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Numerous studies are concerned with vibrations or buckling of constrained systems realising that

complex systems can be analysed when starting from unconstrained or known  problems. 

Over the years various constrained eigenvalue formulations have been published and put into

practical use. The most important ones are the Lagrangian multiplier method (modal synthesis

method or component modes synthesis method), the receptance method and the modal constraint

method. In this paper the similarities and merits of the various methods are discussed.

It is striking that so far the similarities of the various constrained eigenvalue expressions have not

been reported nor has the similarity of the eigenvalue expressions of these methods with

Weinstein’s determinant for intermediate problems of the first type been noticed.

The eigenvalue formulations of the Lagrangian multiplier method and that of the receptance

appear to be similar to Weinstein’s determinant for intermediate problems of the first type. The

modal constraint method is based on an extension of Weinstein’s method for intermediate

problems of the first type and offers some significant advantages, i.e. the resulting eigenvalue

formulation of the modal constraint method has a standard form in contrast with that of the other

mentioned methods in that they have the known and unknown eigenvalues in the denominator of

the eigenvalue formulations. Further, zero modal displacements, persistent and multiple

eigenvalues do require special attention using these methods whereas this is not the case for the

modal constraint method.

Based on the similarities of the various constrained eigenvalue expressions a number of

interesting conclusions are drawn.

Keywords: vibration, buckling, constraints, component mode synthesis, modal synthesis method,

receptance method, modal constraint method.

1 Introduction

There are a number of methods that deal with the problem of constrained vibrations, i.e. the

vibrations of constrained linear mechanical systems.

The eigenvalue equations of these methods, notably the receptance method [5] and the

Lagrangian multiplier method [6] do not allow persistent eigenvalues readily to be calculated,

i.e. eigenvalues common to both the unconstrained and the constrained problem to be

computed. This rule and the resulting eigenvalue equations of these methods do not allow the
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use of standard numerical eigenvalue solvers. Here root finding procedures like the bi-section

methods have to be applied. However persistent and multiple eigenvalues cannot be calculated

using these methods. Some possible approaches to tackle these problems will be discussed.

Furthermore, the eigenfunctions, i.e. the Lagrangian multipliers or receptances of these

eigenvalue formulations do not directly allow constrained mode shapes to be evaluated.

Notwithstanding these observations, the Lagrangian method [11-17] and the receptance method

[18-23] are widely used without realising that both methods appear to be in essence similar.

The modal constraint method has been developed starting from Weinstein’s determinant of the

first type and does not suffer from the abovementioned drawbacks [7-10].

There is a need to discuss the similarities, differences, merits and demerits of the various

methods for constrained eigenvalue problems. 

In section 2 the basics of the Lagrangian method will be presented resulting in an constrained

eigenvalue expression. The drawbacks of this method will be summarised. Also the

boundedness of eigenvalues is discussed.

Thereafter in section 3 the receptance method will be discussed. The constrained eigenvalue

expression is similar to the one for the Lagrangian multiplier method altough both methods

depart from entirely different approaches.

Then, in section 4 Weinstein’s method of intermediate problems of the first type will be treated.

It will be shown that the Lagrangian multiplier method and the receptance method that deal

with constrained vibrating problems are in fact similar to Weinstein’s method of the first type,

i.e. their eigenvalue formulations have similar formulations. Weinstein’s method is firmly based

on the principles of differential operators and presents a stepping stone in the proof of the

observed boundedness of constrained eigenvalues.

Weinstein’s theory is based on arbitrary constraint functions. In section 5 a particular choice for

these constraint functions will be given that relates to physical constraint conditions such as

point supports.

Thereafter, in section 6 the modal constraint method based on a differential operator basis will

be presented which allow persistent eigenvalues and also mode shapes to be established. Here

it will be demonstrated how Lagrangian multipliers can be expanded into known quantities,

which is the essence of the modal constraint method. 

In section 7 the modal constraint method is treated in terms of energy functionals. It appears

that the Lagrangian multipliers can be identified as the inner product of the constrained

operator and the constraint functions.

