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An homogeneous orthotropic plate model is presented for the idealisation of composed plate
structures with orthotropy properties. The model requires the specification of 14 material para-
meters and couples membrane and bending forces. To find these parameters a finite element
procedure is proposed that calculates these parameters with the help of a plane strain analysis
and a simple potential analysis for a series of basic load cases. These parameters are substituted
into the orthotropy model for the analysis of the homogeneous orthotropic plate. Both analysis
steps can be performed with simple 2D finite element programs such as KOLA. Two examples

show the performance of these models.
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Introduction

Many plate structures are built up in such a way that an isotropic idealisation of the properties is
insufficient to model the structure properties properly. Quite often these structures, such as stiff-
ened steel plates or concrete hollow core slabs or composed structures show an orthotropic behav-

iour of the properties.

Figure 1

To model these structures by homogeneous orthotropic plates is an attractive solution. By such an

approach very complicated slab structures can be analysed by simple 2D programs such as KOLA
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[4]. The problem, however, is the fixation of the material parameters. This paper presents a method,

based upon the finite element method [1],[2], to calculate these properties in a numerical way.

The orthotropy properties

Following the (Reissner) plate bending theory we model the internal forces by membrane forces n, ,

n, and n , plate moments m,, m,, and m, and transverse shear forces g, and ¢,. These forces are

xx/

dependent on the deformations of a reference plane of the slab, namely the strains &, £ and 7,

Xy’

the curvatures x,,, k, and k, and the shear deformations ¥, and '¥. Assuming homogeneous

x Ty

orthotropy of the properties we have to formulate the constitutive equations.
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Figure 2

From constant strain £_ we get the resultant membrane force nf) at distance z,, from the reference

plane -see Figure 2-. Following the Reissner plate theory strain £, at the application point of the

resulting membrane force n? is related to the deformations of the reference plane by

m
En=Ent 2Ky
m

where K, =¢, , and € =u,,

Now membrane force n") is given by

(1) _ m
= &n€u T 281K, (1a)

xx

Bending moment m® at the reference plane is given by

xx
() _ (1)
My = dy K+ 20,

or (1b)

(Y _ m 2
my = 2,8uEn + (dyy 2, &1 K

XX



From constant strain ¢, we get a resulting membrane force n2) at a distance z , from the reference

lane. Unlike in the isotropic case usually z,, # z... Membrane force n? is now given b
p P Y 2% 2y o g y

(2) _
n. =8,
where (1c)
e
e, =en+

The contribution to the bending moment at the reference plane is given by

(2)

x

(2) _ -
m; _dller +z,0

or (1d)

S(2) _ m 2
m.’ =z,8,¢, +(dy, +2z,8, )5,

In the same way we formulate the relations for membrane force n,,and plate bending moment m, .

Because of the reciprocity property it follows that z,, = z,,, ¢, =g, and d, =d,,.
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Figure 3

Shear forces n, and n  do not act at the same distance from the reference plane, thus z,, # z,,.

We find the displacements

m

v = U+ 20,

u
— u _
u, =u —z,0,

v

Because rotation @, (z) is constant with respect to the thickness we may assume that b.=-9,,

Because of equilibrium we may assume thatn, = e

Now we can derive
_ m m
Ny =8y (Uyy +ity, ) = 2538350, + 2830, ,

_ m oy .
n,=gu(uy, Fuy )—z,g06  + 71849,
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n m m 2
My, = 233833l + Z3n833lhy  — (dys + 23383 05« + 23320839,
" m

’ m 2
M, =Zu8xl,, TZu8ulU, — 2353734830, (dyy+2.,8; )q)y,y

After some manipulations we get

m 1
Ry =83Vt ';(233 + 244 )83 K.,

';—(mw +m,) =%(Z33 + 244)g337;'; + {';‘(dss +dy,) +}7(~’33 +zy )? & }KW (2

_ m __ .m m
where K, =—¢, +¢ and y g =u’ +u

X,y »x

It has to be noted that, although z,, and z,, are dependent on y, the sum z,, + z,, is independent of y.
This holds also for d,, and d,,.

