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Abstract

Free edge delamination of a graphite-epoxy specimen is simulated using nonlinear
finite element analysis, linear elastic fracture mechanics and a “reduced stiffness
method” based on classical laminated plate theory. The theoretical background of the
three different approaches is discussed. For use in the nonlinear finite element
approach generalised plane strain elements and 3D line interface elements have been
developed. By analysing delamination in [+ 25,/— 25,/90,]; laminates, the predictive
value of the different methods is investigated.
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1 Introduction

A failure mode often encountered in structural composite laminates is delamination, a
phenomenon which has great influence on structural integrity. In the last two decades
much research has concentrated on the complex mechanism of delamination. Due to
the anisotropic material properties and the varying fibre orientations each ply in the
laminate behaves differently. Consequently, edge stresses are then necessary to
preserve compatibility of the deformations. These large transverse normal and shear
stresses are primarily responsible for initiating delamination. Analytical models have
been developed for the treatment of free edge stress distributionsin[1, 2, 3]. A historical
review of these models is given by Pagano and Soni [4]. Furthermore procedures to
predict delamination onset and growth based on the principle of virtual crack extension
have been applied by Crossman, Wang [5, 6] and O’Brien [7] amongst others. Because
of the stress singularities that exist at the ply interfaces near the free edges and the
resulting mesh-dependency it is commonly believed that the use of stress-based failure
criteria does not produce relevant results as far as free edge delamination is concerned.
However, Kim and Soni [8] indicated that an average stress approach combined with an
anisotropic failure criterion results in an accurate prediction of the onset of delamina-
tion. The essential feature of their approach is the introduction of the ply thickness in
the determination of stresses.
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In this contribution a nonlinear finite element procedure is developed for the predic-
tion of delamination onset and growth. Although the failure criterion is based on
stresses it is shown that, when combined with a softening type of post-crack response, a
stress-based failure criterion results in a mesh-objective calculation. The performance
of the method is demonstrated via the analyses of free edge delamination in
[+ 25,/—25,/90,] graphite-epoxy specimens under uniaxial tension.

In the examples twelve-noded cubic generalised plane strain elements have been used
with three translational degrees-of-freedom in each node. These elements, which are
assumed to remain elastic during the loading process, give an accurate representation of
the stress concentrations near the free edges without the need for extreme mesh refine-
ment. The individual plies are connected by cubic 3D line interface elements [9, 10].
These are well suited for modelling the geometric discontinuity which arises during
delamination and which can either be gradual (softening type behaviour) or perfectly
brittle. In the nonlinear analyses emphasis is focused on the effects of mesh refinement
and laminate thickness on the ultimate load capacity of the laminates. Furthermore the
influence of the transverse tensile strength of the ply interfaces on the limit load is
investigated. The results from nonlinear analyses are compared with results obtained
from a virtual crack extension analysis and a reduced stiffness method.

2 Generalised plane-strain elements

In free edge delamination testing specimens are subjected to a uniaxial load. It is
assumed that at a certain distance from the ends of the specimen the in-plane displace-
ments are independent of the x-coordinate (see Fig. 1).

For the displacement field of a cross-section [1, 3, 7], this allows us to introduce:

uy(x,,2) = exx + u,(y, 2)
uy(x,y,z)=uy(y,z) (1)
uz(x,y, Z) = le(y, Z)

with ¢, being the strain that is prescribed in the x-direction of the specimen. If we define

a matrix H which contains the interpolation polynomials, so that u = Ha, and a dif-
ferential operator L

Fig. 1. Geometry of the specimen.

38



o 0 0 o 2 2]
0z 9y
0 0
L'=[0 — 0 — 0 0 2
Ay 0z @
a 0
0o 0 — — 0 0
L dz dy J
we obtain
e=Ba+ g 3)

where & = (&,0,0,0,0,0) denotes the externally applied strain vector and B= LH is
the strain displacement matrix.

In a nonlinear analysis the total load is applied in an incremental fashion. Within each
loading step equilibrium is achieved in an iterative manner, which is different from
linear elastic analyses. For the incremental strains d& in a nonlinear analysis we can
write

og=Boa,+ o1& ®)

where j denotes the iteration number and 04; = AA; — A4, is the change in value of the
incremental load parameter A from iteration j — 1 to iteration j. The incremental nodal
displacement vector is given by da;. From eq. (5) it follows with D the elastic stress-
strain matrix for the plies, that the incremental stresses are given by

If g,_, represents the total stress vector at the end of iteration j — 1, then the total stress
at the end of iteration j reads

0;=0,_, + D(Boa; + 6;&) (7
The expressions for the internal and external force vectors for strain loading then read
f=VB"(6,—ADe;)dV and fo=—12) B "De dV (8)
v v ‘
where A, is the total load factor at the beginning of the current step. If the structural

stiffness matrix is denoted by Kthe incremental displacements can be solved iteratively
from

