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Accurate prediction of buckling behaviour of aluminium structural elements with thin-

walled cross-sectional shapes is important for efficient design. Many recent investigations in 

terms of cross-sectional instability have proved that distortional buckling has a substantial 

effect on the structural behaviour of aluminium thin-walled members. Aluminium design 

rules are limited regarding the distortional buckling phenomenon and simplified to meet the 

theoretical solutions of the plate-buckling problem. However, the plate buckling problem 

does not reflect the real cross-sectional instability behaviour because the edge restrained 

conditions of each plate element are not taken into account. In this respect, prediction models 

like the Direct Strength Method which is based on the elastic buckling solutions for the 

entire cross-section can achieve these requirements.  In order to provide a reliable design 

approach specifically for aluminium, a new prediction model for distortional buckling of C-

shaped thin-walled cross-sections has been developed (Kutanova model [2009]). This model 

is based on advanced non-linear finite element analyses that include the interaction of cross-

sectional plate elements. In this study, the distortional bucking resistance of C-sections has 

been calculated according to the current design rules (AA Specification and Eurocode 9) and 

two prediction models: the Direct Strength Method and the Kutanova model. The 

calculations using these different approaches mainly show the inconsistencies in results 

provided by the aluminium design standards compare to the prediction models. 

 Keywords: Distortional buckling, aluminium, thin-walled cross-sections, design specification, 

buckling 
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1 Introduction 

Aluminium extrusions are of interest for different industrial fields such as structural 

applications and transport. The extrusion process allows one to optimize structural 

elements according to the design requirements with a relative ease.  Optimization of the 

shape of the aluminium elements often results in the use of thin-walled cross-sectional 

shapes, which increases the complexity of the cross-section. For thin-walled elements, 

cross-sectional instability - in particular local and distortional buckling - has a substantial 

effect on the structural behaviour. 

In classification of cross-sectional instability local buckling implies changes in geometry 

with the points of intersection between the plate elements of the section remaining 

straight, while distortional buckling involves changes in the cross-sectional geometry with 

points of intersection not remaining straight. The current design rules (Eurocode 9 [2007], 

AA Specification [2005]) used by engineers are limited to local buckling of simple and 

symmetrical cross-sections. Design standards consider the cross-sectional instability as the 

buckling of individual plate elements which compose the cross-section and do not 

consider the interaction of the cross-sectional plates. Distortional buckling is covered 

indirectly by formulas for edge stiffened elements. These design rules do not provide an 

accurate description of distortional buckling behaviour and can not be used for more 

complex shapes.  

An extensive study into distortional buckling of aluminium extrusions has been carried 

out by Kutanova [2009] resulting in a prediction model for the calculation of the ultimate 

resistance of uniformly compressed C-sections subjected to cross-sectional instability. 

Finite Element (FE) modelling has been used for a detailed investigation of the actual 

distortional buckling behaviour and local-distortional interaction. It has been validated by 

experiments that the FE-model is a useful tool for the prediction of structural behaviour of 

uniformly compressed aluminium members with various cross-sectional shapes. 

The goal of this paper is to present a comparison analysis between the current aluminium 

design standards and the prediction models. In the current work, the commonly used 

Direct Strength Method (Schafer [2006a]) for the distortional buckling prediction of the 

steel elements is adapted to aluminium. Results of calculations of distortional elastic 

bucking resistance of various C-sections according to the finite element analysis, current 

design rules (Eurocode 9, AA Specification) as well as the adapted Direct Strength Method 

and the Kutanova model are presented.    
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2 C-shaped aluminium columns 

2.1 Selection of the cross-sectional shape for distortional buckling 

The appropriate specimen selection for distortional buckling investigation is achieved 

using the CUFSM program based on the Finite Strip Method (Schafer [2006b]). The 

selected cross-sectional shape should be able to provide the development of distortional 

buckling avoiding the occurrence of local and overall buckling. 

Distortional buckling is known as a flange-stiffener phenomenon (Hancock [1978]). 

Therefore, it is proposed to select a simple symmetrical shape with flange stiffeners. The 

commonly used C-shaped profile is selected. To allow dominance of distortional buckling 

and not local buckling, the length of the flange stiffener is taken small. To exclude any 

occurrence of local buckling, the thickness of the web is twice as thick as the thickness of 

flanges and lips. An example of the CUFSM signature curve and the deformed shape for 

the C-shaped profile as a result of the finite strip analysis is given in Figure 1. 

