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Pressure-impulse (P-I) diagrams are commonly used to assess damage of structural

components subjected to blast loading. The response to blast loading is characterized by three

main aspects: (a) the excitation of higher modes of vibration, (b) strain rate effects, and (c)

ductility. P-I diagrams are often based on equivalent single degree of freedom (SDOF)

systems. These SDOF systems can take strain rate effects and ductility into account, to a

certain extent, but the influence of higher modes is neglected. All three aspects can be

incorporated in finite element simulations, but at the cost of generality and comprehensibility.

For a better understanding, this theoretical study derives P-I diagrams including higher

modes, without strain rate effects and ductility. These P-I diagrams are derived for a

continuous, linear-elastic, cantilevered Timoshenko beam, which represents the load-bearing

structure of a multistory building, subjected to idealized blast loading. The response is

determined analytically using mode superposition. Modal contribution factors for dynamic

base shear are derived, based on earthquake engineering. For the material behaviour and

boundary conditions investigated, it is concluded that P-I diagrams based on equivalent SDOF

systems are not conservative for short-duration (impulsive) loading, and non-uniform spatial

load distributions. Moreover, the shape of the P-I diagrams that have been derived, deviates

significantly from the hyperbolic shape of P-I diagrams for SDOF systems.

Key words: Pressure-Impulse diagram, Timoshenko beam, modal contribution factor, dynamic

load factor, blast load, higher modes

1 Introduction

Pressure-impulse (P-I) diagrams or iso-damage curves are used to estimate resistance of

structural components to blast or impact loading in the early design stage. The concept of

P-I diagrams first appeared in the 1950s. Historical aspects of P-I diagrams are described in
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Abrahamson and Lindberg [1976]. P-I diagrams are applicable to any type of non-periodic

dynamic load with a finite duration. The structure or structural component to which this

load is applied should have an unambiguous damage criterion. However, it is possible to

combine P-I diagrams for different failure modes (e.g. shear and bending failure), as shown

in Ma et al. [2007]. Text books featuring P-I diagrams (such as Smith and Hetherington

[1994] and Kappos [2002]) are often based on equivalent single degree of freedom (SDOF)

systems. P-I diagrams based on SDOF systems are directly linked to the dynamic load

factor (DLF). Both the derivation of the DLF and the equivalent SDOF systems can be found

in Biggs [1964]. A SDOF model is based on the assumption that the dynamic response of the

structure or structural component is mainly determined by a single, dominant response

mode. P-I diagrams for SDOF systems depend on the natural frequency of the system, the

defined damage criterion, the pulse shape, and the material behaviour.

The influence of the pulse shape on the P-I diagram for a linear-elastic SDOF system was

investigated in Li and Meng [2002a] and for an elastic-plastic SDOF system in Li and Meng

[2002b]. Elastic-plastic hardening and softening SDOF systems have also been investigated

recently by Fallah and Louca [2007]. Most investigations only consider decaying idealized

blast loads (pulse shapes that begin with maximum pressure). For these types of pulse

shape, the SDOF P-I diagram has a hyperbolic shape. Pulse shapes with finite rise time

result in P-I diagrams that are not of a hyperbolic shape, as shown in Smith and

Hetherington [1994]. When the material behaviour and the pulse shape become too

complex for an analytical solution, P-I diagrams can be derived numerically, as described

by Krauthammer et al. [2008]. It can be concluded that P-I diagrams are generally derived

from equivalent SDOF systems, which are deduced from structural components (or

structures). Since the influence of higher modes is ignored in these systems, it is expected

that the P-I diagrams will fail to predict behaviour of the actual structure, when it is loaded

in the impulse regime.

In Karthaus and Leussink [1983], the importance of the higher modes for the dynamic

response is shown for a simply supported beam subjected to a uniformly distributed load.

The necessity of taking shear deformation and rotary inertia into account when higher

modes are important, is also demonstrated. In text books on the subject of blast loaded

structures (such as Bangash [1993], Smith and Hetherington [1994] and Kappos [2002]) as

well as design manuals (such as for example the design manual of the US Army, Navy and

Air Force [1990]), the consequences of neglecting higher modes in constructing P-I diagrams

52



are not sufficiently emphasized. Only in VROM [2003] the applicability of P-I diagrams is

limited to td/T1 > 0.1 (blast duration / first natural period) and a uniform load distribution.

In Shi et al. [2008], P-I diagrams are determined for reinforced concrete columns subjected

to blast loads using the program LS-DYNA, including higher modes, elastic-plastic

hardening, and strain rate effects. A comparison is made with the SDOF approach of Fallah

and Louca [2007], which includes neither strain rate effects, nor higher modes. Therefore it

is unclear whether the differences between the results from these two approaches are

caused by strain rate effects, higher modes, or both. Furthermore, Shi et al. [2008] assume

that the shape of the P-I diagram including higher modes is hyperbolic, and this shape is

fitted to the data from the finite element (FE) analysis by curve fitting. To separate the

influence of the inclusion of higher modes from other influences, this theoretical study

investigates the forced dynamic response of a continuous Timoshenko beam in the elastic

regime, with and without the inclusion of higher modes. The Timoshenko beam represents

a multistory building, and includes shear deformation and rotary inertia. The assumption

of linear-elastic material behaviour allows for the use of the mode superposition method to

determine the dynamic response. Strain-rate effects are neglected. More information about

the derivation of the Timoshenko beam from the multistory building structure can be found

in Van der Meer [2008].

The rest of this paper is structured as follows. In Sections 2 and 3 the P-I diagram and the

Equivalent SDOF Method (ESM) are introduced. In Section 4, the mode shapes and natural

frequencies are derived according to Han et al. [1999], and forced response is treated in

Section 5. Modal contribution factors for base shear and base moment are obtained in

Section 6, by adapting a method described in Chopra [1995] for earthquake engineering.