In section 8 the similarities, differences, merits and demerits of constrained eigenvalue

problems are summarised.
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2 The Lagrangian Multiplier Method

2.1 Introduction

The treatment of the Lagrangian multiplier method by Dowell [6] has been inspired by the

early work of Budianski and Hu [4]. The latter author treat buckling problems for constrained

structures using Lagrangian multipliers. He also realised that this method can also be applied

to free vibration problems.

The free vibrations of an arbitrary structure in terms of component modes are determined by

the use of normal modes of an unconstrained structure.

This is achieved by enforcing continuity conditions using Lagrangian multipliers. Dowell

regards the method as a constrained Rayleigh-Ritz method with constraint or continuity

conditions.

It is well known that the Rayleigh-Ritz method provides upper bounds for the eigenvalues.

From the results published it can be concluded that the Lagrangian multiplier method also

referred to in the literature as component mode synthesis method or modal synthesis method

provides upper bounds for a fixed number of constraints and lower bounds for a fixed number

of component modes.

2.2 Presentation of the method

In order to derive the Lagrangian equations of motion first the potential and the kinetic energy

expressions are given. For sufficiently small values of the generalised velocities the kinetic

energy may be approximated by

(1)

where M 
ij

is the generalised mass coefficient and 

(2)

If the generalised coordinates q
i
are also small the potential energy can be approximated by

(3)

where K 
ij

is the generalised stiffness coefficient.
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(4)

The Lagrangian of the system is then

(5)

where θ
r

is the Lagrangian multiplier associated with the constraint conditions.

The Lagrangian equations of motion are

(6)

(7)

Expressions (1) and (3) can be simplified if q
i
are normal coordinates of the unconstrained

system. In this case

(8)

(9)

where δ
i
is the Kronecker delta and ω

i
2 are the eigenfrequencies of the unconstrained structure.

With these results the i th equation of motion for the constrained structure becomes

(10)

Let the constrained structure vibrate with a frequency ω , the general coordinates q
i
and the

Lagrangian multiplier θ
s

in equation (5) are harmonic functions with frequency ω .

Consequently the amplitude coefficients q
i
can be expressed in terms of the Lagrangian

multipliers θ
s

by means of equation (5) as follows
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(11)

Substitution of the above equation into constraint condition (4) gives

(12)

The eigenvalue expression can be written as follows

(13)

Once the eigenvalues of the above equation are known the eigenvectors, i.e. the Lagrangian

multipliers θ
s

, can be determined.

Substitution of these eigenvectors and associated eigenvalues into equation (4) gives the

generalised q
i
associated with the eigenvalues of the constrained problem.

Finally, the mode shapes v
i
of the constrained structure can be determined as follows

(14)

where u
j
are the mode shapes of the unconstrained or unconstrained structure.

For adding supports to the unconstrained structure then coefficients a
ri

can be determined as

follows.

Suppose the structure is required to have k point supports, then for a two-dimensional problem

(15)

Comparing the above result with that of equation (4) gives the following identity

Note that the above method can also be applied when several unconstrained structures are

coupled.
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In matrix form equation (13) can be written as follows

or

(16)

2.3 Discussion

The eigenvalue formulation of the Lagrangian multiplier method will present a difficulty when

there is a number of eigenvalues, which are common to both the unconstrained and constrained

problem, i.e. persistent eigenvalues.

As briefly touched on by Dowell [6], the associated elements have to be removed, such as the

associated zero displacements (or rotations) and the persistent eigenvalues.

To solve the eigenvalue equation (16) a dedicated numerical solution procedure is required such

as the root finding procedures like the bi-section methods. However, persistent eigenvalues

stille pose a problem. One way of locating these eigenvalues is to plot the values of the

determinant of equation (16). In cases where infinite values are obtained may point in the

direction of existing persistent eigenvalues. Even when this is successful multiple eigenvalues

cannot be found. Nowhere in the referenced literature these problems have been sufficiently

addressed. Once the eigevalues are established eigenvectors consisting of Lagrangian

multipliers can be obtained. Thereafter, the eigenvectors have to be transferred into

displacement eigenvectors to plot mode shapes and/or to perform dynamic analyses.

Standard numerical eigenvalue solution procedures are only suitable for the following types of

eigenvalue formulations with symmetric matrices

Au - λu = 0

Au - λBu = 0

Another important point that is not mentioned in the vast literature about the component mode

synthesis method is the fact that the column vectors in matrix CT need to be linear independent,

otherwise poor results may be obtained.