 

 
Figure 1:  CUFSM results for selected C-profile with defined buckling 

 shapes for local and distortional modes 

 

It can be noticed from the CUFSM results that local buckling might occur and not only 

distortional buckling. Figure 1 shows the occurrence of the local buckling mode and 

shows the resulting local buckling shapes. Critical points for local buckling are not defined 
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by the CUFSM, but visible on the signature curve. Hence, critical points for local buckling 

are indicated manually. Figure 2 specifies one distortional signature curve, one curve for 

local/distortional interaction when local buckling governs and one signature curve for 

local buckling. It means that distortional buckling initiates first and local buckling governs 

later. This observation is very important for the prediction of cross-sectional instability 

behaviour. 

 

 
Figure 2:  CUFSM results for selected C-profile with defined buckling curves and critical points for 

local and distortional modes 

 

Based on the CUFSM results of Figure 1 and Figure 2 it can be concluded that in this 

example distortional buckling is initiated first, while local/distortional interaction and 

local buckling proceeds later. Thus, this C-shaped specimen is an appropriate choice for 

the distortional buckling study. 

2.2 Characteristics of the considered C-shaped specimens 

Figure 3 shows the selected profile. Table 1 gives the dimensions for the considered C-

shaped specimens in accordance with Figure 3.  

Specimen designation is in line with the specification. The first number corresponds to the 

value of thickness for flanges and lips, while the second number in brackets relates to the 

value of thickness for the web. The letter indicates the shape of the profile: "C" for C-

shaped profile. The last number is the cross-sectional stiffener length (or value c in the 

table).  

It should be noted that the total length of the specimens (L) is selected three times the 

critical distortional buckling wavelengths according to Kutanova [2009]. 
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Figure 3:  Selected cross-sectional shape 

 

Table 1:  C-shaped specimens specifications 

No. Specimen h[mm] a[mm] c[mm] th[mm] ta[mm] tc[mm] L[mm] 

1 2.5(3)C5 100 50 5 3 2.5 2.5 510 

2 1(2)C10 100 50 10 2 1 1 1050 

3 2(2.5)C5 100 50 5 2.5 2 2 540 

4 1(2)C7.5 100 50 7.5 2 1 1 870 

5 1.5(2)C5 100 50 5 2 1.5 1.5 600 

6 1(2)C5 100 50 5 2 1 1 630 

7 0.75(2)C5 100 50 5 2 0.75 0.75 720 

8 0.75(1.5)C5 100 50 5 1.5 0.75 0.75 750  

 

Table 2:  CUFSM results for C-shaped specimens (6082-T6 aluminium alloy proof stress is 

considered f0.2 = 250 [N/mm2]) 

No. Specimen Lcr;l1 

[mm] 

σcr;l1 

[N/mm2] 

Lcr;l2 

[mm] 

σcr;l2 

[N/mm2] 

Lcr;d 

[mm] 

σcr;d 

[N/mm2] 

1 2.5(3)C5 70 270 - - 170 160 

2 1(2)C10 90 106 40 140 350 136 

3 2(2.5)C5 90 166 - - 180 119 

4 1(2)C7.5 100 105 40 139 290 102 

5 1.5(2)C5 100 109 - - 200 84 

6 1(2)C5 100 97 40 133 210 70 

7 0.75(2)C5 40 78 - - 240 57 

8 0.75(1.5)C5 100 58 - - 250 49  
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Table 2 contains the CUFSM resulting critical lengths and critical stresses for all the 

specimens. Similar to Figure 1, critical points are visually defined for the local buckling 

mode. For some specimens two critical points for local buckling can be distinguished. 

Thus, critical values for the local buckling mode (Lcr;l1, σcr;l1); (Lcr;l2, σcr;l2) and critical values 

for the distortional buckling mode (Lcr;d, σcr;d)  are included in the table. It can be noticed in 

Table 2 that in all cases distortional buckling initiates first, except for the second specimen 

1(2)C10 where the initial buckling is local buckling. 

3 Numerical FEM tool 

3.1 Description of the Finite Element model 

A finite element model is a useful tool for prediction of the structural behaviour of 

uniformly compressed aluminium members with various cross-sectional shapes. 

Simulation of compression tests for the specimens of Table 1 are executed using a finite 

element model, validated by experimental results (see Kutanova [2009]).                              

