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This paper discusses the steady state response of a rigidly supported, granular layer to a moving load.
Accordingly, the dynamic behaviour of a ballast layer under an instantaneous train axle passage is sim-
ulated, where the rigid support reflects a substratum that is much stiffer than the ballast layer, e.g. bal-
last in a concrete railway tunnel or on a concrete railway foundation. The discrete nature of the layer is
captured via a 9-cell square lattice. After deriving the equations of motion for the lattice, the long-wave
approximation of the equations of motion is compared with the equations of motion for a continuum
model. This leads to relations between the macroscopic constitutive parameters of the continuum and
the microscopic constitutive parameters of the discrete lattice. Next, the boundary value problem is for-
mulated and solved. The influence by the particle size, the damping characteristics and the load veloc-

ity on the layer response is demonstrated via a parametric study.
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1 Introduction

In railway transport, the continuous demand for capacity increase as well as for more extensive
mobility networks automatically sets up a critical assessment with respect to the effectiveness of
currently operating and newly-built railway lines. In order to meet the high standards regarding
effectiveness, in many countries train cruising speeds of 200 km/h and more have been employed.
The track response of these high-speed lines has a typical dynamic character. Hence, for a reliable
prediction of track safety and track deterioration, it is necessary to utilise advanced track models
that cover the relevant vibration effects and wave propagation phenomena.

Most dynamic track models developed during the last three decades rely on the continuum theory
(see for example, Fryba [1972], Labra [1975], Dieterman and Metrikine [1996], Dieterman and
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Metrikine [1997], Suiker et al. [1998]). Although these models have disclosed many important fea-
tures of high-speed railway systems, the nature of the continuum theory prohibits that such models
properly simulate the discrete behaviour of the ballast layer. The discrete behaviour of ballast
becomes especially significant when a ballast layer is supported by a stiffer substratum of concrete
(i-e. railway tunnels, railway foundations) or rock, which is the result of high-frequency wave
reflections at the ballast-substratum interface that may perturb the ballast particles individually
(Suiker et al. [1999a], Suiker et al. [1999b]).
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Fig. 1. Moving load on a layer of circular particles.

In this paper, the dynamic response of a layer of discrete ballast particles to a moving load is inves-
tigated. The moving load represents an axle loading of a high-speed train vehicle. The discrete layer
is modelled by a square lattice, which consists of cells that are mutually connected via elastic longi-
tudinal springs. Here, the cell distance relates to the particle size. An elastic material law for the lat-
tice springs is justified, since under an instantaneous axle passage the response of a railway track is
mainly reversible. After deriving the mathematical framework that describes the boundary value
problem, a parametric study is carried out. The parametric study illustrates how the discrete layer
response is influenced by the ballast particle size, the ballast damping characteristics and the load
velocity.

Governing equations for a discrete lattice

In Fig. 1 we have depicted a discrete layer of thickness H, which consists of equal-sized, circular
particles of diameter d. The layer is subjected to a vertical load F,, that moves with velocity v along
the layer surface. The internal layer geometry and the mechanical interactions by the particles are
modelled by a square lattice. In the interior of the layer, the square lattice is constructed of an inner
cell with coordinates (m,n) that is connected via axial longitudinal springs Kj,; to 4 neighbouring
mid-side cells at distance d, and via diagonal longitudinal springs Ky;, to 4 neighbouring edge cells
at distance +2d (Fig. 2). The lattice cells have two degrees of freedom, which are the displacements
in x-direction and z-direction, u, = {u,, u,}. The centre of the cells corresponds to the centre of gravity



of the particles, while the cell distance d corresponds to the particle diameter. By neglecting the
body forces, the equations of motion for the inner cell (m,n) of the square lattice can be derived as
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Fig. 2. Inner cell of square lattice

where M is the mass of the inner cell and {i{™", #{™™} are the accelerations in x-direction and

z-direction. The dot on top of the degrees of freedom designates the full derivative with respect to
time. The derivation procedure leading to (1), is explained in more detail in (Suiker et al. [2000]).
At the free boundary of the layer (z = 0), the square lattice is characterised by a boundary cell that is
connected to three neigbouring mid-side cells at distance 4, and to two neighbouring edge cells at
distance +2d (Fig. 3.). In fact, the boundary cell can be retrieved from the inner cell when the three
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neighbouring cells on top of the inner cell are omitted. Hence, the equations of motion for the
boundary cell (m,0) may be directly derived from Eq.(1), yielding

