Comparison of the dynamic response of
one- and two-dimensional models for an
embedded railway track to a moving load

M. Shamalta and A.V. Metrikine
Department of Civil Engineering and Geosciences, TU Delft, P.O. Box 5048, 2600 GA Delft,
The Netherlands

In this paper, the steady-state response of an embedded track to the axle loading of a moving
train is studied theoretically using two models. The first and the second models are one-dimen-
sional (1D) and two-dimensional (2D), respectively, and differ by the fact that the latter model
accounts for the lateral flexibility of the concrete slab of the track. The loading is modelled by a
harmonically varying load that uniformly moves along the track. The response to this load is
studied analytically with the help of the Fourier integral transforms. The study is accomplished
performing the following steps, every of which is accompanied by comparison of two models
under consideration. Firstly, the dispersion curves are calculated and critical parameters (fre-
quency and velocity) of the load are found that could lead to resonance in the structure.
Secondly, displacements of the rails and stresses in the concrete slab are studied for various
velocities and frequencies of the load. The results obtained from both models are compared to
that one calculated using a Finite Element program. On the basis of a comparative analysis of
results obtained from the 1D and 2D models it is concluded that in engineering calculations, the
1D model can be employed for a quick and sufficiently accurate assessment of the dynamic
behaviour of the embedded track under a high-speed train.
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Introduction

High-speed trains can be considered as one of the most impressive developments of modern civil
engineering. As it happens with all revolutionary engineering developments, high-speed trains
have brought a number of new problems railroad engineers have to deal with. These problems are
mainly related to significant amplification of dynamic response of the railway track, which takes
place when the train’s speed approaches the velocity of surface (Rayleigh) waves in the track sub-
soil [1-11]. By moving with such a velocity the train can cause a pronounced amplification of the
track response and generate powerful ground vibrations that can be perceptible at a large distance
from the track. The Rayleigh-wave speed depends on the subsoil composition and can be in the
range of 175-600 km/h. In soft (peat) subsoil, which is often met in The Netherlands, this velocity is
in the order of 200 km/h and, consequently, can easily be exceeded by modern high-speed trains.
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One of the most efficient ways to overcome the “soft soil problem” contains in introduction of a so-
called “embedded” track. The structure of the embedded track that will be used in the Netherlands
is shown in Fig. 1. Essentially, the structure is composed of a massive concrete slab into which the
rails are embedded by means of Corkelast (Polyurethane mixed with Cork). This slab allows for
efficient decoupling of the soil motion and the rail vibrations, thereby significantly reducing the

impact of waves in the subsoil on the track dynamics.
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Fig. 1. Embedded railway structure

To design a new structure such as embedded track efficiently, it is useful to gain an insight into
specific features of the dynamic behaviour of the structure. This can be done with the help of an
analytical analysis of a simplistic model of the structure, which, however, takes into account main
physical characteristics of the real structure at hand.

In this paper, we employ two models to investigate the dynamic response of the embedded track to
the axle loading of a moving train. The first (simplified) model is one-dimensional and disregards
the lateral flexibility of the slab. This model consists of two beams on elastic foundation, which are
connected by continuous visco-elastic elements (fill material). The upper beam models the rails,
whilst the lower one models the concrete slab. The foundation that supports the lower beam
models the soil reaction.

The second model is two-dimensional and is composed of a plate on elastic foundation (slab on the
ground), which interacts with two beams (rails) through continuous visco-elastic elements (fill
material). Both models are subject to a moving harmonic load. In the first model, this load is
applied to the upper beam. In the second model, both beams are loaded (not necessarily in-phase).
The results obtained from both one-dimensional model and two-dimensional model are compared
to that calculated using a finite element program “RAIL”. This program has been developed in the
faculty of Civil Engineering of Delft.

