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Constitutive modelling of hyperelastic 
rubber-like materials 
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The simulation of rubber-like material behaviour by means of the finite element method has 

been described in this study. Proper material models were selected for the numerical 

description of static hyper-elasticity. The combinations of a continuum damage mechanics 

concept and a pseudo-elastic concept with Gao’s elastic law were used to simulate the ideal 

Mullins effect. Furthermore, a specific model describing the Mullins effect with permanent 

deformation was proposed. Another focus of this study was the verification of numerical 

constitutive models by means of experimental evidence, which is essential for the proper 

description of the behaviour of rubber-like materials in engineering applications.  
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1 Introduction 

Rubber-like materials exhibit a highly nonlinear behaviour characterized by hyperelastic 

deformability and incompressibility or near-incompressibility. Normally, the maximum 

extensibility of rubber could reach values varying from 500% to 1000% and the typical 

stress-strain curve in tension is markedly nonlinear so that Hooke’s law can not be used 

and it is not possible to assign a definite value to the Young’s modulus except in the region 

of small strains, where the Young’s modulus is of the order of 1MPa. In contrast, the 

Young’s modulus for typical hard solids is in the region 104-106 MPa and the maximum 

elastic extensibility of hard solids seldom exceeds 1%. Rubber-like materials are effectively 

incompressible in most cases. However, all real materials are compressible to a certain 

degree even if the bulk modulus is several orders of magnitude larger than the shear 

modulus. 

Many attempts have been made to develop a theoretical stress-strain relation that fits 

experimental results for hyperelastic materials. There are two different phenomenological 

approaches to the study of rubber elasticity. Firstly, a theory treats the problem from the 
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viewpoint of continuum mechanics and, secondly, a statistical or kinetic theory attempts to 

derive elastic properties from some idealized model of the structure of vulcanised rubber. 

The representative works can be found in the literature Mooney [1940], Treloar [1944], 

Rivlin [1948a, b, 1949], Yeoh [1993], Gent [1996] and Ogden [1972a, b].  Besides these 

purely phenomenological models, a micro-mechanically based idealized network concept 

has also been proposed. Typical models are proposed by Khun and Grun [1942], James and 

Guth [1943], Wang and Guth [1952], Treloar [1946], Flory and Rehner [1943], Wu and Van 

der Giessen [1993], Charlton and Yang [1994], Boyce [1996], Boyce and Arruda [2000] , 

Miehe et al. [2004] and Guo [2006]. Theoretical analysis and engineering application 

require a constitutive law to be expressed as simple as possible, especially, when we 

consider complicated singular problems (Knowles and Sternberg, 1973; Mooney, 1940) and 

stress-softening.  However, simplicity often violates rationality. To reflect material 

behaviour under such situations and to come up with a reasonable and applicable elastic 

law is still an important issue in nonlinear elasticity theory. 

Moreover, when a rubber specimen is subjected to cyclic loading the stress-softening 

phenomenon has been observed. Bouasse and Carriere [1903] first found this phenomenon 

in a test for a rubber vulcanizate. As a consequence of a more extensive experimental 

investigation by Mullins [1947], the stress softening effect is now widely known as the 

Mullins effect. Many researchers have studied this effect by means of both molecular-based 

and phenomenological-based models. More details can be found in references of Mullins 

[1947], Mullins and Tobin [1957], Harwood et al [1967], Johnson & Beatty [1993], Beatty 

and Krishnaswamy [2000], Qi and Boyce [2004], Gurtin and Francis [1981], Simo [1987], 

Govindjee & Simo [1992a, b], Miehe [1995], Chagnon et al. [2004] Ogden and Roxburgh 

[1999] and Boyce and Arruda [2000]. Among these proposed methods, the continuum 

damage mechanics (CDM) approach and the pseudo-elastic model are often employed to 

describe Mullins effect. The basic mechanisms of the two models are completely different, 

so that comparison of the two models showing the advantages and limitations will be 

beneficial to engineering applications.  

Another phenomenon for carbon-filled rubber is that after loading and subsequent 

unloading rubber specimens, in general, do not return to their initial state, but exhibit a 

residual deformation. The permanent deformation combined with stress-softening effects 

results in complex mechanical behaviour and modelling is still at an early stage. Lion 

[1996], Septanika [1998], Miehe and Keck [2000], Drozdov and Dorfmann [2001] and Besdo 

and Ihlemann [2003] made their contributions to this field. Recently, Dorfmann and Ogden 

[2004] used pseudo-elasticity to capture Mullins effect and residual strain with the 
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inclusion of two variables in the energy function. But, this model cannot describe evolution 

of rubber softening and permanent deformation and has too many adjustable parameters, 

which can, to some degree, only be determined arbitrarily [Zhong 2005]. 

