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1. Introduction

In this contribution we shall present some current capabilities of DIANA for the analysis
of advanced composite structure. We will present micromechanical analyses of matrix crack-
ing in a ceramic composite and we will show some applications of interface elements for the
modelling of fibre-matrix debonding and thermally induced delamination between the compo-
nents of a PLCC-68 chip package.

The essence of interface elements is that they allow for a geometric discontinuity to occur

in a structure. Depending on the constitutive model that is used to describe the inelastic
response of the interface, the discontinuity may appear suddenly or can evolve gradually into a
traction free internal boundary. An orthotropic softening plasticity model is presented which
defines the relation between strength and stiffness degradation and crack opening in the inter-
face elements. The quintessence of this modelling technique is that the surface under the soft-
ening curve is equal to the critical energy release rate G, of the interface that fractures. This
ensures on one hand a correct energy release during crack propagation, so that propagation is
independent of the mesh refinement, and on the other hand it results in a proper description of
the size effect (see Schellekens and De Borst 1992, Schellekens 1992).
In the next section the formulation of interface elements is presented. Attention is paid to the
effect of the applied integration scheme on the element performance. In section 3 the formula-
tion of the plasticity model is offered. Furthermore the algorithm for the elasto-plastic integra-
tion the derivation of the tangent stiffness relation are discussed. Finally the examples are
presented in section 4.

2. Interface Elements

In this section a finite element formulation for line and plane interface elements is
presented. Interface elements are a powerful tool in the modelling of geometrical discontinui-
ties in different kinds of structures. In finite element analysis of civil engineering structures a
large variety of applications for interface elements is present. Interface elements can be used
to model soil-reinforcement interaction (Gens et al. 1988), to model the intermediate layer
between rock and concrete e.g. in arch-dam analysis (Hohberg and Bachman 1989), or in the
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analysis of rock-joints (Goodman et al. 1968, Gens et al. 1989). Applications in concrete
mechanics cover the modelling of discrete cracking (Rots 1988), aggregate interlock (Feenstra
et al. 1991) and bond between concrete and reinforcement (Keuser ef al. 1983, Mehlhorn et al.
1985, Schifer 1975). In rubber parts interface elements can be of importance when desin-
tegration of rubber and texture is concerned e.g. in conveyor belts. Furthermore interface ele-
ments are suited to model delamination in layered composite structures (Schellekens and De
Borst 1992, Schellekens 1992) or frictional contact in forming processes (Rodic and Owen
1989).

Interface elements can be divided into two elementary classes. A first class contains the
continuous interface elements (line, plane and shell interfaces) which have been discussed in
the literature by e.g. Goodman et al. (1968), Schifer (1975), Mehlhorn ez al. (1985) and Beer
(1985), whereas the second class of elements contains the nodal or point interface elements
(Ngo and Scordelis 1967), which, to a certain extent, are identical to spring elements. In this
chapter we shall only consider the numerically and lumped integrated continuous interface
elements. For a description of nodal or point interface elements the reader is referred to Ngo
and Scordelis (1967) or Schellekens (1990).

2.1 Finite Element Formulation

As mentioned in the introduction the element stiffness matrix of line and plane interface
elements can either be assembled by numerical or by lumped integration. The difference stems
from the fact that in numerically integrated interfaces the traction-relative displacement rela-
tions are evaluated along an interpolated displacement field in the integration points, whereas
the lumped interfaces evaluate the relation at the individual node-sets. In the following sec-
tions the formulation of numerically and lumped integrated elements is presented.

2.1.1 Numerically Integrated Interface Elements

Consider an nno-noded line or plane interface as in Figure 1. In a general 3D configuration
each node has three translational degrees-of-freedom, which leads to an element nodal dis-
placement vector a

T
- 1 2 nno 1 2 nno 1 2 nno
a= (an ,An ..8n 5 85 5 857,085 5 8, A ,.ndt ) s €))

where n denotes the direction normal to the interface surface and s and t denote the directions
tangential to the interface surface as can be seen in Figure 1. The continuous displacement
field is denoted as

— u 1 u 1 u 1 T
u=(u,",u,,ug ,Ug U Uy 2)

where the superscripts u and | indicate the upper and lower side or plane of the interface
respectively. With aid of the interpolation polynomials m = (Nj,Nj,..,Nype) the relation
between the continuous displacement field and the nodal displacement vector is derived as

34



3 ig
L Tt - x,2
X3 _
(a) linear line (b) quadratic line = (c) cubic line
interface interface interface
a
Iy
a
a3
I3 .
(d) 11near plane (e) quadratic plane (f) nodal
interface interface displacements
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u=Ha (3
in which H contains the interpolation polynomials according to
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To relate the continuous displacement field to the relative displacements an operator matrix L
is introduced