The aim of the paper is to compare the steady-state dynamic response of the aforementioned
models of the embedded track and to determine the range of parameters in which the simplistic

one-dimensional model is applicable.
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Steady-state response of one-dimensional model

The one-dimensional (1D) model is presented in Fig. 2. This model is composed of two Euler-

Bernoulli beams, a continuous visco-elastic element and a Winkler’s foundation [13].
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Fig 2. One-dimensional model for embedded railway track

The equations of motion describing the vertical forced vibrations of the beams read
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In Egs.(1)-(2), subscripts i=1 and i=2 are related to the upper beam (the rails) and the lower beam
(the slab), respectively. Irrespective of the subscripts, w(x,t) is the vertical displacement, p, is the
material density, A, is the cross sectional area, E, is the Young’s modulus, I, is the moments of iner-
tia. Additionally, k; and c are the stiffness and the damping constant of the material between the
beams per unit length, x is the stiffness of the foundation per unit length, P, 2 and v are the magni-
tude, angular frequency and velocity of the load, respectively.

The steady-state solution to Egs. (1)-(2) can be derived by applying the following exponential

Fourier transform over the time t:

w(x,t) = i ?W(x,a)) exp(iot)do < Wx,0)= ?w(x,t) exp (-iwt ) dt. (3)

Application of this transform to the system of differential equations (3) gives:
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The system of partial differential equations (1)-(2) has now been reduced to a system of ordinary
differential equations (4).

The forced solution to equations (4), which describes the steady-state response of the system in the
frequency domain, should be sought in the form

_rfl } = {cl }exp(ikxx) with &, = 0= (5)
LW 23 v
Substitution of (5) into the system of equations (4) gives:
[E gk - p Ao* +(k, —iwc) ~(k, ~iwc) ol [Pv
—(k, —iwc) E, Lk} - p, 4,0 + (k, —iwc) + Z}{ } :{ 0 } ©)
When solved with respect to ¢, and c,, equation (6) yields:
{cl = P(E,Lk! - p,dy” +(k, — i)+ ) v [O() ”
¢,=P(k,—iwc)/v/Q(®)
with
O(w)= (E,Il/t;l - pAe* +k, ~ia)c)(E212kf - P A0 +k, —iwe+ ;()—(kd —iwc)’. (8)

Thus, the steady-state solution to the problem (1)-(2) is given as

W, (x, 1) = iexp(—ix%} r,].cm ((o)exp[ia) (%4))0’60 . 9)

-0

The integral (9) can be evaluated by means of the contour integration. Since the integrand is a sin-
gle-valued function, the result of integration is fully defined by the poles of this integrand. These
poles are the roots of the denominator Q(w) in expressions for c, ,(w), which is a polynomial of the
order four with respect to the angular frequency . The poles can be found by a standard program
for finding complex roots of a polynomial.

Denoting the poles that have a positive imaginary part as w, and the ones with a negative imagi-
nary part as o_, and using the Jordan’s lemma, the following expressions can be obtained for the
displacement of the beams:
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Before starting with numerical analysis of expressions (10)-(11), let us first consider the two-dimen-
sional model and then analyse results of both models simultaneously, comparing them to each
other.

Steady-state response of two-dimensional model

The two-dimensional (2D) model for an embedded railway track is shown in Fig. 3. The model
consists of two Euler-Bernoulli beams, a Kirchhoff’s plate, two continuous visco-elastic elements
that connect the beams and the plate, a two-dimensional elastic foundation that is uniformly dis-

tributed beneath the plate and two uniformly moving harmonic loads.

Pefi(gw)r

Pe"fn’ < w, (x,1)
w, (x )"

rs,j - [ v

271‘” ’E ‘% L,E 4} %% % ‘%‘ % jlwx(x,y,t)

3 LE§ r%
E - s
% §$ §$ §$ §$ §$\§$ §§ §$ § % - % T

Fig. 3. Two-dimensional model for embedded railway track

Equations of motion governing the vertical forced vibrations of the beams and the plate can be
written as [14,15]
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with @, ,(x,t) and  (xy,t) the vertical displacements of the rails and the concrete slab, respectively,
p, and p, the material densities of the rails and the concrete slab, respectively, A, the cross sectional
area of the rail, 2i the thickness of the concrete slab, 24 the width of the plate, 2d the distance
between rails, E, and E_ the Young’s modula of the rails and the concrete slab, respectively,

D=8E */12/(1-17) the flexural rigidity of the plate (v the Poisson'’s ratio of the concrete slab mate-
rial), I the moment of inertia of the rail, k, and c the stiffness and the damping constant of the fill
material per unit length, respectively, x the stiffness of the elastic foundation per unit area, P the
magnitude of the loads, Q the angular frequency of the loads, v the velocity of the loads and ¢ the
phase shift between vibrations of the loads. The symbols 3 and 8 denote the generalised and classi-

cal derivatives, respectively, see [16].

