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Summary and conclusions

In the research, the cracking behaviour of deep reinforced concrete beams is analysed.
Attention is focused on the amount of horizontal web reinforcement required to con-
trol the cracking in the web. On the basis of experimental results, a model is presented
to calculate steel stresses and crack spacings. The model is also applicable to tensile
members provided with reinforcement located at the side-faces. For these type of
elements a relation beiween the minimum reinforcement and the cracking behaviour
is derived.

In Chapter 2 an overview is given of the most commonly used formulae to predict the
cracking behaviour of reinforced concrete beams and tensile members.

Thick tensile members with reinforcement concentrated at two opposite side-faces are
discussed in Chapter 3. Much attention is paid to the experiments performed by
Helmus at Darmstadt University of Technology. On the basis of Helmus’ results, a
model to calculate the steel stress and the crack spacing at the side-faces is introduced.
Next, attention is focused on deep beams. Experimental results found in the literature
are shown. Subsequently, several formulae describing the cracking behaviour of these
elements are given. It is observed, however, that these formulae have a rather limited
validity. Therefore, an experimental research programme was set up. This research
should provide the information for the derivation of practical design rules for the web
reinforcement.

In the first instance surveying calculations were performed with the finite element
program DIANA. The results of these calculations are presented in Chapter 4 are
shown to give close agreement with the experimental observations as presented in
Chapter 3.

In Chapter 5 a “beam model” is introduced. This model is specially suited for the ana-
lysis of the overall structural behaviour of deep beams. Chapter 6 contains the set up of
the experimental programme and a number of representative results. In Chapter 7 a
comparison is made between the experimental results on the one hand and the newly
developed cracking model (see Chapter 3) and the “beam model” (see Chapter 5) on the
other. It is demonstrated that there is good agreement between the experiments and the
theory.

In order to make the newly developed theories suitable for use in engineering practice it
is decided to present the results by design curves. These curves are shown in Chapter 8.
Their use is explained by two working examples. The first example concerns a rein-
forced T-beam that was analysed previously by Leonhardt. Furthermore, attention is
focused on a thick tensile member with reinforcement placed at two opposite side-
faces. In the latter example, both the required minimum reinforcement and the crack-
ing behaviour are discussed in detail. It is stated that both phenomena are defined by
the behaviour of the reinforced zones.






Samenvatting en conclusies

In het onderzoek is het scheurgedrag van “hoge” gewapend-betonliggers geanalyseerd.
De aandacht ging met name uit naar de hoeveelheid langswapening die is vereist voor
het beheersen van de scheurvorming in het lijf. Aan de hand van experimentele resul-
taten is een model opgesteld waarmee staalspanningen en scheurafstanden kunnen
worden berekend. Dit model is tevens toepasbaar voor op trek belaste elementen met
aan de randen geconcentreerde wapening. Aldus kon voor dit type elementen een ver-
band worden gelegd tussen de wapening en het scheurgedrag.

In Hoofdstuk 2 wordt een kort overzicht gegeven van gangbare formules die het scheur-
gedrag van gewapende liggers en trekstaven beschrijven.

Trekstaven met aan de randen geconcentreerde wapening komen aan bod in Hoofdstuk
3. Er wordt uitvoerig ingegaan op recent aan de TU Darmstadt door Helmus uitge-
voerde experimenten. Op basis van Helmus’ resultaten is een model opgesteld waar-
mee staalspanningen en scheurafstanden worden berekend. Vervolgens is de overstap
naar “hoge” liggers gemaakt. In de literatuur beschreven resultaten van experimenten
worden getoond. Hierna volgt de behandeling van enkele formules waarmee het
scheurgedrag van deze elementen is te bepalen. Deze formules blijken echter slechts
beperkt geldig te zijn. Daarom is een experimenteel onderzoek opgezet dat moest
leiden tot praktijkgerichte dimensioneringsregels voor de lijfwapening.

In eerste instantie zijn verkennende berekeningen met het eindige elementenpro-
gramma DIANA uitgevoerd. Deze berekeningen, die worden besproken in Hoofdstuk
4, geven resultaten die goed aansluiten bij de experimentele waarnemingen die in
Hoofdstuk 3 zijn getoond.

In Hoofdstuk 5 wordt een “ligger model” besproken dat speciaal is ontwikkeld voor het
bestuderen van het “over-all” gedrag van “hoge” liggers. De opzet van het proevenpro-
gramma en de proefresultaten worden beschreven in Hoofdstuk 6. Vervolgens worden
in Hoofdstuk 7 de experimentele uitkomsten enerzijds vergeleken met de resultaten
verkregen met het scheurmodel voor de randzone (zie Hoofdstuk 3) en het “ligger
model” (zie Hoofdstuk 5) anderzijds. Aangetoond wordt dat er goede overeenstem-
ming met de experimenten is.

Om de ontwikkelde theorie€n geschikt te maken voor toepassing in de praktijk is ge-
kozen voor een presentatie aan de hand van nomogrammen. Deze nomogrammen
worden besproken in het laatste hoofdstuk. De werking ervan wordt toegelicht aan de
hand van twee rekenvoorbeelden. Het eerste voorbeeld betreft een gewapende T-ligger
die reeds door Leonhardt is geanalyseerd. Vervolgens komt nog een dik element met
aan de randen geconcentreerde wapening aan de orde. In dit voorbeeld wordt ingegaan
op zowel de vereiste minimum wapening als het scheurgedrag. Aangegeven wordt dat
beide verschijnselen worden bepaald door het gedrag van de gewapende randzones.






Control of crack width in deep reinforced
concrete beams

1 Introduction
1.1 Scope of the research

The reinforcement in concrete structures is generally designed to satisfy all the rules
presented in the codes. These rules arise from requirements with respect to safety,
esthetics, durability and serviceability. So far as safety is concerned, the behaviour of
common concrete structures is well known, resulting in widely accepted formulae.
With regard to esthetics, durability and serviceability, cracking is one of the major
issues. The occurrence of cracks is inherent to most reinforced concrete structures.
Therefore, the cracking behaviour has been studied for many years. Most research was
restricted to describing crack width and crack spacing in a semi-empirical manner: the
cracking behaviour was described on the basis of relatively simple calculation models
[e.g. CEB, 1959]. The simplicity of the models led to the introduction of a number of
coefficients. When tuned to experimental results, good agreement between experiment
and calculation could be obtained for a number of cases. Since laboratory experiments
provided the basis for this tuning, most results were restricted to relatively small
concrete beams and plates (e.g. 56 of the 58 beams tested by Rehm and Riisch [1963a-b,
1964] were 625 mm in height, whereas only two beams were 1200 mm deep). Besides,
research mostly focused on crack widths and crack spacings at the level of the main rein-
forcement, see Fig. 1.1 [Rehm and Riisch, 1964].
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Fig. 1.1 Crack pattern of a reinforced concrete plate [Rehm and Riisch, 1964].

In the last decade, theoretical models were developed [e.g. Noakowski, 1978, 1985;
Fehling and Konig, 1988]. These models are based on a formulation describing the
actual physical behaviour. Fundamental experimental research and finite element (FE)
analyses provided the information needed to describe the basic components. However,
these theoretical models, too, are mostly still restricted to the cracking behaviour at the
level of the main reinforcement.

From experimental results it was obvious that cracking on the side faces of deep beams
should also be taken into account, see Fig. 1.2 [Rehm and Riisch, 1963a].
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Fig. 1.2 Crack pattern of a deep reinforced concrete beam [Rehm and Riisch, 1963a].

The amount of experimental research in this field has to date been rather scarce, with
the result that there are no rational models to calculate crack widths and crack spacings
on the side faces of deep beams. Some rules have been presented for the design of web
reinforcement [e.g. Soretz and Colonna-Ceccaldi, 1971; Breen and Frantz, 1978, 1980a
and CEB, 1985] but there is still a lack of both fundamental experimental and theore-
tical information to describe the crack pattern over the entire height of a beam provided
with web reinforcement.

1.2 Aim of the research programme

Both empirical relations and analytical models describing the cracking behaviour of
reinforced concrete structures are mostly restricted to the level of the main reinforce-
ment. In addition, Beeby [1971] presented formulae to predict crack width and spacing
over the height of a beam without web reinforcement. The most extensive research was
carried out by Breen and Frantz [1978] who presented design formulae for the web
reinforcement. However, their formulae are only valid in the specific case of a 0.14 and
0.20 mm maximum crack width at the level of the main reinforcement and in the web
respectively. The CEB [1985] related the diameter of the web reinforcement to the web
width. The bar spacing was related to the concrete quality and the permissible charac-
teristic web crack width. Moreover, a curve was presented enabling the determination
of the distance over which the web reinforcement must be applied. The design rules,
however, were empirically based and give very conservative values for the required
amount of web reinforcement.

The aim of this research programme is to present a cracking theory describing the crack-
ing behaviour over the entire height of deep beams. Since experimental results present-
ed in the literature are rather scarce, an experimental research programme was aimed at
providing the information to verify the theoretical models. Supplementary information
will also be provided by FE-calculations. Both experiments and FE-calculations will
form the basis for a relatively sirhple theoretical model. Subsequently, this model can
be used to perform parameter studies and to present design rules for engineering
practice.



2 Cracking behaviour of reinforced concrete tensile members and beams

2.1 Introduction

In this chapter attention is focused on existing empirical relations and theoretical
models describing the cracking behaviour of tensile members and beams. It should be
noted that the tensile members are restricted to specimens with a uniformly distributed
reinforcement, resulting in a similar crack pattern along the whole circumference of the
specimen.

2.2 Reinforced concrete tensile members
2.2.1 Semi-empirical relations and analytical models

The first relations used to predict crack spacing and crack width were based on a
relatively simple calculation model [CEB, 1967] which will be explained briefly here.
A concrete cross-section A., a concrete tensile strength f;,, a circumference of the
reinforcing steel us and a constant bond stress 7, between the concrete and the rein-
forcing steel were assumed. When the concrete cracks, the concrete tensile force must
be carried by the reinforcing steel. At a certain distance from a crack, the so-called
transfer length [CEB, 1967], the undisturbed situation is again reached, i.e. the bond
stress is zero. The transfer length can be calculated with the following formula (see also
Fig. 2.1):

Ac

\ A

| zi | d
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Fig. 2.1 The stresses in a reinforced concrete tensile member just after cracking [CEB, 1967].
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It is assumed that at the end of the transfer length, the whole concrete section is in
uniform tension so that a new crack can occur. With increasing extension new cracks
are formed until the crack pattern is “fully developed”, e.g. all the crack spacings vary
between /; and 2/. In this situation there are no parts in which the concrete stress
reaches the tensile strength. Thus, the mean crack spacing /,, in a fully developed crack
pattern is 1.5/, [CEB, 1967]. Formula (2.1) suggests that the mean crack spacing tends to
become zero with an increasing reinforcement ratio. However, from experiments on
tensile members it was derived that the mean crack spacing has a lower-bound value /;,
[Beeby, 1972], see Fig. 2.2. This value is mostly related to the concrete cover [i.e. CEB,

mean crack spacing / cover [-]
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Fig. 2.2 Mean crack spacing in a fully developed crack pattern depending on the concrete cover
and the reinforcement ratio [Beeby, 1972].

1967], the concrete cover and the bar spacing [i.e. Leonhardt, 1976] or is assumed to be
constant [i.e. Schiessl and Wolfel, 1986]. Riisch [1956] obtained a similar result for the
mean crack spacing at the level of the main reinforcement in beams.

For a specific type of reinforcing bar (defined by the specific rib area fg [Rehm, 1961])
the bond stress was related to the concrete tensile strength according to:

=2 22)

m

10



Thus, the following semi-empirical relation could be derived for the mean crack spac-
ing in the case of a fully developed crack pattern:

d
Iy = Imin + 5 k2 2 [mm] (2.3)

The mean crack width was related to the mean crack spacing by:
W= ln&m [mm] 2.4)

In formula (2.4) &, is the mean steel strain. This strain was obtained by reducing the
steel strain at a crack by a factor depending on the load level (O's,cr/ffs), the bond charac-
teristics of the reinforcement (ks) and the fact whether or not a sustained or a varying
load was applied (kg):

2
Eom = % [l — ks (”) ] ] 2.5)

S S

In formula (2.5) o, and o are the steel stresses in a crack at the cracking load and the
service load respectively. This expression for the mean steel strain was based on
research conducted by Rao [1966]. The tensile force - elongation curves of a steel bar
and a reinforced concrete tensile member are both presented in Fig. 2.3.