.. (m, 1,n m, +1,0 -1,0
Mllf - 0) - 2_1<a il— 4”5( -0) + 2u}((m L0 + Zu}((m L0
1 Kd“ia[ 2 E(m,o) im"‘lfl) im—l,l) §m+1,1) im—],l)]

Mil™” = K- 20 + 2]

1 - -
i EKgia[_ 2u(zm,cv) + u(zm+ Ly, u(zm Ly, uim+1,1) _ uf(m 1,1)] 2)

>

Boundary cell of
Square lattice

O
l——> Uy (m-1,1) (m,1) (m+1,1)
y d | d |
7 7 7

Fig. 3. Boundary cell of square lattice

In the long-wave approach, the equations of motion of the discrete model (1) should reduce to those
of a standard elastic continuum (Born and Huang [1954], Maradudin et al. [1971], Kunin [1983],
Suiker et al. [2000]). Accordingly, by taking the second-order Taylor approximation of (1) with
respect to the displacements, we obtain the equations of motion in the long-wave limit

Mﬂx,n = (K:xi + K:i‘ia)dzilx,xx + 2Kgiad2ﬂz,xz + K;iadzﬁx, 2z
~ n n 2~ n g2~ n 42~ (3)

Muz, tt = (Kaxi + Kdia)d Uz 2zt 2Kdiad Uy, zx + Kdiad Uz, xx

where ,t is the partial derivative with respect to time. The tilde on top of the degrees of freedom des-

ignates their continuous character. Comparing (3) with the equations of motion for a classic

elastic medium

pﬂx,tt = ()" + 2“)ﬁx,xx + (}“ + H)ﬂz,xz + Mﬁx, 2z
pﬁz,tt = (A+2:u)i:lz,zz+(}“+:u)ﬁx,zx+,uﬁz,xx (4)
where A and u the Lamé constants and p the density, it becomes clear that (3) and (4) coincide if the

following relations between the discrete micro-variables and the continuous macro-variables hold
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The anisotropic character of the lattice as a result of the different spring characteristics in axial and
diagonal direction causes the equalities (5) to be unique only for the following condition:
Ko = 2K§;,. Substituting this constraint in (5) yields the Lamé constants
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2d

n (6)
- Kaxi
H= 24

As expression (6) illustrates, the long-wave limit of the discrete model reduces to the continuum
model for the specific case A = u, corresponding to a Poisson’s ratio of v = 0.25. When extending the
discrete model with more spring types (i.e. shear springs, rotational springs), the restriction on the
Poisson’s ratio will be released (Suiker et al. [2000]). However, the quality of the model results is not
affected by such a constraint. SubstitutingK3,; = 2Kj;, in the equations of motion for the inner cell
(1) gives
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In the same manner, substituting the constraint in the equations of motion for the boundary cell (2)

yields
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Now, in order to solve (7), we will look for solutions of the harmonic form

u™™ = Aexp(i(wt —mkd - nk,d)) ©
u™™ = Bexp(i(wt - mkd - nk,d))

in which o is the angular frequency, the imaginary number #* =-1, A and B are the wave amplitudes
and k, and k, are the wave numbers in x-direction and z-direction, respectively. Combining (9) with
(7) leads to
A[M o + K2 (2 cos(k,d) + cos(k,d) cos(k,d) - 3)]
+ B[K;i(—sin(k,d)sin(k,d))]= 0
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+ B[Mw” + K2,5(2 cos(k,d) + cos(k,d)cos(k,d) —3)]= 0 (10)

Via straightforward algebra, the relations (10) can be solved for the wave number k,
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In correspondence with the four solutions k!, the amplitude vectors of the harmonic expressions
(9) have four components: AY = {A“), AP, Am, A“)} and BY = {Bm, B?, B®, B(‘”} . The eigen
vector that reflects the amplitude ratio DY = B9/ A%, results from combining (11) either with (10-a)
or with (10-b), where the first combination yields
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Invoking (9) and using (11}) and (12), we obtain a general expression for the free propagation of
harmonic body waves
u™™ = (A" exp(=ink,Vd) + A? exp(=ink,”d) + A® exp(-ink,” d)
+ AY(exp-ink,d)) exp (i( ot — mk,d))

