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Effective section calculation of 
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uniform compression considering 
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In this paper, elastic interactive local buckling formulas of box and channel sections are 

established according to the classic plate stability theory. The restraint effects of adjacent 

plate elements on the bearing capacity of cross-sections are studied and the corresponding 

formulas of the restraint coefficient are derived. The effective thickness method is then 

modified to calculate the ultimate strength of box and channel sections, which is adopted by 

current codes of various countries.  Non-linear finite element analysis is carried out and its 

results are compared to that of the modified method presented in this paper. It is found that 

the plate assembly restraints have an obvious influence on the bearing capacity of box and 

channel sections. The modified method of this paper can lead to safe results in most cases. 
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1 Introduction 

One of the main advantages of aluminium profiles is the possibility of forming any shape 

due to the hot-extrusion molding process, in comparison to steel profiles that are made by 

hot rolling, welding, or cold forming processes. Due to the higher material expenses, 

aluminium profiles are often designed to be economic by adopting thinner and weaker 

plate elements.  Moreover, aluminium has a small elastic modulus which is about one third 

of that of steel. These aspects make that local buckling is the dominant failure mode of 

aluminium profiles. In this paper, the effective thickness method is adopted according to 

Eurocode 9 [1] and the Chinese code GB50429 [2], in which the post-buckling strength of a 

section is considered by using an effective section instead of the true section. In calculation 

of the effective section the restraints between adjacent elements are not ignored. In this 

paper these restraint effects are investigated and a modified calculation method for 
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effective sections is provided.  A similar method has been adopted as in some design codes 

for cold-formed steel structures with sections of equal thickness [3], however, in this paper 

plate assemblies of different thicknesses are considered too. 

2 Effective section calculation of compressed plate elements in EC9 and 
GB50429 

In the codes EC9 [1] and GB50429 [3], the post-buckling strength of plates is utilized by 

introducing effective sections instead of whole sections in calculating the strength and 

stability of members. For example, the stability equation for axially loaded columns in EC9 

is as follows. 

 

12.0, / MeffRdb fAN γκχ=  (1) 

 

whereκ is the heating influence factor due to welding. χ is the overall instability 

coefficient. effA is the effective area considering local buckling.   

In GB50429 the equivalent formula is 
 

Rehaz AfN γϕηη /2.0=  (2) 

 

where hazη  ,ϕ  and Aeη  are corresponding to κ , χ  and effA  of Equation 1, respectively.   

Due to the complexity of aluminium extruded profiles, EC9 and GB50429 adopted the 

effective thickness method instead of the effective width method to calculate the effective 

area. Figure 1 shows the effective sections of a flexural member by effective thickness 

method and effective width method, respectively, where the part enclosed by solid lines is 

the effective area. It can be seen that there is a certain difference between the cross-section 

bearing capacities obtained by the two methods because the sectional parameters including 

the neutral axis location and effective section modulus are different [4]. 

 

 
Figure 1:  Effective thickness method (left) and effective width method (right) 
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Although the expression of the effective thickness reduction coefficient cρ  in EC9 is 

different from that of the effective width reduction coefficient ρ in EC3 [5], they are 

derived from the same theory and thus equivalent for none-welded aluminium sections. 

According to the test work of Winter et al. [6 <is not referring to the paper of Winter et 

al.>], the effective width reduction coefficient of a plate simply supported along two 

longitudinal edges can be written as 
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where crσ is the critical buckling stress, 2.0f is the nominal yield strength, ( )213 νπ −=c , 

and 3.0=ν  is Poisson's ratio. λ is the non dimensional slenderness of the plate, 
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where E is the material elastic modulus, k is the element buckling coefficient, tb=β  is 

the width-thickness ratio of the plate, and 2.0250 f=ε .  