The variation in crack widths was accounted for by the coefficient ky:
wy=kyw, [mm] (2.6)

Combining formulae (2.3) to (2.5) results in a formula for the mean crack width (w,,)
containing three coefficients k; and /,,;,. These coefficients could be defined to obtain

N
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’
/
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, Aeg
, tension stiffening
s
/7 .
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Eshs
I I !
€s,cr €sm €&s €

Fig. 2.3 Tensile force - strain curve of a reinforced tensile member [Leonhardt, 1976a].
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close agreement with experimental results. Table 2.1 presents the values according to
several codes and researchers. The Eurocode 1990 formulae were based on research by
Schiessl and Wolfel [1986].

Table 2.1 Coefficients in formulae predicting the cracking behaviour of reinforced concrete
tensile members

ke ks
plain deformed plain deformed
Lin bars bars bars bars ke
CEB [1978] 2(c +5/10) 0.8 0.4 0.5 1.0 1A/1
Martin et al. [1980] 50 1.0 0.5 0.5 1.0 1A/1
NEN 3880 [1984] 2¢ deformed 0.40 0.32 - - -
2.5¢ plain
Eurocode [1990] 50 1.6 0.8 0.5 1.0 1A/1

In the Dutch code [NEN 3880, 1984] no tension stiffening is taken into account, result-
ing in an overestimation of the mean steel strain. To ensure a close fit with experi-
mentally observed mean crack widths the theoretical mean crack spacing must be kept
artificially small.

The analytical models are based on a model presented by Noakowski [1985]. Noakowski
presented an analytical solution for both the transfer length (/,) and the crack width
(w,,) for a not fully developed crack pattern. Use was made of a “power function” to
present the bond stress - slip relation:

ty=ad® [MPa] 2.7)

At known steel stresses just before (ay) and after cracking (o) the crack width and
the transfer length were found to be:
1

1+bd 1 L
Wer = 2 —4— dES as,cr(as,cr - 0'§0) t+b [mm] (28)
we, Eg
h=7—"—— 2.9
' (1 - b)as,cr [mm] ( )

Noakowski assumed that the crack pattern is fully developed when all the crack
spacings vary between /; and 2/,. The mean crack spacing is then:

I, =15l [mm] (2.10)

It was assumed that no new cracks form if the load is increased beyond the cracking
load, i.e. the mean crack spacing remains unchanged. According to Noakowski’s model
the tension stiffening is constant:

1+b
Aey=0.75 - &ser [l 2.11)

The mean crack width is:

12



Wi = l&sm = 1.50(es — Aey)  [mm] (2.12)

However, it should be realized that, strictly speaking, formulae (2.8) and (2.9) are only
valid if the crack spacing exceeds twice the transfer length. The calculation of the crack
width in the case of loads exceeding the cracking load was no longer based on the bond
stress-slip relation; Formula (2.12) was based on the experimentally observed load-
elongation behaviour of a reinforced tensile member [Hartl, 1977], see Fig. 2.4.

N
Nsyt
ANeg
tension stiffening
Ner
EshAs
T
s,cr €sm &s B

Fig. 2.4 Simplified tensile force-strain diagram of a reinforced concrete tensile member
[Noakowski, 1985], based on experimental results by Hartl [1977].

Krips [1985] removed this discrepancy and presented analytical solutions for both the
crack width and the crack spacing for loads exceeding the cracking load. The extension
of Noakowski’s theory led to the introduction of several coefﬁcientsiwhich are depen-
dent on the coefficient b of the bond stress-slip relation (see formula (2.7)) and the
load level (as/as‘cr). It should be noted that Krips’ model was based on an assumed
elastic behaviour of the 7,-d relation. From experimental results it can be concluded
that the behaviour at unloading is highly non-elastic. For an overview of experimental
research on the influence of repeated and cyclic loading on the bond stress-slip relation
the reader is referred to Braam [1989].

An analytical model was also presented by Fehling and Koénig [1988]. They used the
following linear bond stress-slip relation:

T,=4a,+ a0 [MPa] (2.13)

On the basis of a comparison between theoretically predicted and experimentally
observed mean crack widths in tension members and beams, it was concluded that the

13



best results were obtained using a; = 2f,, 0 and a, = 0. Thus, the transfer length (see
also formula (2.1)) is:

I = [mm] (2.14)

o | A

When comparing the constant bond stress used by Fehling and Konig [1988] with the
coefficient k, = f; /7, from Table 2.1, good agreement is found in the case of deformed
bars.

By introducing a bond-free length of 15mm at both crack faces, the disturbance of bond
in the vicinity of a crack was taken into account. Thus, the maximum crack spacing was:

1 d,
b =30+2 =30+ = [mm] (2.15)
Q

The mean crack spacing and the mean crack width were found to be:

[max
hy="2" [mm] (2.16)
1[ o 1 4 fu
n=— (30 =4 - = (g, 0.6 2.1
i 1-7[ Es+4Q'Es(a Q)] (] @17

The factor 1.7, introduced in formulae (2.16) and (2.17), was used for the case of a fully
developed crack pattern. When the crack pattern is not fully developed this coefficient
equals 1.4. It was mostly assumed that the crack pattern is fully developed in the case
where o, > 1.430, ., [Martin et al., 1980].

2.2.2 Experimental results versus theory

The semi-empirical relations and the analytical models were compared with experi-
mental results presented by Eligehausen et al. [1976], Hartl [1977], Hartwich [1986] and
Van der Veen [1989]. The main conclusions of this study performed by Kruithof [1990]
will be briefly presented.

From all four of the research programmes a total of 132 experimentally observed mean
crack widths and mean crack spacings were used for the comparative examination. Van
der Veen [1987, 1988] not only performed tests on tensile members, but also pull-out
tests. These experimental results provided the bond stress-slip relations to be adopted
in Noakowski’s and Krips’ models. For the specimens tested in the other three research
projects the following bond stress-slip relationship was assumed [Bruggeling, 1987]:

Ty = 0.38f,cm0"1®  [MPa] (2.18)

For all the specimens it was assumed that cracking occurs when the concrete tensile
stress is equal to the mean short-term tensile strength:

Ocr = 1~0f<‘:tm,0 [MPa] (219)

14



This assumption will be discussed in more detail in section 2.3.2. The results of the
comparative examination are presented in Table 2.2 [Kruithof, 1990].

Table 2.2 Ratio between theoretical and experimental mean crack spacings and mean crack

widths
mean crack width mean crack spacing
formula/model ratio theory/exp. ratio theory/exp.
CEB-FIP Model Code [1978] 0.88 0.92
Martin et al. [1980] 0.77 0.77
NEN 3880 [1984] 1.04 0.71
Eurocode [1990] 1.00 1.04
Noakowski [1985] 1.05 1.07
Krips [1985] 0.59 0.60
Fehling and Konig [1988] 0.76 0.68

2.3 Reinforced concrete beams
2.3.1 Semi-empirical relations and analytical models

In section 2.2.1 attention was devoted to empirical relations predicting the cracking
behaviour of reinforced tensile members. In the present section, attention is focused
on reinforced concrete beams.
In formula (2.3) the mean crack spacing was found to depend on, among other factors,
the reinforcement ratio ¢. In the case of a tensile member this ratio is easily defined as
¢ = As/A.. For beams several approaches can be distinguished. They are presented in
chronological order.
In one of the first generally accepted approaches ¢ was related to the cross-section of
a beam, e.g. Martin and Rehm [1968], CEB [1970]:
AS

0= (-] (2.20)
In the case of T-beams b is the web width. However, it was felt that with increasing
beam height the influence of ¢ is overestimated [Schiessl, 1989]. From the cracking
behaviour of deep beams, see Fig. 2.5, Leonhardt[1976a] deduced an approach to treat a
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Fig. 2.5 Crack pattern of a deep T-beam [Leonhardt, 1974].
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concrete beam as a tensile member by defining an “effective concrete area” around the
main reinforcement (see Fig. 2.6a):

Ocff = -] (2.21)

s
bheff

Many researchers and codes adopted this approach, e.g. CEB [1978], Martin et al. [1980],
NEN 3880 [1984].

Leonhardt [1976a] used the bar diameter as one of the parameters defining the effective
area. Schiessl and Wolfel [1986] presented a different approach based on the effective
beam depth, see Fig. 2.6b:

As

QmZm -] (2.22)
T T
7dg SRR
heff
) _\.\\K\'\\ heff =2.0(h—d)
Ac,eff
© ®

Fig. 2.6 Definitions of the “effective concrete area”
a. Leonhardt [1976a]
b. Schiessl and Wolfel [1986].

This approach had already been introduced earlier, for example by Bjuggren [1948],
CEB [1959] and Gergely and Lutz [1968], but until a few years it was not as generally
accepted as Leonhardt’s approach.

Schiessl and Wolfel assumed a = 2.0. In the Eurocode 1990 this value was changed to
2.5.

In formula (2.1) the transmission length was calculated on the basis of the cracking
force of a tensile member. A stress gradient is present over the “effective concrete area”
of a beam. This results in a mean concrete tensile stress less than fi:

Ocm = k3 f  [MPa] (2.23)

16



Formula (2.3) can now be written as:
1 dS
I = lnin + Zk2 ky —  [mm] (2.24)
Qefr

The CEB [1978], Martin et al. [1980] and Schiessl and Woélfel [1986] advised the use of
k3 =1 for tension (see section 2.2.1) and k3 = 0.5 for pure bending. The Dutch code
(NEN 3880 [1984]) introduced k3 = 0.20 in the case of bending and 0.16 for plain and
deformed bars respectively.

The theory presented by Noakowski (formulae (2.8) and (2.9)) can be used unaltered in
the case of beams since the steel stresses just before and after cracking can be calculated
easily. The same conclusion holds for Krips’ [1985] model.

The model presented by Fehling and Konig [1988] was based purely on the behaviour of
a tensile member. Therefore, a beam had to be translated into a tensile member. The
approach presented by Schiessl and Wolfel [1986] was used, see Fig. 2.6b and formula
(2.22). The value for a was investigated by means of the FEM. The part of a beam
between two cracks was modelled, see Fig. 2.7a. Because of the symmetry only one half
was considered. The compressive forces were introduced as a triangular line-load. The
steel forces transmitted to the concrete by bond were modelled as a uniform horizontal
line-load. It was found that the computational results hardly changed when the bond
forces were introduced as a triangular line-load. This finding was also observed by Koch
[1976] who performed similar analyses to investigate the linear-elastic state of stress in
the part of a beam between two cracks. Fehling and Konig situated “discrete crack”
elements at the axis of symmetry, thus enabling the occurrence of a new crack. These
elements had a stress-crack opening (“tension-softening”) curve according to Scheidler
[1987], see Fig. 2.7b. All the other elements behaved in a linear-elastic way.

The maximum force that could be transferred by bond, N,,, was calculated. In all the
analyses the ratio between N, and N, was constant. The beam was translated into a
tensile member by using the following formula:

‘)/‘
a .
N;"?{é* |
=
|
| w
4*[_\‘_7—____ 1 Wo
|
/2 imax
© ®

Fig. 2.7 (a) Model of the part of a beam between two cracks [Fehling and Konig, 1988];
(b) Tension-softening curve of plain concrete as used by Scheidler [1987].
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Ny

=g

(2.25)

The results of the analyses are shown in Fig. 2.8 where «a is presented in relation to the
ratio between the crack spacing and the beam height and the ratio between the com-
pressive force and the bond force. For bending a =3 was assumed.

