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In this paper, a combined experimental-computational study of a double-edge notched speci-
men subjected to tensile loading is presented. In the experimental part, the load-deformation
response and the displacement field around the crack tip are recorded. An Electronic Speckle
Pattern Interferometer (ESPI) is used to obtain the local displacement field. The experimental
results are used to validate a numerical model for the description of fracture using finite ele-
ments. The numerical model uses displacement discontinuities to model cracks. The discontinu-
ities are able to pass through finite elements. At the discontinuity, a plasticity-based and a com-
bined damage-plasticity cohesive zone model are used, while the continuum remains elastic.
Both local and global results from the numerical simulations are compared with experimental
data.
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Introduction

A variety of computational techniques exists to describe the fracture behaviour of quasi-brittle
materials. These numerical models must be able to simulate the behaviour of brittle materials
under different loading conditions. Therefore, experimental data is very important. Firstly, experi-
mental data is needed in order to determine if the proposed numerical models are capable of simu-
lating the observed behaviour. Secondly, experimental data are necessary to obtain model parame-
ters. Conversely, numerical simulations can be used to improve experiments by a simultaneous
experimental / computational study. Clearly, the link between experimental and computational
work is extremely important.

In this paper, the combined experimental-computational study of a double-edge notched (DEN)
stone specimen subjected to tensile loading is presented. In the first section, the experimental set-

up is presented and experimental results are discussed. Monotonic as well as cyclic loading condi-
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tions are considered. Then, a discontinuous finite element formulation based on partitions of unity
in combination with a plasticity-based and a combined damage-plasticity cohesive zone law are
introduced for the simulation of the DEN-tensile tests. Finally, the numerical results are compared

with experimental data.
Experimantal set-up

For the experiments, a natural stone (limestone) named ‘Massangis’ is used. Nowadays, this type of
limestone is frequently used for renovation purposes. The natural stone Massangis is available in
several varieties and is exploited in Massangis, France. The variety ‘Massangis Roche Jaune’ is used
for the experiments.

All specimens are 120 mm high and 50 mm wide. The thickness is 11 mm. Notches 7 mm deep and
1 mm wide are sawn in the middle of both sides of the specimen. The geometry of the specimen is
shown in figure 1. Two Linear Variable Differential Transducers (LVDT) are used for the measure-
ment of the deformation. The LVDT’s are placed over the notches on each side of the specimen, as
indicated in figure 1. The vertical measuring range of the LVDT’s is 20 mm. Due to the notches, the
crack will be located within the range of the LVDT’s. When a macro crack starts to grow, the defor-
mations tend to localize in the cracked area. Other parts of the specimen will unload. When the
crack is not in the range of the LVDT’s or when the measuring range of the LVDT’s is too large a
snap back will occur, making the measurement of the post peak behaviour impossible. In the other
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Figure 1: Geometry of the specimen (all dimensions in mm) and placement of LVDT.

case, when the crack is situated in the range of the LVDT’s, the measured deformation increases
gradually. In this case, the average signal of the LVDT’s can be used as the control signal for the
test. The average signal is also used in the load-deformation response.

The experiments are performed with an INSTRON 4505 testing bench. The specimens are directly
glued to the loading platens, so that the boundaries of the specimen cannot rotate. Tensile loading
is applied by means of a uniform vertical displacement of the boundary. For the cyclic loading
cases, two unloading-reloading sequences are carried out in the post peak regime. All tests were

performed under displacement control at a rate of 0.3 um/s.



