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This article outlines a concise and complete versatile novel analytical framework to quickly 

and effectively assess lateral shear (knik) and lateral torsional buckling (kip) of composite 

beams build of sections with different lengths. The adjective "composite" includes dissimilar 

beam cross-sections (beam profiles) and distinct beam materials. The major aim is to provide 

engineers with an accurate, simple but elegant, practically applicable and analytical beam 

buckling tool based on advanced solid theoretical propositions or background. The 

justification of the analytical theory is supplied by demonstration of executed numerical tests 

(i.e. finite element method), which affirm the validity of the proposed analytical buckling 

models adapted to the considered beam buckling cases. 
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1 Introduction 

Buckling means the loss of stability of an equilibrium configuration of a structure. Elastic 

buckling is a state at which the structure loses its stability and large elastic deflections will 

start developing rapidly. It is normally associated with the minimum eigenvalue of the 

perfect structure, i.e. often referred to as classical buckling (DNV 2015). In this article 

attention is confined to linear elastic composite beam buckling (especially lateral and 

lateral torsional buckling phenomena). An abbreviated and lucid literature survey and 

comprehensive discussion about lateral and lateral torsional buckling of structural 

members is rendered in the dissertation of Raven (Raven 2006) and the article of Van der 
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Put (Put, van der 2008). It should be highlighted that the adjective "composite" refers to 

multiple beam cross-sections and beam materials. 

 

Approximate solution methods are frequently encountered and used in engineering design 

practice for tackling beam buckling problems. In particular, summation theorems (i.e. 

Föppl-Papkovich theorem) are appropriate and advantageous because of their robustness, 

accuracy, easiness  and algebraic simplicity (Tarnai 1995). It should be kept in mind that 

there is similarity or analogy with parallel and serial analytical approaches of spring 

systems, electric systems or hydraulic systems (the so-called analogies). 

 

The key goal of this article is to address respectively formulate an effective analytical tool 

for reliable (engineering) estimation or approximation of the linear elastic lateral shear  

buckling force and linear elastic lateral torsional buckling moment of composite beams 

made of non-overlapping parts based on the indicated summation theorem and 

corresponding well-established structural elastic stability notions (Petersen 2013), 

(Timoshenko 1985). A succinct but detailed exposition of the previous stated matters and 

issues is offered in the subsequent sections. 

2 Preliminaries and requisites  

Global Cartesian (X, Y, Z components) and local Cartesian (x, y, z components) right-

handed coordinate systems are used. The former identify the composite beam orientation, 

beam location and beam external loads, while the latter define attached geometrical (shape 

and size) properties of the homogenous beam cross-sections. It is henceforth assumed that 

the origin of the local coordinate system is located at the centroid C of the cross-sectional 

area. In addition, the initial (undeformed) geometry of the composite beam is a straight 

line. The following beam cross sectional quantities (properties) are employed (Hartsuijker 

and Welleman 2007). 
 

= = = = = =   2 2, , 0, ,yy yz zy zz t
A A A A

A dA I y dA I I y z dA I z dA I  (1) 

where 

A  is the cross sectional area, 

, , ,yy yz zy zzI I I I  are called second moments of area, 

tI   is the torsion constant. 
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Note 1. The centroid C is defined as that point of an area A for which the static moments 

 of area are zero when the origin of the local x y z coordinate system is chosen 

 there, i.e. = = 0y A
S y dA and = = 0z A

S zdA . 

 The normal centre NC is specified as that point of the cross-sectional area where 

 the resultant of all normal stresses due to extension has its point of application.  

Note 2. In a homogenous (single material) cross-section, the centroid C and normal centre 

 NC coincide. 

Note 3. The adopted assumption = = 0yz zyI I implies that the selected beam cross-

 section has at least two lines of symmetry. 

Note 4. yyI and zzI are commonly indicated as the moments of inertia and yzI , zyI are 

 known as the product of inertia. 
 