2 O =heff /(h=d) [-]

0

3l 3
//____\
ol
1 2
Ne /N7

C | |
0 0.2 1

2

lmax /h [—]

Fig. 2.8 The factor a defining the “effective concrete area” [Fehling and Konig, 1988].

2.3.2 Experimental results versus theory

For a comparative analysis the experimental results presented by Rehm and Riisch
[1963a, 1963b, 1964] were used. Use was made of all the results for specimens not rein-
forced with plain bars, viz. 26 rectangular beams, 10 plates and 11 T-beams. In all, over
13600 individual crack widths were used in the analysis. From these measurements 288
mean crack widths and mean crack spacings were deduced. The results are presented in
Table 2.3. All the results refer to a fully developed crack pattern. For more detailed
information the reader is referred to Smit [1989] and Braam [1990a].

Table 2.3 Ratio between theoretical and experimental mean crack spacings and mean crack

widths

mean crack width

formula/model

ratio theory/exp.

mean crack spacing
ratio theory/exp.

type of specimen rect. T plate all rect. T plate all

number of measurements 159 78 51 288 159 78 51 288
CEB-FIP Model Code [1978] 1.18 131 087 1.16 1.08 1.05 0.69 1.01
Martin et al. [1980] 094 1.12 0.87 0.98 0.86 0.89 0.70 0.84
NEN 3880 [1984] 1.07 1.14 0.87 098 0.81 0.81 0.55 0.76
Eurocode [1990] 092 1.16 098 0.99 0.84 091 0.79 0.85
Noakowski [1985] 1.19 129 125 1.23 1.05 1.04 099 1.04
Krips [1985] 099 1.01 120 1.03 090 085 098 0.90
Fehling and Konig [1988] .11 1.17 117  1.14 099 0.89 1.08 0098
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In section 2.2.3 the cracking criterion was presented (formula (2.19)). This criterion was
derived from an analysis in which all the reported cracking moments of the specimens
were related to the concrete tensile strength [Smit, 1989]. Besides, the specimen height
was found not to have any significant influence on this criterion was found. Therefore,
it was advised not to take account of the flexural tensile strength.

2.4 Characteristic and maximum crack width

From the point of view of serviceability, the calculated crack width must not exceed a
certain specified value. For the purposes of this comparison the mean crack width is
multiplied by a factor to obtain a characteristic crack width. The 95% upper-bound
value is the most commonly used and is calculated by multiplying the mean value by 1.7
(e.g. CEB, 1978; Martin et al., 1980; Schiessl and Wolfel, 1986).

The experiments by Rehm and Riisch provided the information for a detailed study of
this factor. For that purpose the 95% upper-bound crack width (wgs,) was calculated
from all the individual crack widths for a beam at a certain loading stage. Besides, the
maximum crack width (w,,,,) was also registered. In all, a total of 173 characteristic and
291 maximum crack widths were collected. After relating these to the corresponding
mean crack widths the results presented in Table 2.4 were obtained [Smit, 1989].

Table 2.4 The characteristic and the maximum crack width related to the mean crack width in
the case of a “fully developed crack pattern”

specimen rect. beam T-beam plate all
number 121 26 26 173
Wosu,

— 1.77 1.74 1.77 1.75
wm

number 159 81 51 291
wmax

T 1.99 2.22 2.07 2.03

With regard to the factor 1.7 mentioned above good agreement was obtained for the
characteristic crack width. It must, however, be emphasized that this is a mean value.
This implies that there is a 50% probability of this value being exceeded. As regards the
maximum crack width, the factor was found to be about 2.0.

2.5 Conclusions

When comparing Tables 2.2 and 2.3 it is clear that, as far as the theoretical models are
concerned, the model presented by Fehling and Konig [1988] gave the best agreement
with the experiments. This finding is not surprising since the adopted bond stress-slip
curve was tuned to the experimentally observed mean crack widths. In this tuning
nearly the same number of results on both tension members and beams were used. This
fact might explain the overestimation of crack widths in beams, compensated by the
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underestimation for the tensile members. The model not only produces good results;
an additional advantage is its relatively simple form, making it appropriate for use in
engineering practice.

With regard to the formulae presented in the codes, the Eurocode [1990] gave very good
results for crack width and crack spacing, for both the tensile members and the beams.
The CEB-FIP Model Code [1978] also gave good results but overestimated the crack
width for beams. The modification to this code, presented by Martin et al. [1980]
presented a better approximation for the crack widths in beams, but gave an under-
estimation for the tensile members.

3 Cracking behaviour of concrete structures with concentrated reinforcement
3.1 [Introduction

In chapter 2 attention was focused on the crack width and crack spacing at the level of
the main reinforcement in tensile members and beams. As regards the tensile members
specimens with a uniformly distributed reinforcement were analysed (see section 2.2.2
and Kruithof [1990]). Since beams are mostly provided with reinforcement concen-
trated at the top or bottom of the cross-section, the crack pattern at the main reinforce-
ment (e.g. see Fig. 2.5) is calculated on the basis of an “effective concrete area” (see
Figs. 2.6a-b). The semi-empirical relations and theoretical models presented in chapter
2 can not be used to describe the crack pattern in the web of beams. The same conclu-
sion holds for tensile members provided with reinforcement concentrated at the side
faces. Fig. 3.1b presents the type of crack pattern to be expected in such a case, whereas
Fig. 3.1a presents the situation for a uniformly distributed reinforcement [Fellman and
Menn, 1981].

In the following sections attention is focused on the cracking behaviour of deep beams
and tensile members provided with reinforcement located at the side faces.

3.2 Reinforced concrete tensile members
32.1 Experimental results

The following section presents the main results of tests performed on tensile members
provided with reinforcement located at the side faces. Attention is focused on the rela-
tion between crack widths and crack spacings at the level of the reinforcement and in
the unreinforced part of the specimens. For more detailed information the reader is
referred to De Groot [1990].

Henning and Rostéasy [1990] performed tests on tensile members 1000 mm wide and
160 mm thick. The specimens were provided with reinforcement 6 * d 12, 4 * d; 12,
2% d; 20 or 4 * dg 8 + 2 * d; 16 mm, resulting in reinforcement ratios of 0.42, 0.28, 0.39
and 0.38 * 1072, respectively. The concrete cover at the side faces was 30 mm. The crack
pattern and the crack widths were observed over a measuring length of 4000 mm. From
the crack patterns recorded, it was deduced that the ratio between the mean crack
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Fig. 3.1 Crack patterns of tensile members with uniformly distributed (a) and concentrated
(b) reinforcement [Fellman and Menn, 1981].

spacings in the middle of the specimens and at the side faces was 3.8 (c.v. = 0.37) [De
Groot, 1990]. A typical crack pattern is presented in Fig. 3.2 [Henning and Rostasy,
1990]. The crack widths were measured at four locations, see Fig. 3.2.

The mean ratios of wosy,/wn, and w .. /wy, were 1.70 and 1.95 (cv = 0.21, fully developed
crack pattern) respectively. Thisis approximately in agreement with the results present-

measuring line
for crack width
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Fig. 3.2 Crack pattern of a tensile member with concentrated reinforcement [Henning and
Rostésy, 1990].
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ed in Table 2.4. It was also found that at the level of the reinforcement there was no
specific difference between the widths of cracks restricted to the side faces (in the
following denoted as “secondary cracks”) and cracks that penetrated through the whole
cross-section (“primary cracks”) [Henning and Rostasy, 1990]. This conclusion was also
drawn by Beeby [1971] in the case of beams.

Hartwich and Rostasy [1984] investigated the cracking behaviour of steel fibre rein-
forced concrete tensile specimens. From their research two specimens containing no
steel fibres, viz. ZK 10/0 and 20/0, were selected. The cross-sections of both specimens
are presented in Fig. 3.3.

The ratio between the mean crack spacing at the middle and at the side faces of the
specimens was 4.7 and 4.0 respectively [De Groot, 1990].

200

16dg10 4dg 20

%FJ 20 | gﬁ‘ 40 :

630

dimensions mm

Fig. 3.3 Cross-section of two of the specimens tested by Hartwich and Rostasy [1984].

An extensive investigation into the behaviour of thick-walled concrete structures was
conducted by Helmus [1989]. Tests were performed on 12 specimens 400 mm thick and
800, 1200 or 2000 mm wide. The reinforcement ratio ranged from 0.16 to 0.39 * 1072 for
the whole cross-section. The main object of the study was to set up a model which will
enable the reinforcement to be designed to ensure a uniformly distributed crack pattern
at the side faces where the reinforcement is located. Helmus’ model is presented in
section 3.2.2. Fig. 3.4 clearly demonstrates the influence of the detailing of the rein-
forcement. The figure shows the crack pattern on all four sides of the member. The
specimens presented have nearly the same reinforcement ratio, viz. 0.17 and 0.19 * 1072
for VK 22 and 24 respectively. At the moment when the concrete cracks a primary crack
propagates through the entire cross-section and the steel reaches its yield stress. Since
loading was applied in a displacement-controlled way, the decreasing stiffness of the
member causes a decrease of the load. At increasing imposed deformation specimen
VK 22 demonstrates no further cracking: only widening of the already existing
primary crack occurs. However, the reinforcement in specimen VK 24 generates new
(“secondary”) cracks: an increasing imposed deformation causes the widening of the
already existing crack and the formation of new secondary cracks.
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Fig. 3.4 Crack patterns of two specimens tested by Helmus [1989].

322 Theoretical models

According to Leonhardt [1976a-b, 1985] the theory of the “effective concrete area”, as
used for the prediction of crack widths and crack spacings at the level of the main rein-
forcement in beams, can be extended to tensile members, see Figs. 3.5a and b. This
figure presents the crack pattern of a concrete wall, 1.5 m thick and 90 m in length. The
reinforcement ratio was only 0.30 * 1072, The wall was not provided with expansion
joints. Fig. 3.5b shows the definition of the “effective concrete area”. The crack width at
the side faces of the structure can now be calculated according to classical theories
for tensile members, see section 2.2.1. The definition of the “effective concrete area”
introduced by Schiessl and Wolfel [1986] was also used for these types of structures,

see Fig. 3.5¢.
.Iheff =c+8dg
®

1500

Oi':& j:jheff =2(c+1/2dg)
i ©

@ dimensions mm

Fig. 3.5 The crack pattern of a 1.5 m thick concrete wall (a) and the definitions of the “effective
concrete area” according to Leonhardt [1985] (b) and Schiessl and Wolfel [1986] (c).

23



heff / 1/2h [-]
Y]

i AX‘ |
€><V T
o 0.75
I — |
L m | @
e oo o 0.50
l S
E ~
L1 ! - 0.25
It ‘
‘{:b/zl_‘ ®
0
0 0.5 1.0 1.5

Im /h [-]

Fig. 3.6 Part of a tensile member analysed (a and b) and the “effective concrete area” depending
on the mean crack spacing (c¢) [Henning, 1987].

Henning [1987] performed FE-analyses to define the “effective concrete area” for
tensile members up to 1 m thick. The part of a member located between two cracks was
investigated, see Fig. 3.6a. Because of symmetry only one quarter of the specimen was
modelled, see Fig. 3.6b. The bond forces were introduced as a linearly varying line load
over /,=0.14. At the vertical axis of symmetry the part of the section loaded in tension
was registered and denoted as h.g. Fig. 3.6¢ presents h.g in relation to the crack spacing.
The curve can be represented by the following formula [Henning, 1987]:

Bt 1.\

iy _0.42<b> -] 3.1
for h<1 m.

Henning [1987] found that the mean crack widths and spacings at the position of the
reinforcement could be calculated by classical theories (eqgs. (2.3) to (2.5)) if A was
_calculated in analogy to Leonhardt’s approach [CEB, 1978], see Fig. 3.7.

The results of the FE-analyses performed by Fehling and Konig [1988] (see Figs. 2.7 and
2.8) can also provide information with regard to tensile members since some of the
calculations were performed without compressive force (N /N, = 0). From the curve
presented in Fig. 2.8 the following relation for the height of the “effective concrete
area” can be derived:

heff=<2.3+5.2 %) (h—d)<4(h—d) [mm] (3.2)
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Fig. 3.7 Definition of the “effective concrete area” [Henning, 1987].