The determination of dynamic response including higher modes, using these modal

contribution factors, is referred to as the Modal Contribution Factor Method (MCFM). In

Section 7, this method is compared to the Equivalent SDOF Method. Instead of the

maximum transverse deflection, which is commonly used to determine P-I diagrams for

equivalent SDOF systems, the maximum dynamic base shear is used to define the P-I

diagram, including higher modes, in Section 8. Approximation of the asymptotes of the P-I

diagram, as well as the influence of slenderness and spatial load distribution on these

asymptotes, are also discussed in this section. Assumptions, on which the results in this

paper are based, are given in Section 9. A discussion, conclusions and recommendations for

further research are given in Sections 10, 11 and 12 respectively.
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2 Introduction to P-I diagrams

Much information about P-I diagrams can be found in the references given in the

introduction. In spite of this, a short introduction to the pressure-impulse diagram will be

given in this section. The term pressure-impulse diagram is somewhat misleading, because it

is also used in literature for load-impulse diagrams. However, the principle of both

diagrams is the same. The diagram determined in this paper is a dimensionless

load-impulse diagram, which is shown schematically in Figure 1.
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Figure 1: Schematic f − i−diagram for pulse shapes with maximum at t = 0

If f is the dimensionless load, then the dimensionless impulse i, which is the area of the

pulse shape, can be written as β f t̄d for any pulse shape, in which t̄d = ω1td is the

dimensionless blast duration. β is a pulse shape factor between 0 and 1 (β = 1 indicates a

rectangular pulse shape, and β = 1/2 a triangular pulse shape). ω1 is the first natural

frequency in rad/s. For a given pulse shape, every t̄d value corresponds to a straight line

through the origin of the i − f−plane. On each of these lines, three of which are given in

Figure 1, a point can be obtained by equating the maximum dynamic response and the

defined damage criterion. All these points together define the f − i−diagram.

The maximum dynamic SDOF response is rdyn = rstD̄1;max, in which rst is the static

response, and D̄1;max is the first maximum of the time-dependent dynamic load factor D̄1(t̄)

(which is given in (13) for the pulse shape of Figure 4). D̄1;max is called the dynamic load
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factor (DLF). If the damage criterion is rdyn = rc, in which rc is the critical response, then

rdyn

rc
=

rstD̄1;max

rc
= 1 → rst

rc
=

1

D̄1;max
= f (1)

The dynamic load factor D̄1;max, is a function of the dimensionless blast duration t̄d, and

depends on the pulse shape. The static response rst depends only on the applied load,

hence the dimensionless load can be defined as f = rst/rc.

The area left and below the curve, which defines the f − i−diagram, gives all possible

combinations of f and i for which the damage criterion is not exceeded (no damage). The

area right and above the curve, gives all possible combination of f and i for which the

damage criterion is exceeded (damage). Damage and no damage areas are given in Figure 1. In

literature, P-I-diagrams are sometimes referred to as iso-damage curves, because several

curves can be drawn in the same diagram to represent different damage levels.

Since t̄d = ω1td = 2πtd/T1, the dimensionless blast duration t̄d is proportional to the ratio

of the blast duration td and the fundamental natural period T1 of the structure. For low

values of td/T1, the response equals impulse response, so D̄1;max = t̄d/2 and i = 1, which is

called the impulse asymptote. For high values of td/T1, the pulse shape approaches a step

force (if the pulse shape has its maximum at t = 0), for which D̄1;max = 2 and f = 1/2,

which is called the quasi-static asymptote. If td/T1 ≈ 1, the response is neither impulse nor

quasi-static, and this is called the dynamic regime. The three regimes of the f − i−diagram,

impulse, quasi-static and dynamic, are given in Figure 1. The f − i−diagram in this section is

typical for SDOF response. Numerical determination of a f − i−diagram including higher

modes is treated in Section 8.

3 Introduction to the Equivalent SDOF Method

The Equivalent SDOF Method can be found in for example Biggs [1964]. As an introduction

to Section 7 a short explanation of the Equivalent SDOF Method is given here. The method

is based on energy equivalence between the continuous beam, as shown in Figure 2a, and

an equivalent SDOF spring-mass system, as shown in Figure 2b. In Figure 2a, H is the

height of the beam in x-direction, P(x, t) is the load distribution over the beam, y(x, t) is the

transverse deflection of the beam, EI is the bending stiffness, GA is the shear stiffness, m is

the beams mass per unit length, and x is the axial coordinate of the beam from clamped to

free end. In Figure 2b, Keq is the equivalent stiffness, Meq is the equivalent mass, Feq(t) is the

equivalent load, and y(t) is the displacement (degree of freedom or DOF).
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Figure 2: Equivalent SDOF Method

The equivalent SDOF systems has the following properties:

y =
Feq

Keq
ω1 =

√

Keq

Meq
y(t) = yD̄1(t) (2)

in which ω1 is the first natural frequency in rad/s, and D̄1(t) is the time dependent

dynamic load factor, which is dependent of the pulse shape, the blast duration td, and the

natural frequency ω1. The equivalent mass Meq is determined by equating kinetic energy of

both systems, the equivalent load Feq is obtained by equating work done in both systems,

and the equivalent stiffness Keq is obtained by equating strain energy of both systems. The

time variation of the force and displacement is assumed to be similar for both systems.

Hence it can be ignored in these equations. To be able to determine the equivalent mass,

load and stiffness, a shape function y(x) should be chosen for the beam, and this shape

function should be related to the displacement y of the equivalent SDOF system. Usually

the maximum deflection is chosen as the degree of freedom, so that y = y(H) for a

cantilevered beam.

The shape function y(x) should satisfy the boundary conditions of the beam. Two shape

functions that satisfy these conditions are the static deflected shape yst(x) due to the load

P(x), and the dynamic deflected shape in the first mode y1(x), which is the first mode

shape multiplied by a constant. If yst(x) is used, the static deflection of the equivalent SDOF

system is exact, but the natural frequency is overestimated. Since yst(x) depends on the

load distribution P(x), the natural frequency ω1 would also depend on P(x), which is

incorrect. On the other hand, if y1(x) is used, the natural frequency of the equivalent SDOF

system is exact, but the static deflection is approximated, because y1(x) is an approximation
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of yst(x) for all but one unique load distribution. For non-uniform load distributions, yst(x)

and y1(x) differ more than for a uniform load distribution. For this reason, only uniform

load distribution is allowed in VROM [2003].

The consequences of the selected shape function for the P-I diagram are as follows. If yst(x)

is used, the impulse asymptote is approximated, because it is governed by ω1, which is

overestimated. If y1(x) is used, the quasi-static asymptote is approximated, because it is

governed by the static deflection. The equivalent SDOF system only yields exact results

when y1(x) and yst(x) are equal, which is only true for one specific load distribution P(x).

For all other load distributions, higher modes have contributions to the response. This is

one of several reasons to take into account the influence of higher modes.

4 Mode shapes and natural frequencies of a transversely vibrating
cantilevered Timoshenko beam

The mode shapes of a transversely vibrating clamped-free Timoshenko beam, which

includes shear deformation and rotary inertia, are derived according to Han et al. [1999].

The beam is shown in figure 2a. Mode shapes and natural frequencies of a Timoshenko

beam are dependent on a geometry parameter s and a material parameter γ. These are

defined as

s = H

√

A

I
(3)

γ =

√

E

G
(4)

in which A is the area of the beam cross section, I is the second moment of area of the beam

cross section, E is the Young’s modulus, and G is the shear modulus.