Equation 3 is the basic expression used to calculate the effective width in EC3, and the 

calculation formula of effective thickness in GB50429 is 
221
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which is identical to Equation 3.  For stiffened plates with four simply supported edges [1], 

is obtained 
ε
βλ 031.0=  by introducing k = 4, E = 70000 N/mm², ν = 0.3 into Equation 4, 

and then from Equation 3 is obtained 
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For non-stiffened plates with three simply supported edges and one free edge [1], 

425.0=k , is obtained similarly 
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Equations 5 and 6 are for calculating the effective thickness of non-welded plates in EC9. 
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Both in EC9 and GB50429 cross-sections of stiffened plates and non-stiffened plates are all 

treated as independent elements and restraint effects are ignored. 

3 Calculation of restraint coefficients between adjacent plates 

The Levy solution [7] for uniformly compressed rectangular plates with simply supported 

edges is adopted to derive the restraint coefficient of an assembly of plates with different 

widths and thicknesses in box and channel sections. Taking 0k as the buckling coefficient of 

an independent plate element, k as the interactive buckling coefficient considering plate 

assembly effect, 

  
 0kk=ψ  (7) 

 

is defined as the restraint coefficient. Then we can write the buckling stress of plate 

considering the interactive effect of plate assembly as 
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When buckling occurs under uniform compression, the flange and web in a section will 

have the same magnitude of buckling stress [8], i.e. 
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where wt and ft are the web thickness and flange thickness respectively. h andb are the 

web width and flange width respectively. wk and fk are the interactive buckling 

coefficients of web  and flange respectively, which will have the following relationship 
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Denoting 0wk and
0fk as the buckling coefficients of the web and flange as independent 

plates ignoring the interactive effects of plate assembly, we can obtain the restraint 
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coefficients of the web buckling and flange buckling as 0www kk=ψ  and 0fff kk=ψ , 

respectively.  Equation 11 can be written as 
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3.1 Buckling of box sections considering the interactive effects of the plate assembly  

Figure 2 shows the analysis model of a box-section stub under uniform compression. 

According to the buckling theory, local buckling of the section has the following features 

[9], 

a) Buckling of all plates in a section happens simultaneously; 

b) The connection edges between adjacent plates is straight before and after buckling; 

c) The angle between adjacent plates is a right angle before and after buckling; 

d) The plates in a section will have the same buckling half-wave length;  

e) Any point in the connection edges between adjacent plates will have the same value 

of stress or angular rotation of the two plates. 

 

 
Figure 2:  Analysis model of a box section stub 

 

Taking the x-axis of the plate along the longitudinal loading direction, the y-axis as 

transverse sectional direction and its origin at the symmetric middle centre, shown as in 

Figure 2, we can express the buckling deflection equations of the flange and web as, 
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( ) yCyAyY iiiiin βα coscosh +=  (13) 
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Here, lmm πλ =  in which m is the number of buckling half-waves along the loading 

direction and l is the plate length. icrcri tN σ=  in which the flange is marked as i = 1 and 

the web is as i = 2, where crσ is the buckling stress of the section. ( )23 112 ν−=EtD   is the 

bending stiffness of plates where t is the plate thickness. iA and iC are undetermined 

coefficients, and nF  is deflection amplitude coefficient. 

Equations 12-14 are from the Levy solution of the partial differential equilibrium equation 

4 4 4 2
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x x y y D x
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 for elastic buckling plates.  The unknown factors 

and thus the buckling load crN can be found from the following boundary conditions [7]: 

 

1 11 0y bw =− =      ( ) ( ) 0coscosh 111111 =−+− bCbA βα  (15) 
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A non-zero solution of w requires non-zero values of 2211 ,,, CACA .  It means that Equation 

19 should be satisfied from Equations 15-18. 
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Providing some parameter values of the plate element geometry, the transcendental 

Equation 19 can be solved by mathematic software. The buckling stress crσ can be obtained 

from 2211 ,,, βαβα . 

3.2 Buckling of channel sections considering the interactive effects of the plate assembly  

Figure 3 shows the analysis model of a channel section stub under uniform compression. 