An Electronic Speckle Pattern Interferometer (ESPI) device is used to record the local displacement
field at different load steps. The specimen is illuminated by laser light and speckles appear on the
lighted surface. A CCD camera captures the reflected light. The observed speckle pattern includes
information about the deformation of the specimen. By subtracting different speckle patterns, inter-
ference fringes are formed. These fringes contain information about the displacement of the studied
specimen. Unlike strain gauges, there is no contact with the studied specimen and the strain field,
which can be computed with the supplied software, of a section of the specimen can be studied. A
user-defined border restricts the measuring area of the ESPI. Within this border, a reference point is
defined. This reference point is assumed not to move and the displacements of all material points
situated inside the border are referred to the reference point. In order to make a comparison with
numerical results, five paths are defined along which the displacements are monitored at several
load steps. The different load paths and the position of the reference point are shown in figure 2.
Subtracting the displacements in y-direction along path 1 from the corresponding displacements
along path 2 results in the deformation between those two paths.
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Figure 2: Position of the reference point and paths for ESPI measurement.

Experimental results

3.1 Monotonic loading

A typical load-deformation curve is shown in figure 3. The behaviour is nearly linear elastic until
the peak load. Just before peak load, the curve deviates slightly from the linear elastic branch. This
indicates that some micro-cracking is occurring before the peak load has been reached. After the
peak load, a sharp drop is observed, indicating a brittle response. At this stage, deformation is
localized in a single macro crack and the behaviour is highly non-linear. Apart from the load-defor-
mation curve, also the displacement field in the vicinity of the crack tip is measured. Black dots (in
figure 3) represent load levels where snapshots of the displacement field within the defined border
are taken. The deformations for various load levels, measured in the y-direction between path 1

and 2 are shown in figure 4a. For load level ], the deformations are approximately uniform. For all
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Figure 3: Representative load-deformation curve for monotonic loaded specimen.
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Figure 4: (a) Deformations measured between path 1 and path 2, (b) displacements along path 3, (c) path 4
and (d) path 5 referred to the reference point.
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other load levels, the obtained deformations are highly non-uniform, indicating crack growth from
the left to the right notch. The location of the crack tip during loading can be followed with the
deformations. Near load level VI, the crack has crossed the complete specimen. Figures 4b-d show
the displacements measured along path 3, 4 and 5. The represented values are relative to the refer-
ence point and consequently, no quantitative conclusions can be made. Therefore, no vertical axis is
shown. The shown profiles are valid for the subsequent load levels. Nevertheless, the results are
very useful. As can be seen, the crack which started at the left notch resulting in a jump in the dis-
placements along path 3 (figure 4b). In the middle of the specimen (figure 4c) and at the right notch
(figure 4d), the displacements are still continuous. At load level 1V, the crack has reached the centre

of the specimen, while the crack has crossed the entire specimen at load level V1.

From the shown profiles (figure 4b-d), the magnitude of the displacement jump can be computed.
Again, by computing the relative difference, the influence of the reference point is eliminated.
Figure 5 shows the evolution of the crack opening on the left side (squares), the middle (triangles)
and the right side (circles) of the specimen as a function of the load level. The crack opening mea-
sured at the left notch first increases. At load level IV, a crack opening in the middle of the speci-
men is measured. Finally, at load level VI, the crack has reached the right notch. At this time, the
crack opening at the left notch decreases again. This can also be observed in figure 4.a, where the
deformation profile for load level VI is situated under the deformation profile for level V. Although
the deformation profile at load level VI, shown in figure 4a, was not uniform, a tendency towards

uniform deformations can be noticed.

20

Crack opening (i m)
3
T

T AR /AN ST .
it ity v v VI
Load level

Figure 5: Crack opening at right notch (circles), left notch (squares) and middle notch (triangles) for diffe-

rent load levels.

3.2 Cyclic loading
Besides monotonic loading, DEN specimens were also subjected to cyclic loading. In all tests, two

unloading cycles were introduced. A typical load-deformation response is shown in figure 6.

227



2500

2000

LI e I B B B

500

e b b
0.005 0.01 0.015 0.02
CMOD (mm)

Figure 6: Load-deformation curve for cyclic loaded specimen.

Examining the load-deformation curve, three issues should be emphasized:
o after complete unloading, the closure of the crack is not complete;
e the unloading stiffness reduces with increasing deformation; and

e during the unloading/loading cycle, a small amount of energy is dissipated.

