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Because a rigorous bending theory for thin shells of revolution is complicated, attempts have 

been made for reliable approximations of the edge disturbance problem under axisymmetric 

loading. A well-known one was published by Geckeler [1, 2], who obtained his 

approximation by mathematical considerations. He started from kinematic, constitutive and 

equilibrium equations for the rotationally symmetric thin shell without approximations. 

Herein he introduced mathematical simplifications. Each time when derivatives of a function 

of different orders appeared, he just kept the highest order derivative and neglected all lower 

ones. This is permitted if the function varies rapidly, as is the case for edge disturbances. 

Here we will present Geckeler’s result in an alternate way, which illustrates the physical 

background of his mathematical approximation. Said in another way, we offer a derivation in 

the language of structural engineers. 
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1 Introduction 

In Figure 1 four shells of revolution are shown: a circular cylindrical shell, a conical one a 

sphere half and a spherical cap. The sphere half has a cylinder as envelope and the 

spherical cap a cone. The envelope is the tangent plane at the base circle. We expect the 

reader to be familiar with the solution of edge disturbances in the circular cylindrical shell. 

The disturbance really occurs in a small edge zone of about three times at in which a is 

the radius and t the thickness of the cylindrical shell. So, the length of the edge zone is 
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always small compared to the length or height of thin shells. As is well known, this means 

that we can use the solution of the cylinder in Figure 1 also for the sphere half; after all, at 

the edge, the cylinder is the tangent plane of the sphere half, and the difference between 

the small edge zone of sphere and cylinder is negligible. For the cone we will have another 

solution than for the cylinder, but again we can expect a disturbance that is limited to a 

similar edge zone. Having solved the cone problem, one can also use this solution for the 

spherical cap. Therefore, we will focus in this article on the cone problem. We will limit 

ourselves to the derivation of the edge disturbance theory. For applications to particular 

cases of distributed shell loads is referred to standard text books like author’s Structural 

Shell Analysis [3]. Hereafter we will discuss the accuracy of the approximation for cones 

and spherical caps. 

 

 

 

 

 

 

 

Figure 1. Four different shells of revolution 

 

2 Recall for circular cylinder 

Though the solution to the edge disturbance problem of circular cylindrical shells is well-

known, we will recall it because we will use the same procedure of derivation for the cone 

problem. We first present the solution for the shell as depicted in Figure 2. The length of 

the shell in x-direction is supposed to be large compared with the length of the edge 

disturbance zone. We choose the origin of the x-axis at the edge of the shell. In the same 

figure we show the sign convention for the bending moments xxm and θθm , transverse 

shear force xv and circumferential membrane force for θθn . We focus on circular cylindrical 

shells with an edge for x = 0 under axisymmetric loading. We put xp to zero, so consider 

only a normal load zp . The final result is a superposition of the membrane solution and 

bending solution. The membrane solution accounts for the distributed load zp on the shell, 

and the bending solution accounts for edge loads at the base of the shell in order to satisfy 

Cylinder Conical shell Sphere half Spherical cap
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the boundary constraints. Because of symmetry considerations, no circumferential 

displacement does occur and no shear membrane strain, shear membrane force and 

twisting moment need be considered. The normal membrane force xxn can be neglected as 

it is related to the membrane state. The change of curvature κxx will not be zero, which has 

to vary with respect to the ordinate x in order to overcome any discrepancies between the 

boundary conditions at the base and the membrane displacements of the shell. 

Accordingly, the circumferential normal membrane force θθn and bending moment θθm are 

also activated; they are constant in circumferential direction because of the axisymmetric 

conditions. We apply Donnell’s theory for thin shallow shells [4], which implies that the 

circumferential bending moment θθm can only develop due to the effect of Poisson’s ratio.  

The circumferential curvature is zero, therefore θθ = ν xxm m , where ν is Poisson’s ratio. 
 

 

Figure 2. Circular cylindrical shell; Stress resultants; Sign convention 

2.1 Derivation of differential equation 

Accounting for all these expectations, we model a circular cylindrical shell in axisymmetric 

bending as a barrel consisting of vertical staves and horizontal ring belts, see Figure 3. The 

staves are straight and have unit width, and classical Euler-Bernoulli beam theory applies, 

except that the modulus of elasticity E is replaced by E/(1 – ν2) in order to account for 

lateral contraction. The normal displacement zu , the circumferential membrane force nθθ , 

bending moments xxm and mθθ , and transverse shear force xv are functions of the 

coordinate x only. 