The Equations (1) have been applied to the cross-sections in Figure 1. The results are 

shown below. 

 

Figure 1: Beam cross-sections 
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yyEI   is the bending stiffness in the x y plane, 

zzEI   is the bending stiffness in the x z plane, 

=
+ ν2(1 )

E
G  is the shear modulus, 

ν   is the lateral contraction coefficient or Poisson's ratio, 

tGI   is the torsional stiffness. 

3 Linear elastic lateral buckling (including shear deformation) (knik) 

3.1 Model geometry 

The typical model geometry is depicted in Figure 2. The following mechanical boundary 

(displacement and load) conditions are implemented (prescribed). 

 

Boundary 1. Xu = 0, Yu = 0, Zu = 0 

  XF = 1 (applied at centroid) 

Boundary 2. Yu = 0, Zu = 0 

  XF = – 1 (applied at centroid) 

 

Note 1. A set of balanced forces is obligatory in order to preserve equilibrium of the 

 composite beam in the analytical model configuration.  

Note 2. The prescribed boundary displacement constraints prevent rigid body motions 

 (circumvent singularities in the numerical (finite element) solution process). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Coordinate systems and boundary conditions of the lateral buckling model  
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   Figure 3: Composite model geometry 

3.2 Analytical model 

The composite beam with length L is made of segments i with corresponding length iL  

(Fig. 3) and each segment (section) i has the accompanying attributes Young’s modulus iE , 

shear modulus iG , shear deformation coefficient sik (Pilkey 2002)(Pilkey 2005), cross-

section area iA  and second moment of area iI . Furthermore, the cross-section of each 

segment i fulfils the condition <yyi zziI I , which implies that iI = yyiI . Consequently, the 

following relation holds.  
 

=
= 

1

n

i
i

L L   (2) 

with 

n is the total number of attained segments (sections). 

The engineering estimate of the buckling length buc iL of segment i is given by the 

expression 
 

=buc buci iL k L   (3) 

 

where, 

buck  is the buckling length factor, which is identical for each segment in the 

 particular composite beam arrangement. 
 

=

= =

= = 
 

2 22 2 bcbc 122buc 2 2
1 1

( )n
ii

n n
i ii i

k Lk L
k

L L
  (4) 

where, 

bck  is the buckling length factor of the composite beam, dependent on the mechanical 

                boundary conditions (supports). In this specific case of a composite beam with 

                span L and supported by two hinges at the edges =bc 1k . 
 

L

1L 2L nL
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It is emphasized that the buckling length of the composite beam depends only on the 

boundary conditions and thus not on cross-sectional properties. Substitution of Equation 4 

into Equation 3 produces the following identity. 
 

=

=

= 


2
12buc 2
1

( )n
ii

i in
ii

L
L L

L
  (5) 

Subsequently, the linear elastic lateral shear buckling force buc iF of segment i is universally 

elaborated as shown in Equation 6a. Note that shear deformation is also incorporated, see 

(Petersen 2013), (Timoshenko 1985). 
 

= = + = +
π π

π

+

2 2
buc s buc lateral buc shear 

2 2 2 2 2
buc buc

2 2
buc

s 

1 1 1 1 1 1

1

( )

1

i i i i i ii i i i

i i i i

i

i i i

F k G A F FE I E I

E I k L k L

k L
k G A

  (6a) 

where, 

buc iF   is the linear elastic lateral shear buckling force of segment i, 

buc lateral iF  is the linear elastic lateral buckling force of segment i, 
 

π=
2

buc lateral 2 2
buc

i i
i

i

E I
F

k L
  (6b) 

buc shear iF  is the linear elastic shear buckling force of segment i. 

 

=buc shear s i i i iF k G A   (6c) 

 

Recalling from literature that the Föppl-Papkovich theorem (Tarnai 1995) is valid for this 

case, the following lateral shear buckling system force equation is stated in general format. 
 