Black dots represent points where a snapshot of the displacement field is taken. The displacements
along the predefined paths are extracted from the measurements. Only snapshots before and after

unloading are shown.

Again, the deformation between path 1 and path 2 is computed in order to remove the influence of
the reference point. Figure 7a shows the deformations before (A) and after (A’) unloading and after
reloading (A”). It is clear that before unloading, a crack is growing from the right notch. As was the
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Figure 7: Deformations before and after unloading and after reloading for (a) the first cycle and (b) the second

cycle.
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case for monotonic loading, the deformations are highly non-uniform. Then, the tensile loading is

decreased until P = 300 N. When the deformations obtained after unloading are studied (figure 7a —

A’), it is clear that the specimen is divided into two parts:

e afirst part where deformations are vanishing when the load is decreasing, indicating elastic or
damage behaviour;

e asecond part where, after unloading, permanent deformations occur.

After reloading (figure 7a — A”"), the deformations recover to approximately the same values as
before unloading (note that the difference between A and A” in figure 7a is due to the difference in
CMOD when the snapshot was taken). The loading-unloading-reloading cycle is repeated further
in the post peak branch. Examining figure 7b, the same conclusions can be drawn. Note that the
permanent deformations after unloading have increased, compared with the first cycle (compare A’

in figure 7a with B’ in figure 7b).

Displacements along path 5 (see figure 2) are shown in figure 8. The values are referred to the refer-
ence point and are only used for an indication of the evolutions of the displacement jumps. From

figure 8a-b, it is clear that after unloading the crack does not completely close.

y (mm) y (mm)

@ (b)

Figure 8: Evolution of the displacements along path 5 for (a) the first cycle and (b) the second cycle.

Numerical model

4.1 Discontinuous finite elements based on partitions of unity

A discontinuous model is used for the description of fracture within finite elements. Therefore, dis-
continuous modes are inserted into the approximation basis. Consequently, discontinuities are able
to propagate through the finite element mesh, which is a very important advantage over interface
elements, which allow discontinuities to propagate only along element boundaries. For a discontin-

uous displacement, it can be decomposed as:
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where u is the displacement field of a body Q crossed by m non-intersecting discontinuitiesT, & and

 are continuous fields and H . is the Heaviside step function. Figure 9 shows a body crossed by
two discontinuities. The displacement field can be interpolated as:

u=Na+) H Nb, @
i=1

<

Figure 9: Body crossed by two discontinuities.

where N is the matrix containing the finite element shape functions, a are the ‘regular’ degrees of
freedom and b, are the ‘enhanced’ degrees of freedom related to crack i. For each crack, an addi-

tional set of degrees of freedom are added. The resulting linearized governing equations can be
expressed as:

K. Kab‘ Kab,,, da f:X(’HAr fciw

Kb,a Kh.b, Kb.b". db, _ 0 _ fiilm,t

Kb,,,a Kb,,,bl Kb,,,bm db,,, 0 f;:t’r
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K, = [B'C'BdQ
Q

K,, = [H; B’ C‘BdQ
Q

K,, = J'HFJBTCeBdQ (4)
Q

K,, = [H;H B’ CBdQ
Q
K,, = [H; B"C*BdQ+ [N"DNT,
Q r, ‘
where C* is the elastic continuum material tensor and D is the material tangent for the discontinu-

ity. It can be seen from equations (4) that the global system of equations remains symmetric when

C¢ and D are symmetric. Note that all stiffness contributions in equations (4) are very similar. The



crucial difference between the terms in equation (4) is the presence of the Heaviside function. This
makes the finite element implementation relatively simple. It is assumed that the considered ele-
ment is crossed by discontinuity j and influenced by discontinuity i. Detailed information on the
discontinuity model can be found in Wells (2001) and De Pr oft (2003).