 

 
Figure 3:  Analysis model of channel section stub 

 

Taking x-axis as longitudinal compression direction, y-axis as transverse sectional 

direction, the origin of y-axis in the web at its symmetric center, and the origin of y-axis in 

the flange at its connection edge with web, we can express the buckling deflection as, 
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For flange, 

( ) yEyCyByAyYm 111111111 sincossinhcosh ββαα +++=  (21) 
 

For web, 

( ) yCyAyY m 22222 coscosh βα +=  (22) 
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where 221111 ,,,,, CAECBA  are undetermined coefficients and the parameters iα  and iβ  

are defined as in Equation 14.  

Equations 20-22 satisfy the partial differential equilibrium equation of elastic buckling 

plate, i.e.  
2

2 2
2 0t ww

D x
σ ⋅ ∂∇ ∇ + ⋅ =

∂
.  The boundary conditions are as follows [7], 
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Equations 24-28 are linear equations of 22111 ,,,, CAEBA , and Equation 29 can be obtained 

from its non-zero solution requirement.  
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Where 22
11 mνλαφ −= , 22

12 mνλβφ += , ( ) 22
11 2 mλναϕ −−= , ( ) 22

12 2 mλνβϕ −+= . 

The buckling stress crσ can then be found from the solution of 2211 ,,, βαβα  of Equation 

29. 

3.3 Formula for restraint coefficient of plate assembly 

The critical stress crσ of a compressed box or channel section stub can be solved based on 

the descriptions before.  From crσ the interactive buckling coefficient and the restraint 

coefficient can then be found as 
crE

tbk σ
π
ν
2

22 )/)(1(12 −=  and 0kk=ψ , respectively.  

Further analysis proves that the interactive buckling coefficient does not depend on the 

material elastic modulus and the strength, and depends only on the width ratio b/h and 

the thickness ratio wf tt  of the sections. For uniformly compressed boxes and channel 

sections with the same plate thickness the web interactive buckling coefficient wk can be 

derived and expressed as (see BS5950 [3]), 

 

for box section: 
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for channel section: 

( ) ( )33 151
8.42
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++
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≈  (31) 

The flange interactive buckling coefficient
fk can be calculated from wk by Equation 10. 

Taking an aluminium box section and a channel section stub with the parameters listed in 

Table 1 under uniform compression for example, we can obtain its relationships between 

the restraint coefficient wψ and the width ratio b/h when f wt t= , as shown in Figure 4. 

Here, m is the number of buckling waves. The results from Equations 30 and 31 of BS5950 

and from the equations stated before are plotted and compared. In Figure 4 the horizontal 

line wψ = 1 means the buckling of independent plates ignoring interactive effects of the 

plate assembly. It can be seen that the results from BS5950 and from the equations stated 

before coincide with each other. 

 

 
 
Table 1:  Size and mechanical properties of aluminium section stub 

Section type 
 

Web width 
h  (mm) 

Web thickness 

wt  (mm) 
Stub length 
l  (mm) 

Elastic modulus 
E  (N/mm2) 

Poisson's 
ratio  ν  

Box section 180 4 720 70000 0.3 
Channel section 180 4 720 70000 0.3 
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(a) Box section                                                                  (b) Channel section 

Figure 4:  Influence of element width ratio on restraint coefficient 
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For box sections with the same width of the web and flange, the relationship between the 

restraint coefficient twψ  and the plate thickness ratio 
wf tt  can be expressed as 

( )437.21
16.134.1

wf
tw tt+

−≈ψ  (32) 

 
For channel section where the web width is twice of the flange, the relationship between 

the restraint coefficient twψ  and the plate thickness ratio 
wf tt  can be expressed as 

 

( )39.01
41.145.1

wf
tw tt+

−≈ψ  (33) 

 

Equations 32 and 33 are approximation formulas obtained by parameter fitting from the 

theoretical equations stated before in Section 3.1 and 3.2. Figure 5 gives the relationship 

between twψ and
wf tt of the two stubs with the parameters listed in Table 1.  The 

comparison between the results from Equations 32 and 33 and theoretical equations is also 

made. Following twψ we can find the other coefficients such as twww kk ψ⋅= 0 and fk from 

