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The present paper describes a numerical formulation for the analysis of damage in steel 

pipeline bends. In particular, the numerical implementation of Gurson plasticity model is 

described in the framework of a special element, referred to as “tube element”. This is a 

three-node element, which simulates pipe behavior combining longitudinal deformation 

with cross-sectional ovalization and warping. The numerical results obtained with the tube 

elements are compared with results obtained with selective integrated Heterosis elements. 

The constitutive equations are integrated through an Euler-backward numerical scheme, 

enforcing the condition of zero stress in the radial direction of the pipe. Results for isotropic 

hardening have been obtained. 
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1 Introduction 

Gasses and fluids are transported via an extensive infrastructure of steel pipelines. In the 

design of pipeline systems the use of elbows (pipe bends) is important to cross obstacles, 

like the many rivers and canals in the Netherlands, as shown in Figure 1. As shown by the 

pioneering work of Von Karman, the flexural rigidity of pipe bends is smaller than that of 

a straight pipe. This added flexibility makes them able to sustain significant deformations 
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and therefore suitable to accommodate thermal expansions and absorb other externally 

induced loads in the pipeline.  

 

The pipelines can be subjected to combinations of soil pressures, temperature variations 

and soil settlements, which cause permanent plastic bending moments. These bending 

moments cause the circular cross-section of the elbows to ovalize. In addition, the initially 

plane cross section of the bend tends to deform out of its own plane, which is also known 

as warping. In combination with alternating levels of internal pressure, the variation of the 

stresses in the longitudinal and the radial directions may lead to the initiation and 

progressive development of plasticity. 

 

 
Figure 1:  Pipeline crossing a canal (photo: ir. A.M. Gresnigt) 

 

In structural steels, after the onset of plasticity, progressive material damage can initiate in 

the form of micro-void nucleation. The micro-voids in the metallic material can eventually 

grow and coalesce leading to cleavage cracking. The initiation and growth of voids within 

a metallic material can be elegantly simulated by means of the Gurson material model [3]. 

This plasticity based material model contains the classical von Mises model and is capable 

of reproducing accurately various aspects of metallic material post-yield response. 

According to this model, the real material consists of intact material, carrying the stresses, 

and voids. A numerical implementation of this model has been presented by Aravas [1]. 
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Herein, the finite element implementation of the Gurson model is discussed in the 

framework of a special finite element, the “tube element”, which describes the tube 

deformation in a rigorous manner, combining beam-type deformation with cross-sectional 

deformation. 

2 Finite element formulation 

In principle, finite element shell models can be employed to obtain very accurate solutions 

for the nonlinear analysis of piping structures. To reduce the cost of analysis, various 

different formulations of “simple” pipe elbow elements have been developed. Von Karman 

[9] analyzed elbows subjected to a constant in-plane bending moment and showed that the 

cross-section deforms to an oval. In the analysis, the longitudinal and circumferential 

strains due to ovalization of the cross section are superimposed on curved beam theory 

displacements. Vigness [10] later showed that out-of-plane flexibility factors were identical 

to the in-plane values. Clark and Reissner [11] proposed equations for the bending of a 

toroidal shell segment and, derived from an asymptotic solution, introduced the flexibility 

and stress factors. Among others, Rodabough and George [12] extended the work by Von 

Karman and used the potential energy approach to investigate the effects of internal 

pressure for the case of in-plane bending under a closing moment. They formulated the 

pressure reduction effect on the flexibility and stress intensification factors. With zero 

pressure their results reduce to von Karman’s. 

 

Bathe and Almeida [13, 14] proposed an efficient formulation for a tube bend element with 

axial, torsional, and bending displacements and the Von Karman ovalization deformations. 