=
= 

buc sys buc 1

1 1n

iiF F
  (7) 

where, 

buc sysF   is the linear elastic lateral shear buckling force of the composite beam (also 

 denoted as system), 

n is the total number of considered segments. 
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The aforementioned formulae devise the complete linear elastic lateral shear buckling 

analytical model. 

4 Numerical verification (case studies) knik 

Three case studies (KNIK 1, KNIK 2 and KNIK 3) are conducted and concisely presented in 

order to examine the validity and soundness of the proposed analytical approach by 

comparison with numerical results obtained by the finite element method (Bathe 2016), 

(Zienkiewicz, Taylor and Fox 2014). 

 

Case study KNIK 1-1 

Case KNIK 1-1 considers a wooden beam of one segment (Fig. 4). 

The properties are L = 3000 mm, 1L = 3000 mm, buck = 1, bck = 1, = ±1XF N, 

1E = 4500 N/mm2, 1G = 1731 N/mm2, ν1 = 0,3, b x h = 60 mm x 160 mm, 1A = 9600 

mm2, =1 1yyI I = 0,288⋅107 mm4, s1k = 0,842105. 

The obtained results are buc sys analyticalF = 14214 N, buc sys numericalF = 14221 N (Fig. 5). The 

deviation is computed as −buc sys numerical

buc sys analytical
100% 100%

F

F
= +0,049 %. 

 

 

Figure 4: Geometry of case KNIK 1-1  Figure 5: Buckling shape of case KNIK 1-1 

 

Case study KNIK 1-2 

Case KNIK 1-2 considers a composite wooden beam of two segments (Fig. 6). The 

properties are L = 3000 mm, 1L = 1500 mm, 2L = 1500 mm, buck = 2 , bck = 1, = ±1XF N, 

1E = 4500 N/mm2, 1G = 1731 N/mm2, ν1 = 0,3, 

2E = 4500 N/mm2, 2G = 1731 N/mm2, ν2 = 0,3, 
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b x h = 60 mm x 160 mm, 1A = 9600 mm2, =1 1yyI I = 0,288⋅107 mm4, 1sk = 0,842105, 

b x h = 30 mm x 80 mm, 2A = 2400 mm2, =2 2yyI I = 0,18⋅106 mm4, 2sk = 0,842105. 

The results are buc sys analyticalF = 1673 N, buc sys numericalF = 1443 N (Fig. 7). The deviation 

is -13,74 %. 

 

 

Figure 6: Geometry of case KNIK 1-2  Figure 7: Buckling shape of case KNIK 1-2 

 

Case study KNIK 1-3 

Case KNIK 1-3 considers a composite wooden beam of three segments (Fig. 8).  

The properties are L = 3000 mm, 1L = 1000 mm, 2L = 1000 mm, 3L = 1000 mm, 

=buc 3k , bck = 1, = ±1XF N,  

1E = 4500 N/mm2, 1G = 1731 N/mm2, ν1 = 0,3, 

2E = 4500 N/mm2, 2G = 1731 N/mm2, ν2 = 0,3, 

3E = 4500 N/mm2, 3G = 1731 N/mm2, ν3 = 0,3, 

b x h = 60 mm x 160 mm, 1A = 9600 mm2, =1 1yyI I = 0,288⋅107 mm4, 1sk = 0,842105, 

b x h = 30 mm x 80 mm, 2A = 2400 mm2, =2 2yyI I = 0,18⋅106 mm4, 2sk = 0,842105, 

 

 

Figure 8: Geometry of case KNIK 1-3  Figure 9: Buckling shape of case KNIK 1-3 
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b x h = 15 mm x 40 mm, 3A = 600 mm2, =3 3yyI I = 11250 mm4, 3sk = 0,842105. 

The results are buc sys analyticalF = 156 N and buc sys numericalF = 161 N (Fig. 9). The deviation 

is +3,11 %. 

 

Case Study KNIK 2-1 

Case KNIK 2-1 considers a steel beam of one segment (Fig. 10).  