Equations (12) and (13) describe the dynamic equilibrium of vertical vibrations of a differential ele-
ment of the beams. Equation (14) gives the dynamic equilibrium of vertical vibrations of the plate.
Equations (15) show that neither bending moment nor vertical force is applied to the edges of the
plate. Equation (16) presents the requirement that at infinite distance from the moving load the
steady-state vibrations of the structure must vanish.

To find the steady-state response of the system, the following integral Fourier transforms over the

time and co-ordinate are applied:
w, (kx’y’a)) :_Jo_cj;m (X,y,t) ei(m'k‘x)dxdt o ow (x,y,t) 26;152—_!_;[@3 (kx,y,a)) e«i(rztﬂer)ck‘dw,
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Application of these transforms to the governing equations (12)-(16) yields
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Equation (20) is a linear differential equation that contains generalised derivatives. At this stage of
analysis, it is customary to replace this equation by a system of equations that employ the classical
derivatives only. To this end, the relations between the classical and generalised derivatives are to

be applied (as shown in Appendix A) to give



o', o',
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(24)
Equation (22) describes the plate motion everywhere but not along the lines y=+d. These lines are
accounted for in the boundary conditions (23) and (24) that describe the continuity of the displace-
ment, slope and curvature of the plate and the balance of vertical forces between the plate and the
visco-elastic elements at y=+d, respectively.

The general solution to equation (22) reads

4
W (k,y,0)=Y A" . (25)

n=l
with the roots of the following equation

_ 2
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x

which are given as

2 _ 2 _
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Employing now the general solution given by Eq. (25), using Egs. (27), and taking into account that
there are three homogeneous parts of the plate (-a<y<-d, |y|<d and d<ys<a), the Fourier-displace-
ment of the plate can be expressed as

W, (k,y,0)= A4, (k,0)e" + 4, (k,0)e” +4,;(k,0)e ™ + 4, (ko)™  (28)

with

0 —-a<sys<-d
j=44 —d<y<+d.
8§ +d<y<+a
Substitution of Eq. (28) into the equations for the rail vibrations (18) and (19), into the boundary
conditions at the edges of the plate (21) and at the interface conditions along the lines y=+d (23) and

(24), results in a system of twelve linear algebraic equations with respect to A-A,,. This system of

equations can be written as follows

a,- A, =F-6(ky+o-Q), i=1.12, j=1.12, (29)

v

249



250

with a; and F, defined in Appendix C. Unknown coefficients A,-A,, can be found from Eq.(29) with
the help of a standard program for solution of a system of linear algebraic equations with complex
coefficients.

Considering A,-A,, as known, final expressions for the displacements of the plate and the beams in
the space-time domain can be obtained by applying the inverse Fourier transforms defined by (17)
to Egs. (28), (18) and (19) (into the latter equations, equation (28) has to be first substituted). This

yields
w,(x, ,0) = 3)53(—_——12% st (k.,»)exp(i(x—vi)k,)dk, , (30)
ey 2
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Equation (33) plays a fundamental role in the steady-state response of elastic structures to moving
loads. This equation relates the frequencies and wavenumbers of the waves that are perturbed in
the structure (in the steady-state regime) to the kinematic characteristics of the loads and. Because
Eq.(33) is independent of the wave amplitude and the load’s amplitude, and only relates their kine-
matic characteristics, this equation is referred to as a kinematic invariant. For the first time, this
invariant has been elaborated by Vesnitskii [17] and has been employed later in a number of stud-
ies, see [5, 18, 19]. Physically, the kinematic invariant provides a necessary condition for waves to

be generated by the loads in a resonance manner.

Dispersion analysis

Before starting with analysis of the structural response to the moving loads, it is worth discussing
the dispersion of waves that may propagate along the structure (in the x-direction). The wavenum-

ber k_and the radial frequency w of these waves are to be found from the dispersion relation, which
is given for the 1D model as

0(w)=0, (34)
and for the 2D model as

det[a]=0 (35)



with Q(w) defined by Eq. (8) and matrix [a] presented in Appendix C. To find real pairs of k, and «
that satisfy the dispersion equations (34) and (35), the damping c in the fill material has to be tur-
ned to zero.