The main characteristic of the tube element is the combination of longitudinal (beam-type) 

with cross-sectional deformation (ovalization). Based on this formulation, Karamanos and 

Tassoulas [8] developed a nonlinear three-node tube element, capable of describing 

accurately in-plane and out-of-plane deformation. This element has been used successfully 

for predicting the ultimate capacity of inelastic tubes under the combined action of thrust, 

moment and pressure. The isoparametric beam finite element concept is used to describe 

longitudinal deformation, with three nodes defined along the tube axis, as shown in Figure 

2. Geometry and displacements are interpolated using quadratic polynomials. 
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Figure 2:  Coordinate systems tube finite element 

 

The location of a point before deformation is determined by the position vector X, defined 

in a Cartesian global axes system { }1 2 3=iX , i , , , as shown in Figure 2. The tube element is 

assumed to be symmetric with respect to the 1 3−X X plane. Regarding a beam rotation 

about the 2X axis, each node possesses three degrees of freedom (two translational and 

one rotational), which define its position and orientation. 

At each element node k a local Cartesian axes system { }ki;i , ,χ = 1 2 3  is defined. This 

system is used as a reference frame for the cross-sectional deformation parameters. 

At each integration point a local system is introduced through the use of coordinates ξi  in 

the hoop, longitudinal and along the thickness direction (denoted as 1ξ , 2ξ  and 3ξ  

respectively), as presented in Figure 2. Due to symmetry, only half of the tube is analyzed 

( )12 2−π ≤ ξ ≤ π . The 2ξ  axis spans  between (0, +1), where the 3ξ  axis spans between  

(–1 , +1). 

2.1 Initial element geometry 

The pipe thickness h is assumed to be constant and a reference line is chosen within the 

cross-section. The initial location of any point within the element can therefore be 

interpolated on the basis of the node coordinates, the reference line and the thickness via:  

( ) ( )( ) ( ) ( )
= = =

= ξ + ξ ξ + ξ ξ ξ∑ ∑ ∑X A r n
3 3 3

k k 2 k 1 k 2 3 k 1 k 2
k 1 k 1 k 1

hN N N
2

,  (1) 

where ξk 2N ( )  represents the corresponding Lagrangian quadratic interpolation functions, 

kA  the position vector of node k in the global axes system, and ξk 1( )n  the “in-plane” 
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outward normal of the reference line. The position vector of the undeformed reference line 

at the cross-section corresponding to node k can be expressed as: 

ξ = χ + χ + χk 1 k,1 k,1 k,2 k,2 k,3 k,3( ) x x xr , (2) 

where, in the original configuration, 

ξ = ξ
ξ = ξ
ξ =

k,1 1 1

k,2 1 1

k,3 1

x ( ) r cos
x ( ) r sin
x ( ) 0,

 (3) 

with r the radius of the undeformed reference line. 

2.2 Updated element geometry 

For the purposes of the present study, bending is applied about the axis 2X  (i.e. −1 2X X  is 

the plane of bending). The deformed tube axis is defined by: 

( )
=

ξ = ξ∑
3

c 2 k k 2
k 1

N ( )x x ,  (4) 

where kx  is the position vector of node k. To describe cross-sectional deformation, pipe 

thickness is assumed to be constant and a reference line is chosen within the cross-section. 

Both in-plane (ovalization) and out-of-plane (warping) cross-sectional deformations are 

considered. For in-plane deformation of the tube element, fibers initially normal to the 

reference line are assumed to remain normal to the reference line.  

Following the formulation by Brush and Almroth [2], the position vector of the reference 

line at the current configuration can be expressed in terms of the radial and tangential 

displacements. The updated components of ( )ξk 1r  at the deformed cross-section, as 

depicted in Figure 3, are 

[ ]
[ ]

ξ = + ξ ξ − ξ ξ

ξ = + ξ ξ + ξ ξ
ξ = ψ ξ

k,1 1 1 1 1 1

k,2 1 1 1 1 1

k,3 1 1

x ( ) r w( ) cos v( )sin

x ( ) r w( ) sin v( )cos
x ( ) ( ).

 (5) 

In the above expressions ( )ξ1w , ( )ξ1v  and ( )ψ ξ1  are displacements of the reference line 

in the radial, tangential and out-of-plane (axial) direction, respectively. 