C
M I

C 0
1

diag diag

T

( )λ
θ

−

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
λ

a a

a a

M
n

k kn

11 1

1

1 1

1
0 0

0 0

0 0

.
. . .

.

( )

.

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−λ λ

11

11 1

1

M

a a

a a

n n

n

k kn

( )

.
. . .

.
λ λ−

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

⎡⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

= ⎨

T

k

θ

θ

1

.

114



Also when constraining points are selected too close to each other the matrix CT may become ill

conditioned. 

Note that unlike the modal constraint method (section 6) the columns are not required to be

orthonormal. However an orthonormalisation procedure, like the Gram-Schmidt

orthonormalisation procedure, may point in the direction of ill condition of the constraint

matrix CT .

Finally, it should be noted that the Lagrangian multipliers represent the forces (or moments) of

constraint acting at the point to achieve zero displacements (or rotations). The elements in

equation (16) can be regarded as influence coefficients. It is well known that the Rayleigh-Ritz

method provides upper bounds for the eigenvalues.

From the results obtained it can be concluded that the Lagrangian multiplier method also

referred to in the literature as component mode synthesis method or modal synthesis method

provides upper bounds for a fixed number of constraints and lower bounds for a fixed number

of component modes.

3 The Receptance Method

3.1 Introduction 

The method of receptances was developed around 1960 by Bishop and Johnson [5]. This

method enables calculation of the free vibrational characteristics of a combined system from the

characteristics of the component systems.

Wilken and Soedel [23] applied the method to a cylindrical shell with stiffening rings.

The receptance method consists of an evaluation of the responses of the component systems to

forces which vary sinusoidally in time and which are applied at the locations where the

systems are connected.

These responses, due to a set of sinusoidal forces with amplitudes equal to unity, are the so-

called receptances of the component systems. A characteristic feature of the receptance method

is that each component system is treated as a separate vibrating system subjected to the forces

induced by the other component systems. 

3.2 Presentation of the receptance method

When sinusoidally varying forces of frequency ω are applied to two linear undamped systems

A and B then
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(17)

All quantities are functions of the frequency ω . It is assumed that the displacements and forces

of both systems are defined in one global coordinate system. When the two systems are joined

and no external forces are applied to the two systems then

(18)

For the equations (17) and (18) the eigenvalue equation for the combined system is

or

(19)

The values of ω and f
A

which are the solutions of above equation are respectively the natural

frequency and the interaction forces mode shapes of the combined system.

The displacement mode shapes can be obtained from equation (17) with ω and f
A

as input.

When the system A is only constrained at k points the eigenvalue expression results from

or

(20)

A typical expression for the receptance is 

(21)

where based on the notations of the previous section the following identities hold
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3.3 Discussions

A comparison between the Lagrangian multiplier method and the receptance method leads to

the conclusion that both methods result in identical constrained eigenvalue equations.

Also the so-called influence coefficients in the previous section are receptances as presented

here. The interaction forces are simply the Lagrangian multipliers of the previous section.

From the results obtained it can be concluded that also the receptance method provides upper

bounds for a fixed number of constraints and lower bounds for a fixed number of component

modes.

See section 2.3 for a discussion about the numerical challenges to extract eigenvaleus and mode

shapes when using this method.

4 Weinstein’s Determinant of the first type

4.1 Introduction

In the years 1935-1937 Weinstein [3] introduced a method for obtaining lower bounds of

eigenvalues that is generally called the method of intermediate problems of the first type. Later,

other types of intermediate problems were developed, of which the second type is the most

important one.

The scheme of the intermediate problems is as follows.

Given an eigenvalue problem with operator   associated with certain boundary conditions, the

first step is to find a base problem, namely an eigenvalue problem for which the eigenvalues

and eigenfunctions are known. The eigenvalues must be less or equal to the corresponding

eigenvalues of the desired problem.

Then a sequence of intermediate problems can be set up that will link the base problem

(unconstrained problem) to the desired problem (constrained problem) in such a way that the

computed eigenvalues are between those of the base problem and the desired problem.

