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Abstract

Progressive failure in fiber-reinforced composite materials is modeled using continuum
damage mechanics. The anisotropy in the damage is accounted for by a second order tensor.
Constitutive equations for the stress tensor and the damage evolution tensor in conjunction
with a damage growth criterion are provided. The numerical procedures for solving the
governing equations are presented. A comparison with available experimental results on
uniaxial loading of a graphite-epoxy [0/90,], laminate shows good agreement. Bending of a
laminated composite structure is simulated. The influence of the finite element discretization
on the results is investigated.
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1. Introduction

The increased use of laminated fiber-reinforced composite materials in structural applications
necessitates a thorough understanding of their behavior under various loading conditions. In
particular the trend toward higher design levels has led to the need to understand failure
initiation and to predict strength. The modeling of progressive failure of laminated composites
is usually based on the application of strength criteria to check whether ply failure has
occurred (Nahas 1986, Chang et al. 1991). If such is the case the material stiffness matrix is
modified to account for the loss in stiffness. In this approach the degradation process is
governed by a sequence of instantaneous ply failures. A continuum damage model for brittle
deformation processes in solid materials subjected to quasistatic and fatigue loadings has been
proposed by Paas and van den Eikhoff (1992, 1993). The anisotropy in the damage is
accounted for by a symmetric second order tensor. The model is derived on a thermo-
dynamical basis and is suited for large deformations. Constitutive equations are required for:
(1) the stress-strain relation of the damaged continuum, (2) the damage growth law and (3)
a criterion for damage growth. In this paper the damage model is adopted to describe the
degradation of laminated composite structures subjected to quasistatic loadings. The typical
stages in laminate failure are assessed. The numerical procedures for solving the governing
equations are presented. Emphasis is placed on the determination of the finite element
equations, the damage, the damage surface, the tangential stiffness matrix and the application
of arc-length control to pass the limit point in the load-displacement curves. Example
applications, showing the response of laminated structures to monotonic loadings, are
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presented. The influence of mesh refinement on the finite element analyses is investigated.

2. Damage characterization

Consider a volume element containing many microcracks, that are distributed in a statistically
homogeneous manner. Since the shapes of the cracks in this representative volume element
(RVE) are generally unknown, they may be approximated by some equivalent flat surfaces.
The restriction to brittle material response implies that the energy dissipated is the result of
crack growth only and that crack growth is governed by cleavage 1 (Krajcinovic 1989). Then
a natural choice is to assign to each equivalent flat crack a vector d, whose magnitude is a
function of the crack surface A and a characteristic crack dimension g, and whose direction
is normal to the crack plane. Thus, we have for the k™ crack

-

dp =dyii, 5 d = f(A,a) (1)

Since each crack possesses two equal and opposite surfaces, the description should be
independent of the sense of the normal 7. This is accomplished by representing the
microcrack by a dyadic vector product Jk ® Jk. If the damage entities are sparsely dispersed
and therefore non-interactive, the total representation of all N cracks in the RVE can be
constructed by summation. Then the damage state is characterized by a symmetric second
order tensor

1 w7
D=_%d®d )

where A is a material parameter, such that the damage tensor is a dimensionless quantity. A
special form of (2) was employed by Weitsman (1988a, 1988b), who used d;, = A, and A as
the area of anyone of the sides of the RVE.

3. Constitutive theory

During an irreversible thermodynamic process, the elastic strain and stress are insufficient to
describe the state of the material locally. The changes in the microstructure must be defined
by an additional set of internal variables. Under the assumption that microcrack growth is the
dominant mode of microstructural changes, an internal variable D characterizing the damage
is introduced. Under isothermal conditions application of the Clausius-Duhem inequality
yields that the stress-strain relation for linear elastic material can be expressed as

o =‘C(D):e (3)
In addition, the damage rate tensor must obey
X:D=20 @

where X is the thermodynamic force conjugate to the thermodynamic flux D
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The thermodynamic force can alternatively be written in a stress-based form

x=16:25.5 (©)
2 oD
with *S the compliance tensor.

