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Abstract

Embedded discontinuity formulations have been recently presented as a method
of incorporating displacement discontinuities in standard finite elements. These
elements allow inelastic deformations to be modelled using discrete constitutive
models at an internal interface. However, the actual formulation of these models
is identical in concept to more traditional fracture energy regularised smeared
crack models. Rather than adjusting the hardening modulus depending on el-
ement size, the inelastic strain itself is made dependent on element size. It is
shown here that the embedded discontinuity idea and smeared crack models are
conceptually identical.
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1 Introduction

Smeared crack models are commonly used for the failure analysis of materials such
as concrete. Cracking is simulated by introducing strain softening into the classical
continuum formulation [1-6]. Despite the theoretical flaws of these models, they are
simple and with careful use can provide remarkably good predictions of actual re-
sponses. Importantly, the deficiencies and limitations of theses models are well recog-
nised. The key issue is that the finite element size must be included directly in the
constitutive model to make the energy dissipated in failure objective.

A more recent development in the analysis of localised failure are ‘embedded dis-
continuity’ elements. These elements attempt to include the effect of a discontinuity
in the displacement field as an incompatible strain mode [7-11]. In some forms, these
models allow the direct application of discrete (traction—separation) constitutive mod-
els [9, 11]. In this case, no length scales from the finite element mesh appear directly
in the constitutive model (unlike smeared models), rather a length scale is included in
the element formulation itself through the form of the incompatible strain modes. Un-
like smeared formulations where the hardening modulus is adapted depending on the
element size, the inelastic strain itself is adapted according the to element size. This
makes identification of the element length scales involved more difficult.
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To elucidate the similarities between embedded discontinuity and smeared crack
formulations, the embedded discontinuity formulation is first presented. It is then
shown how the embedded discontinuity model can be formulated at integration point
level. The formulation at integration point level is compared with traditional smeared
crack models and the similarities are highlighted. The intention of this paper is to em-
phasise the equivalence of strong embedded discontinuities and the smeared crack idea
and dispel the notation that embedded discontinuities models can capture displacement
discontinuities.

2 Strong embedded discontinuity formulation

The most successful of the strong embedded discontinuity approaches is that based on
the work of Simo et al. [7] for one-dimensional problems, which has been extended to
two dimensions by Oliver [8] and Armero and Garikipati [9] and to three dimensions
byWells and Sluys [11]. This formulation is developed from both kinematic and kinetic
considerations, and has been termed the ‘statically and kinematically optimal model’
[12]. A detailed discussion and comparison of the different formulations can be found
in [12]. These formulations should be restricted to constant strain elements, the reason
for which are discussed in Wells [13].

The standard embedded discontinuity formulation is based on the enhanced as-
sumed strain (EAS) concept [14]. The object of this work is to show the conceptual
equivalence of the embedded discontinuity model and smeared crack models, so the
governing equations for the embedded discontinuity model are simply presented and
not derived. The weak governing equations for the strong embedded discontinuity
model are expressed as [§8, 9, 11]:

/BTc dQ—/ NTdl = 0 (1a)
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Q. T,

where N and B are matrices containing the usual displacement and strain interpolations
(from the compatible part of the displacement field), respectively, @ is a vector contain-
ing components of the stress tensor, t are the traction forces acting at a discontinuity,
t are tractions acting on an external boundary and G* is a matrix containing interpo-
lations of the variations of the enhanced strain. Equation (1a) is the standard virtual
work equation, and equation (1b) governs the enhanced strains. The enhanced strains
are incompatible, and therefore equation (1b) is applied for each element crossed by a
discontinuity. Equation (1b) applies for all elements crossed by a discontinuity. The
matrix G* has the form:
A

G, = Vene 2)
e

where A, is the area of the discontinuity plane through an element, V, is the volume of
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Figure 1: Node associated with N;.

the element and the matrix n, is of the form:
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where n,, n, and n; are the components of the unit vector n for an element. The strain
at a point in an element is calculated using:

£ =Ba+Ga 4

where a are the regular nodal displacements and @ are the enhanced nodal displace-
ments at a discontinuity (representing the displacement jump components). The dis-
placement jump components are internal degrees of freedom of an element. The matrix
G, for an element has the form:
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where N} is the shape function associated with the node which is ‘alone’ on one side
of the discontinuity. This is illustrated in figure 1 for a three-noded element. The
test functions for the enhanced strain (G*) are not the same as the trial functions (G).
The test functions are formulated to impose traction continuity within elements. The
trial functions are formed based on kinematic considerations. It will be shown in the
following section that if G* is used for both the test and trial function, the formulation
is identical to classical smeared formulations. A detailed discussion of the need for
kinematic enhancements can be found in [12].
The stress rate in terms of nodal displacement velocities is given by:

6 =D (Ba+Ga) (6)
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where D is a material tangent matrix relating the stress and strain rates. The traction
rate at a discontinuity is given by:

t=Ta& 7

where T is the tangent relating the traction rate and the displacement jump rate. To
form the element stiffness matrix, the stress and traction rate expressions are inserted
into the weak governing equations in (1). This yields for an element:

Xt int
Kbb,e Kbg,e da, _ ff’yf B f;ze (8)
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where
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and da, and da, are the iterative-incremental displacements. The subscript ‘e’ has
been added to denote that the stiffness matrix is for a single element. Note that ir-
respective of the material model used, the element stiffness matrix is non-symmetric.
This is a result of the Petrov-Galerkin type formulation (G # G*).

3 Integration point level formulation

Usually, the incompatible strain modes in the model presented in the previous section
are solved using standard static condensation procedures. In this way, the internal
degrees of freedom do not enter the global system of equations. From equation (8),
the condensed stiffness matrix and internal force vector can be expressed as:

-1
Keone = Kppo ~ Kpg, [Kyge +Kee]  Kype (10)
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The condensed element stiffness matrices and internal force vectors are used in assem-
bly of the global system of equations. After solving the global system of equations for
the iterative-incremental displacements da via

da= [Kcon]_l {ﬁm _ﬁ%{n ) (12)

the iterative-incremental displacements at the discontinuity within an element can be
found.

-1 .
da =Ky 4K | Ky dact £ (13)
Assuming an elastic response in the continuum, from equation (10), the condensed

element stiffness matrix is expressed as:

Keone = /Q B'D°B dQ

-1
- / BTDG 4Q < f G DG + / T, dr) f GTDBdQ (14)
Q, Q, r,, Q

where D¢ is the elastic material tangent. For constant strain elements, the integrals in
equation (14) can be eliminated,

Keone = VeB'DB — VB'DG (V.G'"D°G +A.T. ) “v.6" DB, (15)
Defining a matrix D as:

D =V.D°G (VeG*TD"G +AeTe) ~ ¢ Tpe (16)
and then considering the definition of the matrix G* in equation (2),

D =D (—G) (nTD* (~G)+T,) 'n]D. a7

Note that n, is not the normal vector to a discontinuity, rather it is a matrix that contains
components of the normal vector (see equation (3)). Using the result in equation (17),
equation (15) can be rearranged to yield:

Keone = VBT (D°—D)B (18)
D

where D is the equivalent continuum tangent, showing that the EAS-based model can
be cast in an equivalent continuum format and solved using a conventional Bubnov-
Galerkin procedure. This applies for both the symmetric (G = G*) and non-symmetric
(Petrov-Galerkin) models. The tangent D in equation (18) is almost identical in form
to the more traditional smeared crack formulation [2, 4]. The only difference to the
smeared crack formulation for a single crack is the matrix G, which is a measure of the
element size and reflects the element geometry. For the symmetric approach (G = G*),
the matrix D is equal to:

-1
N v,
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€
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Figure 2: Triangular element crossed by a discontinuity (represented by the dashed
line) with the discontinuity aligned with an element edge.

which is symmetric. The only difference with smeared crack formulations is the inclu-
sion of the scalar V, /A, in the tangent, which is a measure of element size. This avoids
the need to adjust the hardening modulus element-wise, since the element length scale
is already included in the formulation. In light of this equivalence of the embedded
discontinuity formulation and classical smeared crack models, it must be concluded
that many of the difficulties which dog classical smeared crack models will persist.