Fig. 3.8 presents the principal tensile stresses caused by the transition of bond stresses
between the concrete and the reinforcement [Langhout, 1988]. This figure demon-
strates that the part of the panel where high tensile stresses occur is restricted to a limit-
ed area around the reinforcement. Langhout [1988] found that the total area in tension
is defined by an angle a = 60°, see Fig. 3.8. This is in accordance with the findings of e.g.
Krips [1985] and Henning [1987]. Therefore, Braam and Langhout [1988] assumed that
secondary cracking occurs at the end of the transfer length /, in cases where the mean
concrete tensile stress over the concrete area defined by a =60° equals the mean
concrete tensile strength. Helmus [1989] stated that, for the cracking criterion, @ = 30°
suffices. However, in the following it will be demonstrated that in this way only rather
poor agreement with Helmus’ [1989] results is obtained. Therefore, a model was
introduced that is based on the maximum tensile stresses that occur in a concrete panel
loaded by bond forces at the centre of gravity of the main reinforcement, see Fig. 3.9a
[Braam, 1990b]. This model will be presented in this section.

reinforcement

Fig. 3.8 Principal tensile stresses in a concrete panel loaded by bond forces [Langhout, 1988].
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Linear-elastic FE-calculations demonstrated that the maximum tensile Stress ooy max
caused by a force dF, at a distance x; from the edge, can be calculated according to:
dF,

Ocx,max = m [MPa] 3.3)

with x > x; and 1.5(x —x;) <2.0(h — d).

_______ Ocx
Z N2 ]
| {
@ oy | (|
o o
] =
X
2 ~ F < X
dFr
2o e s Tus s fun ]m QI
e E ﬁ ~~~~~
dg dx I < l
@ dF=ug.7Tdx @

Fig. 3.9 Concrete panel loaded by bond forces: (a) concentrated load, (b) position of the loads
outside the slip layer and (c) schematization.

In fact, the bond stresses are transmitted to the concrete by local forces at the bar ribs
[e.g. Rehm, 1961; Goto, 1971]. The slip layer where this phenomenon takes place is
assumed to be as thick as the bar [e.g. Dragosavic et al., 1981; Vos, 1983]. Therefore, the
panel is loaded by two line loads, spaced at 3d,, see Fig. 3.9b. A bond-free length of d; is
assumed. When combining the two line loads, the situation presented in Fig. 3.9c is
obtained. On the basis of these assumptions the maximum concrete tensile stress at the
level of the reinforcement is now calculated by:

dF,
Ocx =
T p{3ds + 1.5(x — x1)}
with x > x; and 3d, + 1.5(x — x,) <2.0(h — d).

In the analyses, the two-dimensional state of stress was investigated. In reality, the
forces spread three-dimensionally in the structure, which means that the bar spacing

[MPa] (3.4
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must also be taken into account. The bar spacing is incorporated in correspondence
with formula (3.5):

T

dF,
Ocx,max = h] b [MPa] (35)
1

with

hi=3ds+ 1.5(x —x,) <2(h—d)
by=3d,+ 15(x—x)<s
X > X

The concrete tensile stress gy max at a certain point can now be calculated by the
summation of the stresses caused by the individual bond forces dF,.
Helmus’ [1989] test results were used to make some adjustments in the model.
This resulted in the following two assumptions [Braam, 1990b]:
- a secondary crack occurs if ooy max = 2/etm 03
- bond forces dF, which are situated at a distance smaller than 30 mm from the position
considered must not be used for the calculation of e max-
The secondary crack spacing is found by calculating the summation of Ocx.max fOT
several values of x =/ * dx:
k
. 302m

j=

dF;
mhlbl

=2fumo [MPa] (3.6)

dx
with:

dF=ugt, dx

Ty =2fumo [Fehling/Konig, 1988]
hy =3dg+ 1.5ixdx <2(h—d)

by =3d,=15i+dx<s

The secondary crack spacing /.. = k * dx is found if the formula (3.6) is met for a certain
“k”. In Fig. 3.9 it was assumed that there is only one layer of main reinforcement. If
more than one layer is used, then 2(h — d) in formulae (3.3) to (3.6) is divided by the
number of layers.

It is now possible to distinguish four different approaches with regard to the steel stress
initiating secondary cracking, viz:

Shefr fetm
Os.sec = —1“““;"*0 + ”fctm,() [MPa] (3.7a)
i7ds
with:
hoe
[sec — SO + i_etffﬂ:g [mm] (383)
ndgty
herr=c + 8d, [Martin et al., 1980] [mm)] (3.9a)
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hor=a(h—d) [Eurocode 1990; Fehling/K6nig, 1988] (3.9b)

[mm]
her=h—d + I tan 30° [Helmus, 1989] [mm)] (3.9¢)
ndsrb([sec - SO)
Ossec=" 1_ .2 + nfctm,O [MPa] (37b)
Zn'ds
with:
leee =k dx [mm] (3.8b)
d Tl —
B = 7d; tolhee = 50) [Braam, 1990b] [mm] (3.9d)

sfclm,O

For all 12 specimens tested by Helmus [1989], he, 0gsec and /. were calculated
according to the four different approaches presented in formulae (3.9a-d), (3.7a-b) and
(3.8a-b). The coefficient a in formula (3.9b) was based both on a constant value
(a =2.5; Eurocode 1990) and on a value depending on the crack spacing (formula (3.2);
Fehling and Konig).

Table 3.1 presents the results of the four different approaches. In this table no experi-
mental results are presented for specimen VK 22 since the crack patterns reported by
Helmus [1989] made it clear that secondary cracking did not occur, see Fig. 3.10. All the
experimental results listed in Table 3.1 are deduced from the crack patterns and the
experimental data presented by Helmus.

From Table 3.1 it follows that the average crack spacing at the position of the reinforce-
ment can be calculated with good accuracy using all the classical cracking theories
(Martin et al. [1980], Fehling and K6nig [1988] and the Eurocode 1990). Helmus’ [1989]
model produces results with a large coefficient of variation. Braams’ [1990b] model fits
closest to the experiments. This is not surprising since some of the parameters applied

e e —
(<]
44516

1200

dimensions mm

Fig. 3.10 Crack pattern of the specimen VK 22 [Helmus, 1989].
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in the model were tuned to Helmus’ experimental results. However, it is the only model
that takes into account the three-dimensional spreading of the stresses. All the other
models presented only consider the “effective height”, whereas the bar spacing is only
accounted for by the condition s < 15d,. As early as the seventies, Leonhardt [1976b]
had pointed to the influence of the bar spacing. He stated that not only the crack widths
and spacings but also the minimum reinforcement in thick concrete members can be
calculated on the basis of the “effective concrete area” provided that rather small bar
spacings of 50-100 mm are applied. The results presented in Table 3.1 support this
statement, since the steel stress initiating secondary cracking o . increases consider-
ably with an increasing ratio of s/d,.

Taking the experimental results as a basis, Helmus advised the use of

hor=53(h—d) [mm] (3.10)

for tensile members between 800 and 2000 mm thick. This relation presents a mean
ratio between the theoretical and the experimental results of 1.27 (cv=10.30, n =11)
and 1.15 (cv = 0.37, n = 11) for the secondary crack spacing /.. and the steel stress g, s,
respectively. The correspondence with the experimental results is rather good, but
relation (3.10) takes no account of the influence of the bar spacing.

From the experiments performed by Fellman/Menn [1981], Hartwich/Rostasy [1984]
and Henning/Rostasy [1990] a total of 8 tensile specimens were selected and analysed
with the proposed model. All the specimens selected were provided with reinforcement
located at the side-faces. With regard to the secondary crack spacing at the position
of the reinforcement, a mean ratio of 1.07 (cv = 0.25) was obtained between the theo-
retically calculated and experimentally observed values.

3.3 Reinforced concrete deep beams

In this section the main conclusions from experiments on deep beams are presented.
Most attention is focused on the crack pattern (i.e. crack spacing and crack width) in the
web and at the level of the main reinforcement. The reader is referred to De Groot
[1989] for a more extensive survey; in this section only the main results are presented.

3.3.1 Experimental results

Borges and Lima [1960] performed experiments on 14 reinforced concrete beams. The
basic type of specimen is presented in Fig. 3.11. The web was provided with 6mm diam-
eter bars, spaced at 200 mm. This web reinforcement was situated in only one half of the
beam. The main aim of the research was to investigate the applicability of cracking
theories in the case of specimens reduced to scale. For this purpose the beam presented
in Fig. 3.11 was reduced to scales 1/2.5 and 1/4. The mean crack spacing was recorded at
middle height of the web and at the level of the main reinforcement. From the results of
9 beams the ratio between the two crack spacings was found to be 3.9 (c.v.=0.5) [De
Groot, 1990]. Furthermore, it was observed that the crack pattern was unaffected by the
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Fig. 3.11 Cross-section and loading scheme of basic beam [Borges and Lima, 1960].

web reinforcement. Fig. 3.12 presents a typical crack pattern. The other 5 specimens
were used for analysing the influence of bottom concrete cover. It appeared that the
ratio between both crack spacings decreased at increasing concrete cover. This finding
is not surprising since the increasing height of the “effective concrete area” reduces the
part of the web where the crack pattern is unaffected by the main reinforcement.
Beeby [1971] performed tests on 5 T-beams reinforced with two 22 mm diameter bars.
The cross-sections of the four types of beams are presented in Fig. 3.13a. The beams
were tested upside down in four-point bending, see Fig. 3.13b. The crack widths and
crack spacings were measured at 8 different levels, see Fig. 3.14a. Fig. 3.14b shows a
typical example of the variation of average crack width down the side of a beam. It was
observed that the crack pattern was unaffected by the web reinforcement. However, the
stirrups acted as crack inducers. The ratio between the crack spacing halfway down the
web and at the main reinforcement was 4.5 (c.v. = 0.9) [De Groot, 1990].

Soretz and Colonna-Ceccaldi [1971] presented the results of tests performed on 6 rein-
forced concrete beams. The main reinforcement consisted of 2 * d; 40, 5 * d; 25 or 6 * d
16 + 4 * d,20 mm bars. The beams were loaded in four-point bending, see Fig. 3.15. The
main subject of interest was the amount of web reinforcement required to obtain equal
maximum crack widths in the web and at the level of the main reinforcement. It was
shown that a web reinforcement amounting to at least 0.25% of the cracked area of
concrete above the main reinforcement must be applied at both sides of the web. No
definite conclusions could be derived with respect to the bar diameter and the bar

%
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Fig. 3.12 Typical crack pattern of a deep beam [Borges and Lima, 1960].
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Fig. 3.13 Cross-section (a) and loading scheme (b) [Beeby, 1971].

spacing. However, on the basis of their experimental results, Soretz and Colonna-
Ceccaldi [1971] concluded that two bars per side concentrated at the lower third part of
the cracked zone will suffice. With regard to the crack spacing they found that where no
web reinforcement was applied, the crack spacing at middle-height of the beam
amounted 3 to 5 times the crack spacing at the main reinforcement.

Leonhardt [1974] presented the crack pattern of a T-beam loaded by 10 concentrated
loads. The loading scheme and the cross-section are presented in Fig. 3.16. The beam
was heavily reinforced with 4d, 26 mm bars. A total of 4 bars of only 4 mm diameter
were placed in the web. The crack pattern at the side face (see Fig. 2.5) was unaffected
by this reinforcement. Leonhardt [1974] stated that in cases where tension zones exceed

305

i

27

N

2dg22 //

633
-

o
127 0 0.2 0.4 [mm]
dimensions mm mean crack width
© ®

Fig. 3.14 Measuring points for crack width (a) and average crack width down the side face of a
beam (b) (e,n=1.34%107°) [Beeby, 1971].
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Fig. 3.15 Cross-section and loading scheme [Soretz and Colonna-Ceccaldi, 1971].