A criterion for damage growth is established by proposing the existence of a closed
domain €2 in the thermodynamic force space, which contains the origin and which is bounded
by the surface I'. The damage surface is a piecewise smooth and convex surface enveloping
the locus of all points in the space of thermodynamic forces which can be reached without
change in the current state. Let the damage kinetics be governed by m modes, where each
mode refers to an ensemble of cracks with identical geometrical features. The reversible
domain Q is defined as

Q = QQQ s Q={XeR [o,(X,v,)<0) )

where ¢, is a dissipation potential and v, is a history dependent parameter, which determines
the current location of the damage surface for mode o in the space of thermodynamic forces.
Invoking the normality rule (Malvern 1969) the rate of change of the damage for mode o is
given by

p =, e ®)
)¢

with A, a nonnegative multiplier. It can be verified easily that (8) satisfies the Clausius-
Duhem inequality for convex ¢,. The conditions for damage growth are formulated as

0,05 A, 205 A,0,=0 ©)

In case of damage growth, the current damage surface is determined from the consistency
condition

1
o D] My (10)

where () denotes the McAuley brackets. In brittle processes, the current state may not
depend upon the rate at which this state has been realized. This leads to defining (Paas and
van den Eikhoff 1992)

A, =V an
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4. Damage assessment in composite laminates

Progressive failure of multilayered composite laminates exhibits some typical stages. During
loading the first detectable damage is cracking of the matrix in the off-axis plies. These cracks
are triggered by microdefects and propagate along the fibers. As with increasing load levels
more cracks develop, the in-between tensile stresses diminish, such that cracks continue to
occur at a diminishing rate until a crack saturation density is achieved. This crack saturation
density is commonly referred to as the characteristic damage state (Reifsnider and Giacco
1990). With continued loading, subsequent damage consists of initiation of cracks transverse
to the primary cracks in adjacent layers. At locations, where cracks of two adjacent plies cross
there is a highly three-dimensional local stress state which can cause fiber fracture and local
delaminations. Further increase in damage is highly localized and involves large scale fiber
failures. The final failure event is determined by the formation of a failure path through the
locally failed regions and is therefore highly stochastic.

The damage model will be used to predict failure of composite laminates. In general, the
initial material symmetry in the plies is removed even for low damage densities of one
orientation (Talreja 1990). Orthotropy is only retained when the defect directions coincide
with the mutually orthogonal axes of symmetry i), it,, it3, with the subscripts 1, 2 and 3
designating the fiber direction, the transverse direction and the normal direction in a laminate
ply. In this particular case the damage tensor takes the form

3
D=YD® ; D® =D, ®F, (12)
o=1

with o = 1, 2, 3 denoting fiber fracture, matrix cracking and delamination respectively. In
what follows we restrict attention to fiber fracture and transverse matrix cracking.

Stress-strain relation

The stress-strain relation is influenced by the existence of transverse matrix cracks and fiber
breaks. The effects of regular arrays of transverse matrix cracks on the stress-strain behavior
have been established by Laws et al. (1983), who employed a self consistent method. This
approach was used by Paas and van den Eikhoff (1992, 1993) to calculate the compliances
S,, and S for varying matrix crack densities. These compliances were fitted by exponential
functions with best-fit coefficients 7,, and 7. The effects of fiber fracture are accounted for
by assuming that S;, and S are inversely proportional to the density of broken fibers
(0 < D, < 1). Hence, the damage induced compliances for a unidirectional reinforced ply are
approximated as
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Damage evolution

In composite laminates the defect directions are channeled by the presence of fibers and
adjacent plies, such that the damage modes are not prone to directional changes. From (8) the
damage rate can be written as

SR, 14
x O (14)

. 90
D =¥ A
5t

i=1

The requirement that the initial defect directions do not change, necessarily involves that the
dissipation potential ¢, may only depend on X, yielding

& @ s J
D=YD" ; DY =)\ 708 (15)
a=1

Using (6) and (13) the thermodynamic force associated with fiber fracture is

_ 1 0?1 + exp(YggDz) 0;1 (16)
| =
(1-D)?* 2E), (1-D))* 4G},
and the thermodynamic force associated with transverse matrix cracking is
v, (o )? Y, o
X, = exp(y22D2)__.__222 2+ exp (Y Dy) 2 (17)

22 12

The McAuley brackets in (17) account for the fact that a compressive transverse stress will
close the existing transverse cracks.