4.2 Weinstein’s method in its original form (principles)

In this section the Weinstein approach will be briefly given in the form that was applied to a

plate buckling problem [3]. The desired problem consists of a clamped rectangular plate

governed by the following differential equation

Au - λu = ∇2u - λu (22)

φ
φ

i r ri
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at boundary C (23)

It is well known that the eigenvalues of Au = λu can also be formulated as the extrema of a

variational problem. It will be demonstrated that, for a variational problem where further

conditions are added, upper bounds for eigenvalues are obtained. This can be achieved by

requiring the function u to lie in a Rayleigh-Ritz manifold of admissible functions.

To find lower bounds, the conditions must be weakened. There is one way of performing this,

namely by constituting a suitable base problem so that each of the eigenvalues is a lower bound

for the corresponding eigenvalues of the desired problem. An infinite sequence of intermediate

problems must be set up to link the base problem eigenvalues to the eigenvalues of the desired

problem as has been already mentioned.

For the clamped plate Weinstein selected a simply supported plate as the base problem for

which exact eigenelements are known.

The limiting case, i.e. the clamped plate, is achieved by applying boundary conditions in the

form of rotational constraints.

4.3 Formulation of the desired problem

Assume that the eigenvalue equation of the desired problem (the given problem) is given by

A(1)u(1) = λu(1) (24)

Operator A(1) has a domain D(1) of the functions u(1) with region R(1) and boundary C(1) .

The eigenvalues are denoted by C(1) and the associated eigenfunctions by u
i
(1).

When the boundary conditions formed by C(1) are complicated, it could be a difficult task to

find admissible functions.

Suppose, e.g., that eigenvalues for a free-free plate supported also at arbitrarily located points,

are required. To find admissible functions that will vanish at these arbitrary locations is a nearly

impossible task.

Instead of this approach, the method of intermediate problems is applied. In this case a suitable

base problem must be defined, i.e. free-free rectangular plate for which approximate

eigenvalues and eigenfunctions are known.

4.4 Formulation of the base problem

As already indicated in the previous section the desired problem could be solved by using a

different conveniently related problem. In other words, a conveniently shaped region R and

boundary C are selected, assuming that the region R(1) and boundary C(1) are contained in R .

Also an operator A is selected with a domain D for which it is assumed that D(1) is contained, as

a subspace, in D . The domain D consists of functions u defined on R and satisfying C .

u
u
n

=
∂
∂

= 0
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It is assumed that the following eigenvalue equation for the base problem is known

Au = λu (25)

The eigenvalues are denoted by λ
i
and the eigenfunctions by u

i
, which form a complete

orthonormal set in D .

Hence, every element u in D can be expanded as

(26)

Before the base problem and the desired problem are related the following assumptions have to

be made.

Basic assumptions

1. It is assumed that the functions u(1) lying in space D(1) with region R(1) are defined on the

entire region R, which contains the region R(1) . In other words the eigenfunctions of the

base problem must be capable of describing the eigenfunctions of the desired problem.

This is a very important notion, which also applies to the Lagrangian method and the

receptance method. This has not always been made explicit in literature about these

methods. 

2. The functions u(1) in D(1) which are solutions of the desired problem A(1)u(1) = λ(1)u(1) are

restrictions to some set of functions in D with region R to region R(1) . Assume that the

function u in D is required to vanish at k locations. As already shown previously, the

above constraint conditions can be stated as (u,p
r
)=0  for  r=1,2,...,k where p

r
are the

constraint functions. These conditions restrict the function u to lie in D(1) .

3. The self-adjoint, positive-definite operator A(1) with domain D(1) is the restriction of the

self-adjoint, positive-definite operator A with domain D to functions in domain D(1). This

restriction is established by the projection operator and is associated with the constraint

functions p
r
.

4.5 Relation of the desired problem to the base problem

From the basic assumption 1 in the previous section it follows that the functions u(1) in D(1) can

be extended to D by the addition of new functions v in order to form a complete orthonormal

set of functions in D.

Let DΘD(1) represent the infinite dimensional orthogonal complement space to D(1). 

Every function u in D can then be uniquely expressed as

u u u u q ui i i i
i

n

i

n

= =
==
∑∑( , )

11
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u = u(1) + v (27)

where u(1) is in D(1) and v in DΘD(1).

