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Abstract

Rate dependence is shown to introduce an internal length scale into initial value
problems. As a result, solutions of initial value problems that involve softening no
longer exhibit excessive mesh dependence. Numerical results have been obtained for
one-dimensional localisation problems and for tensile tests on specimens with notches.

1 Introduction

To carry out proper transient failure analyses of concrete structures it is important to
examine cracking and strain localisation in cracked zones. In a cracked section there is a
decrease in the capacity to transmit tensile forces. This phenomenon is commonly cal-
led softening and is accompanied by the formation of narrow bands of intense strain-
ing. Mapping of measured load-displacement data onto stress-strain relations leads to a
negative slope in the stress-strain curve. A numerical description of strain localisation
reveals a severe dependence on the fineness of the mesh.

Recent studies (Read and Hegemier 1984, Sandler 1984, Lasry and Belytschko 1988)
have clarified the mathematical background to the mesh-sensitivity problem. The field
equations which describe the dynamic motion of the body lose hyperbolicity as soon as
softening occurs. This means that the wave speeds become imaginary and consequently
a non-physical solution is obtained in transient localisation problems. Solutions of
initial value problems that involve softening (Bazant and Belytschko 1985) show
localisation zones of zero thickness with infinite strains which develop in a time span
that approaches zero. Numerical simulation of a softening solid exhibits the same
features upon mesh refinement (Sluys 1989a). Strain localisation occurs in a zone the
width of which is entirely determined by the element size. Energy dissipation in the
fracture zone tends to zero upon mesh refinement, while the extent of wave reflection
on cracks depends on the discretisation of a structure.

Three types of methods have been suggested in the literature to correct the above-
mentioned deficiencies. The first class of methods consists of non-local models
(Pijaudier-Cabot and Bazant 1987) and gradient models (Schreyer and Chen 1986, De
Borst and Miihlhaus 1991, Miihlhaus and Aifantis 1991) in which higher-order displace-
ment gradients are introduced in the material equations. A second approach is the
micro-polar or Cosserat theory which allows mesh-objective analyses to be carried out
under mode-II and mixed-mode conditions. This holds true for static (De Borst 1990,
Miihlhaus, De Borst and Aifantis 1991) as well as dynamic loading conditions (Sluys



and De Borst 1990, Sluys 1990). The solution strategy followed here is based on the
inclusion of the strain rate in the constitutive equations (Needleman 1988, Wu and
Freund 1984). First, a rate-dependent model is treated and then numerical analyses
with the model are described and attention is paid to the performance of the model with
respect to mesh dependence.

2 Rate-dependent crack model

Rate dependence is introduced to prevent the character of the set of equations that
describes the dynamic motion of the softening solid from becoming elliptic. The
dynamic equations should possess real characteristics in the x-f plane. This is only
possible if the initial value problem is not elliptic. Then well-posedness of the initial
value problem is preserved and meaningful results can be obtained for localisation
zones of intense straining. Because failure modes are usually accompanied by high
strain rates the inclusion of the strain rate in the constitutive equations seems natural.
For the solution of the mesh-sensitivity problem it is essential that rate dependence
naturally introduces an internal length scale into the initial value problem, although the
constitutive equations do not contain a parameter with the dimension of length. For the
rate-dependent model treated here it will be proved that the initial value problem
preserves well-posedness. The model has been implemented within the framework of
the fixed smeared crack concept (De Borst and Nauta 1985, Rots 1988). In this concept a
cracked zone is conceived to be a continuum which permits a description in terms of
stress-strain relations.

A crack model that exhibits both softening and strain rate dependence is chosen accord-
ing to

a :f(ecr) + Ml ‘(':cra (1)

where ¢ and ¢, denote stress and crack strain respectively, a superimposed dot denotes
differentiation with respect to time, f(e,,) is a softening function and M, is the rate-
sensitivity parameter. Note that rate dependence is chosen as a function of the inelastic
strain ¢, and not of the total strain. When a linear softening model is utilised as in this
study

f(gcr) =fl +Dl£cr (2)
eq.(1) becomes
o=f +De,+ Mé.,. ‘ )

In egs. (2) and (3) f is the initial tensile strength under static loading conditions and D,
is a constant softening modulus. In the reference calculations the parameters have been
chosen as: Young’s modulus £ = 25000 N/mm?, D, = — 6000 N/mm?, M, = 10 Ns/mm?
and f, = 3.0 N/mm?.