500 mm in height, the crack spacing in the web can expected to be 3 to 4 times as large as
the crack spacing at the main reinforcement. This statement holds for the case in which
no or too little web reinforcement is applied. The T-beam will be analysed in more
detail in chapter 4 by using the FEM.

The most extensive research on deep beams was carried out by Breen and Frantz [1978,
1980a]. They performed tests on 44 T-beams ranging from 618 to 1235 mm in height. A
1830 mm long beam segment was cast and loaded by a constant bending moment. This
moment was applied by the combination of a tensile force on the main reinforcement
and a compressive force on the flange. The main parameters investigated were:
amount, location and distribution of the web reinforcement;

web width;

concrete cover;

beam height.

Only cracks found in the middle 1220 mm of the specimen were measured. The reason
for this was to eliminate possible localized effects of the loading system.

Fig. 3.17 presents the effect of the web reinforcement on the crack profile of four beams
with the same main reinforcement. One beam contained only main reinforcement. The
other three beams were all provided with the same amount of web reinforcement, viz.
567 mm?. This figure clearly demonstrates that the reinforcement was most effective
when a large number of closely spaced bars were used. This finding is not surprising
since it was already known from existing cracking theories.
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Fig. 3.16 Loading scheme and cross-section of T-beam [Leonhardt, 1974].
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Fig. 3.17 Influence of web reinforcement on the crack width down the side face of a deep beam
[Breen and Frantz, 1978].

The web width was 197, 286 or 432 mm. For some of the specimens the main reinforce-
ment was designed to produce the same maximum crack width at this level. Fig. 3.18
presents the effect of web width on the mean web crack width for specimens without
web reinforcement and specimens with 2 * 4d; 9.5 mm (bar spacing 105 mm; concrete
cover 29 mm). This figure clearly demonstrates that the web width had no significant
influence on the web crack width. The same conclusion holds for the crack pattern. It
even appeared that web reinforcement along one of the sides does not significantly
affect the crack widths on the opposite side face [Breen and Frantz, 1978]. These
findings are in accordance with existing cracking theories based on the “effective
concrete area”, i.e. the reinforcement is only effective in controlling crack widths in a
narrow strip of concrete.

In four of the beams with a 286 mm web width, the dimensions and the reinforcement
were the same, except for the concrete cover, see Fig. 3.19a. The cover was 19.1, 38.1,
50.8 and 76.2 mm respectively. The ratio between the maximum crack width in the web
and at the level of the main reinforcement was found to increase with increasing con-
crete cover, see Fig. 3.19b. The following relation was derived for steel stresses ranging
from 207 to 276 MPa:

Wmax Web

=0.50(c)*° [~ 3.11
Wmax DOttom O(C) =1 ( )
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Fig. 3.18 Influence of web width on the web crack width [Breen and Frantz, 1978].

With regard to beam height Breen and Frantz used Beeby’s [1971] theory to predict the
average web crack width in beams without web reinforcement. Good agreement with
experimental results was obtained.

Breen and Frantz derived formulae to calculate the amount of web reinforcement
required to obtain a 0.20 mm maximum crack width in the web provided that the crack
width at the level of the main reinforcement is 0.14 mm. These formulae are presented
in section 3.3.2.

Wimnax Web /W, qx bottom [—]

I
T 2 O °
| 1.5 — .
. *LC 19 1
° ° c=
9l Sil. . 26 10 /
wn 38 /
. ° 51
K 76 0.5 // Og =242MPa
5dg19.1 286 | 0 |
0 20 40 60 80

dimensions mm concrete cover [mm]

Fig. 3.19 The dimensions of the beams (a) and the influence of concrete cover on the web crack
width (b) [Breen and Frantz, 1978].
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33.2 Theoretical models

Beeby [1971] presented formulae describing crack width and crack spacing along the
side of deep beams. These formulae were originally derived to present the crack pattern
in plates reinforced with widely spaced bars [Beeby, 1972]. Beeby’s formulae for deep
beams were based on the interpolation between two crack widths, viz. the crack width
directly over a reinforcing bar (w,) and the crack width related to the initial crack height

(Wlim):

AcrWiimWo [ ] (3 12 )
= mm .
CWiim + (acr - C)WO :
in which:
Wiim = k1 heém  [mm] (3.12b)
c
Wo = (klc +kyserVefes " e/ ) ¢ [mm] (3.12¢)
&m = mean strain at the level considered [—]
c = minimum concrete cover [mm]
h.. =initial crack height [mm)]

¢y, ¢ = maximum and minimum average concrete covers surrounding a bar
in an equivalent prism of concrete, see Fig. 3.20 [mm]

a, =distance from the point considered to the surface of the nearest
reinforcing bar [mm)]

The coefficients k; and k, depend on the required probability of the calculated crack
width being exceeded, see Table 3.2.

Table 3.2 Values of coefficients k; and k, in equations (3.12b-c).

k k,
probability of exceedence [~ -
50% 1.33 0.8
20% 1.59 1.4
10% ‘ 1.76 2.1

5% 1.86 2.6
2% 1.94 3.0

Fig. 3.21 presents the average crack width down the side face of a beam. Both experi-
mental [Beeby, 1971] and theoretical results (formulae (3.12a-c)) are shown.

Beeby also presented the following formula for the average crack spacing at a certain
level along the side face of a beam:

0.05
=22 == OV [ (3.13)
gm sm
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Fig. 3.20 Equivalent prism of concrete surrounding a reinforcing bar [Beeby, 1972].

c1>cp

For the two identical beams 1 and 2 the experimental and the theoretical results are
both presented in Fig. 3.22.

It was shown that Beeby’s theories are suitable for describing the crack width along the
side face of deep beams. However, no information was presented with regard to the
amount of web reinforcement required to obtain a well distributed crack pattern.
Breen and Frantz [1978] used their experimental results and FE calculations to derive
design rules. From the experiments (see section 3.3.1) it followed that the web rein-
forcement must be related to an “effective concrete area”. In accordance with the
findings of Gergely and Lutz [1968] the approach presented in Fig. 3.23 was used. For a
maximum crack width of 0.14 and 0.20 mm at the level of the main reinforcement and
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Fig. 3.21 Experimental and theoretical mean crack width at the side face of'a deep beam [Beeby,
1971].
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Fig. 3.22 Calculated and experimental mean crack spacing at several levelsi of a deep beam
[Beeby, 1971].
the side face respectively, they derived the following formulae for the web reinforce-
ment ratio:
h <1020 mm [-] (3.14a)
(3.14b)

Oetr = 23 % 107°(h, — 280)
h>1020 mm [—]

0cir = 0.0011 + 5.9 % 1074,
h,=tension depth, i.e. the distance between the neutral axis and the main

reinforcement

= neutral axis

_ ng-i/4 Tt dg
Peff = Vabesi-smnt

ht
i

e
.,

1/2bgff =2c+dg
<1/2bg

E

Fig. 3.23 Definition of the web reinforcement ratio [Breen and Frantz, 1978].
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The web reinforcement is most effective when distributed as small bars. Generally, it is
sufficient if four bars are distributed along each side in about 5/8 of the tension zone
closest to the main reinforcement. It should be emphasized that formulae (3.14a-b) are
only applicable in the case of maximum crack widths at the level of the main reinforce-
ment and in the web of 0.14 and 0.20 mm respectively.

De Groot [1990] analyzed the experimental results with regard to crack spacings. From
the results on specimens without or with too little web reinforcement it was concluded
that the mean ratio between the mean crack spacing in the web and at the level of the
main reinforcement was 3.5 (c.v. = 0.8; 18 results).

The CEB [1985] presented tables from which the amount of web reinforcement can be
read off immediately; the bar diameter is related to the web width and the bar spacing
depends on the concrete quality and the allowable characteristic crack width, see Table
3.3. If these requirements are met, no detailed crack control is needed. This statement
implies that the amount of web reinforcement deduced from Table 3.3 is on the con-
servative side.

Table 3.3 Web reinforcement according to the CEB [1985]

web width [mm] <150 150-300 >300
bar diameter [mm] >10 >12 >16
concrete quality B25 B45

char. crack width [mm] 0.2 0.4 0.2 0.4
bar spacing [mm)] 150 250 100 150

3.4 Conclusions

From the experimental and theoretical results presented in chapter 3 it is clear that the
crack pattern at the level of the main reinforcement of deep beams can be calculated
according to existing theories. However, in the case of relatively wide bar spacings, i.e.
in thick walls, the classical theories present too small values for the “effective concrete
area”. Therefore, a new theoretical model introduced by Langhout [1988] and Helmus
[1989] was presented.

With regard to the crack pattern in the web of deep beams Beeby [1971] presented
formulae for the crack width and the crack spacing along the side face for the case in
which no web reinforcement was applied.

However, the amount of design rules for the web reinforcement was found to be rather
scarce. Though Breen and Frantz [1978] did present rules, these were only applicable
for specific cases. The CEB [1985] presented tables for the detailing of web reinforce-
ment. However, the amount of reinforcement required according to these tables is
rather conservative. From an economical point of view a more consistent approach
seems desirable. With regard to crack spacing it can be concluded that, for the experi-
mental values available, the crack spacing at the concentrated reinforcement is about
of the crack spacing in the unreinforced part of the specimen. This conclusion holds
for beams and tensile members [De Groot, 1990].
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4 TFE analysis of deep beams; “smeared crack approach”
4.1 Introduction

In the following two sections the cracking behaviour of deep beams is analyzed by the
use of the FEM program DIANA [De Borst et al., 1984]. At first a small section of a
beam [Leonhardt, 1974] is considered. The influence of web reinforcement on the crack
pattern is presented. In the third section attention is focused on the over-all structural
behaviour of deep beams. Some conclusions with respect to the crack pattern and steel
stresses are also presented.

4.2  Study in detail

Leonhardt [1974] presented the crack pattern of a deep T-beam. The cross-section and
the crack pattern are presented in Fig. 4.1 (see also Figs. 2.5 and 3.16). From this figure it
follows that the mean web crack spacing is 240 mm. Because of symmetry only a part
with a length of 120 mm was modelled (Figs. 4.1 and 4.2) and the right edge was kept
straight by “tying” the horizontal displacements. The primary crack was modelled as a
strip of 10 mm wide elements with a slightly reduced tensile strength. All the concrete
elements were eight-noded plane stress elements, numerically integrated by a 3 3
Gaussian integration scheme. The reinforcement was represented by bar elements
connected to the concrete by springs with a multi-linear force-displacement curve
according to Bruggeling’s [1987] bond stress-slip curve. Over the “primary crack
elements” no bond was assumed.

Since no detailed information was available on the material properties, the following
realistic material parameters were assumed for the concrete:

(feem = 35 MPa), E, = 30500 MPa, f,, = 2.6 MPa, G;=0.070 N/mm.

For the “primary crack elements” the last two parameters were reduced to 2.3 MPa and
0.060 N/mm respectively.

Since the “smeared crack approach” was used, the width of the crack band had to be
defined [Rots, 1988]. Half the width of the elements was chosen; for the elements on the
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Fig. 4.1 Crack pattern and cross-section of a deep T-beam [Leonhardt, 1974].
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axes of symmetry this value was doubled. For the softening of concrete in tension the
curve presented by Cornelissen et al. [1986] was used.

In the first analysis only the main reinforcement was modelled. Fig. 4.3a presents the
crack pattern at several loading stages. The deformed mesh is also presented (500 times
enlarged). From the analysis it appeared that at first the primary crack propagated
through the web of the beam. At the same instant the reinforcement was stressed. The
resulting bond stresses initiated cracking in the concrete at the level of the reinforce-
ment, close to the primary crack. These cracks developed rapidly towards the axis of
symmetry where a new dominant crack arose. With increasing load this crack propagat-
ed vertically through the web. At some distance from the reinforcement the crack
deflected towards the primary crack. This proves that secondary cracking is restricted to
a zone of concrete just around the reinforcement. In a second analysis the web rein-

302010 4x25

4x60

‘primary crack
{— _ elements

10x30

5x24 10
dimensions mm

Fig. 4.2 FE mesh of the part of the beam between two primary cracks.
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Fig. 4.3 Crack pattern of deep T-beam at several loading stages;
a. no web reinforcement
b. web reinforcement 2 *2d; 4 mm; s=180 mm.

forcement was also modelled. Since much too small an amount (2 * 2d; 4 mm) was
applied it was expected that the secondary crack would hardly be affected. This is
confirmed by the crack pattern presented in Fig. 4.3b. The bar spacing of the web rein-
forcement was 180 mm. It was expected that increasing the bar diameter to 10 mm
would result in a “secondary crack” proceeding on to the compression zone, and thus
denoted as “primary crack”. Fig. 4.4 clearly demonstrates this phenomenon.