4™ = (AVDY exp(—ink,Vd) + AP D exp(-ink,Pd)

+ AP DPexp(-ink,Od) + AYDW exp(~ink,Vd)) exp (i(wt - mk,d)) (13)
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Formulation of the boundary value problem

In order to examine the boundary value problem that reflects the layer response to a moving load,
four boundary conditions have to be formulated. At the top of the layer (z = 0), two boundary con-
ditions follow from the dynamic balance of forces acting on the free boundary cell (8). This leads to

. 1, - 1
Muim’o) - —K:xi[—5uim'0)+2uf<m+1m+2u(xm 10 iuim+1,l)

2
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in which F, is the magnitude of the vertical load and v is the load velocity. In (14-b), the load
magnitude has been multiplied by the cell distance d (=particle diameter), which is necessary to pro-
vide the loading term with the same dimension as the remaining terms in this equation. Further,
() is the Dirac delta function, and &j,; is an operator of the form

Ko = Kb+ Clcy as)
which is used instead of the longitudinal axial spring constant Kj,;, in order to extend the discrete
lattice with a longitudinal viscosity Cj,; . In the same manner as the discrete stiffness K} is related
to the Lamé constants A and p (Eq.(6)), the discrete viscosity Cj,; is related to the corresponding

macroscopic viscosity parameters A* and y*

Ciaxi

A= =
2d (16)

* C:xi

H= 2

As we consider the layer support to be infinitely stiff, at the bottom of the layer (z = nd = H) the

displacements in x- and z-direction are equal to zero

u(m, H/d) - 0

X

17)
U _ o

The next step is to transform the four boundary conditions (14) and (17) to the Fourier domain.
Accordingly, the necessary Fourier transforms with respect to time ¢ are
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The Fourier boundary conditions (19) can be met by Fourier displacements of the form
U™ = (A exp(-ink,Vd) + A? exp (~ink,? d) + AP exp(-ink,”d)
+ A“”exp(-ink;‘”d)exp(-inﬁcxal)|]E e
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Because in the z-direction the solution (20) has the same form as the solution for free body wave

propagation (see Eq.(13)), correspondingly, the wave numbers k.’ follow from (11), and the ampli-
tude ratios DY follow from (12) with Kj,; being replaced by the ‘complex stiffness’ K%, + iwC",, .
In the x-direction, however, the wave number k is dictated by the moving load; kx = w/v, where

the bar on top of the wave number indicates its “forced” character.



Substituting the Fourier displacements (20) into the Fourier boundary conditions (19) gives
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The system of equations (21) can be written in a matrix-vector form as

EGPAD| = p© (22)
ky =

<ig

where E% is the 4 x 4 matrix that governs the eigen behaviour of the discrete layer,
AP = (4D AP 4D APV is the wave amplitude vector and F® = {0, —dF, /v, 0, 0} is the force

gy

vector. Further, the repeated superscript “j” implies a summation. The amplitude vector can be

found by employing Cramers rule

A
(| 23
A A (23)

where, for a given set of elastic parameters, A = A(w, I?X, H, d) is the determinant of the eigen matrix

E with ke = %’ being substituded, and A, is the determinant of the eigen matrix with the j-th col-

umn being replaced by the force vector F”. When the amplitude vector is calculated and substituted
(m,n)

into (20), the steady state solution {u," ", u(z"" ")} of the boundary value problem results from

inverse Fourier transformation of (20), i.e.

™™ ()= 2%&’1 U(xm'")(w)exp(iwt)dw o)

m,n 1 m, n .
u™ ()= 2—JJ_:U(Z )(w)exp(zwt)dw
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The integrals (24) can be evaluated either by using complex contour integration, or by using direct
numerical integration. In the current study we have chosen for numerical integration, as for realistic
viscosity values of the ballast, the integrand (24) converges relatively fast. Also, the viscosity
removes the integrand singularities emerging at the frequencies of the waves radiated by the load.

In the next section we will discuss the steady state solutions (24) for various cases.