1+ 0 0 0 0
L= 0 0-1+41 0 0]. (5)
0 0 0 0-1+l

When the relative displacement vector v is defined as v = (v,,vs,v,) T we obtain
v=Lu. (6)

The relation between nodal displacements and relative displacements for continuous elements
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is now derived from egs. (3) and (6) as
v=LHa — v=Ba @)

where the relative displacement-nodal displacement matrix B reads

-nn 00 0O
B=| 00-nn 00| €]
00 00 -nnm

If we consider an element in which the local coordinate systems in the integration points coin-
cide with the global coordinate system, no transformations are necessary. For an arbitrary ori-
ented interface element the matrix B has to be transformed to the local tangential coordinate
system of the integration point or node-set. If the matrix R contains the local coordinate axes
in the integration point, the transformation of the matrix B, from the global coordinate system
to the local axes (B)) in the integration point is given by B, = BgRT.

When the matrix Dy is used to denote the relation that describes the constitutive behaviour
of the interface element

d, 00
Di=| 0 d; 0 )
0 0 4

the traction-relative displacement relation becomes
t=Dyv (10)

in which t = (t,, t,, t,) T represents the traction vector.

In interface elements tractions and relative displacements are evaluated between the upper
and the lower interface sides or planes. The components of the traction and relative displace-
ment vector are determined by the orientations of the element sides or planes, and are thus
fixed. The virtual work equation for an interface element can be written as

W = [ dv]t; dSo (11)
So

with Sq the surface of the interface element. In a nonlinear analysis the traction vector at the
end of an iteration j can be expressed as

tj W tj—l + DIde (12)

where dv; denotes the iterative change in the relative displacement vector. It can be demon-
strated that variation of the relative displacement vector results in dv;j = d(dv;). Introducing
eq. (12) in the virtual work expression and invoking (7) yields

5(da;)" [BTD|B dSoda; = - 8(da;)" [BTt;_, dS, . (13)
S, S,
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The element stiffness matrix K and the internal force vector f;_; can subsequently be defined
as

K = [BTD;B dS, and  fi; =[BTt dS, . (14)
Sy So

For numerically integrated interface elements the integrals in eq. (14) are replaced by an inte-
gration over the iso-parametric coordinates & and 1. For the element stiffness matrix of a plane
interface element this gives
E=+1 N=+1
K= [ [ BT™DBdetJdEdn. (15)
E=-1n=-1
In case of line interfaces the interpolation functions N; are independent of 1 and eq. (15)
reduces to

£=+1 aXl 2 aX2 2 '
— T _ e
K—b&ilB DIB[[a ] +{a& dE . (16)

where b is the width of the interface. If, for example, we use a 2x2 Gau8 integration scheme
for the assembly of the element stiffness matrix of a linear eight-noded plane interface with
surface S, the result is

K, 0 0
1
K=— K, 0
€S| 0 K (17)
0 0 K,

where each 8%8 sub-matrix has the form
[ 4d; 2d; d; 2d; -4d, -2d; -d; -2d; |
2d; 4d; 2d; 4 -2d; -4d; -2d; -d;
di 2d; 4d; 2d; -d; -2d; -4d; -2d,
2d; d; 2d; 4d; -2d; -d, -2d; -4d,
Ki=|_4d, 2d, -4, 24, 4d, 24, d; 24, (18)
-2d; -4d; -2d; -d; 2d; 4d; 2d; 4
-d; -2d; -4d; -2d; d; 2d; 44, 24
-2d; -d; -2d; -4d; 2d; d;, 2d; 44

L n

for i=n,s, and t. We notice that a full coupling between the nodal displacements of the node-
sets is present in each specific direction.
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2.1.2 Lumped Integrated Interface Elements

The major difference between lumped and numerically integrated interface elements is the
use of relative displacements at the isolated node-sets instead of an interpolated relative dis-
placement field in integration points. For the relative displacement vector v we now have

v=Bja, (19)

with By, the relative displacement-nodal displacement matrix for a node-set is. For a lumped
interface element elaboration of the integral in eq. (15) results in a summation over the ele-
ment node sets. Hence,

ns
T
K= 3 Bjs DyisBisSis (20)
is=1
where ns denotes the number of node sets and S;; is the surface contribution of node set is.
Since the traction-relative displacement relation is evaluated in the individual node sets
instead of in the integration points, the matrix Bj; is obtained as

141 0 0 0 O
By=| 0 0-1+1 0 0]. 1)
0 00 0-1+1

With the sequence of element degrees of freedom as in eq. (1) this results in the following
nodal displacement-relative displacement matrix B for the first node-set of a linear plane
interface element:

-10001000 00000000 00000000
B;=| 00000000-10001000 00000000 |. (22)
00000000 000O0O00000-10001000
The surface contributions Sjg of the node-sets are determined from:
dS;, =detJ d€ dn (23)
and
nip
Sis = 3, Nig,ip dSjp (24)
ip=1
where Njg i, is the value of the interpolation polynomial of node-set is at integration point ip.