The present work was motivated by the need for an appropriate material model, to be used 

for hyperelastic materials, which contains a small number of parameters and is able to 

describe the material response for different deformation modes under reasonable high 

deformation levels. The second purpose of this study is concerned with constitutive 

models, which incorporate the stress-softening phenomena. The CDM concept and a 

pseudo-elastic model combined with Gao’s elastic law are proposed to describe ideal 

Mullins effect, respectively. Finally, a specific constitutive model to capture the Mullins 

effect and its corresponding permanent deformation is proposed.  

2 Mullins effect 

Fig. 1 depicts the curve of the stress against stretch λ for the stress-softening or Mullins 

effect in a simple tension test. Under cyclic loading conditions, the load required to 

produce a given stretch during the second loading cycle (along branch aBb′ in Fig. 1) is 

smaller than the load required to produce the same stretch during the primary loading 

cycle (abb′). 

Experimental evidence by Mullins (1947) and Mullins and Tobin (1957) show that a model 

for filled rubber vulcanizates excluding the permanent deformations is an ideal 

representation  of  the  stress  softening  as  shown in Fig. 1a. The stress-stretch response 

upon initial loading of a material, which has experienced no previous deformation, is 

defined as the virgin response and the corresponding stress-stretch path is called the virgin 

material curve or primary loading path (path b in Fig. 1a). The stress-stretch response upon 

unloading of a material is called the stress-softening response and the corresponding 

stress-stretch path is called the stress-softening material curve or unloading or secondary 

loading path. If the stretch is increased beyond historic maximum stretch (e.g. λb’), the 

material response starting at λb’ follows the virgin curve as if unloading has not taken 

place. So, for an ideal representation of stress softening, the curve bb’cc’d in Fig. 1a is 

defined as the virgin material curve or primary loading path. 

Unlike the above-introduced ideal stress-softening phenomenon, in fact, a typical stress-

stretch response of a rubber material under cyclic loading with a constant maximum 

stretch-amplitude is illustrated in Fig. 1b.  In the first cycle, the loading-unloading path is 

as shown by the solid line. In the next cycles, the loading-unloading paths (dotted line) will 
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approximately follow the unloading path of the first cycle, but will not exactly coincide 

with it. The loading-unloading path of the stress-stretch response becomes quasi-consistent 

for the k-th cycle where k ≥ km. A typical value of km for rubber lies between 5 and 10 (Lion 

1996, Septanika 1998, Ogden 2004). Many experimental investigations demonstrate that 

stress softening in successive loading cycles is most significant during the first and second 

cycle, so the ideal stress-softening model as described by means of Fig. 1a can represent the 

main characteristics without loss of generality.  

Fig. 2 illustrates the more complicated case of the stress softening phenomenon combined 

with permanent deformation. Different from the ideal Mullins effect, after loading and 

subsequent unloading, the rubber specimens do not return to their initial state (A), but 

exhibit residual deformation (AA’); If the stretch is reincreased beyond historic maximum 

stretch (e.g. λB), the material response (after λB) will not follow the virgin curve (BE), but 

follow the curve (CD) and finally return to the virgin curve at D. 

 
(a)                                                                                 (b) 

Figure 1 A. schematic uniaxial stress-stretch response (a) for an ideal stress softening material; (b) 

for the stress softening under repetitive loading with a constant maximum stretch-amplitude 

 
Figure 2 A. schematic uniaxial stress-stretch response of a stress softening material with residual 

strain 
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3 Constitutive models 

3.1 New constitutive model for rubber-like materials 

Gao proposed a strain energy function that separately considers the resistance of materials 

to tension and compression. Accordingly, a strain energy formulae that only contains two 

terms was given by Gao [1997] 

( )1 1
n nW a I I−= +                                                                                                                  (1) 

where a and n are model parameters. Both I1 and I-1 are strain invariants. The second Piola-

Kirchhoff stress τ becomes 

( )1 1 2
1 12 2 n nW an I I− − −

−
∂= = −
∂

τ I C
C

                                                                             (2) 

Where C is right Cauchy-Green strain tensor.  The second Piola-Kirchhoff stress tensor is a 

useful stress measure in numerical programmes. For engineering purposes the Cauchy 

stress tensor σ is more appropriate. Both stress measures are related via 

1 TJ −= ⋅ ⋅σ F τ F                                                                                                                    (3) 

where J is the Jacobian of the transformation and F is the deformation gradient tensor for 

an undamaged elastic material. Let λi denote the values of principal strain, 
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The stress τ and the incremental stress-strain relation D, which can be derived from Eq. (2), 

are basic equations for implementation of the proposed model in finite element software.  