The test specimens are simulated using so-called CQ40S eight-node curved shell elements. 

The curved shell elements in DIANA (Hendriks [2007]) are based on iso-parametric solid 

approach by including the following shell theory hypothesis: normals remain straight, but 

not necessarily normal to the reference surface; the normal stress in the normal direction is 

equal to zero. Each node has three translations as well as two rotations (the rotation in 

normal direction is not included); a total of 40 degrees of freedom exist. 

A quadratic interpolation and Gauss integration scheme is applied for each element. 

Seven integration points have been applied over the plate thickness, in each of the 2*2 in-

plane shell integration points. Note that the calculation time increases linearly with the 

number of thickness integration points. However, the accuracy of the described stress-

pattern improves significantly when a number of seven is taken instead of default number 

of three. Existing work by Mennink [1999] (with 3, 7 and 9 thickness integration points) 

shows that the number of seven is sufficiently accurate. 

The model and mesh of the specimen are generated using the actual dimensions of the test 

specimens (see Table 1). For the considered C-shaped specimen, the following mesh 

refinement provides a sufficiently accurate result: 20 elements in the web, 10 elements in 

each flange and one or two elements in each stiffener depending on the size of the 

stiffener. The size of the element in longitudinal direction is maximum 33 mm. 

The model is supported at both the "bottom" and the "top" edges of the specimen. All 

translations and rotations at the bottom and the top edges are restricted. Thus, the column 
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is modelled to resemble a two-sided fixed column. The axial load is applied as a uniform 

axial displacement (u).  

Imperfections in the shape of the first Euler buckling mode are introduced into the FE-

model. It has been observed that applying imperfections in the shape of the first Euler 

buckling mode is safe, comparing to application of the real imperfection pattern. To 

recognize the pure distortional buckling behaviour the influence of imperfections is 

minimized by applying a very small imperfection, 1/1000 of the plate thickness. The 

application of such imperfections is convenient, because the size of actual imperfections is 

small for aluminium extrusions. In Kutanova [2009], the influence of the value of 

imperfections is found less than 2% and can be neglected.   

3.2 FE-results for the C-shaped specimen 

The CUFSM output screen is shown before in Figure 1 for the specimen No.6 of Table 1. 

According to the CUFSM calculations, distortional buckling is initiated first, whereas for 

higher stresses two critical points for local buckling are present. It is assumed that 

secondary buckling of the cross-section is the local buckling of the web, which 

corresponds to the most critical point for local buckling. The manually defined second 

critical point for local buckling is considered as well to check if it has any physical 

meaning. 

 

 
Figure 4:  FEM deformed shapes for C-shaped specimen: local and distortional buckling 
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The resulting deformed specimens according to the FEM non-linear analysis are shown in 

Figure 4. The specimen is subjected to pure distortional buckling first and later local 

buckling occurs, which can be noticed by the deformed shapes. The specimen failed due to 

distortional-local buckling. 

Results of the FE-analysis are plotted in Figure 5. Based on the CUFSM results, three 

critical points have been defined. The critical values for initial distortional buckling, local 

buckling and manually defined secondary local buckling are included in the load-

deflection graph. According to the load-deflection diagram, the second critical value for 

local buckling does not indicate any effect on the buckling behaviour. 

 

 
Figure 5:  Load-displacement (left) and load-deflection (right) plots for considered C-specimen. 

 

The FE-model results for the web, outstanding group (flange+lip) and the whole section 

1(2)C5 are represented in Figure 6. Figure 6 shows that initial buckling occurs at the 

critical stress σcr;d due to instability of the outstanding element. Secondary buckling or 

buckling of the web is well-defined from the CUFSM results (see Figure 2). Again, no 

particular influence of the second critical value for local buckling can be recognized. 

Therefore, it is concluded that only two CUFSM results should be considered: initial 

buckling and manually indicated secondary buckling (which is the most critical after 

initial buckling). 

Figure 7 shows the relationship between the tangential stiffness E* and the axial strain ε* 

for the plate elements and the whole C-section. Initial buckling develops when the critical 

point (ε* = 1) is reached, which results in a gradual decrease of stiffness for the web and 
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section and a sudden drop for flange/stiffener assemblies. A subsequent load increase 

results in secondary buckling of the web. Mode jumping from distortional mode into local 

mode is not observed. Specimen failure is attributed to distortional-local interaction. 