7S L xR X 7S

2dg10mm TS

2dg10mm H
ny e Rite
on ] i i
M[106Nmm] 91 119 180 227 374
web [ 6 34 116 168 261
Gs[MPa] 55 141 225 250 301
42 68 113 140 261

Fig. 4.4 Crack pattern of deep T-beam; web reinforcement 2 *2d, 10 mm, s =180 mm.
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Fig. 4.5 Cross-section and side view of a deep T-beam.

4.3 Over-all structural behaviour

In anticipation of the experiments to be presented in chapter 6, FE analyses were
performed with respect to the over-all structural behaviour of deep beams. Attention
was focused on the cracking behaviour, load-deformation diagrams and steel stresses.
In this section a brief overview is presented. For more information the reader is referred
to De Groot [1990].

The cross-section and the loading scheme are presented in Fig. 4.5.

Because of symmetry only the left half of the beam was modelled. Loading was applied
in a displacement-controlled way. Eight-noded plane stress elements with a 3 %3
Gaussian .integration scheme were used. The reinforcement was modelled as bars.
Perfect bond between the concrete and the reinforcement was assumed. The main rein-
forcement (4 * d;, 20 mm) was represented by one bar situated 70 mm from the bottom.
The shear zone was provided with 10 mm diameter stirrups, equally spaced at 100 mm.
All the stirrups were modelled separately. A total number of 220 elements were applied,
viz. 22 in the horizontal direction (125 mm long) and 10 in the vertical direction. The
height of the elements was varied provided that at least one layer of unreinforced
elements was present between two horizontal reinforcing bars. The main parameters
varied were the tension stiffening and the amount of web reinforcement (bar diameter,
bar spacing and number of bars).

Fig. 4.6 presents the load-displacement curves of a beam without web reinforcement.
Both the force and the displacement are related to the node where the imposed defor-
mation was applied, see Fig. 4.5. The tension stiffening was modelled in two ways. In
one case no stiffening was applied (i.e. no stress transfer by the concrete after cracking)
and in the other a linear descending branch was assumed. In the latter case the ultimate
strain of the stiffening curve was the steel yield strain (esy =2.38 % 107°). Similar curves
were obtained when the mean curvature of the zone with constant bending moment
was presented [De Groot, 1990]. The amount of web reinforcement was found to be of
minor influence on the calculated load-displacement curves.
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Fig. 4.6 Load-displacement curves for two different ways of modelling the tension stiffening.

With regard to the crack pattern the influence of the web reinforcement was consider-
able provided that a sufficient amount was applied. Fig. 4.7 presents the crack patterns
of several beams with different amounts of web reinforcement. All the figures are
presented at an imposed deformation of 7 mm. The corresponding loads are within the
range of the loads in the serviceability limit state. All these results and those presented
below were obtained by calculations performed with linear tension stiffening. In the
“smeared crack approach”, the crack width is smeared over a certain length which is
dependent on the element size and the direction of the crack [Blaauwendraad et al.,
1985; Rots, 1988]. Thus, cracks strains instead of crack widths are calculated. In Fig. 4.7
only cracks with a crack strain in excess of 0.2¢,, are presented. Some of the beams were
also investigated assuming no stiffening. However, the crack patterns hardly changed.
Fig. 4.7 clearly demonstrates that increasing the amount of web reinforcement results
in a higher percentage of cracks extending through the whole web of the beam. In the
case where no or too little web reinforcement was applied, a well distributed crack
pattern was restricted to the concrete area surrounding the main reinforcement; in the
web only a few dominant cracks appeared. With regard to the steel stresses it was
expected that local high tensile stresses would appear in the web reinforcement. This is
clearly demonstrated in Fig. 4.8a where the stress in the lower web reinforcing bar is
presented (web reinforcement: 2 * 2d; 6 mm; bar spacing 200 mm). The displacement
refers to the imposed deformation. Three curves are presented, each for one of the
integration points of a bar within a concrete element. The concrete element chosen was
located at a primary crack. Its position is indicated in Fig. 4.7b. One of the three integra-
tion points was unloaded, whereas the other two points were highly stressed, leading to
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Fig. 4.7 Influence of web reinforcement on the crack pattern in the serviceability limit state
e >0.2¢, 6,=2.38%107).

no web reinforcement

. 2#2d; 6 mm; s=200 mm

2#2d; 10 mm; s=200 mm

. 2%2d, 12 mm; s =200 mm

2%2d, 12 mm; s=150 mm

3%2d, 12 mm; s=100 mm

mo a0 o R

plasticity in the web reinforcement at loads considerably below loading in the service-
ability limit state. When the diameter of the web reinforcement was increased to 10 mm
plasticity of the web reinforcement still occurred, see Fig. 4.8b. The position of the con-
crete element under consideration is indicated in Fig. 4.7c. A further increase of the
diameter to 12 mm resulted in steel stresses within the range of the stresses in the main
reinforcement (see Figs. 4.8c-d). Both elements considered are shown in Fig. 4.7d.
Fig. 4.9 presents the steel stresses in all three of the beams already presented in Fig. 4.8
plus a beam without web reinforcement. All four figures are related to an imposed
deformation of 7 mm. The stresses are presented as triangles, scaled to the maximum
steel stress. In all four figures the triangles at the main reinforcement represent a steel
stress of about 340 MPa.

45



steel stress [MPa]
600

N7
300 / /
200 | //

100
0
0 2 4 6 8 10
displacement |mm
@ p [ ]
steel stress [MPa]
600
500
400 A

300 —

- AN

100 //- /
%_

0 2 4 6 8 10
displacement |mm
@ p [ ]




600

steel stress [MPa]

500

400

300

200

100

e
/ /

0
0 2 4 6 8 10
® displacement [mm]
steel stress [MPa]
600
500
400
300
200 -
100 //
0
0 2 4 6 8 10
@ displacement [mm]
Fig. 4.8 Stresses in the reinforcement:
a. web reinforcement (web: 2%2d, 6 mm; s=200 mm)
b. web reinforcement (web: 2*2d, 10 mm; s =200 mm)
c. web reinforcement (web: 2*2d, 12 mm; s =200 mm)
d. main reinforcement (web: 2*2d, 12 mm; s =200 mm)

The elements considered are indicated in Figs. 4.7b-d.
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4.4 Conclusions

In the preceding two sections the main results of FE-analyses on deep beams were
presented. In the first section only a small part of a beam was modelled. It was shown
that no or just a small amount of web reinforcement results in a small number of wide
cracks in the web. This is due to the “bending” of a number of the cracks initiated at the
level of the main reinforcement. These “secondary cracks” tend to join the “primary
cracks” that reach the compression zone. It was demonstrated that a sufficient amount
of web reinforcement ensures that the “secondary cracks” become “primary cracks”. In
these analyses the “smeared crack approach” was used. The bond between the concrete
and the reinforcing steel was modelled by means of non-linear springs.

The overall structural behaviour of deep beams was also investigated. The beams
investigated experimentally (see chapter 6) were analysed to obtain an impression of
the ability of the “smeared crack approach” to predict the influence of web reinforce-
ment on the cracking behaviour. From these analyses it appeared that, as expected, a
well distributed crack pattern is obtained in the vicinity of the main reinforcement.
With regard to the web, nearly all the elements cracked. Where no or just a small
amount of web reinforcement was applied, the major part of the crack strain was con-
centrated in a small number of integration points. The web reinforcement yielded at
loads far below the load in the serviceability limit state. When the web reinforcement
was detailed in conformity with design rules, a well distributed crack pattern was
obtained in the web as well. The maximum stresses in the web reinforcement were of
the same magnitude as the stresses in the main reinforcement.

The stresses in the web reinforcement are mostly calculated on the basis of the equili-
brium of a cracked reinforced cross-section, loaded in bending or combined bending
and tension/compression (Bernoulli: “plane sections remain plane”) [e.g. Breen and
Frantz, 1980b]. Figs. 4.8 and 4.5 clearly demonstrated that this assumption only hoids
when a large amount of web reinforcement is applied. In most cases the stresses can
only be calculated if the beam is regarded as a number of “stacked” tensile members
[Krips, 1985; Hordijk and Reinhardt, 1988]. The behaviour of the beam is known when
the force-elongation diagrams of the tensile members are defined. Chapter 5 presents
a model based on these findings.

5 Theoretical model for the behaviour of deep beams
5.1 [Introduction

In chapter 2 the cracking behaviour at the level of the main reinforcement is investi-
gated for both tensile members and beams. It is demonstrated that the Eurocode 1990
presents the best formulae to predict crack widths and spacings. In the case of deep
beams without web reinforcement or tensile members provided with reinforcement
concentrated at the side faces, the crack spacing at the level of the reinforcement can be
calculated according to existing theories. However, the steel stress requiréed to generate
successive cracking is underestimated by the codes. The experimental resuits presented
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by Helmus [1990] demonstrated that this steel stress increases considerably at increas-
ing ratio of bar spacing to bar diameter. Therefore, a theoretical model was developed
to calculate the secondary crack spacing (/) and the corresponding steel stress initia-
ting cracking (o, ..). Since the ratio of the bar spacing to the diameter of the web rein-
forcement is rather large (e.g. s = 100-200 mm, d, = 10-16 mm; CEB [1985]), this model
must be used.

In this chapter a model that presents the overall structural behaviour of deep beams
with or without web reinforcement is discussed. Some of the parameters used in this
model must be calculated with the “effective concrete area” model. The model presents
the curvature, crack height, steel stresses and crack widths as a function of the bending
moment. At first, the model is presented for plain concrete. Verification takes place by
comparison with the FE program DIANA. Then the model is extended to reinforced
concrete. This model will be referred to as the “beam model”.

5.2 Plain concrete beams
5.2.1 Softening of concrete in tension

When a plain concrete specimen is loaded in pure bending, the ultimate bending
moment is larger than the moment that introduces a stress equal to the uniaxial con-
crete tensile strength in the outer tensile fibres:

M, > Wf, [Nmm] (5.1)

When the height of the specimens increases, the ratio M,/ (Wf.,) decreases. Hillerborg
et al. [1976] presented the “fictitious crack model” that defines the stress transfer as
a function of the crack opening, see Fig. 5.1.

This phenomenon is mostly denoted as “softening”. For an extensive survey of the
literature on this subject the reader is referred to Hordijk [1989]. Hillerborg et al. [1976]
demonstrated that the existence of the “flexural concrete tensile strength” is caused by
this softening. They modelled a beam with one major crack, see Fig. 5.2. After the uni-

concrete tensile stress
Oc

fot]

05 A

crack opening
Fig. 5.1 Transfer of stress in a crack in concrete [Hillerborg et al., 1976].
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axial tensile strength f;, was reached, the transfer of stress took place according to a
linearly descending softening curve. All the elements outside the crack behaved linear-
elastically. The “softening” behaviour was introduced by nodal forces. In the FE
program DIANA the “discrete crack concept” was introduced by Rots [1988].

5.2.2 Model for plain concrete beams

Hordijk and Reinhardt [1988] presented a model for the analysis of plain concrete
specimens loaded in tension or combined tension and bending. The model is based on
the behaviour of individual “springs” fixed between two rigid plates, see Fig. 5.3. The
force-elongation curve of a spring is easily defined in the case where the concrete strain
is less than ¢, = fo/E.:

N.=Aco.=A.Ece. [N] 5.2)

u( '

S
ES

-3

—_—
J—
-
—-—
——
—
—
—e—
.

|
V.. .. . . . . . ...y

nodal stresses
forces

Fig. 5.2 Plain concrete beam loaded in pure bending and corresponding FEM representation
[Hillerborg et al., 1976].