As an example the stiffness matrix is given for an eight-noded linear plane interface with sur-
face S:

K, 0 0
K=%S 0 K, 0 25)
0 0K
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in which the eight by eight sub-matrix K; has the form

4, 0 0 0-d 0 0 O]
0d 0 0 0-d 0 0
0 0d 0 0 0-d 0
0 0 0d 0 0 0-4
Ki=l 4, 00 0d¢ 0 0 0 (26)
04 0 0 0d 0 0
0 0d 0 0 04 0
0 0 0d 0 0 0 4

where i can be n,s, and t. It is noted that in contrast to eq. (18) for lumped integration no cou-
pling of degrees-of-freedom exists between the individual node sets.

2.1.3 Numerical Integration

In finite element analysis the surface or line integral to determine the element stiffness
matrix is replaced by a weighted sum as

nij
K= f %ipA By, "Dy By, (27)

ip=1
where the values of By, and the weight factor oy, are dependent of the applied integration
scheme and A is the surface of the element. For numerical integration of continuum elements
the accurate GauB3 scheme is commonly used, whereas thickness integration of shells is usually
performed using a Simpson integration rule. However, in Gens ez al. (1988), Rots (1988),
Hohberg and Bachman (1989), Hohberg (1990), Schellekens (1990) and Qiu et al. (1992) it
was found that under certain conditions the application of GauBian integration to interface ele-
ments leads to oscillatory traction profiles owing to spurious kinematic element performance.
In Schellekens and De Borst (1992), Schellekens (1992) a comprehensive study is presented
on the influences of the applied numerical integration scheme on the element performance.
There the conditions for spurious element performance are defined and an explanation for the
undesired behaviour is offered. As a conclusion of the element study Table 1 can be con-
structed which connects the type of interface element to the optimal numerical integration
rule(s). It is noted that the plus and minus sign refer to good and poor element performance.
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Table 1 Effect of numerical integration scheme on the element performance

Integration Element Type
Scheme Lin. Line | Quad.Line | Cub.Line | Lin. Plane | Quad. Plane
Gauf - - - - -
Newton-Cotes + + + + +
Lobatto + + +- + +
Lumped + + + + -

The fact that lumped integration fails to produce satisfactory results in case of a quadratic
plane interface element is caused by the negative surface contributions of the corner nodes of
quadratic elements which introduce negative diagonal terms in the element stiffness matrix.
This leads to an ill-conditioned system of equations which is solved inaccurately with an
LDU-decomposition without pivoting as has been done here.

Finally it is noted that the application of linear distorted plane interface elements produces
inaccurate results when a Newton-Cotes or a Lobatto integration scheme is used to assemble
the element stiffness matrix. This is caused by an improper calculation of the surface contribu-
tions (detJ) for the integration points. Elements that are integrated by a GauBian integration
scheme or a nodal lumping scheme do not suffer from this deficiency.

3. An Orthotropic Softening Plasticity Model for Interface Elements

For the modelling of mode-I interface fracture the discrete crack model described in Rots
(1988) is sufficient. However, when the fracture in the interface is not purely of a mode-I type,
and energy is also released in mode-II and mode-III, this discrete crack model is no longer
applicable. To describe mixed-mode failure a constitutive model is required in which all three
components of the traction vector t are involved. An orthotropic hardening/softening plasticity
model now is proposed for the modelling of mixed-mode fracture in composites. The yield
condition for interface plasticity is given by

D(t, 1) = Cppt2 + Cest? + Cyt? + Cyt, - (k) =0 (28)

with C;; and C,, a set of material constants. t,, t; and t; are the components of the traction vec-
tor. A cross section of the applied yield surface and the t,,t, plane is depicted in Figure 2. If t;,
and t,, denote the compressive and tensile yield tractions in the direction normal to the
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Figure 2 Yield surface for the orthotropic plasticity model

interface plane, is and it the shear yield tractions and t a normalised yield traction, substitution
in condition (28) results in:

2 2 2 2 2
t t t t t

Cmn==c Cu=73 Gu=g Go=mp - = (29)
tntn ts f ot

Recasting eq. (28) in matrix-vector notation yields
¢@@=%€n+ﬁpdﬂm=o (30)

in which t* = (t,, t5, t), P = diag (2Cyp,2Css,2Cy) and p” = (C,,,0,0).