It is important that the energy function obey the laws of thermodynamics when energy 

functions are used to relate stress and strain in finite element programs. In other words, 

energy functions should mathematically require the solid to increase its internal energy 

when we do work on it. As pointed out by Johnson et al. [1994] unstable energy functions 

can cause great havoc in the nonlinear numerical solution algorithms used in the finite 

element codes.  Stability requires energy functions to obey a certain condition, which is 

known as Drucker’s stability postulate that can be expressed as follows: 

0i i
i
d dσ ε ≥∑                (5) 

where dσi is an increment in the i’th principal Cauchy stress and dεi is an increment in the 

corresponding strain at any point in the solid. For the case of plane stress, the material is 

stable when the tangential stiffness matrix D is positive definite. Johnson et al. [1994] 
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derived Drucker’s stability postulate for the form of Rivlin’s expansion under the condition 

of plane stress.  Gao’s model is a type of polynomial function of invariants, for an 

incompressible material, Drucker’s stability postulate can be expressed as 

( )
2 2 2

22 2 2 2
1 12 2

1 11 1
1 0 0n nW W W a n n I I

I II I
− −

−
−−

∂ ∂ ∂− = − − >
∂ ∂∂ ∂

  (6) 

Generally, a > 0 and 1 < n < 3 [Gao, 1997], so that Gao’s model satisfies Drucker’s stability 

postulate.  Here, the power n is not necessarily an integer. 

3.2 CDM model to represent the ideal Mullins effect 

The Mullins effect is due to the rearrangement of the polymer network under deformation 

when some links between chains, or chains and reinforced particles (e.g. carbon black) are 

broken [Bueche, 1961, Chagnon at el. 2004]. The process is complex since it involves chain 

and multi-chain damage, microstructural damage and microvoid formation [Gent 1976, 

Kramer 1983, Simo 1987]. From the viewpoint of CDM, for an ideal Mullins-type damage 

evolution, it is assumed that damage accumulation occurs only within the first cycle of a 

strain controlled loading process. Further strain cycles below maximum effective strain 

energy do not contribute to this type of damage.   

Let us consider an isotropic, homogeneous and incompressible rubber-like material 

initially characterized by a strain energy function W0 undergoing isotropic damage. 

According to CDM theory [Simo 1987, Miehe 1995, Chagnon et al. 2004], a strain energy 

function W can be expressed in terms of the undamaged (virgin material) W0.  

( ) ( )0, (1 )W d d W= −F F                       (7) 

where d ∈ (0,1) is a scalar damage variable which describes an isotropic damage effect 

characterized by elastic softening of the material and (1-d) is a reduction factor that was 

suggested by Kachanov [1986] and Lemaitre and Chaboche [1990]. In order to establish the 

law of state, the Clausius-Duhem inequality for the internal dissipation has been 

considered [Simo 1987, Miehe 1995]. 

: 0W− + ≥τ E� �   (8) 

Where Ė is the rate of strain tensor, τ and E are conjugate pairs of stress and strain tensor, 

respectively. In this paper E is the Green-Lagrange strain tensor and τ is the second Piola-

Kirchhoff stress. Substitution of Eq. (7) into Eq. (8) gives 

0 0
0 0((1 ) : ) : (1 ) : 0W Wd W d d W d∂ ∂⎛ ⎞− − − + = − − + ≥⎜ ⎟∂ ∂⎝ ⎠

E τ E τ E
E E

� �� � �   (9) 
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The inequality for every choice of Ė needs the necessary condition, so, the constitutive 

hyperelastic equation is achieved 

( ) ( ) ( )0
01 1

W
d d

∂
= − = −

∂
F

τ τ
E

  (10) 

where τ and τ0 are respective stresses of current and undamaged states. Substituting Eqs. 

(9) – (10) into Eq. (8), the Clausius-Duhem inequality is reduced to 

( ) ( )0
,

0
W d

d W d fd
d

∂
− ≡ = ≥

∂
F

F� � �   (11) 

Where f is denoted as the thermodynamic force, which drives damage evolution. It turns 

out that f is identical to the effective strain energy W0. Therefore, it is assumed that the 

Mullins-type damage is governed by the variable  

( ) ( )
0,s t

t Max f sα
∈⎡ ⎤⎣ ⎦

=  (12) 

Where α(t) is the maximum thermodynamic force or effective strain energy, which has 

been achieved within time interval [0, t]. Thus the damage criterion can be expressed as 

( ) ( )( ) ( )0 0f t W t tφ α α= − = − ≤F   (13) 

Inequality of Eq. (13) indicates that the current deformation is not maximum in the history 

and no damage evolves therefore it is in unloading or reloading path. Considering Eq. (13) 

as an equality, it defines a damage surface by means of strain energy. The mechanical 

situations in this case can be determined in terms of  

0

0

0

: 0  in an unloading direction from the damage state

0 and : 0  in a neutral direction from the damage state

: 0  in a loading direction from the damage state

f

f

f

φ

⎧ = <
⎪⎪= = =⎨
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τ E

τ E
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� �

� �

� �
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Thus, damage evolution can be summarized as 

0 :     if   - 0 and   0  
0                  otherwise   
f f fφ αα

⎧ = = = >⎪= ⎨
⎪⎩

τ E� ��
�    (15) 