Equation 10. For general sections with different values of the width and thickness of web 

and flange, the restraint coefficient can be approximated get by interpolation in Figure 6 or 

in Table 2 and Table 3. 
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(a) Box section                                                              (b) Channel section 

Figure 5:  Influence of the element thickness ratio on the restraint coefficient 
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(a) Box section                                                              (b) Channel section 

Figure 6:  Influence of the element width ratio and the thickness ratio on the restraint coefficient 

 

 

Table 2:  Restraint coefficient wψ  of box sections 

Thickness ratio 
wf tt  Width ratio 

hb  0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 
0.10 1.519 1.519 1.519 1.519 1.519 1.519 1.553 1.611 
0.20 1.411 1.416 1.417 1.418 1.418 1.418 1.440 1.496 
0.30 1.334 1.354 1.360 1.363 1.364 1.365 1.381 1.429 
0.40 1.246 1.305 1.322 1.329 1.333 1.335 1.346 1.395 
0.50 1.108 1.252 1.290 1.305 1.313 1.317 1.324 1.364 
0.60 0.885 1.183 1.257 1.284 1.298 1.305 1.315 1.346 
0.70 0.658 1.084 1.217 1.264 1.285 1.297 1.307 1.335 
0.80 0.505 0.951 1.164 1.241 1.274 1.291 1.302 1.330 
0.90 0.400 0.807 1.092 1.212 1.261 1.285 1.299 1.330 
1.00 0.324 0.678 1.000 1.174 1.247 1.279 1.297 1.328 
1.10 0.268 0.572 0.896 1.121 1.228 1.273 1.295 1.326 
1.20 0.226 0.488 0.793 1.052 1.201 1.266 1.294 1.324 
1.30 0.193 0.420 0.700 0.971 1.162 1.255 1.293 1.323 
1.40 0.167 0.365 0.618 0.885 1.108 1.239 1.291 1.322 
1.50 0.145 0.320 0.547 0.802 1.040 1.211 1.288 1.321 
1.60 0.128 0.283 0.487 0.725 0.965 1.166 1.282 1.320 
1.70 0.114 0.251 0.436 0.656 0.890 1.107 1.266 1.320 
1.80 0.102 0.225 0.393 0.595 0.818 1.039 1.227 1.319 
1.90 0.092 0.203 0.355 0.541 0.751 0.969 1.172 1.318 
2.00 0.083 0.184 0.322 0.493 0.690 0.900 1.108 1.289 
2.10 0.076 0.167 0.294 0.452 0.635 0.835 1.042 1.236 
2.20 0.069 0.153 0.269 0.415 0.585 0.775 0.976 1.173 
2.30 0.063 0.141 0.248 0.382 0.541 0.720 0.913 1.109 
2.40 0.058 0.130 0.229 0.353 0.502 0.670 0.853 1.045 
2.50 0.054 0.120 0.212 0.327 0.466 0.624 0.798 0.983 
2.60 0.050 0.111 0.196 0.304 0.433 0.582 0.747 0.924 
2.70 0.047 0.103 0.183 0.284 0.405 0.544 0.701 0.870 
2.80 0.044 0.096 0.171 0.265 0.378 0.510 0.657 0.818 
2.90 0.041 0.090 0.160 0.248 0.355 0.478 0.618 0.771 
3.00 0.038 0.084 0.150 0.233 0.333 0.449 0.581 0.727 
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Table 3:  Restraint coefficient wψ  of channel sections 