The material fibers normal to the reference line may rotate in the out-of-plane direction by 

angle ( )γ ξ1 , as illustrated in Figure 4. The displacement due to the rotation of any point 

on the local thickness vector at distance ξ3  can be approximated as: 

( ) ( )
=

⎡ ⎤δ = ξ γ ξ ξ⎢ ⎥⎣ ⎦
∑
3

3 1 k 2
k 1

h N
2

 (6) 
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Figure 3:  Cross-section deformation    

 

 
Figure 4:  Out-of-plane displacement and rotation of the cross section  

 

Displacement δ is directed along the axis ( )ξ1m . In case of small displacements the vector 

( )ξ1m  can be taken equal to χk,3 . The vector components in the global system are 

( ) ( )
=

⎡ ⎤= ξ γ ξ χ ξ⎢ ⎥⎣ ⎦
∑
3

3 1 k,3 k 2
k 1

hd N
2

. (7) 

The deformation functions ( )ξ1w , ( )ξ1v , ( )ψ ξ1  and ( )γ ξ1  are discretized as follows: 

= =
ξ = + ξ + ξ + ξ∑ ∑1 0 1 1 n 1 n 1

n 2,4,6,... n 3,5,7,....
w( ) a a sin a cos n a sin n  (8) 
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= =
ξ = − ξ + ξ + ξ∑ ∑1 1 1 n 1 n 1

n 2,4,6,... n 3,5,7,....
v( ) a sin b sin n b cos n  (9) 

= =
ψ ξ = ξ + ξ∑ ∑1 n 1 n 1

n 2,4,6,... n 3,5,7,....
( ) c cos n c sin n  (10) 

= =
γ ξ = γ + γ ξ + γ ξ + γ ξ∑ ∑1 0 1 1 n 1 n 1

n 2,4,6,... n 3,5,7,....
( ) sin cos n sin n  (11) 

Coefficients na , nb  refer to in-plane cross-sectional deformation (“ovalization” 

parameters) and nc , γn refer to out-of-plane cross-sectional deformation (“warping” 

parameters). With the geometry and displacement functions given in equations (1), (2), (5) 

and (7), the position vector of an arbitrary point at the deformed configuration is  

( ) ( ) ( ) ( )
=

⎡ ⎤= + ξ + ξ ξ + ξ γ ξ χ ξ⎢ ⎥⎣ ⎦
∑
3

k k 1 3 k 1 3 1 k,3 k 2
k 1

h h N
2 2

x x r n ,

where the first two terms within the brackets denote the deformed reference line and the 

latter two the deformations “through the thickness”. 

 

The stress and strain tensors are described in terms of their components with respect to the 

curvilinear coordinate system along ξ1 , ξ2  and ξ3 . The covariant base vectors g1, g2, g3 

are obtained by appropriate differentiation of equation (1) with respect to the coordinates 

ξ1 , ξ2  and ξ3 . Note that g1 and g2 define the shell laminas and g3 runs through the 

thickness. The stress tensor and the incremental strain tensor are written according to 

( )= σ ⊗σ ij
i jg g         

and 

( )Δ = Δε ⊗ε k l
kl g g         

where  

( )Δε = Δ + Δkl k l l k
1 u u
2

 and ( )∂ Δ
Δ = ⋅

∂ξk /m k
m

u u g . 

Furthermore, shell theory requires that ( )⋅ ⊗σ m m  is zero throughout the deformation 

history, where m is the unit normal vector to any lamina. It is readily shown that m is 

equal to g3/|g3|. Similarly, for the tube element it is required that σ = Δσ =33 33 0 , whereas 

the corresponding strain increment component Δε33 is considered unknown.  
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For the purposes of the present study, bending is applied about axis X2 (i.e. X1-X3 is the 

plane of bending). An 5th degree expansion ( ≤n 5  in equations (8), (9), (10) and (11)) for 

( )ξ1w , ( )ξ1v , ( )ψ ξ1  and ( )γ ξ1  is found to be adequate for all cases.  

 

Regarding the number of integration points in the circumferential direction, 19 equally 

spaced integration points around the half-circumference are used including the two points 

on the symmetry plane. Five Gauss points are used in the radial (through the thickness) 

direction. With two Gauss points the tube element is underintegrated with respect to the 

longitudinal coordinate ξ2 . 

3 Gurson material model 

In structural steels, after the onset of plastification, progressive material damage can 

initiate in the form of micro-void nucleation. These voids are first nucleated at second 

phase particles under the application of external loads, as shown by Brown and Embury 

[15]. The gradual growth of micro-voids in the material, due to large plastic deformations, 

will lead to response degradation and eventually fracture.  