As soon as this condition is satisfied, the total relative displacement rate v is decomposed into
an "elastic" part, v, and a "plastic” part, vF, as follows:

v=v 4P (31)

The elastic relative displacement rate is related to the traction rate by

t=Dv", (32)
and the assumption of an associated flow rule yields for the plastic relative displacement rate:

P =3 9P

v Fra (33)

For the present orthotropic yield criterion (30) this gives:
VW= APL+p). (34)

Furthermore, we introduce the scalar x as a measure for the amount of hardening or softening.
In the case of a work hardening/softening hypothesis « reads

k=[kdt with &=(Tv". (35)
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3.1 Integration of the Elasto-Plastic Relations

For finite increments of loading, egs. (31) to (35) can be recast as:

Avj = A‘v}“’1 + Av}’1 (36)

Av$ =Di'Ay 37)

AvP' = AN(Pt; + p) (38)

Aw; = tT AvP! (39)
A combination of these relations yields

Dy Atj - Avj + AN(Pt; +p) =0 (40)
and finally

tj = (D' + AMP) (v + Avy - ANp) . (41)

Substitution of this expression for t; in the yield condition (30) results in a nonlinear equation
in A)j: @(A);) = 0, which can be solved by a local Newton-Raphson procedure:

Lo}
AN = ANK - ———
’ ! dD(AN) (42)
0AL  1axf
The derivative of ®(AA;) with respect to A} ineq. (42) reads
ao(Ay) | e T oy , 00 dx )
0AN; | 9y | 0AN; - Ok 9AN
and can be elaborated to give:
8(I>(A?»j)
37 = (Pt +p) (Di! + AAP)!
a7, = B4+ O +a4P) (44)
((Dfl + A}\.JP)—.IP(VIell + AVJ - A}\'jp) + p) -h,
where
oD 1 oD
=—-—1t — s
ok ot . (45)

is the hardening modulus. The hardening/softening parameter « is then updated according to

Ax; = ANt (Pt +p) (46)
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3.2 The Consistent Tangent Operator for Orthotropic Plasticity

The derivation of the consistent tangent stiffness relation for orthotropic hardening/soften-
ing plasticity in interface elements is outlined below. Due to the hardening or softening type
of response additional terms occur in the nonlinear equations which eventually result in a non-
symmetric tangent stiffness relation.

The total relative displacement vector at the end of iteration j is given by

Vj=Viq + Avj”1 + AVJPl 47)

where v;_; is the relative displacement vector at the beginning of the loading step. With the
relations for the incremental elastic and plastic relative displacements

Av$' =Dy! (& - ti-1) (48)
and
o L]
AVP = AN =
vl a, (49)
the traction-relative displacement relation can be written as
- 8<D
Vj=Vi_1+Dl(tj l])+A a (50)

The time derivative of eq. (50) reads

. P 9D
v, = D! t +A7» + A= . 51
j I atj £ atj 51)
Introducing the relation for the plastic relative displacement rate in the consistency condition
T
: JoL) o .
b= |"—|t+Z—k=0
T R G2)
leads to
T
: Fo L 00 | dx |9*d - JD | Jx |od
P=|— t + AN — | — t+ A .
ot 1 9k [a le at i+ 1 ok av}ﬂ at =0 (53)

From this relation the time derivative of the plastic multiplier A can be solved to be

Fp= L[ [92 ] yan, 00| O |20 ), 54
] at JaK avjpl atjz i) ( )

in which h is given by eq. (45). Substituting the above expression for A in eq. (51) subse-
quently yields for the relative displacement rate \/
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Po 100 (00|
+A}\’J a 2 'h—a—tj[—g} + (55)

AN 90 | 90 || 9x [P
.
“h ok 0 || ovP ES

At this point a matrix H is introduced

i} *® AN 90 |09 || ok | PP
H=D A}\,‘]a2 h aK [atj)(avfl]—a:?_ (56)

The underlined part in eq. (56) introduces the non-symmetry in the matrix H, which renders
the tangential stiffness matrix to be non-symmetric (see eq. (58)). With eq. (56) eq. (55) can
conveniently be rewritten as