The properties are L = 3000 mm, 1L = 3000 mm, buck = 1, bck = 1, = ±1XF N, 

1E = 2,1⋅105 N/mm2, 1G = 80769 N/mm2, ν1 = 0,3, 

IPE 200, 1A = 2725 mm2, =1 1yyI I = 0,142⋅107 mm4, 1sk = 0,388499. 

The obtained results are buc sys analyticalF = 328263 N and buc sys numericalF = 326493 N (Fig. 

11). The deviation is -0,539 %. 

 

 

Figure 10: Geometry of case KNIK 2-1  Figure 11: Buckling shape of case KNIK 2-1 

 

Case Study KNIK 2-2 

Case KNIK 2-2 considers a composite steel beam of two segments (Fig. 12). The properties 

are L = 3000 mm, 1L = 1500 mm, 2L = 1500 mm, =buc 2k , bck = 1, = ±1XF N, 

1E = 2,1⋅105 N/mm2, 1G = 80769 N/mm2, ν1 = 0,3, 

2E = 2,1⋅105 N/mm2, 2G = 80769 N/mm2, ν2 = 0,3, 

IPE 200, 1A = 2725 mm2, =1 1yyI I = 0,142⋅107 mm4, 1sk = 0,388499, 

IPE 140, 2A = 1601 mm2, =2 2yyI I = 448461 mm4, 2sk = 0,386579. 

The results are buc sys analyticalF = 157757 N and buc sys numericalF = 147745 N (Fig. 13) The 

deviation is -6,346 %. 



 10

 

Figure 12: Geometry of case KNIK 2-2  Figure 13: Buckling shape of case KNIK 2-2 

 

Case Study KNIK 2-3 

Case KNIK 2-3 considers a composite steel beam of 3 segments (Fig. 14).  

The properties are L = 3000 mm, 1L = 1000 mm, 2L = 1000 mm, 3L = 1000 mm, 

=buc 3k , bck = 1, = ±1XF N, 

1E = 2,1⋅105 N/mm2, 1G  = 80769 N/mm2, ν1 = 0,3, 

2E = 2,1⋅105 N/mm2, 2G = 80769 N/mm2, ν2 = 0,3, 

3E = 2,1⋅105 N/mm2, 3G = 80769 N/mm2, ν3 = 0,3, 

IPE 200, 1A = 2725 mm2, =1 1yyI I = 0,142⋅107 mm4, 1sk = 0,388499, 

IPE 140, 2A = 1601 mm2, =2 2yyI I = 448461 mm4, 2sk  = 0,386579, 

IPE 80, 3A = 743 mm2, =3 3yyI I = 84676 mm4, 3sk = 0,380084. 

The results are buc sys analyticalF = 47024 N and buc sys numericalF = 48983 N (Fig. 15). The 

deviation is +4,165 %. 

 

 

 

Figure 14: Geometry of case KNIK 2-3  Figure 15: Buckling shape of case KNIK 2-3 
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Case Study KNIK 3-3 

Case KNIK 3-3 considers a composite steel-wood beam of three segments (Fig. 16).  

The properties are L = 3000 mm, 1L = 1000 mm, 2L = 1000 mm, 3L = 1000 mm, 

=buc 3k , bck = 1, = ±1XF N, 

1E = 2,1⋅105 N/mm2, 1G = 80769 N/mm2, ν1 = 0,3, 

2E = 2,1⋅105 N/mm2, 2G = 80769 N/mm2, ν2 = 0,3, 

3E = 4500 N/mm2, 3G = 1731 N/mm2, ν3 = 0,3, 

b x h = 60 mm x 160 mm, 1A = 9600 mm2, =1 1yyI I = 0,288⋅107 mm4, 1sk = 0,842105, 

b x h = 30 mm x 80 mm, 2A = 2400 mm2, =2 2yyI I = 0,18⋅106 mm4, 2sk = 0,842105, 

b x h = 15 mm x 40 mm, 3A = 600 mm2, =3 3yyI I = 11250 mm4, 3sk = 0,842105. 