Discussion of results

For the parametric study in this section, we have used an axle load of F, =200 kN, which is a
common design value for railway lines in Holland. The ballast is assigned a Young's modulus

E =200 MPa, and a Poisson’s ratio v = 0.25 (corresponding to Lamé constants A = 4 =80 MPa).
Furthermore, the ballast density is assumed as p = 1800 kg/m? while the layer thickness equals

H = 300 mm. By using Eqs.(5) and (6), the macroscopic material parameters above can be trans-
formed into microscopic material parameters for the discrete model. In order to examine the influ-
ence of the particle size, we will consider two different particle radii: 7 = 0.5d = 1 mm and

r =0.5d = 25 mm. The large particle size is realistic for ballast particles in common railway tracks
(Selig and Waters [1994]).

Fig. 4 shows the vertical displacement u, at 0.2H (=60 mm) below the surface, for a small particle
radius r = 1 mm and a load velocity v = 150 km /h. The response has been computed for two differ-
ent viscosities: u* = A* =1 x 10° Ns/m? and y* = A* = 50 x 10° Ns/m? Due to the small particle size,
the displacement pattern of the discrete layer approaches that of a continuum layer. For the small
viscosity the response is symmetric, while for the large viscosity the response is slightly asym-
metric. Naturally, a higher viscosity leads to a smaller maximum displacement.

When the particle radius is increased to r = 25 mm, for a relatively small viscosity

u* =1 x10° Ns/m? considerable waves are radiated behind the load (Fig.5). This wave radiation is
the result of the periodic inhomogeneous character of the discrete structure. More specifically, the
emitted radiation is generated by individual particle motions, where the intensity of the radiation
depends on the ratio between the load velocity and the particle size; v/d. For an increasing
(decreasing) ratio v/d, the individual particle motions become less (more) intense, causing the
discrete layer to respond more (less) like a continuum. Because the radiation is formed by higher
harmonics, it is damped for a higher viscosity y* = 50 x 10° Ns/m? It can be further noticed that for
the high viscosity, the maximum displacement is smaller than that for a smaller particle size of

r =1 mm (see Fig.4). This is, because for a given macroscopic stiffness, a greater particle size
enlarges the local contact stiffness (see expression (6)), which thus leads to a decrease of the local
peak.

The fact that a higher load velocity yields a reduction of the wave radiation, can be illustrated by
increasing the load velocity to v = 300 km /h (Fig.6). Apparently, the radiation is lower than in
Fig. 5, which is because a higher load velocity activates higher harmonics that are more easily
damped by the particle viscosity. Further, the influence by a larger damping on the disappearance
of the wave radiation is also apparent. Nevertheless, the damped response shows a larger maxi-
mum displacement than in Fig. 5, which is due to increased dynamic effects caused by the higher

load velocity.
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Fig. 4. Steady state displacement u, at z = 0.2H below the layer surface, for a load velocity v = 150 km/h,
a particle radius r = 1 mm, and viscosities u* = A* = 1 x 10° Ns/m?, u* = A* = 50 x 10° Ns/m?.
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Fig. 5. Steady state displacement u, at z = 0.2H below the layer surface, for a load velocity v = 150 km/h,
a particle radius r = 25 mm, and viscosities u* = A* = 1 x 10° Ns/m?, u* = A* = 50 x 10° Ns/m?.
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Fig. 6.  Steady state displacement u, at z = 0.2H below the layer surface, for a load velocity v = 300 kmih,
a particle radius r = 25 mm, and viscosities p* = A* =1 x 10° Ns/m?, u* = A* = 50 x 10° Ns/m?.

Conclusions

In this paper, the response of a layer of discrete particles to a moving load has been analysed. This
model is representative for the behaviour of a railroad ballast layer resting on a much stiffer sub-
stratum (e.g. a concrete railway bridge or railway foundation). After deriving the governing equa-
tions for the discrete model, the boundary value problem has been formulated and solved, thereby
considering various parameter combinations. It has been demonstrated that for a particle radius r =
25 mm, which is realistic for ballast particles in ordinary railway tracks, the response considerably
differs from that of a continuum layer. Depending on the magnitude of the viscosity, particle per-
turbations may initiate wave radiation behind the moving load. The oscillating character of this
wave radiation can have a deteriorating effect on the ballast layer, as it stimulates grinding and flat-
tening of ballast particles, as well as loosening of the ballast packing structure. The decrease of wave
radiation by an increased viscosity has been demonstrated. Hence, for reducing track maintenance
and ballast replacement at railroad bridges and tunnels, it is recommendable to use ballasts with a

considerably large damping capacity.
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