As has already been shown in the preceeding sections it is convenient to introduce a set of

linear independent (orthonormal) constraint functions p
r
, which span the space DΘD(1). 

Also it has been suggested in the previous section that a function in space D be projected onto

the subspace D(1) with the aid of the following projection operator

u(1) = u - Pu (28)

where

(29)

The functions A(1)u(1) can be identified as projections of the functions Au onto the subspace D(1)

orthogonal to DΘD(1) and therefore applying the projection operator to Au gives

A(1)u(1) = Au - PAu (30)

In the earlier section it is also shown that A(1) = QA which constitutes the relation between the

desired operator A(1) and the base operator .

Now with this result the eigenvalue equation for the desired problem can be written as

Au - PAu = λu -λPu (31)

The constraint condition requires u to be orthogonal to the constraint functions P
r

and hence Pu

= 0  , so that the final eigenvalue equation for the desired problem becomes

Au - PAu = λu (32)

4.6 Formulation of a finite sequence of intermediate problems

As already mentioned earlier the infinite dimensional subspace DΘD(1) must be approximated

by successively k intermediate subspaces.

Let M
k

denote the finite dimensional subspace of DΘD(1) spanned by k constraint functions p
r

and denote by D
k
(1) the infinite dimensional subspace DΘM

k
that approximates the subspace

D(1).

Pu u p p

Pu v

r r
r

k

=

=
=
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The following sequence of subspaces can then be set up with the following property

D
1
(1) ⊃ D

2
(1) ⊃ ...... ⊃ D

k
(1) ⊃ ...... ⊃ D(1)

(33)

Gould [2] proved that this sequence of subspaces D
k
(1) converges for k – ∝ to subspace D(1).

Also the projection of D onto D
k
(1) must be truncated

(34)

Therefore the eigenvalue equation for the k th intermediate problem is as follows

Au - P
k
Au = λu (35)

with eigenvalues and associated eigenfunctions of the k th

intermediate problem.

It can be proved that the eigenvalues converge with increasing k to 

respectively since the sequence of subspaces D
k
(1) converges to D(1) .

In the next section the Weinstein determinant of the first type will be established for arbitrary

constraint functions.

4.7 The Weinstein determinant and non-persistent eigenvalues

Based on equation (34) the following expression can be written

The desired eigenvalue equation (35) can be written as follows

(36)

where 

The scalars α
r

are not given scalars but depend on the unknown function u . To establish the

magnitude of α
r

, the inner products with p
s

are formed, resulting in the following equations
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(37)

If the constraint functions p
s

form a complete orthonormal set then the following simple results

is obtained

α
r

= (Au, P
r
) (38)

This is a very important result and together with equation (36) is the most important starting

point for establishing the modal constraint method.

If the eigenvalue λ is not in the spectrum of operator A, or in other words is a non-persistent

eigenvalue then equation (36) can be written as follows

(39)

where Rλ is the resolvent operator defined as

Rλ = [A - λI]-1
(40)

Using the orthogonality relations (u, p
s
) = 0 the following set of equations are obtained

(41)

The above eigenvalue equation has a nontrivial solution for α
1
,.....,α

k
if and only if

(42)

The function W (λ)  is called Weinstein’s determinant of the first type for non-persistent

eigenvalues.

Applying the resolvent operator Rλ gives

(43)

where λ
i
and u

i
are associated with the base problem.

In the next chapter the particular choice for the constraint function p
r

will be discussed.
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5 The particular choice of constraint functions

5.1 Introductory remarks

In this chapter the particular choice of the constraint functions will be discussed. As already

mentioned these constraint functions are related to the type of constraint. There are three main

types of constraint that can be used, i.e. point supports, line supports and area supports. In this

paper only point supports will be discussed.

A line or area support can be approximated by k point supports that constitute k constraint

functions p
s

and therefore a sequence of k intermediate problems.

When expressions for the constraint functions are found for point supports it is possible to

write Weinstein’s equation (43) into an eigenvalue equation for non-persistent eigenvalues for

the desired problem having k points.

After this result this eigenvalue problem is transformed into an eigenvalue equation that will

allow persistent (common to both base and desired problem) eigenvalues, i.e. the modal

constraint method, see section 6.