. 10 | 9P
Vi = {H h oy [at ] }t 57

Use of the Sherman-Morrison-Woodbury formula then yields the consistent tangent stiffness

relation
S e (a0 ]
at; || 9y

t = | H!- Vi . (58)
h+| =— | H |5
ot ot

3.3 Model Assumptions

Due to the fact that we intend to model both plasticity and cracking in the interface we can
no longer regard the inelastic deformations as being purely plastic. We define the inelastic rel-
ative displacements as crack relative displacements (v*') except for the mode-I inelastic rela-
tive displacements that are induced by a compressive loading. These are considered as plastic
(see Figure 3). The degradation of the elastic properties of the interface is coupled with the
inelastic relative displacement due to cracking (v®"). In this case the stiffness that determines
the tractions in unloading or reloading is the so-called secant stiffness matrix denoted by Dj.
From the moment of crack-closure (defined by v,<vE!), that is in the compressive loading
regime, the initial elastic stiffness governs the interface behaviour. It is assumed that due to the
irreversible plastic relative displacements that may occur, the traction relative displacement
diagram shifts horizontally over a distance vP! (see Figure 3). Furthermore the assumption is
made that the degradation of the equivalent yield traction t is not influenced by yielding in
compression. Thus the amount of inelastic work that is used to determine t and C, is defined

44



-

VP! vel
. .
o —
cr
Ve Y

//§

QL
se
-

\

- N----------- -4 ---X
e S

Figure 3 Traction relative displacement relation for the mode-I component

as k = t1v"". In the analyses that are presented in the next section a linear relation between
and t has been assumed: t = t5(1-x/G,), where t; denotes the initial transverse tensile strength

of the interface and G, denotes the fracture toughness of the material.

4. Applications

This section presents some applications of interface elements and the interface constitutive
models in micro and macro-mechanical analyses of advanced composite materials. In the first
and the second example interface elements are used in a micro-mechanical analysis of fibre-
matrix debonding and the interaction of debonding with matrix fracture. A third example con-
cerns the application of interface elements to a three-dimensional analysis of thermally
induced delamination in a PLCC-68 chip package. Due to thermal cyclic loading delamination
is induced between the chip and the surrounding epoxy. In the computations presented in this
section a full Newton-Raphson method has been adopted, whereas a variation of 10™* on the
energy was taken as a convergence criterion. The analyses of sections 4.1 and 4.2 have been
carried out under arc-length control.
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4.1 Micromechanical Analyses of Composite Fracture

Since a poor bonding between fibres and matrix limits the possibilities of composites con-
stituted of high performance fibres, at present a great deal of effort is put in understanding the
interaction between fibres and matrix and improving the interface bonding. In the first
example a micro-mechanical analysis of a metal-matrix composite is presented (see Jones et
al. 1991). Starting from a micro-mechanics level where the stress-strain relation is determined
for a representative volume element (RVE), the homogenised response for the macroscopic
level, in which the effects of matrix nonlinearities and fibre-matrix debonding are included,
can be derived. Furthermore micro-mechanical analyses can be used in order to quantify the
effects of fibre volume fraction, interface characteristics, matrix properties and the presence of
micro-cracks on the overall composite properties and behaviour.

0.2 [mm)]
E® =147.0 GPa E¢ =413.7 GPa |
Vi =0.3 ' ve=0.2 0
_ 7\
Om = 96.5 MPa > .
EP! = 14.7 MPa |
Figure 4 Geometry and properties of the composite ply

A single ply of a metal-matrix composite with Silicon Carbide fibres (50% fibre volume
fraction) is loaded in transverse tension (Figure 4). Since in the composite ply we have a peri-
odic arrangement of the fibres the choice of the RVE is evident. Due to symmetry only a quar-
ter of the RVE was discretised using 204 and 860 quadratic plane strain triangles as is shown
in Figure 5. In the vertical direction free contraction of the RVE is allowed whereas an equal
displacement constraint was imposed on the nodes of the right boundary. Between the matrix
and the fibre interface elements are introduced as to account for debonding failure.

The material properties that have been adopted in the analyses for the 304 stainless steel
matrix and the SCS-6 SiC fibres are are taken from Jones et al. (1991). The nonlinear matrix
behaviour has been modelled by a Von Mises plasticity model with isotropic linear hardening
(EP! = 0.1 E®). It is noted that the properties are specified at a temperature of 922K. For the
interface elements a dummy stiffness equal to d, =d, =10*" was supplied. The tensile,
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compressive and shear strength for the orthotropic plasticity model were all chosen equal to
72.5 N/mm?. A work softening hypothesis has been used with G, = 50.0 N/m substituted for
the fracture toughness of the interface.

Figure 5 Finite element discretisation of a quarter of the RVE

In Figure 6 for different load levels the shear (dashed lines) and normal tractions (solid
lines) are depicted along the interface as a function of the angle 6, for different load levels. For
the load level of 2.5 [N] the curves represent the elastic tractions in the interface, whereas a
load level of 2.47 [N] refers to an almost completely debonded stage. We clearly observe the
redistribution of stresses due to failure of the fibre-matrix interface.