T

%o (ﬁO;ko:w—Jo

MC_N_O MWW LN >M

Yo UgiEg= -2

_-’\/\/\/\/V\/\JJ rigid plate

Fig. 5.3 Model for plain concrete loaded in tension and/or bending [Hordijk and Reinhardt,
1988].
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If the strain exceeds &, softening has to be taken into account. Hordijk and Reinhardt
[1988] assumed that the micro crack is “smeared” over the entire length of the spring,

see Fig. 5.4.
Leonhardt [1976a] and Beeby [1978] demonstrated that the crack width in a plain con-
crete member can be calculated according to the following formula:

Wi =K1 herém [mm] (53)
Oc Oc
fct — fCt B
=
Oc
Ec
w
|
Ec
! !
length: | Wo w WO/| €c

Fig. 5.4 Stress-strain diagram of a plain concrete “spring” [Hordijk and Reinhardt, 1988].
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Fig. 5.5 Model to calculate the crack width in a plain concrete member [Beeby, 1978] (a) and the
corresponding model to take softening into account (b).
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In this formula, A, is the crack height, whereas &, is the mean strain at the level con-
sidered. According to Leonhardt [1976a], k; = 2 is assumed. This implies that an area
with a length of 2k, can assumed to be unstressed at the concrete surface, whereas in
the other parts the concrete tensile strength is reached, see Fig. 5.5a. It is proposed to -
define a length /; = 2(h., — y) over which the softening curve is smeared, see Fig. 5.5b.
The stress-strain curve of the spring is presented in Fig. 5.6. It is emphasized that the
crack length 4. depends on the force N and the bending moment M applied.

Oc Cc Oc

EC
I 1
W
length: I Wo W Ecr Ec WO Ec
Fig. 5.6 Stress-strain diagram of a plain concrete “spring” including the influence of the crack
height.

5.2.3 Comparison between FE calculation and “beam model”

In section 5.2.2 the stress-strain curve of concrete in direct tension was derived. To
check the validity of the model a comparison with an FE calculation was made. For this
purpose a part of a T-beam was modelled, see Fig. 5.7. The right edge of the mesh was
kept “straight” by “tying” the horizontal displacements, thus directly introducing pure
bending. The following material properties were used for the concrete: E, = 30300
MPa, f.,=2.8 MPa, v=0.2, G;=0.10 N/mm.

A linear descending curve was applied for the softening. Since only a part of a beam was
modelled, the length of the springs is /; = 2(h. — y) <300 mm. In Figs. 5.8a and b a
comparison is presented between the DIANA calculation and the results of the “beam
model”. With regard to the curvature as well as the crack height good agreement was
obtained.

5.3  Model for reinforced concrete beams
5.3.1 Bond between concrete and reinforcing steel

In section 5.2 a “beam model” is presented for plain concrete beams loaded by a normal
force and/or a bending moment. When extending the model to reinforced concrete
beams, springs representing the stress-strain curves of steel bars must be implemented.
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Allowance has to be made for the bond between the concrete and the reinforcing steel.
It is assumed that the bond stress is independent of the displacement of the steel bar
relative to the outer surrounding concrete [Fehling and Konig, 1988]:

Ty =2fumo [MPa] (5.3)
300 150
-7 =7
o
o
I
T
disrete 3
crack <
elements —
o clements
o
(e}
R
150 12x12.5

dimensions mm

Fig. 5.7 Cross-section and FE mesh of plain T-beam loaded in pure bending.
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Fig. 5.8 Bending moment-curvature (a) and bending moment-crack height (b) curves for a
plain beam loaded in pure bending; a comparison between DIANA and the “beam

model”.

Just as in the case of the concrete “springs”, a steel bar with a length / was modelled. Fig.
5.9 presents the location of the part of the bar in the crack pattern of a beam. In the
middle of the bar a discrete crack may occur. At both sides of this crack a bond-free
length s, is modelled. With regard to the stress-average strain curve of the bar four

stages can be distinguished, viz. (also see Fig. 5.9):

a. & <&
. &sm EC.
g
esmzi (-]
[ As G5 — Oy
b. esmzﬁ and s0+llg%l:11=u
Ec UsTh

1 os+0
Esm = {2soas + 21, (STSO> +2(G1 — 50— lt)GSO} (-]

S

f 1 UsTy
C. egn>2 and so+ hh=1l:10,=04q+—— (I — sp)
EC AS

1 s s
€sm ZE ’25003 + ([ - 250) (%)) [_]

S

(5.4a)

(5.4b)

(5.4¢)
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Fig. 5.9. The different stages of a reinforcing bar that define the stress-strain curve.
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Fig. 5.10 Stress-mean strain curve of an embedded reinforcing bar loaded in tension.



At every stage it must be checked whether o, < f;,. If 0, = £, then the force in the bar
becomes independent of the mean strain: N;= A, f;,. The tension stiffening Ae is
constant between stages ¢ and d:

_ UgTy
IE, A,

Agg G1—s0) [ (5.5)
Fig. 5.10 presents the steel stress-mean strain curve of a 20 mm diameter embedded
reinforcing bar. The following parameters are used: E = 2.1 % 10° MPa; f;, = 500 MPa;
for=2.8 MPa; 7, = 2f,(; d, = 20 mm; A, =314 mm?; u;, = 63 mm; / = 300 mm; So=2d,.

53.2 Comparison between FE calculation and “beam model”

The model for the plain concrete beams (see section 5.2.2) can now be extended to
reinforced concrete beams by adding springs that represent the force-deformation
characteristics of reinforcing bars. Just as in the case of the plain concrete beam, the
model was checked by a comparison with a DIANA calculation. Therefore, the beam
presented in Fig. 5.7 was provided with reinforcing bars, see Fig. 5.11. In the DIANA-
model the reinforcement was modelled by means of 12 truss elements per bar, each
12.5 mm long. Interface elements were used to model the transfer of bond stresses. A
very steep ascending bond stress-slip relation was used so that 7, = 2f,, was already
reached at 0.001 mm slip. All the bars had a bond-free length of 12.5 mm just beside the
discrete crack elements. The material properties were: E. = 31300 MPa, f,, =2.8 MPa,
v=0.2, Gr=0.10 N/mm (linear softening curve); E, = 2.1 * 10> MPa; Jsy =500 MPa.

300
l‘——‘j 2'e
_{ .
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o
I
gl_
o o
2dgbmm P 2
o discrete o
N crack
elements
2dgBmm
2 —f
NI reinforcement ~
E— —8%
4dg20mm S —
~
750 12x12.5| 8
N - %
dimensions mm ol

Fig. 5.11 Cross-section and FE mesh of reinforced T-beam loaded in pure bending.

57



In Figs. 5.12a-b the results are compared with the “beam model”. In this model the
bond-free length was taken as s, = d, to obtain close agreement with the DIANA input.
Two other computations were performed: In the first, no web reinforcement was
applied and in the second, the diameter of the web reinforcement was increased to
12 mm. In both cases close agreement between both models was obtained.
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6 Experiments
6.1 Introduction

In chapter 3 it is concluded that the design rules for the web reinforcement in deep
beams presented by the CEB [1985] are not fully supported by experimental investiga-
tions. The most extensive experimental research was carried out by Breen and Frantz
[1978], but their model is only applicable to specific cases. Therefore, it was decided to
perform experiments on deep reinforced concrete beams. In all, 15 beams were tested.
In this chapter only a part of the experimental results is presented, since the total
amount of experimental data is too extensive to be published in this thesis. For further
information, the reader is referred to Braam [1990c].

6.2 Material properties
6.2.1 Concrete mix

One mix was used, composed of Portland A and C cement and glacial river gravel aggre-
gates with a 16 mm maximum particle size. The mix composition is given in Table 6.1.
The air content and the slump of the mix were 0.8% and 140 mm, respectively. The
concrete was delivered by a mixer truck. A 0.3 m® skip was used for casting the beams.
Each beam was cast in four or five layers. During casting internal vibrators were used to
compact the concrete. For standard tests 12 cubes and 6 cylinders were cast together
with each beam. The compaction time for the 150 mm cubes was 30 seconds, while this
time was 2 * 30 seconds for the @ 150 * 400 mm cylinders. About five hours after cast-
ing, the beams and standard specimens were covered with plastic sheets. After two or
three days the beams and specimens were demoulded and stored until testing. Six cubes
and three cylinders were placed in a fog room (99% R.H. and 20 °C) whereas the beam
and the other standard specimens were stored under laboratory conditions (65% R.H.
and 15-20° C). The standard specimens which were stored in the fog room were tested
atan age of 28 days. The other standard specimens were tested together with the beams.

Table 6.1 Mix proportions and sieve analysis.

sieve analysis

fraction sieve opening
components [kg/m’] [mm] [%] [kg] [mm]  [cum. %]
sand 670 8 -16 28 521 16 0
glacial river gravel 1191 4 -8 25 465 8 28
Portland cement A 170 2 -4 11 205 4 53
Portland cement C 170 1 -2 6 112 2 64
water 177 0.50- 1 13 242 1 70

0.25- 0.50 12 223 0.50 83

0.10- 0.25 4 74 025 95

<0.10 1 19 0.10 99
calc. density 2378 100 1861
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6.2.2 Reinforcing steel

Use was made of reinforcing bars of 6, 10, 12, 16 and 20 mm diameter respectively. The
6 mm diameter rebars were only used for the stirrups. The specific rib area, f, of the 10,
12, 16 and 20 mm diameter bars was 0.79, 0.78, 0.73 and 0.72 respectively. The stress-
strain curves of the various bars are presented in Fig. 6.1.

stress [MPa]

800

dg [mm]

20
12
600 — —
10
16
400
200
measuring length: | 80mm
0
0 25 50 75 100

strain [ 1 0° ]

Fig. 6.1 Stress-strain curves of the bars used for the longitudinal reinforcement.

6.3 Specimens

In all, 15 beams were cast; 12 T-beams and 3 rectangular beams. The dimensions and
cross-sections are presented in Figs. 6.2a-b.

The position of the main reinforcement is presented in Figs. 6.3a-d. The main rein-
forcement of the beams 1-6 consisted of 4 bars with a 20 mm diameter, placed in two
layers of two bars each. The distance from the centre of the layers to the bottom of the
beam was 40 and 100 mm respectively.

In the middle 2.5 m of the beams only two stirrups were used. Beams 1-6 and 13 were
provided with 10 mm diameter stirrups, whereas this diameter was 6 mm for the other
beams. The concrete cover to the stirrups was 20 and 30 mm for beams 1-12 and 13-15
respectively. The bottom cover was equal to the side cover.

The amount of horizontal web reinforcement applied is given by the following code:
number of layers - bar diameter [mm] - bar spacing [mm]. »

Both sides of the web contained the same amount of web reinforcement. Table 6.2
presents the code of the web reinforcement of all 15 beams. Beams 1 and 7 only
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Fig. 6.2 Dimensions and cross-sections of beams 1-12 (a) and 13-15 (b).

contained main reinforcement. In beams 2 to 6, the bar spacing of the lower web rein-
forcement is equal to the centre of the upper main reinforcement to the centre of the
web reinforcement. Table 6.3 contains all the details of the beams tested.