Kéaj Zf[; —fj_p (9)

3 Indirect displacement control for strain loading

A major drawback of load-controlled calculations is the fact that no limit points can
be passed. Riks [11] developed an “arc-length” method to overcome this limitation. In
this method the incremental load factor is constrained by the norm of the incremental
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displacement vector. Although the arc-length control method has proved to be fairly
successful, it has been reportéd to fail in situations of highly localised failure. It was
suggested by De Borst [12] that the displacement norm should in these cases be deter-
mined by considering only the 'dominant degrees of freedom. In conventional strain
loading the incremental nodal displacements are determined from eq. (8) in an iterative
manner. In an arc-length modification of strain loading this process can be represented
by the following set of equations [12] (for iteration i)

da'=— K_\()y | B*De; dV + | B' (0, — A1 Dey) dV') 10)
v v
6a'= — K-\ | B"De; dV (11)
A\
da;=oal + 6A;6a (12)
Ag=Aa_; + Oa; (13)

where Ag; denotes the total incremental displacement vector. It is determined on the
basis of the requirement that the Crack Opening Displacement (COD) of the interface
between two plys where delamination occurs should have a constant value for each
iteration,

6(COD) =0=dal —dal"=0

where daj is the change in displacement in the thickness direction of the laminate of
node n from iteration j — 1 to j.

4 Formulation of interface elements and discrete cracking

The individual plies in the laminate are connected by interface elements (see Fig. 2).
These elements have the ability to model the geometrical discontinuity that is intro-
duced by delamination. In the elastic stage of the calculation no additional deforma-
tions are allowed in the finité element model because of these interface elements.
Therefore a sufficiently high ‘dummy stiffness has to be supplied. Unlike continuum
élements, interface elements do not keep track of stresses and strains at the integration

Z, Uy
5 . v

g by
1 3

X, Uy

Fig. 2. Cubic line interface element with nodal degrees of freedom.
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points, but consider tractions and relative displacements. With the differential operator
matrix L and the interpolation matrix H defined as

n 00000
1 41 0 0 0 0 86’2888
L={ 0 0 -1 +1 0 0| H= (14)
0 0 0 0 -1 +1 000 m 00
0000 n 0
0000 0 nf

with n representing the interpolation polynomial vector and the nodal displacement
vector

a = (u;’ u%? Y u;lb u}l” u)z” A u;l, u)l(’ u)z() ety u;})? (15)
the relative displacements are related to the nodal displacements through
Au= LHa. (16)

If we use D to denote the tangent stiffness matrix, the tractions ¢=(¢,, ty, t,) are
obtained from

t=DAu. (17)

For a line interface element in a generalised plane strain situation the element stiffness
matrix is derived as

e=+l ox
K= | B'DB— d¢. (18)

E=1 ¢
Once the elastic limit in an integration point of the interface element is exceeded, the
traction-relative displacement relation D becomes nonlinear and is determined by a
discrete crack model. In the present model crack initiation is supposed to be purely in
mode-I. A crack arises when the traction ¢, normal to the plies exceeds the tensile
strength f;. It is recognised that a stress criterion cannot predict the onset of delamina-
tion correctly. Depending on the type of material the traction and stiffness in a mode-I
crack may abruptly or gradually reduce to zero. The first phenomenon is called brittle
failure, whereas the gradual decrease of crack traction and stiffness with increasing
relative displacements is called softening behaviour. The use of a softening type of
response results in a rate-controlled delamination. Fig. 3 shows four different types of
post-crack response; brittle failure, linear, multi-linear and nonlinear softening.
For the derivation of the nonlinear stiffness relation we will use a decomposed
approach [9, 10] in which the total relative displacement consists of an elastic part Au®'
and an inelastic part that is equal to the crack relative displacement Au". In the crack
model the incremental tractions At for the intact material are given by

At=DAAu®. (19)

In this AAu® represents the incremental elastic relative displacement vector. The
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Fig. 3. Traction relative displacement relations.

incremental crack-relative displacements AAu“ are related to the incremental tractions
according to

At= D"AAU" (20)

where D is the crack stiffness matrix which is dependent on the mode-I post crack
relation. The total incremental relative displacement is written as

AAu= AAu® + AAu®. 1)
Substituting egs. (19) and (20) in eq. (21) results in

At=[D7' + (D)™ AAu, (22)
or using the Sherman-Morrison-Woodbury formula

At=[D—D[D“ + D]"'D] AAu. (23)

This relation reduces to zero for brittle failure.