In Fig. 1 computed stress-strain curves are shown for various imposed strain rates. The
curves show an increase of the tensile strength under dynamic loading, which is also

4



o/ ft

15
€co
1.0 : LI eer
£

0.5+ 0.02

0.01
0'0 T € T T T
0.0 0.001 0.002 0.1 0.2 0.3

Fig. 1. Linear rate-dependent crack model: Left: Stress-strain curves for different imposed
strain rates. Top right: Schematic representation of the model. Bottom right: Imposed
strain rates.

observed in several experiments (Kérmeling 1986, Zielinski 1982). In these experi-
ments the increase of tensile strength f; is measured as a function of a constant strain
rate. However, both these tests and the numerical simulations described in the sub-
sequent section show that the strain rate not only varies in time but also displays large
gradients along the localisation zone. It is therefore difficult to derive the material rate
sensitivity parameter M, from experimental data. As regards the increase of fracture
energy per unit area and the ultimate strain less experimental support currently exists,
although Koérmeling observed the same tendencies in softening behaviour under high
strain rates. For unloading a secant model without rate-dependence is used.

In a smeared crack approach we apply a decomposition of total strain into elastic strain
&, and crack strain ¢,,.. Therefore the incremental stress-strain relation can be written as

Ao= Dco(Ae— Accr)a (4)

where the matrix D, contains the instantaneous moduli of the concrete and Ag,, is the
incremental crack strain. Generalising eq. (3) to two dimensions we obtain

Ao=D, Ae, + MAE,, (5)

in which D,, = diag[D;, 0] and M= diag[M,,0]. In other words only mode-I effects are
considered. A&, is the difference between the crack strain rates in the beginning and at
the end of the time step respectively. Combination of egs. (4) and (5) yields

Ag, = (Dcr + Dco)ﬁ] [Dco Ae— MAécr:I- (6)

This equation can be substituted in eq. (4), which gives the global constitutive equa-
tion:

Aa: DCO[I_ (DCI' + DCO)“I‘DCO]AS—"_ DCO[DCI' + DCO]v]MAéCI" (7)

For the sake of simplicity only one crack has been considered in this derivation and the
axes of the crack plane are assumed to be aligned with the global element axes. For a
general treatment of the linear strain rate dependent model see Sluys (1991).



Next, we shall integrate eq. (7) over a finite time step Az. In this derivation we define
A&l as the incremental crack strain in time interval 7 < 7 <t + At. By utilising the
crack strain rate at the beginning of the time step £}, and that at the end of the time step
£ the incremental crack strain is chosen according to

Aei =((1-0)é; + 04,)As, ®)

where @ is an interpolation parameter for which 0 < @ < 1. For @ =0 we obtain the
fully explicit Euler scheme. On the other hand @ = 1 gives a scheme that is fully implicit
and the case in which @ =} represents an implicit scheme according to the trapezoidal
rule. From the definition of Aé, we have

AETH = €578 + &, )
which can be combined with eq. (8) to give

1 (A.ﬁ'c‘;rAt

StRAL S
Aecr -

¢

At - écr) . (10)

We estimate & by a central difference approximation:

N . 1
&= 5 (8571280 4 gAY = AT (A + Aes™). (11)

By substituting eq. (11) into eq. (10) we obtain an expression for the incremental strain

rate vector

A = ——

AesA — Agl). 12
SOA (Ae el) (12)
Eq. (12) is now combined with eq. (7) to obtain the incremental constitutive relation

A0.1+AI — Dlan A81+Al _ Aq, (13)

where

M -1
Dlan = Dco |:I_ (Dcr + Dco + m> Dco]

and

Ag=D D+D+M—1MAt
q_ cO cr co ZQAZ 2@At 8(1["