In Fig. 4 the dispersion curves, which visualise the real pairs of ® and k, turning Egs. (34) and (35)
to zero are depicted for both models. Hereinafter, physical parameters of both 1D and 2D struc-
tures are used, which are given in Appendix B. The dashed-pointed curves in this figure are disper-
sion curves for the 1D model, whereas the solid and dashed curves correspond to the 2D model.
The reason to use two different lines for the 2D model is that waves, which propagate along the
structure, can be either symmetric (solid lines) or antisymmetric (dashed lines) with respect to the

centre line of the plate.
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1----- 2D model (Antisymmetric)
2500 — - — 1D model

o [rad/s]

0 L e N 1
0 04 08 1.2 1.6 2
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Fig. 4. Dispersion curves and the kinematic invariant

The main difference between the dispersion curves of the models is that the 1D model possesses
just two dispersion curves, while the two-dimensional model has infinitely many curves because of
infinite number of normal modes that may be excited in the plate in the lateral direction. Fig. 4
shows only the first four dispersion curves for the 2D model since the higher modes are of no sig-
nificance for the system response. One can see from Fig. 4 that the lowest dispersion curve of the
1D model approximates the lowest dispersion curve (the first symmetric mode) of the 2D model
very well. Further, the second curve of the 1D model almost perfectly coincides with the second

symmetric mode of the 2D model.

The partial agreement between the dispersion curves in the “low-frequency” range gives a hope
that for relatively “small” velocities and frequencies of the load the structural responses predicted

by the models may be close.

Using the dispersion curves the frequencies and wavenumbers of the waves that the load perturbs
in the structures can be found geometrically. To this end the kinematic invariant w = k, v+ (see

Egs. (5) or (33)) has to be plotted in the dispersion plane as depicted in Fig. 4. By doing so, one can
distinguish three cases. First, the kinematic parameters v and Q of the loads are such that the kine-
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matic invariant has no crossing points with the dispersion curves (straight line “1” in Fig. 4). In this
case, which is referred to as the sub-critical motion, the load does not radiate waves (that could prop-
agate towards infinity in the undamped structure) and the displacement field perturbed by the
loads in the beams and the plate is localised in the vicinity of the loads (exponentially decays with
the distance from the loads). Secondly, the kinematic parameters of the loads parameters are such
that the kinematic invariant has crossing points with the dispersion curves (straight line “3”). In
this case, which is referred to as the super-critical motion, the loads generate waves, which propagate
along the structure with a constant amplitude (in the undamped case). These waves transfer energy
from the loads with a velocity equal to their group velocity v,,. In accordance with the radiation
condition [17, 20], waves must carry out energy away from the loads. This means that a wave, with
a group velocity larger than the velocity of the loads, i.e. v,>v, must propagate in front of the loads,
whereas a wave with v, <vmust propagate behind the loads. Thirdly, vand Q are such that the
kinematic invariant is tangential to one of the dispersion curves (straight line “2”). In this case,
which is referred to as the critical motion, the group velocity of the radiated into the structure waves
is equal to the velocity of the loads, v,, = v. This implies that the energy is not transported away
from the loads but is accumulated in their vicinity, leading to amplification of the system response,
i.e. to resonance. The pairs of v and Q that lead to resonance for 2D and 1D models are shown in
Figures 5a and 5b, respectively. In Fig. 5a the solid and dashed lines represent the resonance pairs
for the symmetric and antisymmetric loading, respectively. We will call the curves, which are
shown in Fig. 5, as bifurcation curves because these curves not only show the resonance load para-
meters but also break the (£,v)-plane into domains that correspond to qualitatively different struc-
tural response. For example, considering the 2D model, one can say that the loads with parameters
form domain “I” can not generate propagating waves in the structures. Domain “II”, being separat-
ed from domain “I” by a solid line, allows for radiation of two symmetric waves in the structure.
Passing to domain “III” through a dashed line introduces a possibility of having two antisymmetric

waves in addition to the two symmetric ones, etc.
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Fig. 5. Bifurcation curves