The initiation and growth of voids within a metallic material can be elegantly simulated by 

means of the Gurson material model [3]. As compared to other models, the Gurson model 

has a simpler form and a fewer number of material constants. This pressure dependent 

plasticity material model contains the classical Von Mises model and is capable of 

reproducing accurately various aspects of metallic material post-yield response. According 

to the model, the real material consists of intact material, carrying the stresses, and voids. 

Numerous alterations and improvements with respect to the yield function and damage 

evolution, have been suggested by various authors, most notably Tvergaard and 

Needleman (Tvergaard [4, 5], Chu and Needleman [6], Tvergaard and Needleman [7]), 

such that it is often referred to as the Gurson-Tvergaard-Needleman (GTN) model. 

The yield function and plastic potential in the Gurson model are expressed as: 

( ) ⎡ ⎤⎛ ⎞σ = + − −⎢ ⎥⎜ ⎟σ⎝ ⎠σ ⎣ ⎦
3

2 3q pq * *22F 2q f cosh q f 112 2
, (12) 

where q is the effective deviatoric von Mises stress, and p is the hydrostatic stress. The 

surface is continuous and hence avoids discontinuity problems. The material dependent 

parameters 1q , 2q  and 3q  are introduced by Tvergaard [4, 5] and affect the shape of the 
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yield surface. The equivalent tensile flow stress in the matrix material σ  is a function of 

the equivalent plastic strain. The parameter *f  represents the current void volume fraction. 

The change in void volume fraction during an increment of deformation is partly due to 

the nucleation of new voids and partly due to the growth of existing ones. As proposed by 

Chu and Needleman [6] the void nucleation function is assumed to have a normal 

distribution and is related to the equivalent plastic strain. The void growth rate is 

proportional to the differential change in the plastic strain of the matrix material.  

( )
= +

= − ε δ + ε

* * *
growth nucleation

pp*
ijij

df df df

1 f d Ad
 (13) 

where 
⎡ ⎤⎛ ⎞ε − ε⎢ ⎥⎜ ⎟= −⎢ ⎥⎜ ⎟π ⎝ ⎠⎢ ⎥⎣ ⎦

2p
N N

NN

f 1A exp
2 ss 2

,   

εP  = the microscopic equivalent plastic strain,  

Nf  = the volume fraction of void nucleating particles,  

εN  = the mean strain for nucleation and,  

Ns  = the standard deviation. 

3.1 Constitutive framework 

The strain rate of the matrix material ε  can be decomposed in an elastic and a plastic part: 

= +ε ε εpe  (14) 

In order to take the Bauschinger effect into account kinematic hardening is introduced. The 

yield function, Eq. (12), becomes: 

( ) ⎡ ⎤⎛ ⎞= + − −⎢ ⎥⎜ ⎟σ⎝ ⎠σ ⎣ ⎦
σ 3

2 3q pq * *22F 2q f cosh q f 112 2
, (15) 

where ( )= σq q and ( )= σp p , and   

= −σ σ α . (16) 

The center of the yield surface α , also known as the backstress, is updated as: 

+Δ = +α α αt t t d . (17) 
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Prager [16] assumed that the yield surface moves in the direction of the plastic strain. When 

hardening parameter ISOH  is constant the following kinematic hardening rule is linear: 

+Δ

+Δ= ⋅ ⋅ ε
σ

α
σ

t t p
KINt td H d  (18) 

Isotropic hardening is defined as a function of the equivalent plastic strain: 

σ = σ + ⋅ εp
0 ISOH ,  (19) 

where σ0  represents the initial flow stress in the matrix material. The isotropic hardening 

response is controlled by parameter ISOH .  