Matrix Dy, is not determined only by material parameters since the time integration
parameters At and @ also appear. Ag can be considered as a pseudo-load vector.
The material parameters can be grouped into a length scale parameter / via
Ml C
=— 14
E (14)
where c is the longitudinal wave velocity Y E /¢ in which ¢ is the density. If the length
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scale parameter vanishes due to a decreasing viscosity the rate-independent solid emer-
ges as the limit of the rate-dependent model. In the foregoing it was said that the inclu-
sion of rate dependence prevents the initial value problem from becoming elliptic. This
can be proved by considering the quasi-linear system of equations

Flea)+ by 22120 15
0=J&;) + lax E ot ( )
o2 (16)
ox Car

where the velocity v is the derivative of the displacement with respect to time. Com-
binning egs. (15) and (16) results in the second order differential equation

v 1 8% o v _Laf(&:r)

o 2o M, ot M, ox

a7

The character of a partial differential equation is determined by the terms having the
highest order. This means that eq. (17) is a hyperbolic equation with a source term
which depends on the softening function. The characteristics of this system are real and
have the physical meaning of a wave velocity. So, the problem remains well-posed and
describes the localisation behaviour of the underlying physical material, as will be
shown in the next section.

3 One-dimensional localisation problems

To investigate the performance of the rate-dependent crack model numerical simula-
tions have been carried out for a one-dimensional bar in tension. Attention was focused
on the influence of mesh spacing on the strain localisation in the bar and the wave
reflection on cracked zones. The problem is sketched in Fig. 2: the magnitude of the
impact load is taken as being 75% of the maximum tensile load in the static case, whilst
the loading rate is determined by time span ¢4. The bar has a length of 5 m and is divided
into 10, 20, 40 and 80 elements respectively. Use has been made of eight-noded
elements with a nine-point Gauss integration scheme. The longitudinal wave velocity
¢ = 1000 m/s. If not specifically stated otherwise, the material parameters are as given
in Fig. 1. The response of the bar is linearly elastic until the loading wave reaches the
left boundary where reflection of the wave causes crack initiation. The material enters
the softening regime and a localisation zone of intense straining occurs. The time
integration of the field equations has been done with a Newmark scheme (8 =1,y =1).

F
FE-model f—> 0.75F, l
- 5m “ m— t
tq

Fig. 2. Finite element model (40 elements) and time-load diagram.



3.1 Rate-independent crack model

The analyses with a rate-independent solid have been carried out to demonstrate the
mesh-dependence of strain localisation and wave reflection. The comparison with the
rate-dependent model is difficult because we cannot employ exactly the same softening
diagram. A linear model is used with an ultimate strain equal to the peak strain which
occurs in the localisation band of the rate-dependent analysis to be discussed next. This
results in a softening modulus D; = — 1000 N/mm?. We consider a shock wave with a
vertical stress front which corresponds to ¢4 = 0. The results for the different meshes are
plotted in Fig. 3. Mesh sensitivity is obvious from the strain plots: strain localisation
occurs in only one integration point which is the smallest possible zone. The results for
the discretisations with 40 and 80 elements have not been plotted because at t = 0.009 s
the bar has already failed. Instead, the results for a 5 element mesh are given. The stress
plots show that the amount of wave reflection depends on the mesh: the more elements
present, the larger the reduction in stress of the reflected wave. Furthermore, the energy
dissipation decreases under mesh refinement and approaches the limiting case of
failure without energy dissipation.

e[x107°] o [N/mm?]
3.0 3.0+
20 20 elements 204
5 elements
1.0 10 elements 1.0 10 slements
5 elements 20 elements
0.0 0.0
0.0 x [m] 50 0.0 x [m] 5.0

Fig. 3. Strain localisation (left) and stress distribution (right) along the bar at r =0.009 s for three
different meshes in a rate-independent solid.