As Fig. 5 shows, there are many (for the 2D model, infinitely many) possibilities for waves to be
generated by the loads. These possibilities are concerned with the distribution of waves in front
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and behind the load, with the number of radiated waves and, for the two-dimensional model, with
the mode of the plate vibrations that accompanies waves propagating along the structure.
Comparing Figures 5a and 5b, one can see that the bifurcation curves of the 1D model partly reflect
those of the 2D model. More precisely, as the dispersion curves (Fig. 4) show, the 1D model pre-
dicts bifurcations that are related to the first two symmetric modes of the 2D model. To find it out,
whether the other modes of the 2D model have a perceptible impact on the structural response, in
the next section the displacement patterns in both structures are studied for the load parameters,
which belong to domains I and III in Fig. 5. These domains are chosen since they correspond to
velocities that are achievable for modern high-speed trains.

Comparison of displacements

The displacements of the structures are calculated numerically by evaluating the integrals given by
Egs. (10)-(11) and Egs. (30)-(32). The displacement patterns of the rails resulting from both models
are presented in Figures 6-7 for the time moment ¢=0 and the parameters presented in appendix B.
In Figures 6a and 7a the displacements resulting from the models are compared for the in-phase
(p=0) loading of the 2D model, whilst in Figures 6b and 7b the comparison is shown for the anti-
phase (¢=n) loading.

0.4+ 2D (in-phase) () 27 2D (anti-phase) ®)
| 1D |- 1D
0_
l_
— 04+ —_ |
g E o4 <
z -0.84 z J
_ N
-1.2+
1.6 +——F—————— 2
-20 -10 0 10 20 -20 -10 0 10 20
x [m] x [m]

Fig. 6. Displacement of the rails for Q=100 rad/s, v=100 m/s (domain I)

Fig. 6 corresponds to domain I in Fig. 5 (€2=100 rad /s,v=100 m/s). In accordance with the disper-
sion analysis, the loads, having parameters from this domain, do not perturb propagating waves in
the structure (the kinematic invariant does not cross the dispersion curves). Consequently, the dis-
placement patterns, which are shown in Fig. 6, are localised in the vicinity of the loads.

Fig. 6a shows that in the case of the in-phase loading, the response of both models is almost exactly
the same. This is to be expected since the lowest dispersion curves of both models are almost exact-
ly the same. Fig. 6b presents a less expectable result, namely that even in the case of the anti-phase
loading of the 2D model, its response can be quite well predicted by the 1D model. This implies
that for the parameters under consideration the left and the right halves of the 2D model (with
respect to the centreline of the plate) respond almost independently.

Fig. 7 corresponds to the loading with parameters form domain III. In accordance with the kine-
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matic analysis, this domain allows for two waves in the 1D model and for two symmetric and two

antisymmetric waves in the 2D model to be generated by the load.

0.4 4
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Fig. 7. Displacement of the rails and the slab for Q=400 rad/s,v =100 m/s (domain II)

The in-phase loading of the 2D model can perturb only two symmetric waves. These waves are
clearly seen in Fig. 7a. The wave propagating in front of the load is shorter than that propagating
behind the load, which is in correspondence with the Doppler effect. Likewise in the previous case,
the response of the 1D model very well resembles that of the 2D model (being loaded in-phase).
This resemblance worsens in the case of the anti-phase loading as it can be seen from Fig. 7b. This,
however, is to be expected, since the 1D model is not able to describe asymmetric waves in the slab.
Proceeding towards higher (with respect to the load velocity) domains in Fig. 5, would complicate
the response pattern, because of a larger number of waves perturbed by the loads. Furthermore,
results of the two models will deviate more and more. Performing such analysis, however, seems

to be irrelevant because the higher velocities are not reachable for modern high-speed trains.

Finalising this section, it is worth showing the maximum displacement of the rails that occurs
under various parameters of the loads. The maximum displacement is calculated over the period of
the load vibration and considering a sufficient length of the rails around the loading points. For the
2D model, both the in-phase and anti-phase loading are taken into account.
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Fig. 8. Maximum displacement of the rails versus frequency of the load for a) v=30 m/s and b) v=80 m/s



The maximum displacement is depicted in Fig. 8 versus the angular frequency of the load for two

load’s velocities.

