standard approach, d0.5, for 19 different cases. The results fluctuate around the value of 2 . 

4 Discussion and conclusions 

Cauchy’s formula for projected surfaces in space (although flat in the present case) 

provided a far more economic route toward the construction of the throat size distribution 

function. Specifically, it rendered possible realizing about 85% reduction in efforts to be 

bestowed on the SVM (star volume measuring) stage. So, porosimetry could be promoted 

by application of a 200 years old concept! Really, a playful discovery. 

 

The discussion on the obtained size of the pores by this analogue method (to be 

distinguished from a digitized one) has been proven misleading. The permeability of 

cement paste partially saturated by water (representing relevant engineering conditions) 

has been proven supported by recently published experimental data obtained by water 

permeability tests (Stroeven et al., 2015). Traditionally, MIP data are employed for 

comparison reasons. However, these data are proven significantly biased (Diamond, 2000). 
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Note that Stroeven and Li (2017) is an elaboration of this Heron’s Fountain particularly focusing 

on the engineering results. It was submitted to Mag. Concr. Res. about a year later than the 

present one to Heron. Unfortunately, the publication date in Heron significantly exceeds the one 

in Mag. Concr. Res. Hence, no reference could be made in Mag. Concr. Res. to this Heron’s 

Fountain. 
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