Since the embedded discontinuity model can be cast in a conventional finite ele-
ment setting, with a non-linear continuum constitutive operator, it shows that the model
is actually continuous.

4 TImplications of the non-symmetric formulation

In this section, the implications of the kinematically formulated trial functions are
examined. For the element shown in figure 2, N; is equal to the shape function N,
of node one and the discontinuity through the element is aligned with one edge of the
element. Through some simple calculations it can be shown that:

o,

* ax] _1 nl
dx,

where c is a scalar (shown in figure 2) and n, and n, are components of the normal
vector in the x; and x, directions, respectively. Comparing the matrices in equations (5)
and (3), the qualitative difference between the matrices G* and G disappears, with G
being a scalar multiple of G*. Therefore, for the case when a discontinuity is aligned
with an element edge, G = (V.c/A.)G*. This result is not surprising when considering
that conventional smeared models perform well when an element edge is aligned in the
direction of the crack or shear band. From figure 2 and equation (20), the kinematic
enhancement can be considered as projecting a discontinuity such that it is parallel to
an element side, a case in which conventional finite elements are known to perform
well. The scalar ¢ provides a measure of the element size and the ‘normal vector’
is not dependent on the discontinuity orientation, rather the spatial orientation of the
element edge. The motivation for the enhanced strain field given by Oliver [8] that
the ‘incompatible displacement’ equals jfl—d — N} which is chosen since it is equal to
zero at element nodes thus seems improper and gives an incorrect justification to the
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Figure 3: Element length scales implied by the kinematic enhancement.

kinematic enhanced strain field. The kinematic enhancement simply makes the strain
enhancement element-dependent. The enhancement is dependent not only on element
size, but also element orientation.

It must be emphasised that the use of the function N introduces numerical length
scales to the formulation. Taking the gradient of N, can be considered as a sophis-
ticated measure of the width of an element. From equation (20), the gradient VN;
implies a length scale and an element-dependent normal vector. Alternatively (and
equivalently), it can be considered to imply two element length scales. Consider the
element shown in figure 3. The element is crossed by a discontinuity such that N} is
equal to the shape function of node one, N|. Through algebraic manipulations, it can
be shown that dN; /dx; = 1/l and dN;/dx, = 1/I,, where I, and L, are shown
graphically in figure 3. Defining the ‘enhanced kinematic strains’ & as

& =Ga, 1)

(cf. equation (4)) the kinematic enhanced continuum strains in terms of a displacement
jump are expressed as:

Q,
gh=—-" (22a)
Ly,
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Equation (22) shows that use of the kinematic enhancement implies a different numer-
ical length scale in each spatial direction in the global coordinate system. This can be
compared to the symmetric enhancement where only one length scale, I = A,/V,, is
implied. The kinematic enhancement is intimately related to element size and shape.

5 Single-edge notched (SEN) beam

A single-edge notched beam, as test experimentally by Schlangen [15], is analysed
using the embedded discontinuity model. Figure 4 shows the embedded cracks for a
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Figure 4: Two-dimensional SEN beam with crack path continuity enforced.

two-dimensional analysis. Through the enforcement of crack path continuity (in a ge-
ometric sense), a curved crack path can be calculated [16]. However, the calculations
could not performed further than the point in figure 4 due to the inability of the ele-
ments to ‘transfer’ the effect of the crack to elements ahead of the crack tip [13]. Using
the embedded element technique leads to similar convergence problems as observed
with a smeared crack approach.

6 Conclusions

It has been shown that so-called ‘embedded discontinuity’ models are conceptually
equivalent to classical smeared crack models and will therefore inherit the undesirable
properties of classical smeared models. Since the Heaviside jump does not appear
explicitly in the formation, and the displacement jump is incompatible, the embed-
ded discontinuity model is nor discontinuous. This adds to the appeal of more recent
methods in which the Heaviside jump does appear explicitly in the formulation and
the displacement jump is compatible [17].
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