In accordance to the Reissner plate theory we find for the transverse shear forces g, and g,

9. = 84V,
q, =8V, @)
where v _=u, +¢,and y = u':"y -0,
Summarising all contributions together we find the constitutive equations
”",r(— [ &n &n 0 Zné&n Z12812 0 | .
n, & Exn 0 Zn8n 258n 0 33;
My _ 0 0 833 0 0 23385 7:]:
m, z,81 2,81 0 d, +z,2]gII d, +z]22g]2 0 «
m;"‘ 2,81 Zyy & 0 d,+z,8, dyn+ 2380 0 "
A w ] L 0 0 2383 0 0 5}33 + 2323g33 L% |
[a.] [8. O]V,
L9, ] :|: 0 gs; ][W\:| ®
where

A L

m m
H,, =3( my, +n, )
" 1
Iy =5(233+ 24 )

a;za = %(das tdy)
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Figure 4. Membrance forces, plate moments and plate transverse shear forces.



Kinematic relations are given by

m m

ng = I’l.v.x
n m
=Uu
»v »¥
m n m
/y\l) = ux,y +uy,x
Kx.v = ¢y,.x
= ©)
Ky =0,
K, ==0,. 19,
IV,\' = u:,x +¢y
WJ‘ = u:._v _¢X

It is the objective of this study to develop a method for the fixation of the parameters
g;.d; and z;

Zij -

The finite element models

To smooth the properties of an inhomogeneous orthotropic plate into a continuous orthotropic
Reissner model we will perform a series of calculations with the help of the finite element method.
In this way we will calculate the 14 parameters g,, d, and z,.

. ki
For our analyses we will define a series of loading cases in such a way that all strains are either con-

stant with respect to the axial direction x or equal to zero. For every case it will hold

3 ;
—(u,,)=0 (6)
ox

The equilibrium of stresses in the x-direction (axial axis) requires

0, *t0,,+0,..+tp =0

x,

which yields, after substitution of isotropic stress strain relations and condition (6), a potential

equation in displacement u_[3],[5]

Gu,,, +Gu, __+p =0 @)

The equilibrium of stresses in y- and z-directions requires
G t0,..+p =0

i

0, +0. . +p =0 ®

Assuming a plane strain model in the yz-plane, thus ¢ = 0 we follow the constitutive equations
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E

c, =m{(1—‘/)8” +ve_}

011=m{vew+(1—v)sx} 9)

o, = Gy)c

Following these conditions the displacement u (y, z) is found completely independent from the dis-
placements u (y, z) and u,(y, z). We will define a series of load cases and boundary conditions that
satisfy to these conditions. The problems that are formulated either by the plane strain model or the
potential problem, are solved with the help of the finite element method. In all cases we will

assume a constant plate thickness t=1.

S 7
Z7 -
plane strain model potential-problem

Figure 5. Finite element models for one segment of the cross section

The finite element analysis will yield reaction forces at the left hand side and the right hand side of
a repeating cross section segment, e.g. as shown in figure 5. From these reaction forces the resul-

tants at both sides are calculated following

n, = R.v = Z Ev,
q,=R = ZE plane strain model

m, = -M =) z E (10)

potential problem

The calculation of the plate forces n_, q_and m_ will be discussed later.



Analyses with the plane strain model

Load case 1: Simulation €, calculation g, and z,,
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Figure 6

To simulate strain g, we apply the kinematic constraints

uf = uf, +Au‘_
L an
u, =u,

The use of these kinematic constraints does not hinder the development of undisturbed warping of
the edges I and II, thus it is possible that u; #0and ul #0.