Damage growth in mode o occurs when the associated thermodynamic force exceeds a
critical value. This is accomplished by choosing the dissipation potential as a linear function
of the thermodynamic forces

0o = ALLX, -V, X{] (18)
with A, a positive constant. From (16) and (17) it follows that ¢, = 0 (o0 = 1,2) is an ellipse

in stress space. This result is in accordance with fracture mechanics concepts (Paas and van
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den Eikhoff 1992, 1993). It is remarked that quadratic stress-based strength criteria have also
found widespread use as macroscopic failure criteria for laminates (Nahas 1986). Using (8)-
(11) and (18) the damage is derived as

D, = DL+A (v, -1) v, = max |q Xe(D (19)
O<t<t X

A similar relation for the damage has been advocated by Allix and Ladeveze (1989), who
obtained a linear relationship between the damage variables and the associated thermodynamic
forces based on experimental observations. However, the expressions for the thermodynamic
forces as proposed by Allix and Ladeveze differ from the ones used in this paper.

5. Numerical procedures

Since dissipative mechanisms take place, a particular analysis includes path dependent pheno-
mena. Throughout the complete history of load application, equilibrium must be satisfied. The
loading history is applied in increments. In each loading increment the displacement field and
the damage must be determined. The model has been implemented in the DIANA finite
element package. In the following the numerical procedures for solving the governing
equations are discussed.

Weighted residuals formulation

According to the principle of weighted residuals the equilibrium equation (inertial forces and
body forces are omitted) is equivalent to the requirement that at every instant and for all
admissible weighting functions W, the following integral equation is satisfied (Bathe 1982)

fw‘~ (V-5)aV =0 (20)
14

where V is the gradient operator and V is the current volume of the body. Using integration
by parts and Gauss’ theorem, the weak form of the principle of weighted residuals is obtained

f(vw‘)T:odv = fw‘-fdA Q1)
% A

where 7= o-7is the external force vector on the surface A. An estimate for the displacements
at time t+At is given by
i@, =@, + il (22)

with the subscript # meaning new and o meaning old and with 8 denoting an iterative change.
Using the strain-displacement relation

e = 2((Vid) +(Vad)') (23)
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the weighted residuals form becomes

[evwyiicse e av = - (Vo av « [w- rda (24)
Vv Vv A

where ‘C™ is the elastic-damage incremental stress-strain tensor.

In order to characterize the response of multilayered laminates, it is necessary to globally
average the local ply constitutive equations. This can be established using classical lamination
theory (Jones 1975), which is based on the Kirchhoff hypothesis in linear plate theory. In
Voigt notation the relevant strains in the plies are given by

E = E() + 7 E (25)
where
! 2. 2. ’
I3 —Eﬁﬂ%«»i‘_}ﬂ ;K= - Iy Pwy ) Iy (26)
= | ox dy dy ox - ox? 9y? oxdy

with the subscript , denoting mid-plane values. Choosing the weighting functions as w = dif
the principle of virtual work is obtained

[C] z[CT )98 |, _  (s.r . @7
J.(Sgg 65) (Z[C] ZZ[C]J SE]dV - Jag _g_dV AfSﬂT.EdA

Finite element equations
After discretization of the position vector field, the strain-displacement relation becomes

g | [1Dolty| [ [DII®,]  [0] [&) (28)

- - = [B
|70 | 7| 101 pie]e, | P

with ~ denoting nodal point values. The linearized set of equations for the unknown nodal
point displacements g can be derived as