5.2 Particular choice of constraint functions for adding point supports to the base problem

In practical calculations the complement region R - R(1) and the boundary C(1) may have

complicated shapes and must, therefore, be decomposed into a series of constituents. These

components generate a theoretically infinite chain of constraints of the type given in equation

(44), which must be approximated by a finite number k of these constraints. Therefore, also k

constraint functions p
s

exist. The successive application of these k approximating constraint

relations generates what is previously called the k th intermediate problem. In this section, a

particular choice for the constraint functions p
1
,p

2
,...,p

k
will be established, which corresponds to

k constraint conditions.

These constraint or continuity conditions constrain the function u on the region R - R(1) with the

inclusion of boundary C(1), if necessary.

As already discussed these constraints will take the form of an expression between the

generalised coordinates q
i

(44)

Taylor expansion about equilibrium, neglecting higher order terms (only small vibrations),

gives the following linear function

(45)

or

h q q q
h
q
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i
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=
=
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h q q qn( , ,...., )1 2 0=
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(46)

If there are k distinct constraint conditions or linear independent constraint relations then  k

equations like equation (46) can be set up

(47)

Note that the desired problem has in this case ( n - k ) degrees of freedom and therefore k

eigenvalues equal to zero.

A one-to-one correspondence of equations (47) with constraint functions p
s

will be established

using orthogonality condition (u, p
s 
) = 0  . Because each constraint function p

s
is in the space D,

which is spanned by the eigenfunctions u
i 
, the following expansion can be defined

(48)

where b
si

are the expansion coefficients.

Taking the scalar product (u, p
s

) = 0  with equation (26) in mind then yields

(49)

Now the one-to-one correspondence between equation (47) and (49) can be observed. Equation

(48) can then be written as

(50)

The finite point set constraint decomposition consists of representing the constraint conditions

for the region R - R(1) and/or boundary C(1) by a finite number of points.

Assume for sake of simplicity a two-dimensional problem where the finite points are located at

coordinates x
s
, y

s 
. The function u is required to vanish at each of these points

(51)

If the above equation is compared with equation (49) then the one-to-one correspondence leads

to the following identity

(52)

u x y ci s s si( , ) ≡

u x y u x y q s ks s i s s i
i

n

( , ) ( , ) , , ,....,= =
=
∑ 1 2

1

p c us si i
i

n

=
=
∑

1

( , )u p b qs si i
i

n

= =
=
∑ 0

1

p b u s ks si i
i

n

= =
=
∑ , , ,....,1 2

1

h q q q c q l kl n li i
i

n

( , ,...., ) , , ,...,1 2
1

0 1 2= = =
=
∑

h q q q c qn i i
i

n

( , ,...., )1 2
1

0= =
=
∑
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Note that also rotations may be required to vanish at certain points.

In this case (normal to the boundary in x direction)

(53)

It is pointed out that also several substructures could be coupled at a number of discrete

locations. The constraints take then the form where the differential displacements are required

to be zero at the coupling locations [9] and [10].

5.3 Weinstein’s determinant for a particular choice of constraint functions

Up to now the constraint function p
r

in Weinstein’s determinant could be arbitrarily chosen. In

the previous section the relation is demonstrated between adding point supports to a base

problem and a particular expression for these constraint functions.

In this section the starting expression is equation (43)

(54)

Substituting expression (50) for p
j
in the above equation renders an eigenvalue expression for

non-persistent eigenvalues ( λ
i
≠ λ )

(55)

The above equation is identical to the equations obtained by either the receptance method [5] or

the Lagrangian multiplier method [6] with the following identities

With this result the receptance method and the Lagrangian multiplier method is linked to

Weinstein’s method for intermediate problems of the first type.

c a

c a
ri ri

si si

≡
≡

det{ }
c cri si

ii

n

λ λ−
=

=
∑ 0

1

det{
( , )( , )

}
p u p ur i s i

ii

n

λ λ−
=

=
∑

1

0

∂
∂

≡
u x y

x
cs s

si

( , )
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6 The Modal Constraint method originating from a differential operator

approach

In this section the Weinstein classical theory will be extended to arrive at the formulation of the

modal constraint method.

The fundamental idea is to expand the scalars α
r
,r = 1,2,....,k in terms of the generalised

coordinates q
i
so that the eigenfunctions are retained without an additional step.