For the homogeneous plate we substitute

m All v
8\7\7 =
» Ay
£.=0
Au,
Now we get resulting force R which equals to R, =n,, = g€, =gx» A ~.and M =-z,R,
Using these results we calculate the parameters Y
Ay R,
En = )
’ Au,
' (12)
MY
Ip =~ R
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Load case 2: Simulation Ky calculation d,,

We will simulate the pure bending case. The load case is an increment A¢, of the rotation between

edge I and II. To simulate the pure bending x, we apply the following kinematic constraints:

u 1
u, =u. —(z.,—z, )JAQ.
L= = (2,2 )00, )
n 1
u, =u
z
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Figure 7
For the homogeneous plate we assume
A
K, =0, == 1)
: : Ay
Given these boundary conditions the plate moment m,, at the right hand edge equals to:
AP,
mll’{ =—dy —¢—\ (15)
) Ay

From the results of our f.e.m. analysis we compute reaction force M,. Because M, = -m, we find

Ay M
d, =2 (16)
A(])\_




Load case 3: Simulation y,, calculation g,

To calculate the shear stiffness g., we look for a loading case that represents shear deformation
only. Such a case is possible by the simulation of a Timoshenko beam which is subjected to an uni-

formly distributed moment load m . The Timoshenko beam has to satisfy the differential equation

Now we apply the boundary conditions
MI — ull — O
¢1 — ¢11
The solution of this differential equation and boundary conditions is given by

m, =0 and q,=m,.

The deformation is fixed by ¢, = g ¥,
To simulate the Timoshenko beam by a f.e.m. analysis we take the load case

p,(»,z2)=-0,(3,2) (17)

where g, is found by load case 2.

2y(r.z)

ADPE Y

Figure 8

The resultant loading of (17) at the y-axis is the uniformly distributed moment

m(y) = JZG,\:~ dz = M = constant (18)

The boundary conditions are given by kinematic constraints

i 1
U =u,

The homogeneous plate model takes into account only a constant shear force. Based upon the virtu-

al work condition we require that

Ayqy, = Zu”yK"u“ = z u A

or

2

Ayﬂ =u'f
g55
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Now we find the parameter g, by
Ay g,

' f (19)

gSS =
Load case 4: Simulation €_, calculation g, 8.,z and z,

For materials with Poissons ratio v = 0 the analysis is very simple. We find

g Ay=EAandg, =0.

thus
EA
&y =
Ay
g,=0.

The calculation of eccentricities z,, and z,, can be more complicated and justifies the following

procedure.

The problem is more complicated with v# 0. In those cases neither the onedimensional stress
assumption nor the plane stress assumption is correct. For a correct analysis the strains ¢, , &, and
¥, are calculated with a f.e.m. analysis of the plane strain model with initial strain loads.

We apply the following initial strains.

e =Au, Au =0 Au =0 Ap =0 Ap =0 (20)

Xy

This corresponds with the following initial stresses
0 (1-v)E
o.,\‘v\ =
(1+v)(1-2v)
B VE
(1+v )(1-2v)
0 VE
o, =—Au
(1+v)(1-2v)

Au,

0 Au, (21)

w

¥

After performance of this analysis we get at boundary II the resultant forces n, = R, and
m, =-M, where
n,=g,Mu
m,=z,n,

In this way we find the parameters d,, and z,, following

_ R«"
& _E:'

) M, (22)
Z, = __R_



For the plane strain model that we analysed we find for stresses o,

0 VE
0,=0,t—————(¢ +¢ )
o (1+v)d=-2v) '

From these stresses we get n__following:

nAv= [[oldd=g a0 Au, (23)
¢

and plate moment m_ following

Aym, = zj'[zc;dA = z;,n, Ay (24)

Thus parameters g, and z,, are found by

m
x

n

X

z =

Load case 5: Simulation x_, calculation d,, and d ,
For simple structures with v = 0 it is simple to calculate d,, and d,,. For those cases is
EI
d Ay =EI thusd =—,and d,, =0.
Ay
For more complicated cross sections the underlying procedure is recommended.
To simulate a pure bending in axial direction we apply the following constraints

e, =(z-z,)Ad, Au =0 Au =0 Ap =0 (25)