[K(a)18a=~h(a) +np,h, (29)

In the iterative equation p, is a load-level parameter, which scales up the fixed external
loading vector f,. The stiffness matrix [K] and the internal force vector 4, are given by

nel [Q] [Q] el
= T 1 2 . - r (30)
(K] ;i[B] (0110 |B1aA 5 R gvﬁB] odv

The extensional stiffness matrix [Q,], the coupling stiffness matrix [Q,] and the bending
stiffness matrix [Q,] in (30), are
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where [ denotes the ply number. In what follows we focus on symmetric laminates
([Q,] = [0]), which are subjected to in-plane loadings.

Arc-length control

For increasing damage the load-displacement curve may have a limit point after which
softening occurs. In a standard load-control procedure limit points cannot be passed. Thus,
for tracing the equilibrium path in case of softening behavior, a method for arc-length control
must be used. The main essence of the arc-length methods is that the load parameter becomes
a variable which must be solved simultaneously with the displacement variables. The load-
level parameter is determined by an additional constraint for the arc-length, which can be
written in an incremental form (Crisfield 1991)

Aa"Aa + Ap*@*hTh - Ar?=0 (32)

where @ is a scaling parameter for the load contribution and Ar is (an approximation to) the
incremental arc-length. The iterative displacements 8a are split into two parts

Ag =Ag +3a ; 8a =0a'+dpda" (33)
with
da' = -[K1'(h(a)-p,h ) : da" = [K]"h, (34)

The iterative displacement 8a' would also stem from a standard load-controlled Newton-
Raphson method with fixed p,. The new p, is found by substituting (33) in (32) and solving
the resulting quadratic equation in 8p. The arc-length radius in the current increment is
determined by a self adaptive scheme (Crisfield 1991)

Ar = Ar ? (35)

with I, the number of iterations in the previous step and [, the number of desired iterations.
Damage initiation

The loading which results in damage initiation must be determined. Suppose we initially
prescribe a small load increment f,, such that the structure behaves elastically everywhere.
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The determination of the strain vector, that is located on the initial damage surface, consists
of computing the factor R, which projects the local strains g, on the damage surface. Using

(5) and (18) we find
0
R= | X (36)
X(e.D=0)
Damage and damage surface
Using (15) and (11) the incremental change of damage mode o is

99

=H
ADO( (q)(x) aX

% Av,>0 37)

o

with H(-) the Heaviside step function. Invoking the consistency condition yields

_ 9, 30,
“ X, Y

o

Ao

AX, + —“Av, =0 (38)

The incremental change in the thermodynamic force is
ox,’ ox,’

AX, = AD + 2% Ag (39)
oD T o ~

Using (37), (38) and (39) a relation between damage increments and strain increments is
obtained

AD = [PI'[Q]Ae  if |AX|>0A 6, =0 (40)
with
90, 20, | 09X,
“ "\, | |ox, | 9,

o o

ap
g @1)

90, | [ 90, | 0X,

ov, | | X, | O,

0, = -

The incremental change in the threshold parameter v, is found by substituting (40) in (37).

Tangential stiffness matrix
In the nonlinear range the stress increments can be expressed as

rs = 2ZaAp + P8 ae - (VIAD + [ClAc £

The incremental change in the stiffness can be expressed in terms of the strain increments by
substituting (41) in (42)
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Ac = [CEPTAe ; [CPEP] =[C] + [VIIPI'[Q] (43)

where [CPP] is the elastic-damage tangential stiffness matrix. The evaluation of the
components in [CPP] is discussed in Appendix I. Using (18) the matrices [P] and [Q] in (41)
become