This equation indicates the discontinuous character of this damage effect and gives the 

damage criterion based on the strain energy function so that this model is readily 

applicable to multi-axial states of deformation. Specially, for computational purposes, the 

maximum energy value may be stored and compared with the current energy state to 

determine if further damage is being caused. It can be postulated that the scalar damage 

variable d is a function of α, which on the loading path is W0. A specific form of the 
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damage variable function is borrowed from a damage evolution equation, which Miehe 

[1995] used to simulate a Mullins-type discontinuous damage evolution:  

1 expd d α
β∞

⎛ ⎞⎛ ⎞
= − −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

  (16) 

where d∞ and β are positive model parameters.  The combination of CDM model with 

Gao’s model (W0) is used in numerical implementation. 

3.3 Pseudo-elastic model to represent the ideal Mullins effect 

An ideal stress-softening response without permanent deformation has the following 

characteristics: the stress-strain response upon initial loading of a material, which has 

experienced no previous deformation, follows the primary loading path; the stress-strain 

response upon unloading or reloading of a material follows an unloading or secondary 

loading path; furthermore, the stress-strain response upon reloading returns to the 

primary loading path when the reloading exceeds previous maximum deformation. 

Apparently, for ideal stress softening, stress and strain are uniquely related in each branch 

of a specific cyclic process. The material in loading can be treated as one elastic material, 

and as another elastic material in unloading. Therefore, the terminology of pseudo-

elasticity can be used since stress and strain are uniquely related in each branch of a 

specific cyclic loading process.  

Ogden & Roxburgh [1999] have proposed pseudo-elastic model to describe the damage-

induced stress-softening effect in rubber-like solids. Unlike the CDM model, the essence of 

the theory of pseudo-elasticity is that material behaviour in the loading path and in the 

unloading or reloading paths is described by different strain energy functions. The switch 

between strain-energy functions is controlled by the incorporation of a damage variable η 

into the strain energy function, which is then referred to as a pseudo-elastic energy 

function W(F, η), and η may be either active or inactive. The specific form of W(F, η) used 

by Ogden & Roxburgh [1999] is given by: 

( ) ( ) ( )0,W Wη η φ η= +F F  (17) 

where the damage variable η varies with the deformation and satisfies 0 < η ≤ 1. W0(F) is 

the undamaged strain energy function. φ(η) is referred to as a damage function.  

When the material is strained monotonically from a virgin state without any unloading no 

damage occurs and the behaviour may be described by a strain energy function W0(F). To 

be consistent with this framework, the damage variable η is set inactive and chosen to be 1 

on the primary loading path and the damage function satisfies φ(1) = 0, Eq. (17) reduces to:  
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( ) ( )0,1W W=F F   (18) 

When η is active, it is taken to be dependent on the deformation gradient (the damage 

evolves with deformation) and we write this dependence in the form 

( ), 0W η
η

∂ =
∂

F   (19)  

By substitution of Eq. (17) into Eq. (19), we obtain 

( ) ( )0Wφ η′− = F    (20) 

in general, the value of η will depend on the values of the deformation attained on the 

primary loading path, as well as on the specific formulation of W0(F) and φ(η) used. Since 

η=1 at any point on primary loading path from which unloading is initiated, Wm is 

defined.  

( ) ( )0 m m1 W Wφ′− = =F  (21) 

In accordance with the properties of W0(F), Wm increases along the primary loading path. 

For the purpose of implementation, the damage criterion can be expressed as 

( )( )m 0 m
0,

m 0

            loading
   

                                   unloading or reloading
s t

W W W W Max W s
W

W W Wη φ
∈⎡ ⎤⎣ ⎦

⎧≥ = = =⎪
⎨
⎪< = +⎩

    (22)  

The damage function φ serves to determine the damage parameter in terms of the state of 

deformation through Eq. (20). The choice of φ is arbitrary subject to Eq. (21) and φ(1) = 0 

with η satisfying 0 < η ≤ 1. Ogden & Roxburgh [1999] choose φ to be such that 

( )( )1
m( ) 1m erf r Wφ η η−′− = × − +   (23) 

where m and r are positive material parameters and erf-1 ( ) is the inverse of error function. 