The associated flow rule is defined as: 

⎛ ⎞∂ ∂∂ ∂ ∂= λ = λ +⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠
ε

σ σ σ
p p qF F Fd d d

p q
 (20) 

with the standard Kuhn-Tucker conditions: 

λ ≥d 0 , ≤F 0 , λ ⋅ =d F 0  (21) 

The stress tensor can be written as: 

= − +σ 2p q
3

I n , (22) 

where  

= 3
2q

n s . (23) 

3.2 Numerical implementation 

Aravas [1] proposed a numerical algorithm, based on the Euler backward method, for 

pressure-dependent plasticity models. Integration of Eq. (20) yields: 

+Δ

+Δ

+Δ

+Δ +Δ

+Δ

∂⎛ ⎞Δ = Δλ⎜ ⎟∂⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂
⎜ ⎟= Δλ − +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

= Δε + Δε

ε
σ

pt t

t t

t t

t t t t

t t
p q

F

1 F F
3 p q

1
3

I n

I n

 (24) 

where   
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+Δ

⎛ ⎞∂Δε = −Δλ ⎜ ⎟∂⎝ ⎠
p

t t

F
p

 and 
+Δ

⎛ ⎞∂Δε = Δλ ⎜ ⎟∂⎝ ⎠
q

t t

F
q

 (25) 

Elimination of Δλ  gives: 

+Δ +Δ

⎛ ⎞ ⎛ ⎞∂ ∂Δε + Δε =⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠
p q

t t t t

F F 0
q p

 (26) 

First a trial state of stress is obtained, assuming that the entire step is elastic: 

= + ⋅ Δσ σ εe t D . (27) 

Isotropic elasticity is assumed so that 

( )⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

ijkl ij jl jkkl ik il2D K G g g G g g g g
3

, (28) 

where K  is the elastic bulk modulus and G the shear modulus. 

For plane stress elements it is required that the stress perpendicular to the surface σ =33 0 , 

whereas the corresponding strain increment component Δε33  is considered unknown.  

If the yield criterion is violated, the final stress at t t+ Δ  is computed through a plastic stress 

correction, as shown in Figure 5, 

( )Δ = − ⋅ Δ Δ+ σ σ ε − εpt t t D . (29) 

 

 
Figure 5:  Graphical representation of stress update procedure 

 

Equivalently, the updated stress state at time + Δt t  can be written as: 

+Δ +Δ +Δ +Δ= − ⋅ Δε − ⋅ Δεσ σt t e t t t t t t
p qK 2G n  (30) 

To enforce the zero stress condition in the radial direction, the strain increment is 

decomposed in two parts 
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Δ = Δ + Δε33 cε ε ψ , (31) 

and  

( )= ⊗ = ⊗3 3 3k 3m
c k mg gψ g g g g . 

Therefore, equation (30) becomes 

( )

( ) ( )

+Δ = + Δε − Δε − Δε

Δε
= Δε + Δε − Δε −

σ σ ψ

σ + ψ

t t e
33 c p q

qt
33 c p

K 2G

K 3G
q

D n

D D s
 (32) 

where  

= + ⋅ Δσ σ εe t D , (33) 

and the left superscript + Δt t  is omitted for the sake of simplicity in p, q and s. 

It should be underlined that σe  is not equal to the elastic predictor tensor σe . Using 

equation (22) the hydrostatic and deviatoric parts of the final stress state are now given by 

the following relationships: 

= + Δε − Δεe 33
p 33p p K K g  (34) 

Δε⎡ ⎤
= + Δε −⎢ ⎥

⎣ ⎦

qe
33 c

32G
2 q

s s y s , (35) 

where ep  and 
ijes  are the hydrostatic and deviatoric parts of σe . 

Using equation (35) and the fact the contravariant components of cy  are 

= −km 3k 3m km 33
c

1y g g g g
3

, (36) 

it is possible to obtain an expression for the final effective stress q : 

⎛ ⎞= − Δε + + Δε + Δε⎜ ⎟
⎝ ⎠

2 1 2
e e33 2 2 33 33

q 33 33q 3G q 6Gs 4G g g , (37) 

where  

= ⋅
ij kme e e

ij km
3q
2

g g s s . (38) 

The condition of zero stress normal to the surface ( )σ =33 0  is equivalent to the following 

condition 

− =e33 33s pg 0  (39) 

and using equation (35), the following expression is obtained 
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( ) ⎛ ⎞+ Δε − + Δε =⎜ ⎟
⎝ ⎠

33 e33 33 33
q 33

4q 3G pg s G g g q 0
3

. (40) 

Equations (26), (15) and (40) constitute a nonlinear algebraic system of Δεp , Δεq  and Δε33 , 

which are chosen as the primary unknowns. The equations are solved by means of a 

Newton-Raphson iteration process at integration point level. During the iterative 

procedure, the stress is corrected along the hydrostatic and the deviatoric axes p  and q  

using equations (34) and  (37), respectively. 