The results are buc sys analyticalF = 166 N and buc sys numericalF = 171 N (Fig. 17). The 

deviation is +3,012 %. 

 

 

Figure 16: Geometry of case KNIK 3-3  Figure 17: Buckling shape of case KNIK 3-3 

5 Linear elastic lateral torsional buckling (kip) 

5.1 Model geometry 

The governing model geometry is shown in Figure 18. The following mechanical boundary 

(displacement and load) conditions are implemented (prescribed). 

Boundary 1. Xu = 0, Yu = 0, Zu = 0, ϕX = 0, 

  ZM = -1 (applied at centroid). 

Boundary 2. Yu = 0, Zu = 0, ϕX = 0, 

  ZM = +1 (applied at centroid). 

The same notes apply as in Section 3.1. 
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Figure 18:  Coordinate systems and boundary conditions of the lateral torsional buckling model 

5.2 Analytical Model 

The model for lateral torsional buckling is mostly identical to the models for lateral 

buckling (Section 3.2). Not used in lateral torsional buckling is the shear deformation 

coefficient sik . Extra is the is the torsional constant tiI . The cross-sectional warping 

stiffness of segment i is assumed to be negligible. The engineering estimate of the buckling 

length buc iL of segment i is 

 
=buc buci iL k L   (8) 

 

where 

buck  is the buckling length factor, which is the same for each segment in the 

 specific composite beam configuration. 
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where 

bck  is the buckling length factor of the composite beam, dependent on the  

 mechanical boundary conditions (support). In this specific case of a    

 composite beam with span L and supported by two forks at the edges:  
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It is underlined that the buckling length of the composite beam is only dependent on the 

boundary conditions and hence not on cross-sectional properties. Substitution of Equation 

9 in Equation 8 produces the following identity. 
 

= =buc bci i iL k L L   (10) 

 

Taking into account the previous settled propositions, the linear elastic lateral torsional 

buckling moment buc iM of segment i is 

 

= =π π2 2buc 

buc

1 1 1

i i i i ti i i i ti
i i

M E I G I E I G I
k L L

  (11) 

 

The Föppl-Papkovich theorem (Tarnai 1995) is apt for this case. The following lateral 

torsional buckling system moment equation is written in universal layout. 
 

=
= 

buc sys buc 1

1 1n

iiM M
  (12) 

 

where, 

buc sysM  is the linear elastic lateral torsional buckling moment of the composite beam (also 

 symbolized as system). 

n is the total number of segments. 
 

The aforesaid procedure details the full linear elastic lateral torsional buckling analytical 

model. 

6 Numerical verification (case studies) kip 

Three case studies (KIP 1, KIP 2 and KIP 3) are consecutively undertaken and 

compendiously offered in order to inspect the legality or reliability of the analytical 

approach by judgment of numerical results. 

 

Case study KIP 1-1 

Case KIP 1-1 considers a wooden beam of one segment (Fig. 19).  

The properties are L = 3000 mm, 1L = 3000 mm, buck = 1, bck = 1, = ±1ZM Nmm,  

1E = 4500 N/mm2, 1G = 1731 N/mm2, ν1 = 0,3, 



 14

b x h = 60 mm x 160 mm, 1A = 9600 mm2, =1 1yyI I  = 0,288⋅107 mm4, 1tI = 0,90204⋅107 mm4. 

The results are buc sys analyticalM = 0,149⋅108 Nmm and buc sys numericalM = 0,149⋅108 Nmm 

(Fig. 20). The deviation is computed with −buc sys numerical

buc sys analytical
100% 100%

M

M
= 0%. 

 

Figure 19: Geometry of case KIP 1-1  Figure 20: Buckling shape of case KIP 1-1 

 

Case study KIP 1-2 

Case KIP 1-2 considers a composite wooden beam of two segments (Fig. 21).  