 

 
Figure 6:  FE-results for plate elements of the considered C-specimen. 

 

 
Figure 7:  Tangential stiffness for plate elements of the considered C-specimen. 
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 Based on the represented results, it can be concluded that the finite element analyses 

results of the listed specimens can be used for the development of the prediction model for 

the elastic distortional buckling behaviour. Secondary buckling of the web is predicted by 

the Finite Strip Method (FSM). A perfect agreement has been found between FSM and 

FEM results for secondary buckling of the web. Thus, the CUFSM results can be used for 

the initial buckling prediction and also for the secondary buckling prediction. 

4 Existing aluminium design rules 

For all types of structures, analytical design rules are used to calculate the structural 

resistance. Cross-sectional instability and, in particular, distortional buckling influences 

the stability of the whole structure. There are several codes on aluminium structures 

which deal with the aspect of local and to a minor extent distortional buckling. The 

commonly used approach in Europe is given in Eurocode 9 [2007], described by 

Mazzolani [1985]. The cross-section is usually seen as a number of plates connected by 

nodes; interaction of cross-sectional plates is not taken into account. 

Three different types of elements are recognized in a cross-section: flat outstand, flat 

internal and curved internal elements. The basic parameter is the slenderness parameter or 

the width-to-thickness ratio (β=b/t) of each element. Distortional buckling of C-shaped 

sections is considered as the buckling mode of the reinforced part of the cross-section (see 

section 6.1.4.3 in Eurocode 9). For distortional buckling of the reinforced parts value of η is 

introduced in the calculation of the slenderness parameter: 

  

t
b   = ηβ . (1) 

 

A similar approach is used in the AA Specification [2005]. 

 

5 Recent analytical tools for distortional buckling prediction 

5.1 Adapted Direct Strength Method 

Based on the distortional design curve developed by Hancock et al. [1994], Schafer and 

Peköz [10] developed a Direct Strength Method (DSM). DSM was implemented and is 

fully described in design standards for cold-formed steel: AISI (Schafer [2006a]) and 
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AS/NZS [2005]. The DSM assumes a buckling load or moment for the whole section either 

as local or distortional buckling. If the mode is distortional, then the distortional buckling 

strength Ncd is computed by equations 2, 3 and 4: 
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where the non-dimensional slenderness is given by: 
 

 
od

y
d N

N
=λ . (4) 

 

The load =y yN A f is the squash load of a section and the load Nod is the elastic distortional 

buckling load. 

The original DSM equations were calibrated for steel. An attempt was made in the present 

study to apply an adapted DSM to the types of aluminium sections studied. 

The distortional buckling loads according to FEM are plotted in Figure 8. In the current 

investigation, three aluminium alloys which are commonly used in structural applications 

are considered: 6082-T6, 6060-T66 and 5083-H111. This adapted version of DSM equation 

for distortional buckling is shown in Figure 8. 

 
Figure 8:  FEM results for distortional buckling and the proposed design curves 
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Thus, if the mode is distortional, then the adapted DSM Equations are:  

 

 For 561.0>dλ   
ycd NN =  (5) 
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where the non-dimensional slenderness is given by Equation 4. 

 

As it was mentioned before, there is one specimen 1(2)C10 for which local buckling 

initiates first and distortional buckling is the secondary buckling. For local buckling 

strength prediction of this specimen, the design approach for local buckling according to 

AA Specification is used. However, in section 4.7.4 of AA Specification for interaction of 

local and overall buckling, the overall buckling should be substituted with distortional 

buckling as far as the local-distortional interaction takes place. Therefore, the CUFSM 

distortional buckling stress is used instead of the elastic critical stress.  

5.2 Kutanova / Mennink’s model 

In Kutanova [2009], a prediction model for distortional buckling of C-shaped specimens is 

developed based on the actual buckling behaviour following the concept of Mennink’s 

model for local buckling prediction (Mennink [2002]).  

 

General ideas 

The concept of Mennink's model is based on the interaction of cross-sectional plate 

elements. A cross-section is divided into: plate elements that buckle (group I) and plates 

that provide support (group II). Figure 6 illustrates these two groups of plates: group I is 

the web, group II is the outstanding flange/lip assembly.  Plate elements with the critical 

buckling stresses lower than the critical buckling stress of the whole cross-section belong 

to plate group I. It is assumed that after the proportional limit is reached immediate 

failure occurs (inelastic buckling). Concerning plate group II, two situations are 

distinguished: plate group II behaves elastically until the proportional limit of the material 

or buckling of the plate group II occurs. Buckling of the plate group II is called secondary 

buckling. The post-buckling strength after secondary buckling is limited to the 

proportional limit. Therefore, initial and secondary buckling modes have to be defined for 

the cross-section. 