 

4 Numerical example 

A pipeline bend, as shown in Figure 6, is considered while subjected to a monotonic 

prescribed rotation κ =p 0.2 rad. The radius of the pipe r is 198.45 mm. The radius of the 

bend R is 609.4 mm. The structure is fixed at node A, so that the end node cannot translate 

or rotate, whereas the cross-section is free to ovalize, but not to warp. The other end is free 

to translate perpendicular to the pipe axis but is restrained in the other direction. The 

cross-section may ovalize, but cannot warp. For the analysis 11 tube elements were used. 

The numerical results obtained with the tube elements are compared with results obtained 

with selective integrated Heterosis elements, as introduced by Hughes et al. [17]. For the 

formulation of the tube element the use of the warping terms is essential. In the elastic 

domain the results with the tube elements and the shell elements are very close. 

For the analysis the following material parameters were adopted. The used values for the 

Gurson parameters are commonly applied for metallic strip material. The initial void 

volume *
0f  = 0.004 and the initial yield stress is 400 N/mm2. The Young’s modulus is 

205000 N/mm2 and the Poisson ratio is 0.3. The parameters 1q , 2q  and 3q  are 1.5, 1.0 and 

2.25 respectively. The hypothetical isotropic hardening parameter ISOH  = 500 N/mm2. 

The volume fraction of void nucleating particles Nf = 0.04, the standard deviation Ns  = 0.1 

and the mean strain for nucleation εN  = 0.3. 
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L1 = 609.6 mm 

L2 = 152.4 mm 

RB = 609.4 mm 

r = 198.45 mm 

t = 9.5 mm 

ν = 0.3 
E = 1.66×105 N/mm2 
 

R 

pκ

L1

L2

A 2r

t 

B’ 

B’ 

 
Figure 6:  Schematic of pipe structure 

 

Only half the circumference is analyzed due to symmetry. In the following graphs, the 

stresses and micro-damage *f  are shown with respect to the hoop direction of the cross 

section B’-B’, where 0 degrees denotes the outside and 180 degrees the inside of the pipe 

bend .  

Figures 7 and 8 show the circumferential stress at the inside of the pipe wall and the 

longitudinal stress at the outside of the pipe wall, respectively. 
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Figure 7:  Circumferential stresses at inside of the pipe wall, κ =p 0.2 rad 
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Figure 8:  Longitudinal stresses at outside of the pipe wall, κ =p 0.2 rad 

 

The onset of plasticity is at the inside of the tube due to the circumferential stress, as shown 

in Figure 9a. Due to the longitudinal stress at the outside of the pipe wall, micro damage 

will also grow at the inside of the pipe bend as shown in Figure 9b. The red colour 

corresponds to the initial void volume *
0f  and the blue colour to the maximum value. 

 

 
Figure 9:  Damage development at inside of pipe wall and at outside of pipe wall (Heterosis 

elements) 

maximum value 

initial void volume 
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In Figure 10 the development of micro-damage *f  at the inside of the pipe wall is shown. 

When the tube elements are used, the maximum developed damage is less than the 

damage with the Heterosis shell element, but the zone is wider. Analysis of the pipe 

structure with different integration schemes or number of elements do not show a 

significant difference, as the plastic strains are not large. The observed difference in 

damage development is due to the algorithms which are used to describe the deformation 

of the elements. 
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Figure 10:  Damage development at inside of the pipe wall, κ =p 0.2 rad 

5 Conclusions 

In this paper the stresses and micro-damage development in steel pipelines are analyzed 

by means of finite tube elements in combination with the Gurson constitutive model. The 

results are compared with the stresses and damage development determined with finite 

shell elements in combination with the same material model. The stresses in longitudinal 

and circumferential direction in the pipeline determined with both elements show a very 

good agreement. The maximum damage development with the tube elements is lower 

than with the shell elements, but the predicted shape and area under de curve are close. 
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