By substituting Eq. (23) into Eq. (20) and after some algebra the expression 

( )( )m 0
1 11 erf W W
r m

η ⎛ ⎞= − −⎜ ⎟
⎝ ⎠

F   (24) 

for η is obtained. Because m and r were defined to be positive and considering Eq. (21), the 

minimum value ηm of η may be obtained from Eq. (24) 

m
m

11 Werf
r m

η ⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 (25) 

For the purpose of finite element calculation, the pseudo-elastic model is combined with 

Gao’s hyper-elastic material model (W0).   
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3.4 A specific model to represent the Mullins effect with residual strain 

We propose a specific form of the pseudo-elastic energy function to represent cyclic 

loading for incompressible, isotropic material with stress softening and residual strain 

(Fig.2). Similar to ideal stress-softening (when A’ returns to A and C returns to B in Fig.2) 

treated in the previous paragraph, the essence of the pseudo-elasticity theory is that 

material behaviour in the primary loading path is described by an elastic strain energy 

function W0(F), and in unloading, reloading or secondary unloading paths by a different 

strain energy function. An extra term is added to describe permanent deformation. The 

pseudo-elastic energy function has the following form  

( ) ( ) ( ) ( ) ( )0 r m, = , +W W f Wη η η φ η+F F F F   (26) 

Wr(F, Fm) is the strain energy related to the permanent deformation. So, the second term in 

the right hand of this equation is related to the phenomenon of residual strains, which 

depend on the strain history. φ(η) is referred to as a dissipation function.  

From the point of initiation of unloading and beyond, the damage variable η is active. It is 

still taken to be dependent on the deformation gradient and following Ogden and 

Roxburgh [1999] this dependence can be expressed as 
( ) ( ) ( ) ( ) ( )0 r m

,
, + 0

W
W f W

η
η φ η

η
∂

′ ′= + =
∂
F

F F F   (27) 

The second Piola-Kirchhoff stress is then given by 

( ) ( ) ( ) ( ) ( )0 r m
0 r

, ,
2 2 2
W W W

f f
η

η η η η
∂ ∂ ∂

= = + = +
∂ ∂ ∂
F F F F

τ τ τ
C C C

  (28)  

The first term on the right hand of this equation is main effect of stress softening, therefore 

it is clear that we should have 0 < η ≤ 1 on the unloading path and associate unloading 

with decreasing η. Then, τr is related to the residual stress in the original configuration. The 

residual strain depends nonlinearly on the maximum value of strain during the previous 

loading history and does not change with current state of deformation F or C. Obviously, 

the residual stress has a similar character. Therefore  

( ) ( )r m
r r m

,
2
W∂

= =
∂
F F

τ τ C
C

 (29) 

If the maximum value of strain is positive (tensile), the corresponding residual stress will 

be negative, and vice versa. For convenience, here we use Wr(C,Cm) and define 

( ) ( ) ( )( )r m 1 m m
1,3

, * 1 / 1 *ii ii ii
i

W K C ABS C C
=

= − − −∑C C   (30) 
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In which K1 is a material parameter and Ciim are components of the Right Cauchy-Green 

stretch tensor at state of maximum strain during the previous loading history. Then τr 

becomes 

( ) ( )
( ) ( )
( ) ( )

1 11m 11m

1 22m 22m

1 33m 33mr

* 1 / 1

* 1 / 1

* 1 / 12

0
0
0

K C ABS C

K C ABS C

K C ABS C

⎛ ⎞− − −⎜ ⎟
⎜ ⎟− − −⎜ ⎟
⎜ ⎟

− − −= ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

τ   (31) 

When unloading initiates from the loading path of simple tension the value of C11m is 

larger than 1 and C22m as well as C33m are smaller than 1. Based on Eq. (31) residual stress 

τ11 is negative and τ22 as well as τ33 are positive. These results are consistent with the 

physical phenomenon of simple tension with permanent deformation.  

Eq. (28) shows that function f(η) leads to a residual stress separate from the total stress. To 

Simplify the separation, we assume f(η) to be directly proportional to η and takes the form,    

( )
m

1
1

f ηη
η

−=
−

  (32) 

This definition ensures f(1) ≡ 0 on the loading path, in which  η = 1, and f(ηm ) ≡ 1 when the 

strain returns to the origin. The damage parameter η can be defined in terms of the 

deformation gradient. Considering that η should satisfy 0 < η ≤ 1 and decreases when 

unloading evolves, η is defined as 

( ) 1

m r m r

m 0

m

0 mr

1 m

1                                                                    Primary loading

11                                     Unloading

11      
r

W W
erf
r mW

W Werf
m W

η η η

⎛ ⎞−
− ⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞⎛ ⎞−= ⎜ ⎟+ − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

m u
mu 0

m

   Reloading

11                          Secondary unloadingW Werf
r mW

η

⎧
⎪
⎪
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪

⎛ ⎞⎛ ⎞−⎪ −⎜ ⎟⎜ ⎟⎪ ⎜ ⎟⎜ ⎟⎝ ⎠⎪ ⎝ ⎠⎩

 (33) 

In which Wmr and Wmu are the values of strain energy at starting reloading and second 

unloading point, respectively. The second Piola-Kirchhoff stress can be calculated from Eq. 

(28) and the incremental stress-strain relation can be derived as 

( )
2

0 0 r
24 4

T TW W Wfη ηη η∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞′= + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠∂
D

C C C CC
i i  (34) 
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The elastic strain energy function W0 in the specific model is presented by Gao’s model for 

the numerical analysis in this paper. 

