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Abstract

A triangular element for geometrical and physical nonlinear shell problems is de-
scribed. The degrees of freedom are 18 displacement components and 6 rotation-like
scalars. A key role in the description is played by a flat reference triangle through the
vertices of the element. The governing equations are derived by means of the principle
of virtual work, using constitutive equations based on a layered model. The perform-
ance of the element is illustrated by two sample problems.

Introduction

Based on Koiter’s theory for thin elastic shells [10], a triangular finite shell element has
been described in [2, 8, 9]. The element has been applied to geometrically linear and
initial post buckling problems of plate and shell structures [9]. In [4] an extension to
arbitrarily large rotations has been presented, which will be summarized in this paper.
Further time independent small strain plasticity will be included by making use of a
layered model.

Geometry

To describe the shell geometry, use is made of a so-called basic triangle, with vertices
that are material points on the shell middle surface (see Fig. 1). In the undeformed con-
figuration this basic triangle is indicated as the Initial Reference Triangle (IRT), in a
deformed configuration as the Current Reference Triangle (CRT).

The undeformed middle surface can be described by:

r=r1'ef+ﬁk)’ (1)

in which 7. specifies a point with Cartesian surface coordinates x, on the IRT and
w(x,) is a vector from the IRT to the middle surface. In this way an exact description of
the undeformed geometry could be given. However, like in earlier papers [4, 9] an
approximation is made by specifying only the component perpendicular to the IRT,
denoted by . Hence:

W= ibn, )

where n is the unit normal vector to the IRT.
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Fig. 1. Part of a shell in the undeformed and a deformed configuration.

Introducing a displacement vector u, the deformed middle surface is given by:
F=r+u. 3)

For the description of the bending behaviour of the shell, use is made of a reference
configuration, defined by:

q = fref + ﬁ}ﬁ, (4)

where 7. refers to the CRT and 7 is the unit normal vector to the CRT. Provided that
the strains remain small, this reference configuration can be seen as the undeformed
configuration, moved as a rigid body to the current state.

Deformations

The deformations of the shell are characterized by membrane deformations and chan-
ges of curvature [10].

Using W and the Cartesian components of the displacement vector u, the membrane
deformations can be expressed as [9] (&, =1...2;i=1...3):

Vap =1(Uap + Upa+ W atts g+ W st + i allip), )

where a comma denotes partial differentiation with respect to x,.
Accepting errors of the order of magnitude inherent in thin shell theory, the changes of
curvature can be written as [4]:

Hap = %(fﬁa,ﬁ + éﬂ,a): (6)

with ¢, as the rotations of the normal to the deformed middle surface with respect to
the reference configuration. Using the Kirchhoff-Love hypothesis, ¢, can be approxi-
mated by [4]:

(ﬁa = ﬁ3,a> (7)

where i7; is the displacement perpendicular to the CRT.
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Constitutive equations

The derivation of the constitutive equations is based on the assumptions that the de-
formations remain small and that the state of stress is plane and parallel to the middle
surface everywhere in the shell (see Fig. 2).

For small strain elasto-plasticity, the relation between the rates of the stresses 0.5 and
the corresponding strains ¢, can be written as [6, 12]:

Gap = (Supeo — Yupeo)Ecos 8)

where (Sal;fg — Yaﬁéﬁ) represent the components of either the continuum tangent stiff-
ness or the consistent tangent stiffness matrix. Aspects concerning the inclusion of the
fraction model [1], the condition of a zero normal stress [7] and the way of integrating
equation (8) will not be considered in this paper.

Using the Kirchhoff-Love hypothesis, the strains in a point (x;, x,, x3) can be expressed
in the membrane strains and changes of curvature in the point (xy, x,, 0) on the middle
surface:

Eaﬁ(x]ax27x3) = yaﬁ(xla X2, 0) - szaﬁ(xl,xz, 0)~ 9

By substituting (9) into (8) and integrating over the thickness, one finds the relation
between the rates of the stress resultants N,; and M,;, and the deformations y,; and

%aﬁ:
; h/2 .
Naﬁ " (Sa/ifﬁ - Ya/f’tfﬂ) - x3(Sa/3§0 - Yaﬁéz?) Yeo
8 | : dxs | (10)
Ma/j‘ —h/2 —X3(Sa/xe:0 - Ya/ffz?) x3(Sa/iéL‘7 - Yaﬂgﬁ) Ay
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Fig. 2. Stress components at a distance x; from the shell middle surface.

Finite element formulation

The finite element formulation will be based on the principle of virtual work, which can
be written as:
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oW, =0W.,, an

where ¢ W, is the internal virtual work and 6 W, is the virtual work of the external loads.
For any part of the shell as discussed in the foregoing, 6 W, is given by:

SWi = (Nup07up + MapO,g) dA, (12)
A
in which the deformed surface is denoted by A.
Further, 6 W, is given by:
oW, =1 pidu;dd + | (Vi6u; + m,69,)ds, (13)

A oA

in which p;, du;, Vi, m, and d¢,, are distributed surface loadings, virtual changes of the
displacement components, forces per unit length, moments per unit length and virtual
changes of the rotations of the normal to the deformed surface respectively. The
boundary of the deformed surface is denoted by 9A.