3.2 Rate-dependent crack model

Rate dependence is applied according to the constitutive equation (13). It appears that
the choice ® =1 for the interpolation parameter gives stable and accurate results, but
that the time step Az must be taken as smaller than #/5¢, where 4 is the element size.
This is a strong requirement that is caused by the sensitivity of the edge between the
localisation zone and the elastically unloading remaining part of the bar. If the time
step is taken as larger than //5¢ the strain profile is disturbed in these edge zones. Use
of the reference material parameter set of par. 2 results in a length scale parameter
| = 400 mm. The same loading pulse with ¢4 = 0 is applied. For the rate-dependent solid
a localisation zone emerges that converges to a finite, constant band width upon mesh
refinement. In Fig. 4 the strain localisation is plotted for different meshes to
demonstrate the uniqueness of the solution. The coarse meshes (10 and 20 elements)
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Fig. 4. Rate-dependent model with z,=0 s: Left: Strain profiles for different discretisations at
t=0.01 s. Right: Development of the localisation band (80 elements).

still deviate somewhat but the fine meshes (40 and 80 elements) give identical results,
not only in the sense that the band width is constant but also that the energy dissipation
is constant and the wave reflection pattern is mesh objective.

A second analysis has been carried out for a different loading pulse. In the time-load
diagram the time span ¢4 is chosen as 2.5 - 10~ s. So, the loading pulse firstly increases
linearly in time before it becomes constant. Again the effect of the inclusion of the
length scale can be observed from the strain localisation plots in Fig. 5. Convergence to
a unique solution with a finite localisation zone characterises the mesh independence.
It is noted that the strain distribution in the localisation zone has a different shape for
this loading case. In the previous analysis a sharp peak in the strain occurs at the left
boundary, whereas in this analysis the strain profile is more uniformly distributed and
has a lower peak value. This is due to the strain rate profile in the bar at the moment of
cracking. In the previous analysis cracking is initiated in one point at the left boundary.
From there the localisation zone extends in the direction of the reflected wave with a
rapidly decreasing strain rate. In this analysis the static tensile strength is exceeded over
a zone with a certain length (exact length = 833 mm). In this zone much lower and
almost constant strain rates occur compared to the peak strain rate in the previous
analysis.

e[x107%] e[x1073]
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\ 20, 40 and 80 elements
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5.0 0.0

0.0 x [m] x [m] 5.0

Fig. 5. Rate-dependent model with #,=2.5-107> s: Left: Strain profiles for diferent discretisa-
tions at 1=0.0125 s. Right: Development of the localisation band (80 elements).



Finally, the localisation band width has been analysed. Firstly the influence of the
length scale parameter on the observed localisation width was investigated in an ana-
lysis with z4, = 0 by using three different values for /, namely 200, 400 and 600 mm. From
the left plot of Fig. 6 it appears that the width of the localised zone is proportional to the
length scale parameter. These results agree with the fact that the localisation zone
vanishes when the length scale parameter approaches zero. A comparison of the results
shown in Figs. 4 and 5 had already made it clear that the shape of the loading wave
influences the strain rate distribution in the localisation zone and therefore also the
localisation band width. This effect is shown in the right plot of Fig. 6 by taking three
different values for the time span ¢4 in which the load is increased from zero to its maxi-
mum value.

e[x107%] e[x107%]
1.2 4
M I=400 \ =0.
o 0.8 'g=00s
=200 mm K tg=1.25103s
0.4 -
=600 mm tg=2.50-102 s
S—S —_—
0.0
0.0 X [m] 50 0.0 X [m] 5.0

Fig. 6. Left: Variation of the length scale parameter. Note that for / =200 mm the strain profile
has been plotted at an earlier stage (t=0.0075 s) than for /=400 mm and /=600 mm
(t=0.010 s). Right: Variation of the loading rate for a 40 element analysis (1=0.010 s).

4 Impact tensile tests on notched specimens

In the Stevin Laboratory of Delft University of Technology impact tensile tests have
been carried out on notched, prismatic concrete specimens (Fig. 7). A geometry with
notches makes it possible to fix the failure plane and to measure the deformation inside
as well as outside the fracture zone. The tests have been performed with the Split-Hop-
kinson bar apparatus by Weerheijm and Reinhardt (1989). The specimen is kept be-
tween an upper and a lower bar and the pulse is applied at the bottom of the
experimental set-up. The main observations that have been reported are: the ultimate
strength and the deformations inside and outside the fracture zone. The loading rate
has been measured after the pulse passes the specimen and has been affected by the
failure process and the geometry of the specimen.