4 Numerical analysis and applications 

The computational modelling should be capable of predicting the mechanical behaviour of 

any type of strain. To fulfil this goal, we examine certain simple and more complicated 

tests under different loading conditions to evaluate whether the proposed models possess 

the significant features of hyperelastic materials. The material parameters are estimated by 

inverse technique based on experimental data throughout this study [Hendriks, 1991]. 

4.1 Numerical results based on Gao’s constitutive model  

Compression test are first used to evaluate Gao’s model. An extra simple tension test as 

proof will also be presented in the following paragraph. The specimen used for a tension 

and compression test (Pozivilova, 2003) was a cylinder from soft rubber with a diameter of 

11,5mm. The initial marked length for tension was 200mm and for compression was 

10,15mm, respectively.  

Tension test data are used for estimating material parameters, in which one solid element 

represents a tension specimen and results give a=0,2625; n=1,05 in Eq. (1). To simulate 

compression, the requirement of uniaxial stress condition in a compression test is not yet 

satisfied. Since the cylindrical specimen for compression is axisymmetric and symmetric to 

the plane dividing the cylinder (in length) into two equal parts, an axisymmetric analysis 

of a half cylinder was carried out. The mesh is given in Fig. 3a. Adequate boundary 

conditions were prescribed to agree with the experimental conditions.  An identical 

displacement was prescribed at all nodes in the upper cross-section of the cylinder.  The 

values of parameters estimated from tension test data are used. The distribution of the Von 

Mises stress on deformed specimen for compression to 40% of its original length is given in 

Fig. 3b. The loading force can be calculated as a sum of reactions in all nodes belonging to 

the bottom of the pressure head. Fig. 3c illustrates the comparison between the numerical 

results and experimental data.  We can see that Gao’s model is suitable for describing the 

mechanical response in the compression regime (stretch smaller than 1). 

4.2 Numerical results based on CDM model 

The simple tension test and a pure shear test, which were carried out by Chagnon [2004] 

are employed to assess the CDM model and the pseudo-elastic model. The uniaxial tensile 
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Figure 3. (a) FEM model of a quarter of the cylindrical specimen. (b)  The stress distribution on the 

deformed mesh. (c)  Comparison between numerical results and experimental data of the simple 

tension and compression: (◦ ◦ ◦) experimental data and (---) numerical results 

 

tests were conducted on flat coupon specimens and the simple shear specimens are four 

blocks pieces and the simple shear experimental data are transformed into pure shear data 

in order to simplify the analysis (Charlton and Yang 1994). One solid element is used for the 

numerical calculation. 

Since four material parameters (two from Gao’s model and two from CDM) influence both 

the loading path and the unloading or reloading paths for the CDM model, the estimation 

of model parameters has to be manually assisted. The values of material parameters are 

given as a= 0,0004; n = 2,5; d∞ = 0,8 and β = 1,8. The comparisons between experimental 

data and numerical results are illustrated in Fig. 4. From a quantitative point of view, the 

CDM model is not capable of reproducing all curves precisely, especially, the unloading or 

reloading curves. But, this approach still reveals the fundamental phenomenon of Mullins 

effect and predicts the behaviour involving stress softening up to large deformations. 

Furthermore, numerical calculations with the present approach perform well and converge 

rapidly. 

4.3 Numerical results based on the pseudo-elastic model 

In the pseudo-elastic model only two material parameters a and n from Gao’s elastic model 

influence the loading path of the tension test. The other two parameters can be estimated 

from the unloading or reloading paths. These parameters can be checked with pure shear 

 
(a) 

  
 (b)         (c)
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data. The estimated values of the parameters are given as a= 0,012; n = 1,75; r= 1,45 and 

m=2,4. The numerical results for the tension and pure shear test were compared with 

experimental data in Fig. 5, respectively. Fig. 5a shows that the maximum strain in this 

example reaches 500% and unloading starts at a different strain level. The results in Fig. 5a 

are in good agreement with experiments of cyclic simple tension test even at large 

deformation level. The results give extra support to the use of the Gao’s model. Fig. 5b 

illustrates that correspondence between the numerical results and experimental data for 

the pure shear deformation is good up to a certain amount of strain (over 300%). From the  
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            (a)                                                                       (b) 

Figure 4. Comparison between numerical results of CDM model and experimental data: (a) for 

cyclic tension test; (b) for cyclic pure shear test: (■) numerical results and (○) experimental data 
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            (a)                                                                         (b) 

Figure 5. Comparison of numerical results of pseudo-elastic model and experimental data for cyclic 

tension and pure shear test: (a) simple tension and (b) pure shear: (■) numerical results and (○) 

experimental data 
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engineering point of view, the pseudo-elastic model combined with Gao’s elastic law is 

capable of satisfactorily predicting the material behaviour including stress softening. 