A, oX, A, JX,

P, =8 -t 1 ;0 =L 1 (44)
’ ' Xol aDj ' Xo’ agj

6. Examples

Uniaxial loading

Consider uniaxial loading of a graphite-epoxy AS4/3501-6 [0/90,]; laminate. The stress state
in the plies is assumed to be homogeneous. A simplified one-dimensional analysis is carried
out together with a finite element analysis. The material data are given in Table 1. The strain
at which damage growth in the 90° layer starts is g, = Y/E,” with Y the transverse tensile
strength. It is assumed that damage propagation in the fiber mode is revealed as instantaneous
laminate failure (A, >> 1). The associated strain is €, = X/E,° with X the tensile strength.
Using A, = 1, the maximum recorded transverse stress in the 90° layer can be derived as
(Paas and van den Eikhoff 1992)

8, =Y D, +Dexp(-v,,D,) (45)
o [MPa]

4ot

a0}

10

el
! 1 |
09000 0.0050 0.0100 0.0150

Fig. 1 Stress-strain relation for 90° ply in [0/90,], AS4/3501-6 laminate;
--- analytical solution and —numerical solution.
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Fig. 1 shows the stress-strain relation for the 90° ply. After the threshold g, is exceeded,
softening occurs. Fig. 2 shows the global stress versus D, according to the analytical solution
and the finite element analysis. The finite element predictions and the analytical predictions
almost coincide. The experimental results as reported by Lee and Daniel (1990) are also
shown. Close agreement between experimental results and the calculated results is observed.

E, E; Gir Vir Y X Y22 Yo
[MPa] [MPa] [MPa] [-] [MPa] [MPa] [-] [-]
142000 10300 7600 0.3 51.7 1447 1.93 0.77

Table 1 Material Parameters for graphite-epoxy AS4/3501-6 (Lee and Daniel 1990, Tsai and
Patterson 1990).

1.00
D, [1]
0.75}
0.50 o Experimental o
Numerical F
““““ Analytical

0.25}f

o

3 /o i L
0'000 250 500 5 [MPa] 750

Fig. 2 Global stress versus D, for [0/90,]; AS4/3501-6 laminate.

Bending

Consider a [0/90,], AS4/3501-6 graphite-epoxy laminated structure with dimensions
20*%2*75 mm’. The structure is loaded at the right end by a vertical force F. The finite
element discretization employed is given in Fig. 3. The material data are given in Table 1.
The load-deflection curve is presented in Fig. 4. Some characteristic events in the failure
process are marked A, B, C, D. At point A transverse cracks initiate in the 90° plies in the
upper left element. A slight deflection of the slope of the stress-strain curve can be observed
between A and B. At point B fiber fracture initiates in the upper left element. This event has
significant influence on the stress-strain curve. At C a limit points is encountered. Beyond C
softening occurs leading to rapid structural failure at point D.
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Fig. 3 Structure subjected to monotonic static loading.

C
B
151
FIN]

10}

A D
5 =
%.0 05 1.0 v [mm] 1.5 2.0

Fig. 4 Force vs. end displacement of [0/90,], AS4/3501-6 laminate.

Mesh sensitivity

The mesh sensitivity, which may occur in the post-critical region during brittle loading
processes (Bazant 1986), is assessed for mesh refinement in both horizontal and vertical
directions. The mesh sensitivity in the vertical direction was studied by keeping the number
of elements over the length fixed and by varying the number of elements over the width.
Finite element analyses were carried out with 8%4, 8*8 and 8*16 elements, respectively.
Because structural softening is governed by fiber breaks (Fig. 4), the contribution of
transverse cracking was omitted. Therefore, the analyses were carried out for one (unidirec-
tional) ply only using the data in Table 1 (X = 1230 MPa). The computed load-deflection
curves are presented in Fig. 5. The solutions show no mesh dependence for refinement in
vertical direction. The mesh sensitivity in the horizontal direction was studied using 4*8, 8*8
and 16*8 elements, respectively. The computed load-deflection curves are shown in Fig. 6.
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The solutions indicate that refinement in horizontal direction leads to zero energy dissipation
for vanishing mesh size. The anisotropy in the mesh sensitivity is caused by the anisotropy
in the damage, where fiber breaks govern the softening behavior.