Numerical analyses of the tests on specimens with a notch depth of 7 mm have been
carried out earlier with a rate-independent crack model in order to demonstrate the
mesh-sensitive behaviour and the influence of the structural response on the load-
displacement data (Sluys 1989b, Sluys and De Borst 1990). In this type of experiment a
pronounced rotation of the specimen occurs during failure, which may have been
influenced by the experimental set-up. This rotation of the specimen was not found in
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Fig.7. Geometry of specimen (left) and finite element configurations with 1 (mesh 1), 2 (mesh 2)
and 4 (mesh 3) rows of elements in the notched zone.

the numerical simulation. Because the rotation mechanism was less marked for the
specimens with notches of 5 mm these tests were used for the analyses carried out with
the rate-dependent fracture model. For the modelling of the Split-Hopkinson bar
(height 11.2 m) the same discretisations as in the previous analyses (Sluys 1989b) have
been adopted in which special boundary elements have been used to slow down the
loading wave without undesirable reflections. For the specimen itself three finite
element discretisations have been used (Fig. 7). For the different meshes we use one,
two and four rows of elements in the notched section respectively. All numerical
analyses have been performed under the condition of plane stress with quadrilateral
elements with eight nodes and a nine-point Gauss integration. The analyses reported
in this paper can be viewed as pilot calculations in which the material parameters
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have been chosen as: E =40700 N/mm?, D; = — 2667 N/mm?, M; =0.08 Ns/mm?,
f,=4.0N/mm?’ and ¢ = 2350 kg/ m?®. This material parameter set resultsin a length scale
parameter / = 8.2 mm. In the analyses a section of 5 x 6 mm in front of the left notch
was given a material imperfection in the sense that the tensile strength was reduced by
20%. By inserting an imperfection the possibility is offered of computing an asymmetric
component of the solution.

The computational results differ markedly from the results obtained with the rate-
independent crack model. Now, a localisation band occurs that is independent of the
choice for the finite element discretisation. At the notches the very local stress concen-
tration zones keep the band small but the width of the localisation band increases when
the crack propagates to the centre of the specimen. This can be seen from the crack
patterns in Fig. 8 for the three meshes at a time when the failure zone has developed
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Fig. 8. Crack patterns at 1=0.45-107 s.

completely. Mesh objectivity can also be shown when the consumption of energy in the
model is considered. From Fig. 9 it appears that the internal energy in the three configu-
rations is more or less equal during the time of computation. The stress-deformation
curves for the numerical analyses as well as for the experiment are plotted in Fig. 10, in
which 6,4, represents the mean deformation over the left and the right notch and ¢
represents the vertical stress at the top of the specimen. Not only the mesh indepen-
dence but also the similarity between numerical analysis and experiment is obvious.
The development of the localisation band can be investigated in more detail if we
consider the vertical strain in a relevant part of the specimen (Fig. 11). Cracking starts in
the singular points at the upper and lower corner of the notches. Both cracks at the left
notch first join and at a later stage split up into two separate localisation bands. So there
remains an almost unstretched zone in the middle of the specimen. The same crack
propagation process occurs at the right notch. The rotation during failure which is
observed in the test is found to be less in the numerical simulation.
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Fig. 10. Stress-deformation curve inside the fracture zone.

5 Concluding remarks

It has been demonstrated that numerical solutions for localisation problems are mesh-
sensitive, show a spurious strain localisation behaviour and a disturbed wave reflection
pattern when use is made of a rate-independent strain-softening model. Therefore a
model has been proposed that includes a dependence on the strain rate. This prevents
the initial value problem from becoming elliptic. A linear rate dependence is used
in which the strain rate vector is integrated with an implicit algorithm. The model
incorporates a length scale parameter which is necessary to overcome the mesh-
sensitivity problem. One-dimensional numerical analyses have proved the mesh objec-
tivity of the model with respect to the width of the localisation zone, the dissipation of
energy and the wave reflection on the cracked zone. It appears that the width of the
localisation zone is proportional to the length scale parameter. The mesh independence
is also found in the pilot calculation of the tensile tests on notched specimens in which
the solution for the failure zone deviates totally from the rate-independent solution.
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The calculations described in this paper have been carried out using the DIANA finite
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