The Timoshenko beam has two dependent mode shapes for every nth mode, namely Wn(x),

which is the transverse deflection of the nth mode including shear deflection, and Ψn(x),

which is the rotation due to bending moment of the nth mode. The mode shapes are given

in dimensionless form with x̄ = x/H and W̄n = Wn/H. Ψn is in radians and thus

dimensionless.

The mode shapes are functions of the dimensionless wave numbers an and bn, which

depend on s and γ, and are the solution sets of the frequency equation. The frequency

equation is dependent on the boundary conditions of the Timoshenko beam. For a
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cantilevered Timoshenko beam, the frequency equation is given in Han et al. [1999] by

(a2
n − b2

n) sin an sinh bn −

anbn
(a4

n + a4
nγ4 + 4γ2a2

nb2
n + b4

nγ4 + b4
n)

(b2
n + γ2a2

n)(a2
n + γ2b2

n)
cos an cosh bn −

2anbn = 0 (5)

The mode shapes are given by

Ψ(x̄) = Cn

(

sin an x̄ +
an(b2

n + γ2a2
n)

bn(a2
n + γ2b2

n)
sinh bn x̄

+
an cos an + an(b2

n+γ2a2
n)

a2
n+γ2b2

n
cosh bn

an sin an + bn sinh bn

(cos an x̄ − cosh bn x̄)
)

(6)

and

W̄n(x̄) = Cn

([

(1 + γ2)an

a2
n + γ2b2

n
sin an x̄ − (1 + γ2)bn

b2
n + γ2a2

n
sinh bn x̄

]

an cos an + an(b2
n+γ2a2

n)

a2
n+γ2b2

n
cosh bn

an sin an + bn sinh bn

+
(1 + γ2)an

a2
n + γ2b2

n
(cosh bnx̄ − cos an x̄)

)

(7)

If an is larger than a critical wave number ac, bn should be replaced by jbn, with j2 = −1.

The critical wave number is

ac = s

√

1

γ2
+ 1 (8)

For a given s and γ, the mode shapes can be determined except for the constant Cn. This

constant can be determined by ortho-normalizing the mode shapes with respect to each

other, using
1

∫

0

(

W̄n(x̄)W̄m(x̄) +
1

s2
Ψn(x̄)Ψm(x̄)

)

dx̄ = δnm (9)

where δnm is the Kronecker delta, which is 1 for n = m and 0 otherwise.

The dimensionless natural frequency ω̄n = ωn/ω1 can be determined as

ω̄n =

√

a2
n − b2

n

1 + γ2

√

s2

m̄
and if an > ac, bn → jbn (10)

in which m̄ = mH4ω2
1/EI. For γ =

√
2.6 (steel), s = 6.66, EI = 5.16 · 1011Nm2, H = 64.8m

and m = 31778kg/m, representing a trussed frame load-bearing element of a building
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Mode an bn ω̄n Cn

1 1.84075 1.62824 1.000000 0.456837

2 4.14219 2.52714 3.817710 0.297457

3 7.07301 1.63825 8.003859 0.165948

4 8.69907 1.94629 10.36927 0.146420

5 10.83199 4.07270 13.46139 0.179251

6 11.67560 4.78576 14.67817 0.198263

7 14.27275 6.81980 18.40055 0.098236

8 15.40061 7.65717 20.00672 0.187232

9 17.58377 9.22948 23.10053 0.076141

10 19.49123 10.56530 25.78965 0.125137

Table 1: Wave number and frequencies for a Timoshenko beam with γ2 = 2.6, s = 6.66,
EI = 5.16 · 1011Nm2, H = 64.8m and m = 31778kg/m

structure, the wave numbers, natural frequencies and constants Cn for the first 10 modes are

tabulated in Table 1. The horizontal line between mode 3 and 4 indicates the critical wave

number ac. With the parameters from Table 1, the mode shapes W̄n and Ψn can be drawn,

which is done in Figure 3a and 3b respectively, for the first four modes.
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Figure 3: First four mode shapes of cantilevered Timoshenko beam with s=6.66 and γ2=2.6

5 Forced response of a Timoshenko beam using mode superposition

The mode shapes and natural frequencies depend only on geometry and material

parameters and are independent of the applied dynamic load. The forced response of a

Timoshenko beam depends both on the mode shapes and natural frequencies, and on the
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applied dynamic load. This load has a spatial distribution P̄(x̄), and a time distribution

F̄(t̄). In this paper, it is assumed that P̄(x̄) is uniformly distributed, unless reported

otherwise, and that F̄(t̄) is a linear decaying idealized blast load. Thus

P̄(x̄) = P̄m =
Pm H3

EI
(11)

in which Pm is a line load in N/m and P̄m its dimensionless equivalent, and

F̄(t̄) =

(

1 − t̄

t̄d

)

[u(t̄) − u(t̄ − t̄d)] (12)

in which u(t̄ − t̄d) is a unit step function, td is the duration of the blast, and t the time in

seconds. Dimensionless equivalents of td and t are t̄ = ω1t and t̄d = ω1td. The time

distribution is shown in Figure 4.

1

t̄d

F̄(t̄)

t̄

Figure 4: Idealized blast load, force-time profile or pulse shape

Each mode responds as a SDOF system. The time dependent dynamic load factor D̄n(t̄) is

determined by the natural frequency ω̄n, the duration of the blast t̄d and the pulse shape.

The time dependent dynamic load factor for the blast shown in Figure 4 is given in Biggs

[1964]:

D̄n(t̄) =



















































− t̄

t̄d
+ 1 − cos ω̄n t̄ +

sin ω̄n t̄

ω̄n t̄d

if t̄ ≤ t̄d

− cos ω̄n t̄ +
sin ω̄n t̄

ω̄n t̄d
− sin ω̄n(t̄ − t̄d)

ω̄n t̄d

if t̄ > t̄d

(13)

The first maximum of D̄1(t̄) is the dynamic load factor (DLF) of a SDOF system.

The dynamic response in the nth mode is a product of the time dependent dynamic load

factor D̄n(t̄), the mode shape W̄n(x̄) and the modal participation factor, which is

F̄n =

1
∫

0

W̄n(x̄)P̄(x̄)dx̄ (14)
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The modal participation factor and its derivation can be found in, for example, Thomson

[1988]. Although it allows to compare contributions of mode shapes to the response, for a

certain dynamic load, it does not give information about the relative contribution of a mode

to the total response.