 

If the staves tend to displace outward, the rings will be strained. A uniformly distributed 

interaction force zq acts outward on each ring and inward on the staves. The differential 

equation for the stave is 
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where D is the flexural rigidity 
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We now consider the rings of unit width. The force zq is proportional to the radial 

displacement zu . Due to the displacement the ring radius will increase. Load zq acts on the 

rings in positive z-direction and on the staves in negative direction. Beam equation (1) 

changes into 
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For the relation between zq and the radial displacement zu , it holds 
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We substitute Eq. (4) in Eq. (3) and obtain the differential equation that governs the edge 

disturbance. 
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As known, the differential equation is fully similar to the equation for a beam on an elastic 

foundation. The term 2Et a is the spring stiffness. 

 

 
 

Figure 3. Rings and staves in a circular cylindrical shell 
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From here we put zp = 0 and introduce the positive parameter β defined by: 
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The homogeneous equation becomes 
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The solution for an edge disturbance is: 
 

( ) sin( )x
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in which C and ψ are constants of dimensions displacement and angle respectively. The 

solution is an oscillating function of x that decreases exponentially with increasing x. The 

function has pleasant characteristics for derivation. Each following derivative means 

subtraction of π/4 in the sine argument and multiplication of the function by √2. 

Accounting for the sign conventions in Figure 2 and elementary parts in Figure 4 we arrive 

at the following bending moments and transverse shear force in the staves and 

circumferential membrane forces in the rings: 
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Figure 4. Elementary boundary part at x = 0 (left) and elementary shell wall part (right) 
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The displacement and rotation at the shell end x = 0 are 
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where xϕ is a positive rotation with respect to the a θ-axis in Figure 2. 

2.2 Edge force and torque 

Consider the two semi-infinitely long shells in Figure 5 which are loaded at the free end x = 

0 per unit length by an edge force zf and edge torque xt respectively. When loaded by zf the 

rotation ϕ can develop freely and when loaded by the torque xt the displacement zu can 

occur freely. The constants fC and fψ for load zf and tC and tψ for load xt become 

respectively 
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With aid of these constants we derive from Eq. (10) the flexibility matrix equation for the 

general case that the edge force and edge torque occur both. 
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Figure 5. Edge force zf and torque xt , displacement zu and rotation ϕx  
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Eq. (12) facilitates satisfying the boundary equations at the edge for each loading case in 

which both a membrane state and edge disturbance occur. After the size of the edge loads 

zf and xt have been determined, the moments and forces in the edge zone can be derived 

from Eq. (9), accounting for Eq. (11) 

3 Extension to cones 

Consider the cone of Figure 6 with base circle of radius a. We will use the concept of staves 

and rings again. There are a number of differences with the application to circular 

cylinders: 

1. The staves are not prismatic but tapered. 

2. The radius of the rings is not constant. 

3. In cylinders the membrane force xxn in axial direction is zero, but not in cones. 

4. For cylinders the displacement zu is in ring radius direction, but not for cones. 

 

 

Figure 6. Cone with chosen x-axis, staves and rings 

 

The simplifying assumptions will regard the items 1 on taper and 2 on ring radius change. 

The disturbance remains limited to a narrow zone near the edge, therefore the effect of 

tapering will be very small. We neglect the taper and consider the staves to be prismatic. 

For the same reason we neglect the change of ring radius. All rings in the disturbed edge 

zone are supposed to have the radius a of the base circle. 

Item 3, the existence of nonzero membrane forces in x-direction, implies strains εxx and 

therefore nonzero displacements in x-direction. However, these displacements are of the 

membrane type and an order of magnitude smaller than the displacements zu due to 

bending in the disturbance zone. Therefore, we can neglect displacements in x-direction. 

To cope with item 4, we introduce in Figure 7 the angle φ to define the inclination of the 
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cone wall. We choose an x-ordinate along the straight meridian, starting at the cone base. 

The z-axis is outward normal to the cone wall and so is the displacement zu . Again we 

introduce the interaction force between staves and rings. Here above, we called this 

force zq because it was directed in the normal direction z; now it does not, because it is in 

the direction of the ring radius r in the horizontal plan. Therefore we name the interaction 

force now rq . 
 