Thickness ratio 
wf tt  Width ratio 

hb  0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 
0.05 1.041 1.060 1.063 1.064 1.065 1.065 1.065 1.066 1.077 1.104 
0.10 0.942 1.079 1.104 1.112 1.116 1.119 1.120 1.121 1.129 1.152 
0.15 0.652 1.035 1.114 1.140 1.152 1.158 1.162 1.165 1.172 1.196 
0.20 0.372 0.913 1.088 1.147 1.172 1.185 1.193 1.198 1.205 1.233 
0.25 0.239 0.731 1.023 1.132 1.178 1.201 1.214 1.222 1.234 1.265 
0.30 0.169 0.552 0.915 1.095 1.171 1.208 1.228 1.240 1.255 1.281 
0.35 0.125 0.419 0.782 1.030 1.151 1.207 1.236 1.252 1.267 1.300 
0.40 0.098 0.326 0.652 0.939 1.113 1.198 1.239 1.260 1.278 1.314 
0.45 0.078 0.260 0.541 0.833 1.055 1.179 1.237 1.266 1.286 1.325 
0.50 0.064 0.212 0.452 0.728 0.975 1.145 1.231 1.269 1.293 1.333 
0.55 0.054 0.177 0.382 0.632 0.885 1.091 1.217 1.270 1.297 1.337 
0.60 0.045 0.149 0.326 0.550 0.794 1.019 1.187 1.269 1.300 1.337 
0.65 0.040 0.128 0.281 0.481 0.708 0.937 1.134 1.262 1.303 1.339 
0.70 0.035 0.111 0.245 0.423 0.632 0.854 1.064 1.234 1.304 1.342 
0.75 0.031 0.097 0.216 0.374 0.565 0.775 0.987 1.179 1.305 1.344 
0.80 0.027 0.086 0.191 0.334 0.507 0.703 0.909 1.109 1.283 1.346 
0.85 0.025 0.077 0.171 0.299 0.457 0.638 0.835 1.035 1.223 1.347 
0.90 0.023 0.069 0.154 0.269 0.413 0.581 0.766 0.960 1.153 1.329 
0.95 0.020 0.062 0.139 0.244 0.375 0.530 0.703 0.889 1.080 1.264 
1.00 0.019 0.056 0.126 0.222 0.343 0.485 0.647 0.823 1.008 1.193 
1.05 0.017 0.051 0.115 0.203 0.314 0.446 0.596 0.762 0.939 1.121 
1.10 0.016 0.047 0.105 0.186 0.288 0.410 0.551 0.706 0.874 1.051 
1.15 0.016 0.043 0.097 0.172 0.266 0.379 0.510 0.656 0.815 0.985 
1.20 0.016 0.040 0.090 0.159 0.246 0.351 0.473 0.610 0.761 0.922 
1.25 0.016 0.037 0.083 0.147 0.228 0.326 0.440 0.569 0.711 0.864 
1.30 0.016 0.034 0.077 0.137 0.213 0.304 0.411 0.532 0.665 0.810 
1.35 0.016 0.032 0.072 0.127 0.198 0.284 0.384 0.497 0.623 0.761 
1.40 0.016 0.030 0.067 0.119 0.185 0.266 0.360 0.466 0.585 0.716 
1.45 0.016 0.028 0.063 0.112 0.174 0.249 0.338 0.438 0.551 0.674 
1.50 0.016 0.026 0.059 0.105 0.163 0.234 0.317 0.412 0.518 0.635 

 

 

3.4 Formula of effective thickness considering restraints of adjacent plates 

Based on the above discussion, the restraint coefficient of web can be obtained.  

Substituting 0kk ψ=  into Equation 4, we can obtain the plate slenderness considering the 

plate assembly effect as 
 

ψ
λλ 0=  (34) 

where 
0λ  is the slenderness of an independent plate.  Substituting Equation 34 into 

Equation 3, we can write the reduction coefficient cρ′  of the effective thickness considering 

the plate assembly effect as follows, 
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cc ρ
λ

ψλψρ ⋅
−

−⋅=′
22.0
22.0

0

0  (35) 

 

For stiffened plates, 0k = 4, substituting Equation 4 into 35 we have 

 

 
cc ρ

εβ
ψεβψρ ⋅

−
−

⋅=′
7
7  (36) 

 

For non-stiffened plates, 0k =0.425, substituting Equation 4 into 35 we have 

 

cc ρ
εβ

ψεβψρ ⋅
−

−
⋅=′

4.2
4.2  (37) 

 

where, cρ is the reduction coefficient of an independent plate, expressed by Equations 5 

and 6. 