The dynamic transverse displacement ȳn(x̄, t̄), rotation ϕ(x̄, t̄), moment µ̄n(x̄, t̄) and shear

force v̄n(x̄, t̄) in the nth mode are determined according to Han et al. [1999] and Chopra

[1995] as

ȳn(x̄, t̄) =
F̄n

ω̄2
n

D̄n(t̄)W̄n(x̄) (15)

ϕn(x̄, t̄) =
F̄n

ω̄2
n

D̄n(t̄)Ψn(x̄) (16)

µ̄n(x̄, t̄) =
F̄n

ω̄2
n

D̄n(t̄)
dΨn(x̄)

dx̄
(17)

v̄n(x̄, t̄) =
F̄n

ω̄2
n

D̄n(t̄)α

(

dW̄n(x̄)

dx̄
− Ψn(x̄)

)

(18)

in which ȳn = yn/H, µ̄n = µn H/EI, v̄n = vn H2/EI and α = s2/γ2 = GAH2/EI. The

expressions for moment and shear in equations (17) and (18) respectively are difficult to

use, since they require derivatives of all mode shapes to be calculated.

6 Modal Contribution Factor Method

In this section, the Modal Contribution Factor Method (MCFM), adapted from Chopra

[1995], is introduced. First, alternative expressions for moment and shear (internal forces)

are derived according to paragraph 16.6 of Chopra [1995]. Then, internal forces of the beam

in the nth mode are determined from the static forces associated with displacements ȳn(x̄, t̄)

of equation (15). Subsequently, the spatial equation of dynamic equilibrium is substituted

herein to obtain the alternative expression for the internal forces. The method is able to

determine internal forces at every location in the beam, but is specialized here for base

shear and base moment, because these are normative for cantilevered beams. The modal

contribution factor is derived for base shear and base moment in Sections 6.1 and 6.2

respectively. If response is determined for a finite number of modes, a correction factor

should take into account the neglected higher modes, which is discussed in Section 6.3.
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6.1 Base shear

The spatial distribution of internal shear forces in mode n can be expressed as

V̄n(x̄) = α

(

d2ȳn(x̄)

dx̄2
− dϕn(x̄)

dx̄

)

=
αF̄n

ω̄2
n

(

d2W̄n(x̄)

dx̄2
− dΨn(x̄)

dx̄

)

(19)

The spatial equation of dynamic equilibrium is given by

α

(

d2W̄n

dx̄2
− dΨn(x̄)

dx̄

)

= ω̄2
nm̄W̄n(x̄) (20)

Substituting (20) in (19) leads to

V̄n(x̄) = F̄nm̄W̄n(x̄) (21)

Base shear for mode n is obtained by integrating (21):

v̄b;n = F̄nm̄

1
∫

0

W̄n(x̄)dx̄ (22)

Base shear response is obtained by multiplying (22) by D̄n(t) and summing the

contributions of all modes:

v̄b(t̄) =
∞

∑
n=1

F̄nm̄D̄n(t̄)

1
∫

0

W̄n(x̄)dx̄ (23)

The modal contribution factor for base shear is defined as the ratio of base shear in mode n

(22) and base shear due to the application of P̄(x̄) as a static force:

cbs;n =
F̄nm̄

∫ 1
0 W̄n(x̄)dx̄

∫ 1
0 P̄(x̄)dx̄

(24)

The modal contribution factors determined by (24) sum up to unity. Hence the number of

modes, which need to be taken into account for sufficient accuracy (e.g. 95%), can be

determined. The dimensionless dynamic base shear response can be obtained in terms of

the modal contribution factors from (23) and (24):

v̄b(t̄) = v̄b;st

∞

∑
n=1

cbs;nD̄n(t̄) with v̄b;st =
∫ 1

0
P̄(x̄)dx̄ (25)

Equation (25) separates the static response from the contributions of all modes to the

dynamic response, and therefore gives better understanding of higher mode response than

equation (23).
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6.2 Base moment

The spatial distribution of internal moments in mode n can be expressed as

M̄n(x̄) = α

(

dȳn(x̄)

dx̄
− ϕn(x̄)

)

+
d2 ϕn(x̄)

dx̄2

=
F̄n

ω̄2
n

[

α

(

dW̄n(x̄)

dx̄
− Ψn(x̄)

)

+
d2Ψn(x̄)

dx̄2

]

(26)

The spatial equation of dynamic equilibrium is given by

α

(

dW̄n(x̄)

dx̄
− Ψn(x̄)

)

+
d2Ψn(x̄)

dx̄2
= ω̄2

n
m̄

s2
Ψn(x̄) (27)

Substituting (27) in (26) leads to

M̄n(x̄) = F̄n
m̄

s2
Ψn(x̄) (28)

Base moment for mode n is obtained by

µ̄b;n =

1
∫

0

M̄n(x̄)dx̄ +

1
∫

0

x̄V̄n(x̄)dx̄

= F̄nm̄





1

s2

1
∫

0

Ψn(x̄)dx̄ +

1
∫

0

x̄W̄n(x̄)dx̄



 (29)

Base moment response is obtained by multiplying (29) by D̄n(t), and summing the

contributions of all modes:

µ̄b(t̄) =
∞

∑
n=1

F̄nm̄D̄n(t̄)





1

s2

1
∫

0

Ψn(x̄)dx̄ +

1
∫

0

x̄W̄n(x̄)dx̄



 (30)

The modal contribution factor for base moment is defined as the ratio of base moment in

mode n (29) and base moment due to the application of P̄(x̄) as a static force:

cbm;n =
F̄nm̄

(

1
s2

∫ 1
0 Ψn(x̄)dx̄ +

∫ 1
0 x̄W̄n(x̄)dx̄

)

∫ 1
0 x̄P̄(x̄)dx̄

(31)

The procedures for base shear in Section 8 are applicable for base moment also, in which

case cbs;n, v̄b;n and v̄b;st should be replaced by cbm;n, µ̄b;n and µ̄b;st =
∫ 1

0 x̄P̄(x̄)dx̄.