 263 

An illustration of the local buckling behaviour of the cross-section is given in Figure 9. It 

can be seen that the section behaves elastically until the first critical point is reached (εcr1). 

Local buckling of the plate group I occurs, resulting in stiffness reduction. The post-

buckling strength of plate group I is limited with the proportional limit of the material (εp): 

line "LL" in the figure. Plate group II behaves elastically until the second critical point is 

reached (εcr2), where local buckling of the plate group II happens. The post-buckling 

strength of the plate group II is limited with the material proportional limit, where failure 

occurs. 

 
Figure 9:  Illustration of the local and distortional buckling behaviour 

of the cross-section, according to Kutanova/Mennink model 

 

The general ideas for distortional buckling behaviour are illustrated in Figure 9 together 

with local buckling behaviour. It is assumed that distortional buckling behaviour is similar 

to local buckling behaviour described above. However, the post-buckling strength for 

distortional buckling is lower than in case of local buckling, which can be noticed from the 

figure. The post-buckling strength for distortional buckling of plate group I is influenced 

by the secondary buckling initiation of plate group II: line "DD" in the figure. When the 

secondary buckling of plate group II is reached, no additional support is provided for 

plate group I. As a safe approach, it is assumed that there is no post-buckling strength for 

plate group I after the secondary distortional buckling. Therefore, the post-buckling 
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strength for plate group I is limited with the secondary distortional buckling stress of plate 

group II. 

Local-distortional and distortional-local interactions are also represented in the figure, 

according to research of Kwon and Hancock [1992]. If initial buckling corresponds to local 

buckling and secondary buckling to distortional buckling, the post-buckling strength for 

local buckling of plate group I is limited with the secondary distortional buckling stress of 

plate group II (line "LD"). Vice versa for distortional-local interaction, the post-buckling 

strength for distortional buckling of plate group I is limited with the secondary local 

buckling stress of plate group II (line "DL"). 

 

Prediction model for distortional buckling behaviour of C-shaped aluminium structural elements 

Discussion in this section is limited to distortional buckling prediction. Key aspect of the 

model is the application and determination of the actual critical stresses due to initial 

buckling (distortional buckling) and secondary buckling (local buckling). The input data 

for distortional buckling prediction are: Lcr;d - the critical length for distortional buckling 

initiation, σcr;d - the critical stress for distortional buckling initiation, the cross-sectional 

dimensions and the material properties. If local-distortional interaction takes place for a 

profile considered (specimen 1(2)C10), the input data will include the critical length and 

stress for local buckling development and Mennink’s model [2002] for local buckling is 

applied, limiting the post-buckling strength for local buckling with the distortional 

buckling stress. 

The above results in the following calculation procedure for distortional buckling: 

[1] Determine the eigenvalue by either using analytical solutions or, more appropriate 

for arbitrary cross-sections, finite-element or finite-strip calculations. This results in 

the determination of the critical length Lcr;d and the critical stress σcr;d of the cross-

section. The resulting buckling shape indicates that flange-stiffener or, in other 

words, distortional buckling occurs.  

[2] Determine the secondary critical buckling stress by CUFSM. Local buckling 

proceeding after distortional buckling implies secondary buckling of the internal 

elements of the cross-section. The most critical local buckling stress defined on the 

CUFSM curve is related to the secondary buckling stress. Therefore, two plate groups 

are determined: 

• The first plate group (pg1) consists of all outstanding plate elements 

(flange-stiffener assembly) that buckle at the initial critical stress for 

distortional buckling σcr;d . 
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• The second plate group (pg2) consists of all internal plates (web) that 

buckle at the secondary buckling critical stress for the local mode σcr;l . 