5 A fracture mechanics approach: virtual crack extension method

Since the early 1970s most of the research on free edge delamination has concentrated
on linear elastic fracture mechanics. In this contribution we will use the approach as
proposed by Wang et al. [5, 13] for the prediction of delamination onset. For the energy
release rate in a free edge delamination specimen subjected to a uniaxial strain ¢, the
following expression was introduced

Gi=C, et (24)

in which ¢ is the ply thickness. The constant C, is determined from linear elastic fracture
mechanics analyses and is equal to the value of the energy release rate in a laminate
with unit ply thickness loaded by a unit strain. Having determined the value of C,, the
strain at delamination onset can be calculated from eq. (24) since ¢ and G; are known.
In the following the principle of virtual crack extension [14] which is applied to deter-
mine the energy release rate is discussed briefly. The potential energy z in the laminate
can be written as

n=1'a"Ka—a'f.. (25)
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Since the energy release rate Gy for a generalised plane strain situation equals — (dz [da)
where da denotes the crack extension we obtain after differentiation of eq. (25) with
respect to a

1 9k

Gf=—laTa—Ka+a = (26)
*" da da

In this a represents the delamination length.

6 Laminated plate theory: the reduced stiffness method

Delamination in composite laminates is often accompanied by a loss of stiffness.
O’Brien [7] used the correlation between the energy release rate and the extensional
stiffness reduction during the delamination process to predict the onset of delamina-
tion.

For a partially delaminated specimen with a delamination length 2a and width 25 (see
Fig. 4) arule of mixtures gives the following expression for the extensional stiffness E,

a
EDZ(Ed—E]) Z)"f"E] (27)

| b | b |
I | |

Fig. 4. Partially delaminated specimen.

E,; and E; are the extensional stiffnesses of the completely delaminated and intact
laminate respectively. If a laminate is subjected to a uniaxial strain ¢, the amount of
stored energy is given by

w=12E,dV. (28)
v

With volume V' =2b/t and delaminated surface 4 =2al the energy release rate G;
becomes
dr eNE,— E)t

_aid — o (29)

Gf:—-_=
dA4 2

which is independent of the delamination length a. Now, E; and E; have to be deter-
mined.

According to laminated plate theory [15] the extensional stiffness of the undamaged
laminate equals
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E=——
Yot

(30)
where C;; denotes the first component of the in-plane compliance matrix and ¢ is the
thickness of the laminate. With A4 the in-plane stiffness matrix that relates strains to
normal forces, B a coupling matrix between bending moments and in-plane strains and
D the flexural stiffness matrix that relates the bending moments to the curvatures,
matrix inversion yields for the compliance matrix C

C=A"+A'B[D—BA'B]"'BA™". (31

In the case of a symmetric laminate, matrix B is a null matrix and Creduces to 4 ~!. The
extensional stiffness of the fully delaminated specimen is determined using a mixture
rule. For each sublaminate that is formed during delamination the extensional stiffness
E, ; is calculated using egs. (30) and (31). If ¢; denotes the thickness of the sublaminate
and 7 is the number of sublaminates, the extensional stiffness for the completely dela-
minated specimen is obtained from
1=n M

Eg=2

Z (32)

If the energy release rate and the material properties for a specific laminate are known,
the delamination onset strain is determined from

2Gf 1/2
“~(wm) >

7 Delamination in [+ 25,/—25,/90,], graphite epoxy laminates

For the investigation of the mesh-dependency of delamination growth a 6-ply [+ 25/
90], graphite epoxy laminate (see Table 1 for material properties) was subjected to a
uniaxial strain load [6, 13]. Since delamination is initiated at the 90/90 ply interface, the
result is a pure mode-I crack extension. The dimensions of the cross-section of the
laminate are 25.0 x 0.792 mm with a ply-thickness equal to 0.132 mm.

Table 1. Material properties for As-3501-06 Graphite Epoxy [N/mm?] [13]

Young’s moduli Shear moduli Poisson ratios

E, 140-10* G, 5.5-10% Via 0.29
E, 11-10% G3 5.5-10" Vi3 0.29
E;; 11-10% Gy 5.5-10" Va3 0.29

Due to the symmetry of the laminate only a quarter of the cross-section was modelled
using cubic generalised plane strain elements (see Fig. 5). Translations in the z-direc-
tion along the y-axis and translations in the x- and y-directions along the z-axis were
prevented.
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Fig. 5. Finite element mesh and dimensions.

Cubic line interface elements were supplied between the 90 degrees plies. A 4 x 4 GauB
integration scheme was used for the generalised plane strain elements. For the inter-
face elements a nodal lumping scheme was applied since GauBian integration leads to
oscillatory traction profiles [10]. For the dummy stiffness of the interface elements a
value of 10" N/mm?® was substituted, the tensile strength was chosen equalto f;=51.6
N/mm? [15]. A linear softening relation is assumed to govern the post-crack response in
the interface elements.