The load-displacement curves for both the coarse and the fine mesh are presented in Figure
7 which show a mesh-insensitive response.

A plot which shows the equivalent plastic strain contours in the deformed model is
presented in Figure 8. The corresponding displacement of point A is equal to 5.6 107> mm (F
=2.66 [N]), whereas the scale of deformation in this picture is 1.0.
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Figure 8 Equivalent plastic strains in the deformed geometry

4.2 Matrix Cracking

The second application concerns a micro-mechanical analysis of a ceramic composite
where the attention is focused on matrix fracture. For cement-based composites similar analy-
ses have been presented in Willam (1989) and Roelfstra (1989).

In this example the effects of mesh-refinement on the results are investigated and the limi-
tations of the used constitutive models are discussed. In Figure 9 a finite element discretisa-
tion of a elementary volume is presented (Weihe 1992)!. The dimensions of the finite element
model are 30x30 microns. The fibre diameter has a normal distribution with an average fibre
diameter of 6.293 Um with a standard deviation of 0.212 Um. The finite element mesh consists

1 The mesh generator for the finite element discretisations presented in this section has been developed by
Dipl.-Ing. S. Weihe of the Institute for Statics and Dynamics of Aerospace Structures of the University of
Stuttgart, Germany. His cooperation in providing the finite element meshes is gratefully acknowledged.
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of linear plane-stress triangles which are integrated by a single point rule. For the left bound-
ary the translations in the horizontal direction are prevented, whereas for the upper and lower
boundary the displacements in the vertical direction are suppressed. For the right side the dis-
placements in the horizontal direction were forced to be equal. The structure is loaded by an
edge load at the right boundary. In the analyses an arc-length control method was necessary to
continue to calculation beyond the limit point. Method A was used for automatic load estima-
tion. For the fibres, the matrix and the interface elements, which were inserted in the finite ele-
ment model at a later stage, the material properties are listed in Table 2.

Iy

T
Figure 9 Finite element model
In a first series of analyses the effect of mesh refinement on the results is examined. Crack-
ing of the matrix material was simulated using a Von Mises plasticity model. A work soften-

ing hypothesis has been adopted with a linear relation between x and G:

. 1 -pl — K 2Gc
k=—0"¢" and G=5p|1-— | where x,=
o Ky c
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Table 2

Material properties

Fibres Matrix Interface Elements
E [N/mm?] | 140000 | 10000 | d,,d, [N/mm3] 100.0
v 0.2 0.3 t£,t° [N/mm?]  100.0
& [N/mm?] - 100.0 t [N/mm?] 100.0
G, [N/m] - 10.0 G, [N/m] 100.0

The original configuration (Mesh 1, 973 elements) of Figure 9 using a 4 and 16 times finer
finite element discretisation which resulted in a total 3892 (Mesh 2) and 15568 elements
(Mesh 3) for the respective models. The results of the analyses are presented in Figure 10 in
terms of load-displacement curves for point A at the right boundary.

Load [N] (x1073)

3.0 /{:‘\‘ ......... meshl
[) PAN —A— meshl
2.0 “\ S S (R mesh2
N —— mesh3
N
1.0
0.0 P sEES S
0.0 1.0 1.5
displacement [[tm]
Figure 10 Load-displacement curves for point A.

Obviously the results are highly dependent on the discretisation. This is inherent in numerical
simulations of structural failure where the failure is initiated by a softening material response
and a classical continuum description is used (Bazant 1976, De Borst 1986). The structure
behaves more brittle upon mesh-refinement and the amount of dissipated energy reduces to
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zero. The underlying reason for the observed phenomenon of mesh-dependence is the fact
that the system of governing differential equations becomes hyperbolic due to the incorpora-
tion of softening in the material model. The ensuing loss of well-posedness of the boundary
value problem (Benallal er al. 1991) triggers the occurrence of spurious kinematic modes (De
Borst and Rots, 1989).

For mesh 1 two load-displacement curves are presented. The dotted line corresponds to a
solution with two localisation bands (Figure 11) whereas the solid line with the marker repre-
sents a solution with only one band (Figure 12) which was obtained for a lower value of the
initial load parameter. Hence, the obtained solution is highly path dependent.