40}
FIN]
30
20}
10k ——=—— §x4 ELEMENTS
———— 8x8 ELEMENTS
——+—— 8X16 ELEMENTS

8.00 0.25 0.50 0.75 1.00 1.25
v [mm]

Fig. 5 Load vs end displacement for mesh-refinement in vertical direction.

50
FN]

40

30}

20

ol ——o—— 4x8 ELEMENTS
———— 8x8 ELEMENTS
————16x8 ELEMENTS

8.00 0.25 6.50 075 100 125 150
v [mm]

Fig. 6 Load vs end displacement for mesh-refinement in horizontal direction.
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7. Discussion

An anisotropic damage theory was presented for brittle composite materials subjected to
quasistatic loadings. The constitutive equations were derived on a thermodynamical basis.
However, as far as matrix cracking is concerned, the stress-strain relation is inspired by
micromechanics. The damage growth criterion yields quadratic criteria in stress space for both
fiber fracture and matrix fracture.

The numerical procedures for solving the governing equations were discussed. To study
the post-critical behavior it is essential to apply a method for arc-length control. The failure
behavior of laminate structures was studied. Here a restriction was made to in-plane loading
of symmetric laminates. For the uniaxial load case good correspondence with available
experimental data was obtained. The mesh-sensitivity of the numerical simulations was
investigated by comparing the solutions obtained upon mesh refinement. This was done in
both horizontal and vertical directions. No mesh dependence was observed upon mesh-
refinement in the vertical direction. Mesh refinement in horizontal direction led to solutions
converging to a zero energy dissipation solution for vanishing mesh size, which is a
physically unacceptable solution. However, this discussion is only relevant if, for the given
load history and material, structural softening really occurs after having reached a limit point.
The anisotropy in mesh sensitivity is caused by the anisotropy in the damage, where fiber
breaks dictate the softening behavior. If softening occurs, the situation can be remedied by
introducing a localization limiter associated with fiber failure, which prevents the structure
from localization in an infinitely small region. This can be achieved in various manners (Sluys
1992). Introductory studies showed that the application of a local damage parameter in
conjunction with a characteristic length for the cracked zone does reduce the mesh sensitivity
and prevents the structure from failure with zero energy dissipation. The converged solution,
however, does in general not coincide with the exact solution. Adopting a nonlocal damage
model as proposed by Bazant and Pijaudier-Cabot (1988) is likely to provide better results.
This topic is currently under research. Furthermore, future work will be directed toward the
modeling of delaminations.
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Appendix I The elastic-damage tangent stiffness matrix

The evaluation of the components of the elastic-damage tangential stiffness matrix [C*] is
discussed in the following. In the materially nonlinear range the incremental stress-strain
relation is

00 Jdc
Ac = _—AD + _—Ae = A .
S 3D D+ 7 e =[V]JAD + [C]Ae (A.1)

This expression can be rewritten as

Ac = [CFPlAg ; [CPP) =[C] + [V]IIP]'[Q] (A2)
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where [C] is the current damaged material matrix. The components of [V] follow from

Vv o=__Lt=_t"¢ (A3)
The components of [P] and [Q] are determined as
2. V(a0 | ax 3. '[a0, | ox
Py =yt | e | [ 2e| K | Be) | 00| e (A4
v, 0X, | dD, d av, 0X, | og

Starting point for the evaluation of the above matrices is the expression for the thermody-
namic force

aC
X =-Leg, Le, (A.5)
' 2 % aD,
From (A.5) we obtain

0X aC.
—=-—Le =-V, (A.6)
¢, oD, !
X, 0’C

— =l 2 (A

oD, 7 “'aD,dD, &

The compliances S,,, are explicit functions of the damage parameters. Utilizing the identity
[CI[S] = 11] (A.8)

the first derivatives of the C,, with respect to the damage parameters are

aC, as
—_— = =C mC (A.9)
oD, oD, "
and the second derivatives are
9*C aC, oS 9%
G B o opL o (A.10)
dD,dD, D, aD, " oD, dD,
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