6.3 Correction of modal contribution factors

If the modal contribution factors for the number of modes calculated sum up to (1 − ε), the

static response is underestimated by ε · 100%. Therefore, the modal contribution factors

should be corrected by multiplying with a factor 1/(1 − ε). In Table 2, the modal

contribution factors for base shear and base moment are given before and after correction,

for the load distribution of (11), and the mode shapes shown in Figure 3a and 3b.
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Contribution factor→ As calculated After correction

Mode↓ Shear Moment Shear Moment

1 0.6148 0.9249 0.6356 0.9253

2 0.2335 0.0678 0.2414 0.0678

3 0.0593 0.0098 0.0613 0.0098

4 0.0168 -0.0040 0.0174 -0.0040

5 0.0143 0.0041 0.0148 0.0041

6 0.0078 -0.0033 0.0081 -0.0033

7 0.0097 0.0018 0.0100 0.0018

8 0.0025 -0.0014 0.0026 -0.0014

9 0.0060 0.0012 0.0062 0.0012

10 0.0025 -0.0013 0.0026 -0.0013

Sum 0.9672 0.9996 1.0000 1.0000

Table 2: Modal contribution factors for base shear and base moment

7 Comparison to Equivalent SDOF Method

To clarify the relation between the Modal Contribution Factor Method (MCFM), as

described in the previous section, and the Equivalent SDOF Method (ESM), both methods

are compared. The maximum transverse deflection (top deflection in case of a cantilever) of

an equivalent SDOF system is related to the internal forces by an assumed deflected shape,

which is typically either the static deflected shape ȳst(x̄) or the dynamic deflected shape in

the first mode ȳ1(x̄), as described in Section 3. The MCFM, without correction and using only

the first mode, is equal to the ESM, if ȳ1(x̄) is used as the shape function. ȳst(x̄) and ȳ1(x̄)

are almost similar if a uniformly distributed load is applied. For non-uniformly distributed

loads however, ȳst(x̄) and ȳ1(x̄) can differ significantly. When several modes contribute to

the response, the deflection is not proportional to the internal forces (shear, moment) as is

the case for a single mode. Therefore, the maximum transverse deflection is not a good

criterion to determine P-I diagrams including higher modes. This is demonstrated in this

section, by comparing both methods with respect to static deflection, static base shear and

fundamental natural frequency.

7.1 Static deflection

The ESM, based on the dynamic deflected shape in the first mode ȳ1(x̄), and the MCFM,

without higher modes, are equal. Deflection at the top is used for comparison, because this
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is the common DOF for the ESM. Since ω̄1 = ω1/ω1 = 1, ȳ1(x̄) is given by (15) by

ȳ1(x̄) = F̄1W̄1(x̄) (32)

which is the product of the first mode shape and its modal participation factor. ȳst is the

static deflected shape under the load P̄(x̄). Static deflection for both shapes is compared in

Table 3.

Load distribution ȳst(1) ȳ1(1)

(

ȳ1(1)

ȳst(1)
− 1

)

· 100%

P̄(x̄) = P̄m 0.112 0.115 +2.68%

P̄(x̄) = 3P̄m(x̄ − 1)2 0.0408 0.0451 +10.54%

Table 3: Influence of shape function on static deflection for the ESM (P̄m = 0.725)

With regard to static deflection, the differences between the shape functions are respectively

+2.68% for a uniform load distribution, and +10.54% for a quadratic load distribution. This

is conservative, since static deflection is overestimated. However, higher modes have a

larger influence on internal forces and reactions than on deflection, which will be shown in

the next section.

7.2 Static base shear

Using the static deflected shape ȳst(x̄), the base shear response v̄b;st of the equivalent SDOF

system is simply

v̄b;st =

1
∫

0

P̄(x̄)dx̄ (33)

Using the dynamic deflected shape ȳ1(x̄), the base shear response v̄b;1 is given by

v̄b;1 = F̄1m̄

1
∫

0

W̄1(x̄)dx̄ (34)

And

v̄b;1

v̄b;st
=

F̄1m̄
1
∫

0

W̄1(x̄)dx̄

1
∫

0

P̄(x̄)dx̄

= cbs;1 (35)

which is the modal contribution factor for the first mode. If the correction factor is applied

as in Section 6.3, the base shear in the first mode v̄b;1 is set equal to the static base shear v̄b;st,

because cbs;1 = 1. In Table 4 static base shear and base shear in the first mode are compared

for two load distributions.

65



Load distribution v̄b;st v̄b;1 cbs;1

P̄(x̄) = P̄m 0.725 0.446 0.615

P̄(x̄) = 3P̄m(x̄ − 1)2 0.725 0.183 0.252

Table 4: Influence of shape function on static base shear for the ESM (P̄m = 0.725)

If no correction factor is applied, the static base shear, determined with the MCFM method

using the first mode, is underestimated, since the influence of higher modes is ignored. For

a uniform load distribution, the contribution of higher modes to static base shear is 38.5%,

and for a quadratic load distribution it is even larger, namely 74.8%. So although static

deflection is overestimated by using the first mode shape, the base shear is underestimated

significantly. This is another reason to include higher modes and to use base shear as a

damage criterion instead of top deflection. In Section 8.3, it is shown that dynamic base

shear in the impulse regime has even more influence of higher modes.

7.3 Natural frequency

The natural frequency of the equivalent SDOF system is equal for the MCFM and the ESM

using ȳ1(x̄). If the ESM based on ȳst(x̄) is used, the natural frequency depends on the load

distribution P̄(x̄), which is incorrect. For non-uniform load distributions the natural

frequency is overestimated, as shown in Table 5. For a uniform load distribution, the

natural frequency is approximated quite well. Since the MCFM method with correction is

otherwise equal to the ESM based on static deflection, but uses the correct natural

frequency, it is not completely energy equivalent. However, when more modes are used in

the MCFM, the necessary correction becomes smaller and the response more accurate.

Load distribution ω1;st ω1

(

ω1;st

ω1
− 1

)

· 100%

P̄(x̄) = P̄m 3.017 2.897 +4.14%

P̄(x̄) = 3P̄m(x̄ − 1)2 3.551 2.897 +22.58%

Table 5: Influence of shape function on first natural frequency for the ESM
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8 f − i diagram

8.1 Numerical determination of f − i diagram for base shear

The dimensionless load-impulse diagram is derived for base shear, because it is concluded

from Table 2 that base shear has more contribution of higher modes than base moment. The

dimensionless load and impulse are defined as

f =
v̄b;st

v̄b;c
i =

f t̄d

2
=

v̄b;st

v̄b;c
· t̄d

2
(36)

in which f is the dimensionless load, v̄b;st is the dimensionless static base shear as in (33),

v̄b;c is the dimensionless critical base shear, and i is the dimensionless impulse. If desired,

the dimensionless load and impulse for base moment can be obtained by replacing v̄b;st/v̄b;c

by µ̄b;st/µ̄b;c, in which µ̄b;st is the dimensionless static base moment as in the denominator

of (31) and µ̄b;c is the dimensionless critical base moment.

The load-impulse diagram can be obtained by demanding that the maximum dynamic base

shear response (25) equals the critical base shear. It is assumed that the maximum occurs

during the first half period of the first mode (0 < t̄ ≤ π), and that later maxima are reduced

by damping. The maximum is determined numerically. The damped response can be

determined by including modal damping in the time-dependent dynamic load factor.