In Figures 11 to 14 the deformed geometries are presented at the end of the calculations
when the imposed load has been reduced to zero (except for mesh 3 where it was not possible
to continue the calculation to a zero residual load level). The deformations localise in a zone
with a width that is equal to the element length. The fact that the location of the localisation
band changes in Figures 12 to 14 is purely the result of the geometrical imperfections that are
introduced in the mesh during mesh-refinement.

|/

Figure 11 Deformed model Mesh 1
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Figure 12

Figure 13

N/

Deformed model Mesh 1

Deformed model Mesh 2
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Figure 14 Deformed model Mesh 3

In the next series of analysis the constitutive model is slightly modified in the sense that
now the square root of the element surface S is used to obtain an objective energy release upon
mesh-refinement (G, = VS [oTde") (Bazant and Oh 1983, Willam 1984). Although this
numerical artefact does not preserve the ellipticity of the system of equations and still results
in a localisation band of decreasing width when the finite element discretisation is further
refined, it achieves a mesh objective response on a global structural level. The results of the
analyses in which the crack band is included are presented in Figure 15 in terms of load-dis-
placement curves. In these analyses the amount of dissipated energy is almost constant upon
mesh-refinement. Figure 16 shows that in this case also for the coarse mesh a single localisa-
tion band is obtained, although at a different location than in Figure 10.

In order to preserve the well-posedness of the boundary value problem a higher order con-
tinuum description should be used (gradient plasticity, Miihlhaus and Aifantis 1991, De Borst
and Miihlhaus 1992). However it is doubted that for this specific problem a gradient theory
will offer a solution since it requires C' continuity of the plastic multiplier, which is an ele-
ment degree-of-freedom. To date this has not yet been accomplished for triangular elements.
The application of a non-local damage formulation (Pijaudier-Cabot and Bazant 1987) or
micro-polar continuum formulation (Miihlhaus and Vardoulakis 1987, De Borst 1991) to solve
the problem of spurious localisations is believed to be more promising. Since in this particular
case the micro-rotations and couple-stresses of the elements, which introduce the necessary
length scale in the constitutive model, will be actived by a considerable amount of shear defor-

mation. However, the fact that also energy is dissipated in mode-I may disturb the regularising
effect (Sluys 1992).

54



Load [N] (x1073)

3.0 i meshl
--------- mesh2
2.0 mesh3
1.0
0.0
0.0 0.15 03 0.45 0.6

displacement [im]

Figure 15 Load-displacement curves for point A

Figure 16 Deformed model Mesh 1, using a crack band
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For mesh 2 the equivalent plastic strains at a zero residual load level are shown in Figure
17. It is observed that there is an accumulation of plastic strains in a band having a width of a
single element. No continuous transition of the equivalent plastic strains exist on the element
boundary, which is physically not realistic.

Figure 17 Equivalent plastic strains in the matrix. Scale of deformation equal to 20

Figure 18 shows the influence of the yield strength of the matrix on the composite
behaviour. The value of & was varied between 25.0 and 100 N/mm?. One would expect that
for a constant value of the fracture toughness G, the steepness of the descending branch would
increase and the maximum displacement would decrease. However, we observe that the curve
for = 75.0 N/mm? does not follow this tendency. A plot of the deformed model showed that
in this case not one but two localisation bands exist, which corresponds with the existence of 2
negative diagonal terms in the structural stiffness matrix. This explains the almost double
amount of energy that is consumed before the load has reduced to zero. After decreasing the
value of the initial load parameter a solution was obtained with only one localisation band,
which corresponds to the lowest energy path. Which localisation band or bands are activated is
not only dependent on the geometrical imperfections, but also on the combination of the
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Figure 18 Load-displacement curves for point A as a function of G
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Figure 19 Load-displacement curves for point A as a function of G,
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model parameters and the value of the initial load parameter. Figure 18 furthermore shows
that the dependency of the peak load on the yield value is almost linear. A similar result as
described above was found for a variation of the fracture toughness of the matrix (see Figure
19). For G, equal to 30.0 N/m solutions with one and two localisation bands were obtained
depending on the value of the initial load parameter Ally. Again the lowest energy path was
traced using a smaller value for Ally. The curves presented in Figure 19 reveal that the ulti-
mate load is hardly effected by the value of the fracture toughness and that the deformation
capacity of the reference volume increases linearly with the value of G,.

4.3 Thermally Induced Delamination in a Chip-Package !

In this section a simulation of delamination failure in a PLCC-68 chip package in a tem-
perature cycle test is presented. Usually these tests are performed to accelerate the occurrence
of different failure mechanisms in the package. Once the dominating failure modes are known
the package design is adjusted in order to eliminate them.

During the assembly of a chip package the silicon die or chip is glued onto a CuFe die-
support paddle. Then the gold bonding bond wires are attached, which connect the aluminium
pattern on the die surface with the lead frame. Finally the epoxy coating is applied through
injection moulding (Van Gestel 1990).