This corresponds with the initial stresses

o (1-v)E
6\'\' = -—‘———(Z—Z”)AQ,
(1+v)(1-=2v)
o vE
o, =—————(z-2,)A¢, (26)
(14+v)(1-2v)
0 vE
(z-2,)49,

o, =——"—
T (1+v)(1-2v)
After solution of this plane strain problem we get m

m " = d|3A¢v'

=-M atboundary II where

Wy
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We find parameter d , following

M\
Yy @7)
After solution of the plane strain problem we get for the axial stresses o,
'+ vE (e +¢_)
ey = Xy - 8!’!' zz
) (l+v)(l-2v) ” (28)
From these stresses we get a resulting moment M, following:
M =tym =Y [[(z=z, o dd=d,ay A9, (29)
e

The parameter d,, is now given by

Figure 9
Load case 6: Simulation ‘¥, calculation g,

For the calculation of shear stiffness g,, we look for a loading case that generates shear deformation

only. Similar to load case 3 we apply an uniformly distributed moment load m, following

m, = HG_,_..(y,z)sz

where o, (y,z) is found in (28) from an analysis with constant bending moment . In the f.e.m.

model we apply the load p (y,2) = 0,.(y,z) such as found in (28)



ply.z)

4

i

Figure 10

.

For this load case we find a solution q,_such that

qrAy:mv:HG“(y,z)sz (30)
A

Because any variation with respect to x equals to zero the equilibrium transforms into the potential

problem -see also (7)-
Gu +Gu _+p = 0 (31)

For this potential problem we apply the kinematic boundary conditions
1 n
u, =u,

After solution of the potential problem we substitute o, = Gu, and c,, = Guw and successively

Ayqy, =D u K'u'=Yu f 32)
or ! ‘
qu—" =u'f
'

Now we find the parameter g,, by

2

g, = Ay g, 33)
44 qu
With the results for o,_ we can calculate the y-ordinate y., of the shear force centre following
lyord
po =
733 quy
Load case 7: Simulation Yoy calculation g,; and z,,
In the potential problem we apply the kinematic constraints
u:' = u’] + Au, (34)
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For the homogeneous plate we simulate
w_ Du,

Vo=
" Ay (35)

After solution of the potential problem we find the resulting force

Au,
R =n, =87, =8, ™
and
M, =z,R,
Z z
¥
Figure 11

From these results we obtain the parameters

&R
8y = 'E“‘
M, (36)
Sy

The second part of the postprocess requires

M, = ZH()/G,\-: ~z0,, Jdd

and yields the parameter

_MX

V4
33 RrAy

Load case 8: Simulation Ky calculation d,

To calculate twisting stiffness d,; we investigate a plate with constant twisting moment m_ . Because

the plate is free of shear forces it holds (5) that ¢, = u, and ¢, = -u, . With undisturbed warping

zy

there is no interaction between the shear stresses o, and o, the cross section stresses o, o, and o,

The cross section rotates and translates as a rigid body.



As loading case we apply a distorsion ¢, = A¢, around the shear force centre of a segment of the

cross section. Taking the origin of the yz-reference frame in the shear force centre we get the

displacements
u, = —xzAQ
u, = xyAg, (37)

Figure 12

To these displacements we find the shear stresses
o, =Gu  +GyAg,
o =Gu  —GzAp,

For the potential problem [3], [5] we have to satisfy the boundary condition
o,=Gu, +GyAp =0 (38)

This boundary condition can be translated as a ‘load” at the boundaries of the potential problem.

Figure 13
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Together with this ‘load” we have to satisfy to the kinematic constraints
u’ =ui +zAy Ag,
After solution of the potential problem we calculate the twisting moment following

aym, =[] (0.z-0_y)dd=d k. =28y d A,

which yields the last parameter

d "
B A ¢X (39)
Examples

Calculation properties

To test the theory such as outlined in the preceding sections we will analyse a stiffened structure as

shown in figure 14.

iy

7
n20 Z 2 / Z E=20iV/m
0.40 % % v =030

.28 .80

Figure 14

The cross section by 14 segments as shown in figure 15



Figure 15. Model of isotropic slab stiffened with beams

The structure will be modelled in three ways, namely
- By an isotropic slab stiffened by beams -see figure 15-
- By an artificial orthotropic plate

- By ahomogeneous isotropic slab with thickness 0.30 m

To apply artificial orthotropy we model one segment with the finite element method. The mesh is

shown in figure 16.