The properties are L = 3000 mm, 1L = 1500 mm, 2L = 1500 mm, buck = 1, 

bck = 1, = ±1ZM Nmm,  

1E = 4500 N/mm2, 1G = 1731 N/mm2, ν1 = 0,3, 

2E = 4500 N/mm2, 2G = 1731 N/mm2, ν2 = 0,3, 

b x h = 60 mm x 160 mm, 1A = 9600 mm2, =1 1yyI I = 0,288⋅107 mm4, 1tI = 0,90204⋅107 mm4, 

b x h = 30 mm x 80 mm, 2A = 2400 mm2, =2 2yyI I = 0,18⋅106 mm4, 2tI = 0,56377⋅106 mm4. 

The results are buc sys analyticalM = 0,175⋅107 Nmm and buc sys numericalM = 0,176⋅107 Nmm 

(Fig. 22). The deviation is +0,57%. 
 

 

Figure 21: Geometry of case KIP 1-2  Figure 22: Buckling shape of case KIP 1-2 



 15 

Case study KIP 1-3 

Case KIP 2-3 considers a composite wooden beam of three segments (Fig. 23).  

The properties are L = 3000 mm, 1L = 1000 mm, 2L = 1000 mm, 3L = 1000 mm, buck = 1, 

bck = 1, = ±1ZM Nmm, 

1E = 4500 N/mm2, 1G = 1731 N/mm2, ν1 = 0,3, 

2E = 4500 N/mm2, 2G = 1731 N/mm2, ν2 = 0,3, 

3E = 4500 N/mm2, 3G = 1731 N/mm2, ν3 = 0,3, 

b x h = 60 mm x 160 mm, 1A = 9600 mm2, =1 1yyI I = 0,288⋅107 mm4, 1tI = 0,90204⋅107 mm4, 

b x h = 30 mm x 80 mm, 2A = 2400 mm2, =2 2yyI I = 0,18⋅106 mm4, 1tI = 0,56377⋅106 mm4, 

b x h = 15 mm x 40 mm, 3A = 600 mm2, =3 3yyI I = 11250 mm4, 1tI = 35236 mm4. 

The results are buc sys analyticalM = 163701 Nmm and buc sys numericalM = 164801 Nmm  

(Fig. 24). The deviation is +0,67 %. 

 

 

 

Figure 23: Geometry of case KIP 1-3  Figure 24: Buckling shape of case KIP 1-3 

 

Case study KIP 2-1 

Case KIP 2-1 considers a steel beam of one segment (Fig. 25). 

The properties are L = 3000 mm, 1L = 3000 mm, buck = 1, bck = 1, = ±1ZM Nmm,  

1E = 2,1⋅105 N/mm2, 1G = 80769 N/mm2, ν1 = 0,3. 

IPE 200, 1A = 2725 mm2, =1 1yyI I = 0,142⋅107 mm4, 1I = 53176 mm4. 

The obtained results are buc sys analyticalM = 37,48⋅106 Nmm and buc sys numericalM = 37,5⋅106 

Nmm (Fig. 25). The deviation is +0,053 %. 
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Figure 25: Geometry of case KIP 2-1  Figure 26: Buckling shape of case KIP 2-1 

 

Case study KIP 2-2 

Case KIP 2-2 considers a composite steel beam of two segments (Fig. 27). The properties 

are L = 3000 mm, 1L = 1500 mm, 2L = 1500 mm, buck = 1, bck = 1, = ±1ZM Nmm,  

1E = 2,1⋅105 N/mm2, 1G = 80769 N/mm2, ν1 = 0,3, 

2E = 2,1⋅105 N/mm2, 2G = 80769 N/mm2, ν2 = 0,3, 

IPE 200, 1A = 2725 mm2, =1 1yyI I = 0,142⋅107 mm4, 1tI = 53176 mm4, 

IPE 140, 2A = 1601 mm2, =2 2yyI I = 448461 mm4, 2tI = 20978 mm4. 