In experiments it has been observed, that when these packages are imposed to high tem-
perature cycles, high in-plane shear stresses occur at the chip surface, especially near the cor-
ners. This is a result of the mismatch in thermal expansion coefficients of the different compo-
nents. Eventually these stresses will induce delamination cracks between the chip and epoxy
coating which may result in bond-wire failure, pattern shift on the chip surface and cracks in
the chip.

In the finite element model interface elements are inserted between the lead-frame and the
epoxy as well as between die-support paddle, chip and epoxy (r3 = 1.45 mm, 13 = 1.85 mm
and r3 = 2.25 mm). Due to computer limitations a complete nonlinear analysis of the original
finite element model which consisted of a total number of 9434 volume and interface elements
was not feasible. Therefore a new model was prepared in which not all the members of the
lead frame were incorporated. The parts of the finite element model are presented in Figures
20 to 22.

1 The work described in this section is the result of joint research of the author and ir. H.C.J.M. van Gestel of
the Faculty of Electrical Engineering of the Delft University of Technology. The author wishes to thank ir. v.
Gestel for the preparation of the finite element meshes presented in this section.
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Figure 22 Finite element model of the lower half of the epoxy coating

2046 linear brick and 1023 linear plane interface elements have been used to model a quarter
of the chip package. The only boundary condition that was imposed on the structure was the
restrained displacement of point B in the vertical direction (Figure 22). The symmetry planes

are given by r; =0 and 1, =0 as indicted in Figure 22.

The material properties of the different materials are listed in Table 3. The physically non-
linear behaviour of the interface elements is described by the orthotropic plasticity model and
linear work softening response has been adopted. For the different interfaces the properties

are presented in Table 4.

A minor modification to the plasticity model was made in order to incorporate the influ-
ence of fatigue on the interface strength. In the analysis it has been assumed that during each
temperature cycle the value of k increases with 10.0% of the fracture toughness of the inter-
face. Although it is recognised that this is an arbitrary assumption, it is justified by the fact that
the intention of the analysis is to be purely qualitative. In the analysis the PLCC package is
imposed to 10 temperature cycles. The start temperature is 180.0 °C at which the chip is
assumed to be stress free. Then the temperature cycles start with cooling down to -65.0 °C and
then heating up to 165.0 °C. This amplitude in temperature of 230.0 °C is then maintained

during the rest of the cycles.
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Table 3 Material properties PLCC-68 package

epoxy coating | lead-frame/die-paddle chip
E [N/mm?] 15000.0 119000.0 131000.0
% 0.25 0.3 0.3
a[1/°C] 20.0107° 17.010°° 23010
Table 4 Material properties for interface elements
Interface
epoxy/metal | die-paddle/chip (glue) | chip/epoxy
d; [N/mm?] 1.010° 1.010° 1.010°
th [N/mm?] 50.0 300.0 50.0
t% [N/mm?] 200.0 400.0 200.0
ts,t, [N/mm?] 90.0 200.0 65.0
G, [N/m] 200.0 450.0 200.0

In Figures 23 and 24 the in-plane shear stresses in the die-support paddle and the lead
frame are presented in the seventh cycle at a temperature of -20 °C. Due to the high strength
of the glue between the chip and the die-support paddle high shear stresses are possible near
the edge and the corner of the chip. The curvature of the die-paddle is the result of the differ-
ence in thermal expansion coefficients of the chip and the metal. Figures 25 to 27 present the
delaminated areas at the three interface layers also in the seventh cycle. In the interface at I3 =
1.45 mm delamination occurs at the edge of the die-support paddle (Figure 25) in the
metal/epoxy interface, the location where the shear stress 0,5 has its maximum value. From
Figure 26 it is observed that the in-plane shear stresses that are shown in Figures 23 and 24
induce delamination fracture between die paddle and epoxy near the chip edge (1, =5.0 mm )
and the lead frame and the epoxy coating (r; =1, = 6.0 mm). Figures 28 to 31 show the
delaminated area at -65.0 °C in cycles 1, 6, 7 and 8. They clearly indicate that the delamina-
tion between the chip and the epoxy at the top surface of the chip starts at the chip corner and
progresses along the edges and towards the centre of the chip. This is in agreement with exper-
imental observations.

Figure 32 shows SCAT-picture (SCAT is SCanning Acoustic Tomography) of the top sur-
face of the chip after 500 temperature cycles. The delaminations areas at the corners of the
chip are clearly visible.
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Figure 23 In-plane shear stresses o1,

62



Figure 24

In-plane shear stresses o3
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Figure 32 SCAT picture of the top chip surface after 500 temperature cycles
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