4 Finite element analysis and comparison of bearing capacity of an 
aluminium stub 

In order to verify the calculation method for the ultimate bearing capacity of the box and 

the channel section short stub, the finite element software ANSYS has been adopted, in 

which SHELL181 element suitable for material nonlinearity and large deformation analysis 

is used and initial imperfections are taken into account. The Ramberg-Osgood stress-strain 

constitutive law is adopted (Eq. 38), which has been accurately approximated by more than 

20 stress-strain points and linear interpolations. 

 
n

fE ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2.0

002.0 σσε  ,  
)ln(

2ln

1.02.0 ff
n =  (38) 

 

In this, E is the initial elastic modulus, 1.0f is the stress corresponding to residual strain 

0ε = 0.001.  The maximum amplitude of the initial geometric imperfection is taken as 

1/200 of the plate width and in the form of the first-order buckling mode. 
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Table 4:  Mechanical properties of the box section and the channel section stub 

Section type Alloy grade E (N/mm2) 2.0f (MPa) uf (MPa) n 

Box section 6061-T6 70000 240 285 35 
Channel section 6061-T6 70000 240 285 35 

 

 

Table 5:  Dimensions of the box section and the channel section stub 

Section type Web width 
h (mm) 

Web thickness 

wt  (mm) 
Flange width 
b (mm) 

Column length 
l (mm) 

Box section 180 4 180 765 
Channel section 180 4 90 765 

 

The thickness of the flange has been changed to vary the thickness ratio wf tt , and the 

ultimate bearing capacity uP of web is computed by the FEM software.  The reduction 

coefficient of web can be expressed as 
 

2.02.0 fht
P

fA
P

w

u

w

u
u ==ρ  (39) 

Figure 7 shows the result of uρ of Equation 39 and cρ′ of Equation 32, 33 and 36. It can be 

seen that, due to the plate assembly effect, uρ may be less than 0uρ when flange thickness is 

less than the web thickness, where 0uρ is the reduction coefficient from Equation 39 when 

flange thickness and web thickness are equal. This shows that Equation 5 used in EC9, 

which ignores the weakening effect of the flange to the web, may lead to unsafe results. 

Figure 7 shows that the proposed formulas in this paper considering the plate assembly 

effect can basically reflect the bearing capacity variation of the plate with changing of the 

adjacent plate thickness, and in most cases they can lead to safe results. 

5 Conclusions 

Aiming at the local buckling capacity, considering plate assembly effects, this paper 

derived the formula for calculation of the restraint coefficient of box and channel sections 

with different values of plate width and thickness. This restraint coefficient can be easily 

introduced to the effective thickness formula in the current design codes for aluminium 

structures so that the plate assembly effect on the local buckling of plates in sections can be 

taken into account. 
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           (a) Box section             (b) Channel section 

Figure 7:  Comparison of the results obtained by the finite element method and the proposed formula 

 

Literature 

[1] Eurocode 9: Design of aluminium structures, Part 1-1, 2007. 

[2] Chinese code: GB50429 Code for design of aluminium structures, 2007. 

[3] BS5950 Structural Use of Steelwork in Building, Part 5, Code of Practice for Design of 

Cold Formed Thin Gauge Sections, 1998. 

[4] R. Landolfo, F. M. Mazzolani, Different Approaches in the Design of slender 

Aluminium Alloy Sections [J], Thin-walled Structures, 85 (1997) 27. 

[5] Eurocode 3: Design of steel structures, Part 1-5, 2006. 

[6] Wei-Wen Yu, [translation] JUN DONG, etc., cold-forming steel structure design, third 

ed., China Water Conservancy and Hydropower Press, Beijing, 2003. 

[7] S. P. Timoshenko, J. M. Gere, Theory of Elastic Stability, McGraw-Hill Book Company, 

Singapore, 1963. 

[8] C. Faella, F. M. Mazzolani, Local Buckling of Aluminium Members: Testing and 

Classification[J], Journal of Structural Engineering, 353 (2000) 3.  

[9] Chen Ji, Stability of Steel Structures Theory and Design (second edition), Science Press, 

Beijing, 2003. 

 