This figure shows that the models predict almost the same maximum displacement so that the
much simpler 1D model is capable of predicting the maximum possible displacement of an embed-
ded track at velocities that are realistic for modern high-speed trains.

It is important to note that the maximum displacement grows significantly at certain frequencies of
the load, which correspond to the bifurcation curves that are shown in Fig. 5. Thus, Fig. 8 confirms

that bifurcation curves predict resonance amplification of the structural response.
Comparison of stresses in the concrete slab
It is of practical importance to know the dynamic stress distribution in the concrete slab. In the

frame of the 2D model, this distribution can be found on the basis of Eq.(30) by employing the fol-
lowing expressions for the stresses in the Kirchhoff’s plate:

3D(*'w  &w 3ID( *w Fw 3D(1-v) &*w
O-’“:‘ 2 2 +V—‘T § Yy :_H‘Z. V——?—I— 2 ] O_xv:* 2 (36)
2h°\ oOx oy 2h ox~ Oy 2h Ox0y
Substitution of the expression for the plate displacement (30) into Eqs.(36) yields:
3Dexp(—iQt) %
o (X, p,1) = # J.Qx_‘_ (k,,y)exp(i(x-vi)k,)dk, 37)
2h” (271) %
o (x,¥ t):M?Q (k,.y)exp(i(x—vt)k, ) dk (38)
TS 2/’12 (2”)2 Y SN * *
-3Di(1- —iQt) %
o (1) = (1= v)exp (~iCr) [k, (k.. y)exp(iGx-vo)k, ) dk, (39)

21 (2)° 5
with
0. (k,y) =4, (k,,@)x (ki —vAl)e™ + A, (ke 0)x (k] —vA7)e*™
+ A, (k@) < (k] —vADe™ + A, (k,, @) x (k] —vA; e ™,

0, (ko y) = Ayl @) x (VIE = 22)e™ + A, (ks 0)x (VEE = 22)e™
+ Ap (b @)X (VI = 2™ + Ay (k@)% (v = 25)e™

J+3

o, (kx’ y) =4, (k,,w)x /71@%": + 4, (k,, @)% ﬂ“zeﬁﬁy
— A,k 0)x e ™ — A, (k,,0)x e ™.

Expressions (37)-(39) show that the dynamic stresses in the plate depend on the frequency and
velocity of the loads. This dependence is similar to that of the plate’s displacement in the sense that

itis determined by the domain in the bifurcation plane (Fig. 5) to which the parameters of the loads
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belong. To demonstrate this, in Figures 9 and 10 the distribution of stresses o, in the plate is plot-
ted for the parameters of the load belonging to domains I and III in the bifurcation plane (Fig. 5).
Fig. 9 shows the stress distribution at =0 for £=100 rad /s and v=100 rad /s, that is for the load
parameters belonging to domain I (no wave radiation). Fig. 10 corresponds to domain III (two sym-
metric and two antisymmetric waves can be generated) of the bifurcation plane, presenting the
stress distribution for 2=400 rad /s and v=100 rad/s. Fig. 10a shows the stress under the in-phase

loading, whereas Fig. 10b presents that under the anti-phase loading.

MPa]
R=4
K2

Sslress _xx,

<
I

7

Fig. 10a. Distribution of the stress o, in the concrete slab for (2,v)=(400 rad/s, 100 m/s) under in-phase
loading

[MPaj

stress _xx

Fig. 10b. Distribution of the stress g, in the concrete slab for (§,v)=(400 rad/s, 100 m/s) under anti-phase
loading



Fig. 9 shows that in the sub-critical motion of the load, the stresses in the plate are exponentially
localised in the vicinity of the load and the maximum stress takes place right beneath the loading
points. In the sub-critical motion, as it can be seen from Fig. 10, the situation changes. In correspon-
dence with the dispersion analysis, the loads generate waves in the slab. Accordingly, the maxi-
mum stress does not necessarily takes place under the loads but may occur at a certain distance
from them, likewise in the case of the in-phase loading depicted in Fig. 10a.