However, this falls outside the scope of this paper. Dimensionless load f and dimensionless

impulse i are derived from

max[v̄b(t̄)]t̄=π
t̄=0

v̄b;c
= 1 (37)

f =
v̄b;st

v̄b;c
=

1

max

[

∞

∑
n=1

cbs;nD̄n(t̄)

]t̄=π

t̄=0

(38)

i =
f t̄d

2
=

t̄d

2
· 1

max

[

∞

∑
n=1

cbs;nD̄n(t̄)

]t̄=π

t̄=0

(39)

Alternatively, for base moment, the contribution factors cbs;n should be replaced by cbm;n.

Both f and i depend on ω̄n and t̄d, because D̄n(t̄) (13) depends on ω̄n and t̄d. For the set of

ω̄n, given in Table 1, and the contribution factors from Table 2, the load f and impulse i can

be determined from equations (38) and (39) respectively for a range of t̄d, resulting in a

load-impulse diagram.

An arbitrary number of modes can be taken into account, as long as the contribution factors

are corrected to sum up to unity, see Table 6. Static base shear is exact when the correction
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factor is applied, but dynamic base shear is approximated and becomes more accurate

when more modes are taken into account.

n 1 mode 2 modes 3modes

1 1.0000 0.7247 0.6774

2 - 0.2753 0.2573

3 - - 0.0653

Table 6: Modal contribution factors for base shear, corrected

8.2 Discussion of results of f − i diagram for base shear

The load-impulse diagram which is obtained from Section 8.1 for 1, 2, 3,10 and 25 modes, is

given in Figure 5. The horizontal or quasi-static asymptote, is barely influenced by the

number of modes that are taken into account. The vertical or impulse asymptote on the

other hand, is significantly influenced by the inclusion of higher modes, although it does

not seem to make much difference whether 2, 3, 10 or 25 modes are used. The difference

between the number of modes used is best visible in the dynamic regime between the

asymptotes, see Figure 5b. In this particular case, a conservative but accurate

approximation of the load-impulse diagram can be obtained by including only 3 modes.

Furthermore it is observed that a 2-mode approximation is also conservative but less

accurate, and that a 1-mode (SDOF) approximation is not conservative in the impulse

regime when td/T1 = i/(π f ) <≈ 0.21 (point of intersection of f − i diagrams for 1 and 25

modes). This indicates that the requirement for f − i diagrams in VROM [2003], namely

td/T1 > 0.1, may not be stringent enough.

8.3 Approximations of asymptotes of f − i− diagram

An approximate P-I diagram including higher modes can be obtained if the quasi-static and

impulse asymptotes are known. For the pulse shape shown in Figure 4, the quasi-static

asymptote can be determined by replacing D̄n(t̄) in (38) by the response to a step force,

which is

D̄n(t̄) = 1 − cos ω̄n t̄ (40)

This leads to

f =
1

max

[

∞

∑
n=1

cbs;n (1 − cos ω̄n t̄)

]t̄=π

t̄=0

(41)
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Figure 5: Dimensionless load-impulse diagram

The impulse asymptote for any pulse shape can be determined by replacing D̄n(t̄) by the

response to an impulse, which is

D̄n(t̄) =
ω̄n t̄d

2
sin ω̄n t̄ (42)

Substituting (42) in (39) gives

i =
1

max

[

∞

∑
n=1

cbs;nω̄n sin ω̄n t̄

]t̄=π

t̄=0

(43)
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8.4 Discussion of results for the f − i asymptotes

The contribution of higher modes to the quasi-static response depends on the modal

contribution factor cbs;n. The contribution of higher modes to the impulse response depends

on the product of the modal contribution factor and the dimensionless natural frequency

cbs;nω̄n. Therefore, impulse response has more contribution from higher modes than

quasi-static response. This is shown in Figure 6.
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Figure 6: Modal contributions for impulse and quasi-static response for 25 modes

From (41), it is clear that the SDOF quasi-static asymptote is a lower bound for any higher

number of DOF, because in this case, cbs;1 = 1, and the maximum of (40) is 2. When higher

modes are included, the maxima of D̄n(t) are still 2 for every mode, and ∑
∞
n=1 cbs;n = 1, but

the total maximum, which is the denominator in (41), is slightly lower than 2 due to

interactions of the cosine functions. On the other hand, the SDOF impulse asymptote is an

upper bound for any higher number of DOF, because cbs;1ω̄1 = 1 (ω̄1 = 1 by definition) and

max(sin ω̄1t̄) = 1. The influence of the higher modes is increased significantly in the

impulse regime due to the presence of ω̄n in (43). Due to ω̄n, ∑
∞
n=1 cbs;nω̄n ≫ 1, although

the total maximum, which is the denominator in (43), is decreased slightly by the

interactions of the sine functions.

Technically, the impulse asymptote is not an asymptote, because ∑n cbs;nω̄n does not

converge. Therefore, infinite modes should be taken into account to determine the impulse

asymptote. However, it should be noted that, for practical blast loads on structures or

components, higher modes from a certain mode onwards are not in the impulse regime. For

example, for 25 modes of the Timoshenko beam in this paper, the dynamic load factors

D̄n;max are given in Figure 7 versus ωntd, for td = 20 ms, which is a realistic blast load

duration. It can be seen that modes 10-25 deviate from the impulse asymptote. This trend

would continue if more modes were included. So, although the first 10 modes are in the
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impulse regime, there are higher modes which are not. Since there are infinite modes, there

are always higher modes not in the impulse regime. These higher modes have generally

low contribution factors and lower D̄n;max than predicted by (42), hence their contribution

can be neglected. Consequently, the infinite sum in (43) can be truncated at n = N

depending on the duration of the pulse t̄d compared to the natural frequency ω̄n of the

mode. The impulse asymptote should also be truncated at the lowest t̄d value which is

deemed realistic for building practice.
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Figure 7: Dynamic load factor: actual vs impulse for 25 modes, td = 20 ms

The asymptotes, from equations (41) and (43), were evaluated numerically for 1, 2, 3, 10 and

25 modes. The results are shown in Table 7. The quasi-static asymptote of the SDOF case is

conservative and can be maintained. The SDOF impulse asymptote is not conservative. The

addition of one extra mode shape and natural frequency is already a large improvement

compared to SDOF. The numerical values as shown in Table 7 depend on the distribution of

contribution factors and natural frequencies. The contribution factors are determined by the

spatial distribution of the load and the mode shapes. Mode shapes and natural frequencies

depend on material and geometrical properties of the (Timoshenko) beam and on the

boundary conditions.