Furthermore, the same material parameters are valid for different loading modes (tension 

and shear) applied to the specimens from the same material. 

4.4 Numerical results based on the model with permanent deformation 

Experiments including stress-softening and residual strain accumulation in particle-

reinforced rubber [Dorfmann and Ogden 2004] are used to evaluate the model from 

paragraph 3.4. In the numerical calculation, primary loading is fully determined by the 

strain energy in Eq. (1). The model parameters a and n are estimated based on data of 

primary loading; K1 is obtained by extending the unloading path until the strain returns to 

zero, where Eqs. (29) and (33) are activated; then, r and m may be determined based on the 

unloading data; and finally, the reloading data set determines the parameters r1 and m1. 

These values are summarized as follows:  a = 0,0457; n = 1,72; r = 3,2; m = 0,38; K1 = 0,013; r1 

= 0,35 and m1 = 1,2. A comparison between numerical simulation and experimental data 

with 20 phr (by volume) of Carbon Black filler with maximum stretch λ = 3,0 is shown in 

Fig. 6. The numerical results are in good agreement with the experimental data. Fig. 7  

illustrates the whole evolution of the cyclic loading process with maximum stretch λ = 1,5, 

λ = 2,0 and λ = 2,5. The values of all parameters used in this simulation were the same as 

the values used in Fig. 5, because the specimens used in the two different experiments 

were made of the same material. 
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            (a)                                                                     (b) 

Figure 6. Comparison of nominal stress-stretch curves between numerical simulation and 

experimental data of uniaxial tension under cyclic loading: (a) primary loading and unloading, (b) 

reloading and secondary unloading. (■) experimental data, (○) numerical results 
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     (a)                                                                      (b) 

Figure 7. Nominal stress-stretch curves uniaxial tension under cyclic loading with maximum 

stretch λ = 3,0 in (a) and λ = 1,5, λ = 2,0 and λ = 2,5 in (b) 

 

4.5 Application of stress-softening models 

4.5.1 Shear experiment 

Numerical simulations of shear-blocks, which were employed by Van den Bogert [1991] 

and Septanika [1998], have been carried out.  The shear-blocks contain four rubber blocks 

and four steel members as shown in Fig. 8. The dimensions of a single rubber block are: 

length L=20mm, height b=10mm and thickness h=20mm. A rigid connection with the steel 

members is established at the upper and lower face of the rubber samples during the 

vulcanisation process. To create shear deformations in the rubber block a horizontal 

displacement is imposed in the middle steel members with a speed of approximately 

100mm/minute. During the shear tests the tensile force Ft and horizontal displacement u of 

the middle steel member are measured. In order to compare finite element analysis with 

experiment, one half of a rubber specimen is modelled. The bottom plane is fixed in three 

directions and the top plane is allowed to displace rigidly in horizontal and vertical 

directions. The force Fx is applied at point P as shown in Fig. 9. So that, the relation 

between force Fx and horizontal displacement up in numerical simulation can be compared 

to a relation between tensile force Ft/4 and displacement u in the experiment since Fx is the 

force applied to one half of a rubber specimen and Ft is the force applied to two rubber 

blocks. Fig. 9. gives the typical deformation of shear-block. 
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Figure 8. Construction of the specimen used in shear tests 

 

 
Figure 9. Mesh for the block-shear test: (⎯⎯) undeformed and (---) deformed 

 

a. Numerical results based on the CDM  model 

The combination of Gao’s elastic law and the CDM model is employed and two loading 

cycles are considered in this simulation. The model parameters estimated based on 

experimental data of the first cycle of the loading path and unloading path are a=0,188; 

n=1,35; d∞=0,5 and β=2,2. The identification results of the first cycle and the numerical 

simulation of the second cycle are compared with experimental data as shown in Fig. 10a It 

is difficult to choose d∞ and β in order to separate the unloading path from the loading 

curve. Moreover, the values of d∞ and β may only vary in a small range in this calculation, 

otherwise, divergence occurs. 

 

b. Numerical results based on the pseudo-elastic model 

The numerical results of the combination of the pseudo-elastic model and Gao’s elastic law 

are different from the results of the CDM model. Two loading cycles are considered in this 
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simulation. The inverse technique is used to estimate the model parameters as we 

discussed in former paragraph. The model parameters are estimated based on the data of 

the first cycle of the loading path and unloading paths, respectively. The values of the 

parameters are given as:  a = 0,238; n = 1,05; r = 2,85; m = 0,35. The identification results of 

the first cycle and the numerical simulation of the second cycle are compared with 

experimental data as shown in Fig. 10b. These results verify the capability of the 

combination of the pseudo-elastic model and Gao’s elastic law in describing large shear 

deformation of rubber materials under cyclic loading. 