4.2 A plasticity based cohesive zone model

The behaviour within the discontinuity is described by a plasticity based cohesive zone model.
The adopted plasticity model was proposed by Carol et al. (1997) for use in interface elements.
Consequently, the plastic yield function is given in the traction space. A hyperbolic yield surface is

introduced according to
f=1=(e=T, ) +(c- £ tan §) )

where T = (T, T} are the normal and tangential component of the traction vector, c is the cohesion,
f, the tensile strength and ¢ the internal friction angle of the material. For tension, an associative
flow rule is adopted. The evolution of the yield surface is governed by the decrease in tensile

strength and cohesion throughout the computation:

/8
fr = fm[l - Glf ] (6a)

c- co[ - Kg—,j (6b)
i

where f, and ¢, are the initial values for the tensile strength and the cohesion, G is the mode-I frac-

ture energy, G/ is the mode-1I fracture energy and W_ is the energy dissipated in the fracture
processes. The incremented dissipated energy is defined as:

dW,, =T,dN! +TdA? (7a)

and

t
w, = I aw,, (7b)

0
where A= {A”, A} are the normal and tangential component of the plastic separation vector. In this
way, the decrease of tensile strength and cohesion is coupled to the energy dissipated during the
fracture processes. Moreover, the choice of equation 6 ensures that the total mode-I fracture ener-
gy /mode-II fracture energy is dissipated when the tensile strength / cohesion vanishes.
Furthermore, the decrease in tensile strength and cohesion is coupled; when a material is damaged
due to tensile loading, the tensile strength and the cohesion decrease.
The tangential stiffness and the stress update are obtained with classical elasto-plastic equations.
However, the elastic stiffness is chosen very high (in theory infinite) in order to suppress the artifi-
cial elastic part of the solution. Since a discontinuity is only inserted when the yield condition is
violated, and the jump is completely inelastic.
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4.3 A combined damage-plasticity cohesive zone model
In order to model the decrease in unloading stiffness and the accumulation of permanent deforma-
tions, a combined damage-plasticity model is used. The model is degenerated from the continuum

case (De Proft, 2003), resulting in

T=(1-0)Q(A-A") ®)

where T is the traction vector as defined before, w is the degenerated damage variable, Q¢ is the
elastic acoustic tensor and A" and A are the plastic and total separation vector, respectively. The

elastic acoustic tensor is defined as:
Q¢ =nC’n ©)

Equation (8) is very similar to the constitutive equation used in continuum problems (Simo & Ju,
1987). The degenerated damage variable w is analogous to the continuum damage variable.
However, the degenerated damage variable w varies from —infinity to 1. The elastic material tensor
is replaced by the elastic acoustic tensor. A major difference with continuum models is that the
elastic part has disappeared in the degenerated model, so that the separation of the discontinuity is
completely inelastic. The separation is decomposed into a damage (recoverable) part and into a
plastic (irrecoverable) part.

The plasticity model is solved in the effective traction space. The adopted yield surface is
fP=T —Hg” (10)

where T, is the effective normal traction, H is the hardening/softening modulus and ¥’ is the inter-
nal plastic variable. The evolution of damage is coupled to the damage loading function. This func-
tion is written in terms of an equivalent strain measure. However, strains are not defined in the dis-
continuity, so a new equivalent strain measure must be found. Analogous to the positive principal

strain measure, the positive normal separation opening is used, resulting in
fi=A, -5 (11)
where A, is the normal separation of the discontinuity and ©is the degenerated internal damage

variable. When the damage loading function is violated, the degenerated damage variable is updat-

ed via
K, —
a):l——’?id-exp[— ﬁKd] (12)

where , is the damage threshold and 8 is a model parameter.



Numerical simulations vs experimental results

In this section, numerical simulations performed with the embedded discontinuities based on the
partitions of unity. A quadratic six-noded triangular element is used as underlying finite element.
The mesh independency of this solution has already been discussed in Wells and Sluys (2001) and
De Proft (2003).