8.5 Influence of load distribution on f − i diagram

Using 10 modes, the impulse asymptote of the f − i diagram was 55.6% of the SDOF

impulse asymptote, for a uniform load distribution. For a quadratic load distribution, as in

Table 3, the f − i diagram, determined using the method of Section 8.1, is shown in Figure 8.

25 modes were taken into account. The impulse asymptote is reduced to 22% of the SDOF

asymptote (see Table 9). From the intersection of the f − i diagrams of 1 and 25 modes, it is
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Number of modes f i

1 0.5000 1.0000

2 0.5367 0.5899

3 0.5432 0.5711

10 0.5530 0.5573

25 0.5580 0.5720

Table 7: Asymptotes of f − i−diagram including higher modes

Mode number n s = 33.3175 s = 6.6635

1 0.613 0.615

2 0.192 0.233

3 0.067 0.059

4 0.035 0.017

5 0.022 0.014

Table 8: Contribution factors for base shear, influence of slenderness

concluded that the SDOF diagram is non-conservative for td/T1 = i/(π f ) <≈ 0.26.

8.6 Influence of slenderness on f − i diagram

The f − i diagrams in the previous sections were determined for a cantilevered Timoshenko

beam with a particular slenderness. To gain insight in the behaviour of Euler-Bernouilli

beams and more slender Timoshenko beams, the natural frequencies and contribution

factors for 25 modes were compared for three Timoshenko beams and one Euler-Bernouilli

beam. It was found, that the most significant contribution factors are only slightly

influenced by the slenderness, as shown in Table 8, while the natural frequencies for the

higher modes increase faster for slender beams, as demonstrated in Figure 9.

Finally, the f − i diagram for s = 33.3175 (5 times the original slenderness), is shown in

Figure 10. The combined effects of a quadratic load distribution and an increased

slenderness are shown in Figure 11. The impulse asymptote is reduced to 14% and 5% of

the SDOF asymptote respectively, as shown in Table 9. From the intersection of the f − i

diagrams of 1 and 25 modes, it is concluded that the SDOF diagram is non-conservative for

td/T1 = i/(π f ) <≈ 0.18 and td/T1 <≈ 0.48, for the f − i diagrams of Figure 10b and 11b.
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Figure 8: Dimensionless load-impulse diagram, quadratic load distribution

9 Assumptions

Before conclusions are drawn, the assumptions, on which the results in this paper are

based, are summarized below:

• A cantilevered (clamped-free) Timoshenko beam was investigated, which represents

a building structure that exhibits bending and shear deformation.

• Linear-elastic material behaviour was assumed until failure (no ductility), which

enabled the use of the mode superposition method.

• The failure criterion was assumed to be independent of the strain rate.
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Method Load distribution Slenderness s f i

ESM any any 0.5000 1.0000

MCFM P̄(x̄) = P̄m 6.6635 0.5580 0.5720

33.3175 0.5586 0.1437

P̄(x̄) = 3P̄m(x̄ − 1)2 6.6635 0.5887 0.2219

33.3175 0.5888 0.0541

Table 9: Influence of load distribution and slenderness on asymptotes of f − i diagram

• The pulse shape (load-time history) was assumed as given in Figure 4.

• Maximum response was assumed to occur within the first half period of the first

mode.

• Damping was neglected in the calculation, but implicity sufficient damping was

assumed, to assure the previous assumption.

10 Discussion

The theoretical study in this paper has focused on the influence of higher modes on the P-I

diagram, without considering strain rate effects and non-linear material behaviour

(ductility). Comparison of the ESM (SDOF) and the MCFM (including higher modes)

showed that:

• The impulse asymptote of the ESM is non-conservative. Moreover, it is not

technically an asymptote.

• The shape of the P-I diagram including higher modes deviates significantly from the
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Figure 10: Dimensionless load-impulse diagram, uniform load distribution, s = 33.3175

hyperbolic shape of the SDOF P-I diagram, most noticeably in the dynamic regime.

• The quasi-static asymptote of the SDOF P-I diagram is conservative.

However, two main aspects that influence the response to blast loading were neglected in

this paper, namely strain rate effects and ductility. Consequences of these and other

assumptions, which have been described in Section 9, are evaluated here.

• A cantilevered (clamped-free) Timoshenko beam was investigated, representing a

building structure. However, building components, for which P-I diagrams are

generally used, have different boundary conditions and slenderness. It is expected
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Figure 11: Dimensionless load-impulse diagram, quadratic load distribution, s = 33.3175

that the MCFM will give similar results for Timoshenko beams with different

boundary conditions. It has been demonstrated in this paper, that the influence of

higher modes increases with increasing slenderness of the beam, and is highest for

Euller-Bernouilli beams.

• Linear-elastic material behaviour was assumed, but response of building

components to blast loading will generally be non-linear. Non-linear material

behaviour (plasticity, ductility) is difficult to take into account in higher mode

response. As a damage criterion, the plastic moment and shear capacity could be

applied. However, the formation of plastic hinges changes the mode shapes, until

enough hinges are formed for a failure mechanism. Neglecting ductility, as in this
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paper, is over-conservative.

• The strain-rate effect, which was neglected in this paper, is expected to have a

significant influence on the response to blast loading. For structural steel, the yield

and ultimate strength are increased at increased strain rates, but the ductility is

decreased. Higher modes respond faster than the first mode and therefore cause

higher strain rates. In the impulse regime, where the higher modes have a significant

influence on the response, strain rate effects are expected to be more important than

ductility. In the quasi-static regime, where higher modes contribute less to the

response, it is expected that ductility is more important. Both strain rate effects and

ductility increase the damage criterion, so neglecting these aspects is

over-conservative. It would be interesting, as a next step, to investigate linear-elastic

behaviour in combination with strain rate effects, using the method of this paper.

These results could be compared to a FE analysis which also includes non-linear

material behaviour, such as Shi et al. [2008].

• The pulse shape (load-time history) was assumed as given in Figure 4. The impulse

and quasi-static asymptotes are not affected by the pulse shape (if maximum load

occurs at t = 0). Therefore, the selected pulse shape is of minor importance.

• The maximum response was assumed to occur within the first half period of the first

mode. In the quasi-static and dynamic regime, for decaying blast loads, this is true

because the maximum response is governed by the load, which is maximal at t = 0.

The maximum response occurs during or close to the forced vibration part of the

response. In the impulse regime, the maximum response is governed by the impulse

and the maximum response occurs during the free vibration part of the response,

which is a sum of sine functions as shown in the denominator of (43). Since the

period of this response is much larger than the first mode period T1, the maximum of

undamped response can occur after t = T1. Therefore, sufficient damping has to be

assumed to reduce peaks that occur after t = T1.