Let us calculate the maximum values of the stresses 6, 0, and o, that occur in the plate under
given loading parameters (the maximum is taken over the period of the load’s vibration and by
taking into account a sufficient area of the plate around the load). The maximum stresses are
shown in Fig. 11a versus the angular frequency of the load for the load’s velocity v=80 m/s. This
figure shows that the stress o that occurs under the in-phase loading, is the largest for almost all
frequencies of the load. Therefore, to assess the upper limit of the stress in the concrete slab, it is
sufficient to analyse only this (o ) component of the stress tensor. If this is so, then it is natural to
pose the following question: could not we use the simple 1D model to calculate this stress with an
acceptable accuracy? To answer this question, let us compare o, as it results from the 1D and 2D

models.

37 in-phase @ 37 )

————— anti-phase -----2D (in-phase)
. ——1D

1 T T 1
0 400 800 1200 0 400 800 1200

Q [rad/s] Q [rad/s]

Fig. 11. Maximum stresses in the concrete slab versus the frequency of the load for v=80 m/s

To calculate the x-component of the stress in the slab in the frame of the 1D model, the following
expression should be used (with notations used in Eq.(1)):
hE, d*w,
o, =——22 2, 40
’ 2 dx? 40)

The maximum stress _ as it results from the 1D model (Eq.(40)) and 2D model (Eq.(37)) is shown
in Fig. 11b as a function of the load’s frequency for v=80 m/s. This figure shows a very good resem-
blance of the predictions of the 1D and 2D models. This allows us to conclude that the 1D model
can be used for a quick and reasonably accurate assessment of the maximum stress in the concrete
slab.
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Conclusions

The steady-state response of an embedded track to the axle loading of a moving train has been
studied theoretically using two models. The first model is one-dimensional (1D) and neglects the
lateral flexibility of the concrete slab of the track. This model consists of two Euler-Bernoulli beams
connected by a continuous visco-elastic element and supported by the Winkler’s foundation. The
upper and the lower beams represent the rails and the concrete slab, respectively. The visco-elastic
element is employed to model the fill material (Corkelast) that is placed between the rails and the
concrete slab. The foundation represents the soil’s reaction. The second model is two-dimensional
(2D) and, therefore accounts for the lateral flexibility of the concrete slab. This model consists of
two beams (rails) and a flexible plate (slab), which interacts with the beams through continuous
visco-elastic elements (fill material). The plate is supported by a two-dimensional elastic founda-
tion of the Winkler’s type.

A study of wave propagation in both structures has been accomplished followed by the kinematic
analysis of waves, which can be generated by the axle loading, which is modelled with the help of a
harmonically varying load that uniformly moves along the rails. In the course of this study, it has
been found that the one-dimensional model possesses two dispersion curves, which correspond to
flexural waves that may propagate in two beams, which compose the model. The two dimensional
model, on the contrary, possesses an infinite number of dispersion curves, each pair of which corre-
sponds to a lateral mode of vibrations of the plate. Despite this apparent difference, the dispersion
curves of the 1D model very well approximate two dispersion branches of the 2D model that corre-

spond to the two lowest symmetric modes of the plate vibrations.

Bifurcation pairs of the load’s frequency and load’s velocity (critical velocities) have been found,
which lead to resonance in the structure. These pairs are plotted in the plane “load velocity —load
frequency” in the form of bifurcation curves. If the load parameters belong to one of these curves,
then resonance response of the structure should be expected. Additionally, the bifurcation curves
break the plane into domains that correspond to different wave patterns to be generated by the
load.

The vertical displacement of the rails has been calculated and analysed in the frame of both models
for various velocities and frequencies of the load. The analysis has shown that the 1D model is

capable of quite an accurate prediction of the rail’s displacement.

The maximum (over time and space) displacement of the rails has been studied as a function of the
load’s frequency for two specific velocities of the load. It has been shown that resonance picks of

this function exactly correspond to the load parameters predicted by the bifurcation curves.

Analytical results obtained from both one-dimensional model and two-dimensional model have
been compared to that calculated using a finite element program “RAIL”. It has been shown that

there is a good agreement between the results.



The stresses and their maximum values in the concrete slab have been calculated and analysed
using the 2D model for various velocities and frequencies of the load. Analysing the maximum
stresses, it has been shown that the stress in the Q-direction that occurs under the in-phase loading
of the structure is the largest one and therefore can be used for assessment of the maximum possi-
ble stress in the plate. Comparing this stress as it results from the 1D and 2D models (the former is
also capable of predicting this stress), it has been found that the 1D model predicts the stress with
quite a high accuracy.