4.5.2 A strip with a hole subjected to tension loading 

We now investigate the model response for an inhomogeneous 3D problem. To this end, 

we consider the deformation of a 20×20×2 mm3 strip with a circular hole with a diameter of 

10mm (Fig. 11a) and employ eight-node solid elements in the calculation. The prescribed 

boundary conditions in the loading direction at one side allow free contraction of the 

specimen. The specimen is loaded at the opposite side by means of displacement 

controlled cyclic deformations. Bottom and top of the strip are not constrained. Two cycles 

with a certain displacement, at which unloading starts, are recorded. There is no wrinkling 

in the transverse direction during the cyclic loading. 
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Figure 10. (a) Numerical results from CDM model (b) Comparison between numerical simulations 

from the pseudo-elastic model and experimental data for cyclic shear-loading test: (■) numerical 

results and (○) experimental data 
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Fig. 11b gives the deformed mesh at 200% deformation. Observe that the inhomogeneous 

deformation is concentrated in the neighbourhood of the hole. Stress distribution is 

inhomogeneous in the neighbourhood of the hole too and remains approximately 

homogeneous at a small distance away from the hole, which coincides with common 

knowledge. The maximum stress occurs at top and bottom points of the circular hole. 

 

a. Numerical results based on the CDM model 

Fig. 12a illustrates the numerical curve of the loading force against displacement based on 

the CDM model with parameters a=1,0, n=1,5, d∞=0,5 and β=2,0. Two cycles of loading and 

unloading with respective maximum deformations of 100% and 200% are recorded.  

Stresses decrease after unloading takes place and the difference of maximum stress on 

loading and unloading path at the same deformation level (100%) reaches approximately 

14% in this case. 

 

b. Numerical results based on the pseudo-elastic model  

The numerical simulation of this problem activates all model parameters involved in 

pseudo-elastic model and Gao’s elastic law. Fig. 12b illustrates the numerical curve of the 

loading force against the displacement based on the pseudo-elastic model with model 

parameters a=1,0, n=1,5, r=2,0 and m=2,0. Stresses decrease after unloading takes place and 

the difference of maximum stress on loading and unloading path at the same deformation 

level (100%) reaches almost 50% in this case. The curves in Fig. 12b show that the cyclic 

process is adequately predicted. However, we should also indicate that at the onset of 

unloading, the step size in the computation must be taken relatively small. Otherwise, 

divergence will occur during the calculation process. 

 

   
 

                             (a)                                                                             (b) 
Figure 11. (a) Specimen of a strip with a hole; (b) 200% deformed mesh of rubber strip with a hole 
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(a)                                                                      (b) 
Figure 12. Load-displacement curves of Rubber strip with a hole (a) based on CDM (b) Based on 

pseudo-elastic model 

5 Discussion 

As the above results illustrate, the CDM model and the pseudo-elastic model have their 

own limitations and advantages. In the CDM model it is assumed that Mullins-type  

damage accumulation occurs only in the first cycle of a strain-controlled loading process 

and further strain cycles below the maximum effective strain energy give no damage 

contribution. So, both the parameters of the elastic law and the parameters of the CDM 

model influence the stress-strain relationship of the loading path and unloading or 

reloading paths. Since these contributions are mixed the validation of the model is more 

complicated. 

The pseudo-elastic model phenomenologically describes the fact that the stress and strain 

are uniquely related in each branch of a specific cyclic process. Because the stress-softening 

function is activated only on the unloading or reloading paths, the pseudo-elastic model 

significantly simplifies the identification of model parameters. The elastic law can be 

determined by means of the loading path and the parameters of the pseudo-elastic model 

follow from unloading or reloading paths. 

From an engineering point of view, the pseudo-elastic model combined with Gao’s elastic 

law is capable of satisfactorily predicting the material behaviour including stress softening. 

The same material parameters are valid for different loading situations applied to the 

specimens from the same material. This property is crucial for the general use of the 

material model. Moreover, this combination is easily applied to engineering applications 

because of a relatively simple identification of model parameters.  
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6 Conclusions 

The present work demonstrates the ability of Gao’s elastic law to describe mechanical 

behaviour of rubber-like materials in the range of technical applications. Discussion on 

Drucker’s stability postulate and results of numerical calculations show that Gao’s model 

is stable in large strain finite element analyses.  

The present work demonstrates that both the CDM model and Ogden & Roxburgh’s 

pseudo-elastic model combined with Gao’s elastic law are capable of simulating the typical 

Mullins effect for rubber-like materials. Since the extent of damage sustained by the 

material is controlled by the maximum energy state, these models are readily applicable to 

three-dimensional analyses.  

Combination of the pseudo-elastic concept and Gao’s model was used to construct a 

specific model for the description of Mullins effect with permanent deformation. The new 

damage variable totally involves five parameters and could be estimated separately 

according to the different branches of the evolution curves. The parameter estimation 

based on a specific cyclic loading case are successfully applied to different specimens with 

a different cyclic loading in order to validate the model. 
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