• Damping was neglected in the calculations, but implicitly enough damping was

assumed, to ensure that the maximum response occurred within the first half period

of the first mode (0 ≤ t ≤ T1/2). This assumption is only needed in the impulse

regime. Since response in the impulse regime is governed by higher modes, which

are damped faster than the first mode, this assumption was deemed acceptable.
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11 Conclusions

• A Modal Contribution Factor Method, which takes into account the influence of

higher modes on P-I diagrams for blast loading, was developed in this paper, based

on Chopra [1995] and Han et al. [1999]. The method uses mode superposition, which

requires linear-elastic material behaviour and knowledge of the mode shapes and

natural frequencies. Strain-rate effects are neglected.

• Modal contributions factors for base shear and base moment were derived, which

represent the contribution of a mode to the total base shear or total base moment in

percent. This enables the user to assess which modes need to be taken into account.

• For the linear-elastic cantilevered Timoshenko beam, the shape of the P-I diagram

including higher modes deviates significantly from the hyperbolic shape of the

SDOF P-I diagram. Technically, there is no impulsive asymptote.

• For the linear-elastic cantilevered Timoshenko beam, the response in the impulse and

dynamic regime is underestimated by the Equivalent SDOF Method.

12 Recommendations

• P-I diagrams to asses response of building structures to blast loading are only

valuable when the building facade remains intact. It is likely that building

components will fail before the building structure does, because they respond faster.

Therefore, building components should be assessed before assessing the building

structure as a whole.

• For engineering practice, the advice is to apply the Equivalent SDOF Method and P-I

diagrams resulting from it, with great care, especially for td/T1 ≤ 0.2 and for

non-uniform spatial blast load distributions. If the mode shapes are known, the

contribution factors can be determined for a specific spatial load distribution, to

assess the influence of higher modes. The MCFM can also be adapted for discrete

finite element (FE) models, using matrix notation. The modal contribution factors

can then be determined, after the mode shapes have been obtained by modal

analysis with a FE program.

• The possibility to include the strain-rate effect in the Modal Contribution Factor

Method by coupling damage criterion (failure at yield stress) and strain rate should

be investigated. By comparison with finite element analysis, such as Shi et al. [2008],

the separate effects of strain rate and non-linear material behaviour, could be made
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clear. For materials such as structural steel, with increased strength but decreased

ductility at high strain rates, it might be possible to accurately approximate the

asymptotes of the P-I diagram. The quasi-static asymptote may be approximated

with the ESM including an average strain rate effect and non-linear material

behaviour, while the impulsive asymptote may be determined with the MCFM,

including higher modes and strain rate effects, but excluding non-linear material

behaviour.

• Linear-elastic material behaviour is unrealistic for response to blast loading. When

material behaviour is non-linear and higher modes and strain rate effects have to be

included, non-linear FE simulations, such as Shi et al. [2008], may be the only option.

The shape of the P-I diagram should result directly from these simulations, instead of

assuming a hyperbolic shape.

• The boundary conditions chosen in this paper (clamped-free) where based on a

building structure as a whole. Other boundary conditions such as hinged-hinge and

clamped-clamped, which are more common for structural components, should be

investigated. Also the influence of an axial load should be taken into account, to

extend the problem to columns. Shear deformation and rotary inertia should be

included.
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A List of symbols

All dimensionless parameters which have a dimensional equivalent are denoted with a bar.

For example, the dimensional parameter a has a dimensionless equivalent ā.

A area of beam cross section in m2

ac critical wave number as in (8)

an first wave number of mode n

α γ2/s2

bn second wave number of mode n

β a factor depending on pulse shape

Cn constant which determines amplitude of mode shape

cbs;n modal contribution factor for base shear

D̄n(t̄) time dependent dynamic load factor

D̄n;max dynamic load factor

δnm Kronecker delta which is 1 as n = m and 0 otherwise

E Young’s modulus in N/m2

ε fraction of total response that is not accounted for

Feq equivalent load

F̄n participation factor as in (14)

F̄(t̄) dimensionless pulse shape as in (12)

f dimensionless load as in (38)

Ψn(x̄) mode shape for rotation due to bending moment

ϕn(x̄) rotation due to bending moment in mode n

G Shear modulus in N/m2

γ material parameter as in (3)

H height of beam in x-direction in m

I second moment of area of beam cross section in m4

i dimensionless impulse as in (39)

j imaginary unit

Keq equivalent stiffness

m mass per unit length in kg/m

m̄ mH4ω2
1/EI

Meq equivalent mass

µ(x, t) moment in mode n

µ̄(x̄, t̄) µ(x̄, t̄)H/EI
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µ̄b(t̄) base moment response of mode n

µ̄b;c critical base moment

µ̄b;n base moment in mode n

µ̄b;st static base moment:
∫ 1

0 x̄P̄(x̄)dx̄

M̄n(x̄ spatial distribution of internal moments in mode n

n mode number

ω1 fundamental natural frequency in rad

ω1;st fundamental natural frequency by ESM using ȳst(x̄)

ωn natural frequency in rad

ω̄n ωn/ω1.

P(x) spatial load distribution in N/m

P̄(x̄) P(x̄)H3/EI

Pm uniform load distribution in N/m

P̄m P̄m H3/EI

rc critical response quantity

rdyn dynamic response

rst static response

s geometry parameter: slenderness ratio as in (3)

t time in s

t̄ ω1t

td blast duration in s

t̄d ω1td

Tn natural period of nth mode

u(t − t0) unit step function which is 0 before t0 and 1 after t0

V̄n(x̄) spatial distribution of internal shear forces

v̄b(t̄) base shear response of mode n

v̄b;c critical base shear

v̄b;ds internal base shear in static deflected shape

v̄b;ms internal base shear in first mode shape

v̄b;n base shear in mode n

v̄b;st static base shear:
∫ 1

0 P̄(x̄)dx̄

vn(x, t) shear in mode n

v̄m(x̄, t̄) vn(x̄, t̄)H2/EI

Wn(x) mode shape for transverse deflection including shear

W̄n(x̄) Wn(x̄)/H
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x axial coordinate of beam as in Figure 2a

x̄ x/H

y(x) transverse deflection in m

yn(x, t) transverse deflection of mode n

ȳ1(x̄) dynamic deflected shape in first mode F̄1W̄1(x̄)

ȳn(x̄, t̄) yn(x̄, t̄)/H

ȳst(x̄) static deflected shape
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