It is recalled that

α
r

= (Au, p
r
) (56)

which is appropriate for the special case when constraint functions are orthonormal. In most

cases this orthonormality is not guaranteed and an orthonormalisation procedure must be

applied to constraint functions p
i
(e.g. the Gram-Schmidt orthonormalisation procedure).

Making use of equations (50) and (52) the following expression with known quantities 

λ
i 
, c

ji
and the generalised coordinates q

i
is obtained

(57)

In matrix form this equation can be written as 

(58)

where

, which is called the constraint matrix.

Equation (57) can also be written in matrix form

(59)

Substituting equation (59) into (60) gives

(60)

After rearranging

q I C C q= −[ ]λλ λλdiag
T

diagλ

q I C= −[ ]λλ ααdiag
Tλ

CT
k

n kn

c c

c c
=

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

11 1

1

.
. . .

.

αα λλ= C qdiag

α λr r ri
i

n

i iAu p c q r k= = =
=
∑( , ) , , ,....,

1

1 2
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(61)

Note that the left hand expression in the above matrix eigenvalue expression is asymmetric.

To arrive at symmetric matrices, equation (61) is again rearranged [6]

(62)

The above expression allows also persistent eigenvalues and multiple eigenvalues to be

evaluated with standard numerical eigenvalue methods.

Note that the constraint matrix CT needs to be orthonormalised row by row, which is due to the

requirement that the constraint functions p
i
must be orthonormal. This can be achieved by

applying the Gram-Schmidt orthonormalisation procedure. The short notation of equation (62)

takes the form of with two symmetric matrices. This eigenvalue expression

can be solved by standard numerical eigenvalue extraction procedures.

7 The modal constraint method in terms of energy: Lagrangian multipliers

Following the development given in [7] the energy functional for the constrained problem is

(63)

where L is the differential operator, and A is the domain of the problem.

The constraint energy that has to be subtracted from the energy of the unconstrained problem is

(64)

where α 
j
are the Lagrangian multipliers.

A one-to-one correspondence between equations (57) and (64) leads to the conclusion that the

constraint forces to enforce the constraint are similar to

(65)

where (see equation (50))

(66)p c ur ri i
i

n

=
=
∑

1

αr rAu p= ( , )

W c qr r ri i
i

n

=
=
∑α

1

�u
u
t

=
∂
∂

E Lu udA u u dA W
A A

r
r

k

= + −∫ ∫ ∑
=

1
2

1
2 1

( ) ( , )ρ � �

[ ]A B q 0− =λ

[[ ] ] ;I C C q 0 q q− − = = −T
diag diagλλλ λλ 1

[[ ] ]I C C I q 0− − =T
diagλλ λ
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Taking the first variation of equation (63) leads, after some elaboration, to the same eigenvalue

equation for the constrained problem as equation (62).

8 Practical example: four point supported square plate

In this section a specific example will be given where persistent eigenvalues will appear. It will

be shown that this will not pose any problems to extract these eigenvalues contrary to the

methods, which have similar expressions as equation (55).

The example consists of a four pointed supported square plate with three supports located at

the corners of the plate and one located at 0.15 of its diagonal length, see Figure 1.

Figure 1. Vibrating square plate: unconstrained problem and constrained problem

First let us introduce the formulation of the unconstrained problem, i.e. a completely free

vibrating square plate.

In [8] expressions for the unconstrained problem are given. It is also shown there how to

establish eigenvalues and eigenvectors based on beam functions of a completely free vibrating

rectangular plate. See Figure 2. 

Note that also the three rigid body modes have to be added to the set of elastic mode shapes,

denoted by ψ
i 
; i = 1,.., n .

Figure 2. Unconstrained problem: completely free vibrating plate: first three elastic mode shapes

The eigenvalue equation for the constrained problem, i.e. where point supports are added is

given below

Unconstrained problem Constrained problem
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(67)

The elements of the orthonormalised constraint matrix CT are: c
ri

= ψ
i
(ξ 

r 
, η

r 
) where there are

k constraint relations being the four point supports (ξ 
r 
, η

r 
), r = 1,...,4 and i is the number of

modes.

The following results are obtained.

Table 1. Eigenvalues of the four point supported rectangular plate: .