5.1 Monotonic loading

The simulations for the monotonic loading cases are performed with the plasticity-based cohesive
zone model presented in section 4.2. For the first simulation, the following model parameters are
adopted: f, = 6.2 MPa, ¢ = 20 MPa, ¢ = 26.35°, Gﬂ =0.04 N/mm and GﬂI =0.1 N/mm.
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Figure 10: Experimental and numerical load-deformation curve.

The computed load-deformation curve is shown in figure 10. As can be seen, a good fit between
numerical simulations and experimental results is obtained. The numerical curve deviates slightly
before the peak load, compared with the experimental curve. Furthermore, the experimental post
peak behaviour is more brittle. The peak load is captured well. Apart from the global response, the
growth of the crack and the displacements in the fracture zone should be considered. Figure 11a-d
compares the experimental deformation profiles captured at different load levels with the numeri-
cally obtained values. The deformations are computed from the displacement values obtained for
path 1 and path 2.

Figure 11a shows the deformation profile in the elastic stage. The numerical simulation is perfectly
symmetric and shows a good agreement with measured deformations. Figure 11b is a snapshot just
after peak load. Clearly, the experimental deformation profile shows asymmetric crack growth
while for the numerical simulation the profile remains symmetric. In figure 11c-d, the asymmetry
in the experimental result increases, while the numerical simulations return to a uniform situation.
Clearly, the model is not able to capture the correct experimental observations. The symmetric
crack growth is a logical solution since the geometry and the test set-up are completely symmetric.

The numerical model needs to be enhanced in order to capture the experimentally observed defor-
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Figure 11: Deformation profiles at (a) load level I, (b) load level 11, (c) load level I and (d) load level IV (solid

lines represent numerical results).

mations. Non-symmetric crack growth can be numerically triggered by:

e introducing a weaker spot at a notch so that the crack starts earlier; or

e introducing bending, resulting in a non-uniform stress state.

Firstly, an element at the left notch is made slightly weaker. The tensile strength is decreased by

5%. Consequently, the cracks starts earlier in this element and crack propagation may be non-sym-

metric. The model parameters are: f, = 6.7 MPa, ¢ = 20 MPa, ¢ = 26.35°, Gﬂ =0.03 N/mm and Gﬂl =

0.1 N/mm. The obtained load-deformation curve is shown in figure 12. Examining figure 12, two

remarks can be made:

e the peak load is captured correctly; and

o just after the peak load, the computed post peak behaviour is more ductile. Around load level P
=1350 N, a drop in the load-deformation curve is observed. After the drop, the computed post

peak behaviour is close to the measured curve.
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Figure 12: Load-deformation curve for non-symmetric crack growth due to a weaker element.
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Figure 15: Deformation profiles obtained with eccentric loading for (a) load level 1, (b) load level II, (c) load
level ITI and (d) load level IV (solid lines represent numerical results).
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When the deformation profiles in figure 13 are studied, the sudden drop in the load deformation
curve may be explained. Clearly, in the beginning, the computed deformation profiles follow the
experimentally obtained curves well. For the last load level, figure 13d, the computed deformation
profile returns to a more uniform distribution. This is connected to the drop in the load-deforma-
tion curve. The drop is explained by the transition from a non-symmetric mode into a uniform pat-

tern.

Another way to incorporate non-symmetric crack propagation is by introducing a bending compo-
nent in the set-up. In this case, the force is applied with a slight eccentricity. The eccentricity of

e =22 mm is adopted and the following model parameters are used: f, = 7.3 MPa, c = 20 MPa,
¢=26.35°, Gﬂ =0.035 N/mm and Gﬂl =0.1 N/mm.

The load-deformation curve is shown in figure 14. Again the peak load is reproduced well.
Furthermore, the drop in the load-deformation curve, already observed in figure 12, is also present
and is more pronounced. The numerically obtained deformation profiles are compared with exper-
imental results in figure 15a-d. It is clear that a non-symmetric deformation profile is obtained due
to the presence of bending. For all load-levels, the computed profiles are close to the experimental
curves. Even after the drop in the load-deformation curve, the computational results follow the

experimental results remarkably well.