 

Figure 7. Definition of ring quantities ru and rq in a cone 

3.1 Derivation of differential equation 

Consider in Figure 7a point P at the shell wall. The point is supposed to be in the edge 

disturbance zone. The shell part above the edge zone does not replace. The displacement of 

this point consists of a normal displacement zu only. Then, the new position is P' and the 

increase ru of the radius r due to the normal displacement is 

 
= φsinr zu u   (13) 

 

The force rq to produce this displacement is, equivalent to Eq. (4), 

=
2r r
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r
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This force acts on the stave under an angle φ. We must decompose it in two components, a 

component zq normal to the stave in negative z-direction and a component in the x-

direction. The latter is related to the membrane state causing deformations to be neglected, 

and the first provides the elastic support of the stave. It holds that 
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We substitute Eq. (14) in Eq. (15), accounting for Eq. (13) and noticing ≈xr a , 
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The behaviour of the stave remains unchanged compared to the circular cylinder. We 

conclude that the parallelism with the ‘beam on elastic foundation’ remains valid; the only 

difference with the circular cylinder is the calculation of the spring constant zk . Now the 

additional factor φ2sin comes in, which is unity for φ = π 2 , the value for a circular 

cylinder. The 'elastic foundation' of cones is less stiff than of circular cylinders. In fact, the 

message of Eq. (16) is that we must replace radius a by the principal radius 2r as shown in 

Figure 8. From the left part of the figure we obtain = φ2 sina r , which changes Eq. (16) into 
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If we replace β of Eq. (6) by 
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Figure 8. Definition of angle φ and radius 2r (left), touching cylinder (right) 

We can still use equations (8) up to (10) which we derived for circular cylinders. Said in 

other words, we can replace the cone with base radius a by a circular cylinder with larger 

base radius 2r to obtain the correct differential equation for the edge zone. We show this in 

the right part of Figure 8. The replacing cylinder touches the cone such that the walls of the 

cylinder and cone coincide. As said before, we arrive at the same result which Geckeler 

derived by mathematical considerations. 
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3.2 Edge force and torque 

The last step is to see how Eq. (12) for edge loads in a cylindrical shell changes for edge 

loads in a cone as shown in Figure 9, for which we refer to Figure 10. Decomposition of the 

force rf yields components xf and zf . The component xf yields membrane forces in x-

direction, which have vanished at the upper boundary of the edge zone. The 

component zf has the size 

 
= φsinz rf f   (19) 

 

Similarly the radial displacement ru is related to the normal displacement zu as earlier seen 

in Eq. (13) 
 

= φsinr zu u   (20) 

 

The rotation ϕx needs no adaption. As a result we have two transformations: 
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If we apply these transformations to Eq. (12) 
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we obtain 
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We conclude that the term sin φ must be applied two times. It plays a role in the 

determination of β, and it appears in the flexibility matrix of Eq. (23). 
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Figure 9. Edge load rf and torque xt , displacement zu and rotation ϕx  

 

 

Figure 10. Decomposition of displacement zu and force rf  

Similarly as said for the cylindrical shell, Eq. (23) facilitates satisfying the boundary 

equations at the edge for each loading case in which both a membrane state and edge 

disturbance occur in combination. After the edge force rf and torque xt have been 

determined, we apply Eq. (19) to calculate zf from rf and then proceed with zf and xt to 

calculate values of C and ψ from Eq. (11), after which edge zone moments and forces 

follow from Eq. (9). 

4 Discussion of accuracy 

In [3] the authors pay attention to the accuracy of the application of the edge disturbance 

theory of circular cylindrical shells to cones and spherical caps. They analysed a thin-

walled cone as shown in Figure 9 by Finite Element Analysis. The base radius was 1000 

mm, the height 1000 mm, the thickness 10 mm, Young’s modulus 2.1× 105 MPa, Poisson’s 

ratio 0.3 and the horizontal load at the base 100 N/mm. At the top edge of the cone no 

boundary conditions were set. The base edge is free to roll outward horizontally, but 

cannot rotate. In the FE analysis 40 elements over height of the cone are applied. For the 

angle between the wall and the base plane they choose 60°. The maximum difference 
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between theory and FE analysis for the dominant forces and moments appeared to be less 

than 1%. 

A second accuracy check regarded a spherical cap. Here the authors borrowed an exact 

solution from Timoshenko’s book Theory of pates and shells. The spherical cap is clamped at 

the edges and is loaded by a distributed homogeneous load. The angle between the wall 

and the base plane is 35°. The thickness radius rate is 1/30 and Poisson’s ratio 1/6. The 

difference in the dominant bending moment appears to be about 15% and in the 

circumferential membrane force 5%. For design purposes this accuracy may do, for final 

stress checks definitely not. For very small values of ϕ between 20° and 30°, the result starts 

to deviate anyhow too much. Based on these examples the authors hypothesise that an 

angle ϕ between 45° and 90° is a safe application restriction for the thin shell edge 

disturbance theory. 

5 Conclusions 

The edge disturbance theory for rotationally symmetric shells as derived by Geckeler can 

be presented in a way which is more comprehensible to structural engineers. The concept 

of staves and rings provides insight into the physical background of the edge phenomenon 

and introduced approximations. The derivation is done for a cone, however, it is also 

applicable to spherical caps. 
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