[3] For each plate i of plate group I and plate j of plate group II, the cross-sectional area is 

determined from their plate width and thickness. Subsequently, this results in the 

following representations of the cross-sectional areas: 

  Plate group I ∑=
i

iipg tbA 1
 

  Plate group II ∑=
j

jjpg tbA 2
 

  Cross-section 21 pgpg AAA +=  

[4] It is assumed that the proportional limit of the material, represented by εp and fp, 

roughly defines the difference between the elastic and inelastic buckling range. The 

cross-section will show post-buckling resistance if the elastic critical stress is less than 

the proportional limit (σcr < fp). If local buckling or secondary buckling takes place, the 

cross-section will show post-buckling resistance until the critical stress for local 

buckling (σcr < σcr;l). The post-buckling resistance for distortional buckling is 

determined from: 

 Plate group I post-buckling resistance (σpm;pg1): 

 εεσ Epgpm =)(1;
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 Plate group II post-buckling resistance (σpm;pg1): 

 The plates of plate group II behave elastically up to either the proportional limit 

 is reached, or secondary buckling occurs: 

 εεσ Epgpm =)(2;
 for );min( 2;crp εεε <  

 If secondary or local buckling occurs in the elastic range an additional post-

 buckling resistance is available: 
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 Predict the axial resistance (Nu;pm) as a function of ε 
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6 Comparison results 

Table 3 presents the results of the FE-model, calculations based on Eurocode 9, Kutanova 

prediction model and the adapted Direct Strength Method for all considered C-shaped 

specimens applying material properties of the three aluminium alloys.  The procedure for 

elastic buckling calculation with post-buckling strength is applied for eight specimens of 

alloy 6082-T6, for four specimens of alloy 6060-T66 and for one specimen of alloy 5083-

H111. For all the specimens design approach for distortional buckling prediction is used 

except for the specimen 1(2)C10, where local-distortional interaction is considered.  

 

Table 3: Calculation results for elastic distortional and local-distortional buckling prediction 

according to FEM, Eurocode 9, Kutanova model and the adapted Direct Strength Method for C-

shaped profiles 

 
 

The FEM results are assumed to be the “true” values. According to the results of the 

comparison analysis, it can be summarized that the maximum deviation of the Kutanova 

prediction model is 9%, the maximum deviation of the adapted DSM is 17%, while the 

deviations of Eurocode 9 and AA specification can reach, respectively, 20% and 30%. 

Although the prediction model is the most accurate of the four methods it is sometimes a 

bit unconservative, which is however also the case for EC9 and DSM. Only AA is always 

safe but happens to be very conservative. 
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7 Conclusions 

Cross-sectional instability often determines the structural resistance of aluminium 

members with slender cross-sectional shapes. Local and distortional buckling phenomena 

correspond to cross-sectional instability. The cross-sectional complexity makes the 

prediction of local and distortional buckling behaviour one of the most important design 

aspects. Current design rules for aluminium provide design rules for cross-sectional 

instability with limited accuracy. Therefore, an extensive study into local and distortional 

bucking has been carried in the recent past (Mennink [2002], Schafer [2006a], Kutanova 

[2009]). However, distortional buckling of aluminium structural members was not 

extensively investigated. 

In the current paper, analytical approaches and current design rules for prediction the 

distortional buckling behaviour of C-shaped aluminium specimens are discussed.  

Distortional buckling is known as a flange-stiffener phenomenon. Therefore, distortional 

buckling is studied on C-shaped specimens. In case of distortional buckling, flange/lip 

assemblies or outstanding plate elements buckle first and belong to the supported group. 

The internal element provides initial support for outstanding elements. Local buckling of 

the internal plate is considered as secondary buckling of the cross-section. The secondary 

buckling of the internal plate can be predicted by the finite strip method. A perfect 

agreement is found between FSM and FEM results for secondary buckling of the 

supporting plate. Thus, the CUFSM results can be used for initial buckling prediction and 

also for secondary buckling prediction.  

The Direct Strength Method cannot be used for aluminium because this method has been 

developed for distortional buckling of cold-formed steel. Thus, an adapted DSM method 

has been proposed.  

The results of the finite element method are assumed to represent the reality. Comparing 

the results of analytical methods and the FE-model it can be concluded that the best 

prediction is provided by the Kutanova model (statistical results of Table 3). Calculation 

results based on the adapted Direct Strength Method gives a sufficient estimation, 

however rather conservative. The Eurocode 9 outcome can be very conservative, but 

provides in general rather good results due to the fact that C-type cross-sections are 

considered. AA specification results are very conservative. For more complex cross-

sectional shapes, the current design rules underestimate initial buckling as calculations are 

based on the critical stresses of individual plates.  
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