5.2 Cyclic loading

Next to the monotonically loaded specimens, cyclic loading is also studied experimentally. The
numerical modelling is performed with the combined damage-plasticity model defined in section
4.3. Only non-symmetric crack growth is considered.

In a first simulation, non-symmetric crack growth is triggered by a weaker element at the right
notch. The adopted model parameters are: f, = 6.5 MPa, H = 27000 N/mm? and 8 = 400. The experi-
mentally and numerically obtained load-deformation curves are plotted in figure 16. Obviously,
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Figure 16: Comparison of experimental and numerical (with material weakness) obtained load-deformation
curve for cyclic loading.
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Figure 17: Deformation profiles for (a) begin and (b) end unloading branch 1 and (c) begin and (d) end

unloading branch 2 (solid lines represent numerical results).

the proposed combined damage-plasticity model can capture the decrease of stiffness and the
appearance of permanent deformations. The post peak behaviour of the numerical simulation is

more ductile. The steep descent in the beginning of the post peak was not captured.

The computed deformation profiles are compared with experimental measured curves in figure
17a-d. Snapshots are taken at the beginning and the end of the unloading branches. For unloading
branch 1, the deformation profiles are similar. After unloading (see figure 17b) the calculation
shows permanent deformations at the left side of the specimen while the experimental deforma-
tions largely disappear. This means that during the calculation, a discontinuity is already intro-
duced at the left side, while in reality, the behaviour is still elastic. For the second unloading branch

the difference is even more pronounced.
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for cyclic loading.
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Figure 19: Deformation profiles for (a) begin and (b) end unloading branch 1 and (c) begin and (d) end

unloading branch 2 (solid lines represent numerical results).

239



240

The same simulations are repeated for non-symmetric crack growth triggered by an additional ben-
ding moment. The adopted model parameters are: f, = 7.8 MPa, H = 27000 N/mm? and 8 = 400. The
obtained load-deformation curve is compared with the experimental value in figure 18. Again, the
computed peak load is comparable with the experimental measured value, while the computed
post peak behaviour is more ductile. The experimental and computed deformation profiles are
compared in figure 19a-d. Compared with figure 17, the deformation profiles after unloading
(figure 17b ~ figure 18b) are better captured when a bending moment is introduced. Furthermore,

the computed deformations are higher than the measured ones.
Conclusions

In this paper, a combined experimental-computational study of the tensile behaviour of limestone
in presented. Both monotonic as well as cyclic loading was performed. During the experiments,
both global and local measurements were made. Globally, the load-deformation curve was record-
ed and locally, the displacement field around the crack tip was measured. It was shown that with
the use of the ESPI technique, important information can be recorded. Moreover, the ESPI tech-
nique is very useful since there is no contact with the specimen, and consequently, the measure-

ment do not interfere with the experimental process.

Measurements showed that the obtained deformations are non-symmetric. After unloading, it was
shown that permanent deformations were present. For the numerical simulations, the discontinu-
ous finite elements were used in combination with a plasticity-based and a combined damage-plas-
ticity cohesive zone model. For the monotonic loading, the simulations were performed with the
plasticity based model, while for cyclic loading the combined damage-plasticity model was used.
The combined model was necessary in order to correctly capture the decrease in the unloading
stiffness and the permanent deformations after unloading. However, it was shown that the experi-
mental observations could not be captured with the numerical model and consequently, the prob-
lem must be modified. Therefore, a weaker region or an additional bending component was added.

It was shown that, with the enhancement, the experiments were simulated more accurately.

This paper shows that comparing numerical simulations with experimental data should be done
with great care. A fit of the simulations to the global data is not sufficient to conclude that the
model can capture the real response. Local data in computations and from experiments should be
compared. Consequently, the derivation of the material parameters from an experiment is not

straightforward.
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