Mesh-objectivity was examined using four different meshes with a varying number of
elements over the width of the specimen. In all cases the element height was equal to
the ply thickness. The part of the specimen within 5 mm of the free edge was modelled
using 50, 100, 200 and 400 elements respectively for each ply (element lengths: 0.1, 0.05,
0.025 and 0.0125 mm). The remaining 7.5 mm was modelled using three elements per
ply. To achieve a rate-controlled delamination a fracture energy G;= 0.35 N/mm was
supplied. Fig. 6 shows the results for the four different meshes.

10*3 Load [N] % e
1.0
3.0
5|0,1oo,200,4oo 0.8 4
elements : !
ood 7 0.6 50,100,200,400
elements
0.4 -
1.0 -
0.2 -
0'0 T T T T O'O T T T T
0.0 02 04 06 08 1.0 0.0 10 200 30 40 50
% €4 delamination [mm]

Fig. 6. Mesh-objectivity.
Left: Axial load versus applied uniaxial strain.
Right: Applied uniaxial strain versus delamination length.

It can be seen that, upon mesh refinement, the different analyses converge to the same
solution. Hence, results are not influenced by the different element sizes. It should be
mentioned that the snap back in the left diagram was overcome using indirect displace-
ment control in which the crack opening displacement (COD) is used as a constraint for
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the determination of the load parameter AA. Without COD-control the peak in the
structural response could not be passed in a stable manner. A deformed geometry of the
mesh with 100 elements per ply for a delamination of 4.37 mm is presented in Fig. 7.
The scale of deformation is 1.0.

To investigate the effect of the value of the tensile strength on the ultimate tensile
strain two additional analyses were performed in which f; was varied between 90% and
110% of the original value (46.44 N/mm? and 56.76 N/ mm?). The results given in Fig. 8
show a maximum shift of 1.0% in the values for the ultimate uniaxial strain.
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Fig. 7. Deformed laminate at a delamination length of 4.37 mm.
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Fig. 8. Influence of 10% variation in tensile strength.
Left: Axial load versus applied uniaxial strain.
Right: Applied uniaxial strain versus delamination length.

Analyses on [+25,/—25,/90,]; (n=1,2,3) laminates were performed to assess the
capability of our approach to deal with size effects. In the analyses a fracture energy Gy
equal to 0.35 N/mm and an element length of 0.05 mm were used. Fig. 9 illustrates the
effect of the laminate thickness on the laminate response.

Fig. 10 compares the results obtained from nonlinear finite element analyses, the
virtual crack extension method and the reduced stiffness method.

As Figs. 9 and 10 show, the ultimate strain is inversely dependent on the square root of
the laminate thickness, as indicated by the dashed line. Good agreement exists between
results obtained from nonlinear finite element analyses and the results from the virtual
crack extension analyses. Crossman, Wang [5, 6] and O’Brien [7] reported the same
dependence. Although the results from the reduced stiffness method also depend
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inversely on the laminate thickness, the values do not correspond with the other resulis.
This may cast some doubt on the merit of the reduced stiffness approach in predicting
the onset of delamination. In [7] O’Brien neglected the bending effect on the stiffness
reduction which resulted in an accurate prediction of mixed mode delamination. How-
ever, omission of bending effects in the case of symmetric laminates leads to an infinite
value of the failure strain since the values of E; and E, are equal in this case.

10*3 Load [N] % &
6.0 1.0
N=
5.0 1
n=2 0.8 1
4.0 -
0.6
3.0- n=1
. 0.4 -
2.0 4
1.0- 0.2+
0.0 . ; : . 0.0 : T T T
00 0.2 04 06 0.8 1.0 0.0 1.0 2.0 3.0 40 5.0
Y% £ delamination [mm]
Fig. 9. Ultimate strains for [+25,/—25,/90,], (n=1,2,3) laminates.
Left: Axial load versus applied uniaxial strain.
Right: Applied uniaxial strain versus delamination length.
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Fig. 10. Ultimate strains for [+25,/—25,/90,], (#=1,2,3) laminates: A comparison between

nonlinear finite element mehod, linear elastic fracture mechanics and a reduced stiff-
ness method.

8 Concluding remarks

A nonlinear finite element approach has been proposed for the analysis of free edge
delamination problems in composite laminates. Although a stress criterion is used for
the initiation of delamination no influence of mesh-refinement on the ultimate
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strength of the laminates is encountered. This is a result of the softening type of
response that is utilised after cracking. It has been demonstrated that in the present
approach the ultimate uniaxial strain is rather insensitive to changes in value of the
tensile strength f,. Furthermore it is believed that the present method results in a
proper treatment of size effects. The results from nonlinear analyses are in good agree-
ment with the results obtained from linear elastic fracture mechanics. The discrepancy
that exists between the results obtained from the reduced stiffness method on one hand
and the results from the nonlinear finite element method and linear elastic fracture
mechanics on the other hand cast some doubt on the predictive power of this method.
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