First second third

Unconstrained problem 13.373 19.496 23.784

Constrained problem 8.596 15.646 19.496*)

*) persistent eigenvalue, i.e. common to both the unconstrained problem and the constrained

problem

This can be understood by examining the mode shapes of the constrained problem, see Figure 3.

Figure 3. Constrained problem: first three mode shapes: persistent eigenvalue.

The second mode shape of the unconstrained problem is equal to the third mode shape of the

constrained problem because all point supports are located at the nodal lines of the second

mode shape. The requirement of zero displacements is here already satisfied and therefore this

mode shape and its associated eigenvalue will be retained, i.e. persistent.

Using Weinstein’s determinant, Lagrangian multiplier method or receptance method will

present a problem because the persistent eigenvalue will make the dominator of expression (55)

zero and the value of the determinant infinitely large. When this is anticipated the considered

eigenvalues should be removed from the range of constrained eigenvalues. This is not always a

straightforward affair.

ω ρa D2 /

[[ ] ]I C C q 0− − =−T
diagλλλ 1
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9 Conclusions

The Lagrangian multiplier method and the receptance method have similar constrained

eigenvalue expressions to Weinstein’s determinant for intermediate problems of the first type.

These methods do not allow persistent eigenvalues to be present, i.e. those eigenvalues that are

common to both the unconstrained problem and the constrained problem. 

To solve the resulting eigenvalue equations dedicated numerical solution procedures are

required such as the root finding procedures like the bi-section methods. However, persistent

eigenvalues stille pose a problem. One way of locating these eigenvalues is to plot the values of

the determinant of the eigenvalue equations. In cases where infinite values are obtained may

point in the direction of existing persistent eigenvalues. Even when this is successful multiple

eigenvalues cannot be found. These problems have not been sufficiently addressed in the

referenced literature. Once the eigevalues are established eigenvectors consisting of

Lagarangian multipliers can be obtained. Thereafter, the eigenvectors have to be transferred

into displacement eigenvectors to plot made shapes and/or to perform dynamic analyses.

In addition it should be noted that the Lagrangian multipliers represent the forces (or moments)

of constraint acting at the point to achieve zero displacements (or rotations). 

The elements in the resulting eigenvalue equations can be regarded as influence coefficients. It

is well known that the Rayleigh-Ritz method provides upper bounds for the eigenvalues.

From the results obtained it can be concluded that the Lagrangian multiplier method also

referred in the literature component mode synthesis method or modal synthesis method

provides upper bounds for a fixed number of constraints and lower bounds for a fixed number

of component modes.

Comparing the Lagrangian multiplier method and the receptance method reveals that influence

coefficients have similar expressions as the receptances.

Weinstein’s method for intermediate problems of the first type allow the development of the

modal constraint method by realising that the Lagrangian multipliers can be expended into

known quantities, i.e. they are inner products of the unconstrained operator with constraint

functions, which in turn are related to the physical constraints. 

The resulting constrained eigenvalue expression can be solved with standard numerical

eigenvalue routines. Also zero modal displacements (or rotations) do not pose a problem.

In the literature about Lagrangian multiplier methods and receptance methods no special

attention is paid to precautions needed to avoid an ill-conditioned state of the constraints

matrices. This can be diagnosed by applying the Gram-Schmidt orthonormalisation procedure,
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which is a requirement for the modal constraint method. In other words, no remarks can be

found in the vast literature about the component mode synthesis method that the column

vectors in matrix   need to be linearly independent, otherwise poor results may be obtained.

Also when constraining points are selected too close to each other the matrix   may become ill

conditioned. 

The results obtained by various authors show that increasing the number of constraints for a

fixed number of terms will result in lower bounds for the constrained eigenvalues whereas

increasing the number of terms for a fixed number of constraints will result in upper bounds as

is well-known for applying the classical Rayleigh-Ritz method. This hypothesis can be proved

to be true but in view of the available space it will be an issue for a separate paper.

It is pointed out that coupling unconstrained subsystems may also be treated by the methods

displayed. These problems merely require the differential modal displacements of the two

subsystems to be zero.

Finally, it is mentioned that also buckling of constrained linear mechanical systems can be

treated with the modal constraint method as buckling of structures can be seen as an

eigenvalue problem.
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