The results are buc sys analyticalM = 19,55⋅106 Nmm and buc sys numericalM = 19,2⋅106 Nmm 

(Fig. 28). The deviation is -1,79 %. 

 

 

Figure 27: Geometry of case KIP 2-2  Figure 28: Buckling shape of case KIP 2-2 

 

Case study KIP 2-3 

Case KIP 2-3 considers a composite steel beam of three segments (Fig. 29). 

The properties are  L = 3000 mm, 1L = 1000 mm, 2L = 1000 mm, 3L = 1000 mm, 

buck = 1, bck = 1, = ±1ZM Nmm, 
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1E = 2,1⋅105 N/mm2, 1G = 80769 N/mm2, ν1 = 0,3, 

2E = 2,1⋅105 N/mm2, 2G = 80769 N/mm2, ν2 = 0,3, 

3E = 2,1⋅105 N/mm2, 3G = 80769 N/mm2, ν3 = 0,3, 

IPE 200, 1A = 2725 mm2, =1 1yyI I = 0,142⋅107 mm4, 1tI = 53176 mm4, 

IPE 140, 2A = 1601 mm2, =2 2yyI I = 448461 mm4, 2tI = 20978 mm4, 

IPE 80, 3A = 743 mm2, =3 3yyI I = 84676 mm4, 3tI = 5773 mm4. 

The results are buc sys analyticalM = 6,91⋅106 Nmm are buc sys numericalM = 6,68⋅106 Nmm 

(Fig. 30). The deviation is -3,328 %. 

 

 

Figure 29: Geometry of case KIP 2-3  Figure 30: Buckling shape of case KIP 2-3 

 

Case study KIP 3-3 

Case KIP 3-3 considers a composite steel-wood beam of three segments (Fig. 31).  

The properties are L = 3000 mm, 1L = 1000 mm, 2L = 1000 mm, 3L = 1000 mm, buck = 1, 

bck = 1, = ±1ZM Nmm, 

1E = 2,1⋅105 N/mm2, 1G = 80769 N/mm2, ν1 = 0,3, 

2E = 2,1⋅105 N/mm2, 2G = 80769 N/mm2, ν2 = 0,3, 

3E = 4500 N/mm2, 3G = 1731 N/mm2, ν3 = 0,3, 

b x h = 60 mm x 160 mm, 1A = 9600 mm2, =1 1yyI I = 0,288⋅107 mm4, 1tI = 0,90204⋅107 mm4, 

b x h = 30 mm x 80 mm, 2A = 2400 mm2, =2 2yyI I = 0,18⋅106 mm4, 2tI = 0,56377⋅106 mm4, 

b x h = 15 mm x 40 mm, 3A = 600 mm2, =3 3yyI I = 11250 mm4, 3tI = 35236 mm4, 

The results are buc sys analyticalM = 174324 Nmm and buc sys numericalM = 175756 Nmm (Fig. 

32). The deviation is +0,821 %. 
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Figure 31: Geometry of case KIP 3-3  Figure 32: Buckling shape of case KIP 3-3 

7 Conclusions 

Numerical evaluation confirms the correctness of the presented linear elastic lateral shear  

and lateral torsional buckling analytical models. The deviations between the analytical and 

numerical approach are rather small and reveal clearly the ability to yield realistic 

outcomes. 

 

The supplied analytical linear elastic buckling models produce accurate and reliable 

values, which can be classified as suitable for engineering design purposes.  

 

Needless to cite that the analytical approach should always be cautiously applied and the 

results ought to be methodically checked by the responsible structural engineer.  

 

A salient observation is that the presented tactic could also be invoked for linear elastic 

buckling assessment of castellated and cellular (steel) beams. However this assertion has 

not yet been verified and is thus speculative.  

 

Insertion of plasticity is straightforward however treatment of this topic is beyond the 

scope of this article. 
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