Figure 16. One segment of the cross section.

After solution of the analysis with the 8 load cases we get the following properties:
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kN/m
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d, = 016502 10°

064029 10"
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ZlZ
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d|2

013431 10’
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01602610" d,=01165210" =z, = 048737
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gZZ
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01008010 d,, =05277910" z,

8y =

01343710’

8ss =

These properties are input for the analysis with artificial orthotropic plates

Test on axial stiffness

A 20 m long and 11.20 m wide slab is supported at the short edges. The bridge is loaded by a point

10 kN at the centre of the slab.

load P=

20m
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555 0 o e ! B e e 5 B

11.20 m

Figure 17

The analyses carried out with the three models yield the following results for the displacements

under the load

Isotropic plate stiffened by beams u, = 0,171 mm

46



- Artificial orthotropic plate u, = 0,170 mm
- Homogeneous isotropic plate with thickness 0.30 m u_= 0,251 mm

Global results are shown in figure 18.

homogeneous isotropic plate

isotropic plate with beamns artificial orthotropic plate
Figure 18. Displacements u,

The reaction forces for each model are shown in figure 19

[{sotropic slab with beams
/orthotrop/'c slab
" homogeneous isotropic slab

Figure 19. Reaction forces.
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Test on twisting stiffness

To test the twisting moment stiffness we take a quarter of the slab and support the slab along one

axial and one cross direction border -see figure 20-

upported edge

Figure 20

The analyses carried out with the three models yield the following results for the displacements
under the load

- Isotropic plate stiffened by beams u, = 3.98 mm

- Artificial orthotropic plate u, = 3.46 mm

- Homogeneous isotropic plate with thickness 0.30 m u, = 2.26 mm

The difference between the orthotropic slab and the slab with beams is rather large. An explanation

is found by a consideration of the shear strain energy with pure twisting (load case 8).

artificial orthotropy isotropic slab and beam

Figure 21. Maximum shear stresses in cross section.

Following the plate model stiffened by beams the transverse shear stresses of beam and slab for
twisting are not coupled at the junction of beam and slab; the model does not take into account this
condition -see figure 21-. Both models are subjected to the same loads. A simple estimate of the
strain energy shows a reduction of 12% of the orthotropic model with respect to the stiffened slab
model. Thus also the displacements of the stiffened slab model have to be reduced with 12%. Now
we find the improved estimate

- Isotropic plate stiffened by beams u, = 350 mm

which is much closer to the orthotropic model.



Global results are shown in figure 22

L a
isotropic slab with beams

Figure 22. Displacements u_

The reaction forces are given in figure 23
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isotropic with beams /isotr opic with beams

\ O\ﬂhoiropfc T //// orthotropic
} T // . .
\ \\homogenesus isotropic - pomogeneous isotropic
A\ 4

N

Lo
B ———

supported axial axis

-+ supported axis cross direction

Figure 23. Reaction forces

Conclusions

The introduction of artificial orthotropy offers the tools to model complex slab structures by a rela-
tively simple plate model. A wide variety of structures can be analysed by programs for simple 2D

structures.
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Notations and symbols

Ay length segment
thickness plate
Young’s modulus
shear modulus
Poisson’s ratio
displacement

rotation

m e = < QO Mm

strain



K

W

curvature

shear deformation

Au elongation

A¢ distorsion

K

stress

membrane force

plate bending moment
plate transverse shear force
resultant force at boundary
resultant moment at boundary
stiffness stresses

stiffness plate bending
stiffness plate forces
displacement vector

force vector

stiffness matrix

u'f vector product u and f

u  differentiation of u with respect to x
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