It must be noted that d¢, can be given by [4]:

6¢a=5¢a+5waa (14)

where dw, denotes virtual changes of the rotations of the normal to the deformed
surface due to virtual rotations of the reference configuration.
The expressions (5), (6) and (7) can be added to the principle of virtual work by means
of multiplier functions. Application of the standard variational principle offers the pos-
sibility of eliminating these multiplier functions. If the rotation component ¢ along the
boundary is further assumed to be given by (7), the virtual work equation can be written
as [4]:

§ {5(Na[3%(ua,[f + uﬂ,a + ‘T},aulﬁ + ‘j{j,ﬂ Uz q + ui,aui,ﬁ)) +

A

- 5Naﬂ?aﬁ + 5(Maﬁ,aﬂ LT3) - 5Maﬂx0{[)’} d4 +

j. {5(Mnx1¢n + Mns 7/73,5 - (Mnn,n + Mns,s)l’?3)} ds =
A

= [ pioudAd+ | {Ni6u;+ M,60, + M(Sw,+ 615} ds, (15)
A AA

where the subscripts “n” and “s” refer to normal and tangential directions of the
boundary. Note that the integrals will be evaluated over the undeformed surface in the
current state, which is allowed due to the assumption of small deformations.
Equation (15) will be used as a starting point for the derivation of the discrete finite
element equations.
Consider the finite element of Fig. 3. The degrees of freedom are 18 displacement
components and 6 rotation-like scalars, connected to the element sides. These scalars
provide inter element continuity of the bending moments and can for the linear case be
identified with the rotations of the normal [9]. The displacements and the initial geo-
metry are interpolated quadratically between the nodal points, while the rotation-like
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Fig. 3. Finite element with 6 nodal points, 3 material sampling points and 24 degrees of freedom.

scalars are interpolated linearly along each side between the corresponding vertices;
the membrane stresses and the bending moments together with their dual deforma-
tions are interpolated linearly between the material sampling points.

Now the integrals in (15) can be evaluated explicitly, resulting in:

5(0;1?Em(ue)) - 50n¥8m + 5(0{{ [Db ﬁ3 + wa@n]) - 501;[‘913 :fué‘ue +fq‘06¢m (16)

where @, 6,, &,, and &, contain the membrane stresses, bending moments and their
dual deformations respectively. E,, is a function of the nodal displacements, which are
collected in u.. The nodal displacements i3 and the rotations ¢, and ¢, are collected in
i3, ¢, and @, respectively. Thanks to an appropriate definition of #@; [4], the matrices D
and Dy equal the ones found for total moderate rotations in [9].

Variations of @, and ¢, yield:

En = Em(ue)a (17)
& = Diii; + DY @,. (18)

Some special attention must be paid to the influence of the initial geometry on the
membrane deformations. In [4, 9] it has been argued that in order to describe inexten-
sional bending exactly, the term ;(¥ ,u3 5 + W yu3 ,) has to be linearized between the
values in the vertices of the element. However, due to the fact that the bending behav-
iour of the element is approximated by that of a flat triangle, problems may arise in
describing rigid body motions of an arbitrary patch of curved elements, due to the
element-wise application of approximation (2). These problems can be circumvented
by taking into account the influence of the initial geometry based only on average
strains of the three curved element edges. At the moment this is one of the topics to be
investigated in more detail.

For arbitrarily large rotations, it is impossible to express @, in #, and ¢,. Therefore, the
expression for the time derivative of &, has to be considered [3]. In [4] it has been shown
that this rate equation is given by:

&, = Dy'Tii, + DY ¢, (19)
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where it must be emphasized that the transformation matrix I depends solely on the
displacements of the vertices of the element.

After collecting the deformations in &, the membrane stresses and bending moments in
o, the degrees of freedom in u;, the external loads in fand by making use of the con-
stitutive equations (10), the discrete equations become:

f=(K+ Gy, (20)

é= Dug, (21)

o= (S—Y)é, (22)

f=D"s (23)
Examples

The first example concerns a cylindrical shell roof subjected to a uniformly distributed
self-weight load (see Fig. 4). The curved edges are simply supported, the straight edges
are free. A small displacement elasto-plastic analysis has been performed, using an
elastic-perfectly plastic Von Mises material. In thickness direction 5 layers have been
applied, while further use has been made of the consistent tangent operator formula-
tion. The calculation has been carried out under arc-length control, while the energy
norm with ¢ = 107 has been used to check on convergence.
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|
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Fig. 4. Cylindrical shell roof; problem description and used finite element mesh.

Fig. 5 shows the vertical displacement at the center A of a free edge, depending on the
load intensity. This result seems to be in good agreement with [6] and [11]. Further this
figure contains the number of iterations required to obtain convergence forseveral load
steps.

The second example concerns a clamped circular membrane with a uniform transverse
load (see Fig. 6). In this analysis only geometrical nonlinearity has been taken into
account. Because of the extremely low bending stiffness, the first loading step has to be
chosen carefully. The calculations have been carried out using fixed step sizes with the
same convergence checks as in the previous example.
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Fig. 5. Vertical displacement of point A versus the load intensity together with some con-
vergence characteristics.
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Fig. 6. Circular membrane; problem description and used finite element meshes.

Figs. 7a and 7b respectively compare the finite element solutions for the transverse
displacement and the radial stress at the center of the membrane with analytical results
of [13].

Examples concerning larger displacements and rotations can be found in [4] and [5].
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Fig. 7a. Finite element and analytical solutions for the vertical displacement of point C
depending on the load intensity.
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Fig. 7b. Finite element and analytical solutions for the radial stress at point C depending on the
load intensity.

Conclusions

Starting from a flat plate with an initial deflection, a rather simple ﬁr{ite eiement for-
mulation is given. Arbitrarily large rotations are taken into account by using a reference
configuration. The introduction of material nonlinearities based on a layered model
offers the possibility of making use of existing program code for plane stress analysis.
Even for very thin shells accurate results can be found.
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