Thus, on the basis of analysis that has been carried out in this paper, it can be concluded that in
engineering calculations, the one-dimensional model can be employed for a quick and sufficiently

accurate assessment of the dynamic behaviour of the embedded track.

Finalising the paper, we ought to mention the weakest point of the models that have been consid-
ered. This point is concerned with the modelling of the soil reaction. In this paper, it has been done
with the help of elastic foundation of the Winkler’s type. Such a modelling is approximate, for the
soil equivalent stiffness, as it has been shown in [21], is a complex function that depends on the fre-
quency and wavelength of the wave process, which takes place in the concrete slab. The reason to
replace this complicated soil reaction by the simplistic Winkler’s foundation, which takes into
account the static component of the soil reaction only, is that the slab is very stiff and, therefore,
one might expect that the dynamic coupling between the track and the subsoil is very small. This
expectation, however, has to be proven by incorporating into the model a proper soil-slab dynamic

coupling.
Appendix A

The generalised derivatives are applied to the functions that are discontinuous or have discontinu-
es derivatives [16]. In equation (20) the discontinuity takes place along the straight lines y==d. In
accordance with the general definition [16], the generalised and classical derivatives at y==d are

related as follows:

5 = a + ‘V]y=1—d 5(yFd), (A41)

Fw Ow | ow d

—=—H—| OyFd)+W_,—5(y¥d), (A42)

(5 G Y _Q"lh_ﬂ, = dy

Do-Zu2e] st 2| Lot Lot (a9)
e L ly=td y=td

dw dw [ow L Pwl d s ow| &L & .
F SQJF_?LA, 5(y¥d) {?@7},:&,@5{%@ +[5;LdE‘S(yﬂ“d)ﬂw]wga(ﬂd) ;

(A44)
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with and denoting the generalised derivative and the classical derivative, respectively, and the

square brackets defining the jump of the in-bracket function at the discontinuity, for example
[o@)],_,, =0(d+0)-0(xd-0).

Substituting equations (A41)-(A44) into equation (20) and separating the terms that are multiplied

by different derivatives of the delta function, we obtain the following system of equations:

4— 2—
D% —2Dk? aayws +(=2p,h@” + Dk! + y)w, =0,

2

5(y—d)(1)[azﬂ +(k, —ico) (W, —wl)]=0,
.

d _ SQWS _ 27— -
ﬂi{ﬂy?d)[l)[ } }:0’

oo -
;J’_;&(J’+d)(D[W‘]y=id):0’

which results in Eqs.(22)-(24).

Appendix B
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(A45)

(A46)

(A47)

(A48)

(A49)

(A50)

To study the two-dimensional model numerically, the following parameters of the system have

been used:

p,=7800 [kg/m’]; p,=2500 [kg/m’]; #=0.612[m]; d =0.75 [m]; a=1.25 [m];
E =2.110" [N/m’]; E,=3110° [N/m%]; x,=5.25 10’ [N/m’]; 7=9.0 10" [N/m’];
¢=4980 [Ns/m?]; P=10’[N]; v=0.3;

A4.=76.9 10" [m?] (for one rail Auic =76.9 10 [m?]);

1,=3055 10"*[m*] (for one rail Iyic 6=3055 10 [m*]);

£,=7800 [kg/m’]; p,=2500 [kg/m’]; E,=2.1 10" [N/m’]; E,=31 10° [N/m’];
4,=153.8 10" [m?]; (two rails = 2Auic go= 1.538 107 [m*]);

1,=6.11 10”° [m*]; (two rails=2Iuic 0=6.11 10 [m?]);

4,=1.53 [m?]; (concrete strip with the width 2.5 m and the thickness=0.612 m)
1,=4775.0 10° [m*]; (concrete strip with the width 2.5 m and the thickness=0.612 m)
x,=1.05 108 [N/m?]; (two rails=2kg materiai=1.05 10° [N/m’]);

=225 108 IN/m?]; ( 7 subsoir= 9 107 [N/m*]¥2.5=2.25 10° [N/m’]);



¢=9960 [Ns/m”]; (two rails=2csn materia=9960 [Ns/m?]);

P=210°[N];
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