Table 6.2 Amount of horizontal web reinforcement applied in the experiments

beam code beam code

1 - 9 1-12-200
2 2-12-150 10 1-10-100
3 1-12-200 11 1-10-150
4 1-10-100 12 2-10-100
5 2-10-150 13 1-12-100
6 1-10-200 14 2-16-150
7 - 15 2-12-150
8 2-12-150

4060

L
L :z%: = 8# — :i: -
4dg20mm 3ds16mm 4dg20mm 3ds16mm

©) ® © @

dimensions mm

Fig. 6.3 Position of the main reinforcement in the measuring zones of beams 1-6 (a), 7-12 (b),
13 (c¢) and 14-15 (d).
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Table 6.3 Details of the 15 beams tested

web reinforcement

(per side)
web main number bar m
beam cross- h d width  ficm Jespl rein- d of spacing dq c
no. section [mm] [mm] [mm] [MPa] [MPa] forcement [mm] layers [mm] [mm] [m
1 800 730 150 53.9 341 4d, 20 mm - 10 20
(2 layers)
2 800 730 150 53.0 3.67 4d; 20 mm 12 2 150 10 20
300 (2 layers)
3 800 730 150 51.4 3.79 4d, 20 mm 12 1 200 10 20
3 (2 layers)
4 800 730 150 56.4 3.87 4d, 20 mm 10 1 100 10 20
(2 layers)
5 8 800 730 150 51.8 3.74 4d, 20 mm 10 2 150 10 20
(2 layers)
6 800 730 150 48.9 3.56 4d, 20 mm 10 1 200 10 20
(2 layers)
7 150 800 766 150 57.6 4.19 3d, 16 mm - 6 20
(1 layer)
8 800 766 150 54.7 4.07 3d, 16 mm 12 2 150 6 20
(1 layer)
9 300 800 766 150 56.0 3.92 3d, 16 mm 12 1 200 6 20
(1 layer)
10 800 766 150 55.2 3.72 3d, 16 mm 10 1 100 6 20
13-15 (1 layer)
11 ° 800 766 150 48.9 3.02 3d, 16 mm 10 1 150 6 20
s (1 layer)
12 800 766 150 43.7 3.20 3d, 16 mm 10 2 100 6 20
(1 layer)
13 800 750 300 51.0 3.72 4d, 20 mm 12 1 100 10 30
(1 layer)
14 800 756 300 50.6 3.66 3d, 16 mm 16 2 150 6 30
(1 layer)
15 800 756 300 40.8 2.99 3d, 16 mm 12 2 150 6 30
(1 layer)
h =total height

d

=effective depth

feem=mean 28-day (150 mm) cube compressive strength
Jespr=mean 28-day (150 mm) cube tensile splitting strength
=concrete cover to the stirrups (bottom cover=side cover)

4

6.4 Loading scheme and measuring devices

The 5.5 mlong beams were loaded in four-point bending with a span of 5 m. The loading
scheme is presented in Fig. 6.4. This figure also presents a view of a T-beam in the test

rig.

All the crack width measurements were restricted to the middle 2.3 m of the beams.
Only for beam 1 was this zone 2.4 m long. The crack widths were measured on both
sides of the beams by means of a microscope with a magnification of 100 and calibrated
in 0.01 mm divisions. Nine horizontal lines were drawn on both sides of the beams.
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Fig. 6.4 Loading scheme and view of the test rig.

Crack widths were measured at each position where the cracks intersected these lines.
The position of these lines is presented in Fig. 6.5. The numbers 1 and 9 are also
indicated.

The deflection was measured relative to the supports with LVDTs at mid span and just
beside the loading points, see Fig. 6.6. The strains were measured on the surface of the
beams with 170 mm extensometers. On both the tension and compression zone 13
extensometers were used, thus covering 2210 mm of the uniform bending moment
zone, see Fig. 6.6. The zero-measurements were taken when the beams were only load-
ed by their dead-weight. Thus, the influence of the dead-weight was not incorporated in
the measuring results of the LVDTSs and the extensometers.
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Fig. 6.5 Position of measuring lines for crack widths; beams 1-6 (a), 7-12 (b), 13 (c) and
14-15 (b).

At first, the loading frame was applied on the beam, which implies P = 9 kN. The actual
load was then applied in four to five increments by a hand-operated hydraulic jack with
100-ton capacity. During the crack width measurements the load was kept constant
manually. Each test lasted between about 5 hours (beam 15) and 9.5 hours (beam 2).

6.5 Experimental results

As mentioned before, only a number of representative experimental results will be
presented in this thesis. Each figure will present as much information as possible.

- Results of the control specimens:
Half of the cubes and cylinders were tested at 28 days, whereas the remaining speci-
mens were tested on the same day as the corresponding beams. Table 6.4 presents the

250 1250 250, 1000 1000 250, 1250 250,
| I l I | | 1

LVDT

{ L T I L L I I e T L L T
p 1170 13 extensometers p}
dimensions ‘mm

Fig. 6.6 Position of the measuring devices.
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results of these tests. Each result is the average of three measurements. Always two
values are presented: The first corresponds to 28 days, whereas the second refers to the
moment when the beams were tested (ranging from 42 (beam 15) to 83 days (beam 1)).

Table 6.4 Results of the control specimens

beam ﬁc f&‘:sp[ Ec
no. [MPa] [MPa] [MPa]
1 53.9/61.7 3.41/3.82 31300/28900
2 53.0/56.3 3.67/3.81 34500/30600
3 51.4/52.2 3.79/3.72 33400/31200
4 56.4/61.5 3.87/3.54 35900730900
5 51.8/50.1 3.74/3.41 32800/28800
6 48.9/53.3 3.56/3.84 34100/30800
7 57.6/64.5 4.19/4.05 34800/32800
8 54.7/56.1 4.07/4.00 33500/30900
9 56.0/61.4 3.92/3.74 34600/32000
10 55.2/58.9 3.72/3.79 33300/32700
il 48.9/49.9 3.02/3.65 34400/30400
12 43.7/49.9 3.20/3.91 31900/31200
13 51.0/55.9 3.72/4.08 33400/31800
14 50.6/53.4 3.66/3.70 34300/31600
15 40.8/41.3 2.99/3.30 31900/28600

- The force-deflection curves:

The vertical displacement of the beams was measured at three positions, see Fig. 6.6. In
Figs. 6.7a-b the deflection at mid span is presented as a function of the load P (see Fig.
6.4). The load includes half of the load applied by the hydraulic jack and half the weight
of the loading frame (P = 9kN). Fig. 6.7a presents the results of beams 1, 2 and 6
(T-beams; main reinforcement 4d; 20 mm), whereas Fig. 6.7b concerns beams 7, 8, 14
and 15 (2 rectangular and 2 T-beams; main reinforcement 3d, 16 mm). The horizontal
branches correspond to the increase of the deflection during the crack width measure-
ments, which took about 1-1} hours per load step. It is emphasized that the dead-
weight of the beams is not included in the load P.

- The bending moment-curvature curves:

The mean surface strains at the tension and the compression faces of the beams were
measured by 2 * 13 extensometers (see Fig. 6.6). From these mean surface strains the
mean curvature was calculated in the region with constant bending moment. Figs.
6.8a-b present the results of beams 1, 2, 6, 7, 8, 14 and 15. The bending moment was
found by multiplying the force P (see Figs. 6.7a-b) by 1250 mm. This implies that the
dead-weight is not incorporated. The dead-weight is also not included in the measure-
ments of the extensometers, since all the measuring devices were attached after the
beams had been placed in the frame.
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Fig. 6.7a The deflection at mid span as a function of the load applied for T-beams 1, 2 and 6
(main reinforcement 4 * d, 20 mm).
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Fig. 6.7b The deflection at mid span as a function of the load applied for T-beams 7 and 8 and
rectangular beams 14 and 15 (main reinforcement 3 * d; 16 mm).
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Fig. 6.8 The bending moment-curvature relations: Beams 1, 2 and 6 (a) and 7, 8, 14 and 15 (b).
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- The mean crack width and the mean crack spacing:

Table 6.5 contains the results of the crack width measurements of beam 4. The first
column presents the loading stage. The corresponding load P (see Fig. 6.6) can be
calculated by adding the load of the loading frame (P = 9 kN) to half of the load applied
by the hydraulic jack. The second column gives the number of the measuring lines
where all the measurements were taken (see also Fig. 6.5). The third column presents
the total number of crack width measurements taken on both sides of the beam. The

Table 6.5 Results of the crack width measurements of beam 4

loading L Woin~ Wmax  Wm V. wy WilWm  Woax/ W
stage line no. [mm] [mm] [mm] [mm] [-] [mm] [-] [—]
1 1 53 87 0.01 0.10 0.055 0.44 0.09 1.72 1.82
2 52 88 0.01 0.11 0.045 0.52 0.08 1.86 2.47
P=109 kN 3 34 135 0.01 0.13 0.067 0.50 0.12 1.82 1.94
4 31 148 0.01 0.15 0.063 0.67 0.13 2.11 2.37
5 28 164 0.01 0.18 0.068 0.83 0.16 2.36 2.64
6 20 230 0.01 0.17 0.081 0.66 0.17 2.09 2.11
7 15 307 0.01 0.15 0.079 0.56 0.15 1.91 1.89
8 12 383 0.03 0.15 0.091 0.40 0.15 1.66 1.65
9 11 418 0.01 0.08 0.042 0.58 0.08 1.96 1.91
2 1 63 73 0.01 0.21 0.098 0.54 0.18 1.88 2.14
2 58 79 0.01 0.20 0.088 0.53 0.17 1.87 2.26
P=209kN 3 48 96 0.01 0.22 0.106 0.50 0.19 1.82 2.07
4 47 98 0.02 0.25 0.093 0.67 0.19 2.09 2.70
5 39 118 0.01 0.26 0.105 0.77 0.24 2.27 247
6 31 148 0.01 0.32 0.106 0.82 0.25 2.35 3.01
7 20 230 0.02 0.27 0.129 0.65 0.27 2.06 2.09
8 17 271 0.02 0.28 0.132 0.60 0.26 1.99 2.13
9 13 354 0.01 0.15 0.090 0.50 0.16 1.82 1.67
3 1 64 72 0.01 0.26 0.118 0.54 0.22 1.89 2.20
2 59 78 0.01 0.23 0.113 0.48 0.20 1.79 2.03
P=259kN 3 49 94 0.02 0.26 0.133 045 0.23 1.74 1.96
4 48 96 0.01 0.30 0.114 0.60 0.23 1.99 2.62
5 41 112 0.01 0.32 0.128 0.78 0.29 2.28 2.51
6 33 139 0.01 0.35 0.130 0.79 0.30 2.30 2.69
7 21 219 0.01 0.34 0.157 0.65 0.32 2.07 2.17
8 17 271 0.03 0.32 0.174 0.55 0.33 1.90 1.84
9 15 307 0.01 0.20 0.102 0.64 0.21 2.05 1.96
4 1 65 71 0.02 0.32 0.156 0.53 0.29 1.88 2.06
2 60 77 0.02 0.32 0.147 049 0.26 1.80 2.18
P=334kN 3 51 90 0.03 0.33 0.168 0.44 0.29 1.72 1.97
4 49 94 0.03 0.35 0.149 0.55 0.29 1.91 2.34
5 43 107 0.01 0.40 0.155 0.77 0.35 2.27 2.58
6 36 128 0.01 0.42 0.159 0.85 0.38 2.39 2.64
7 24 192 0.01 0.42 0.179 0.74 0.40 2.22 2.35
8 18 256 0.02 0.42 0222 059 0.44 1.97 1.89
9 15 307 0.01 0.28 0.135 0.61 0.27 2.00 2.08
Measurements: 1300 36 36 36
Mean value: 0.61 2.00 2.21
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mean crack spacing is presented in the fourth column and is calculated by dividing the
total length of the crack width measuring zone by the number of cracks. For the first
beam this length was 4800 mm, whereas for the other 14 beams it was 4600 mm. The
following three columns present the minimum, maximum and average crack width
respectively. From all the measurements the coefficient of variation was calculated
(see the eighth column). The characteristic (95%-upper bound) crack width was cal-
culated as wy, = w,, * (1 + 1.64 % cv). The last two columns contain the ratios of charac-
teristic and maximum to the mean crack width respectively. When considering the
results of all the beams the following conclusions can be drawn:
- At the level of the main and the web reinforcement:

wi/wm =181 (cv=0.07; n=165)

Winax[Wm = 2.12 (cv=10.13; n = 165)
- At the measuring lines between the reinforcement:

wi/wm =190 (cv=0.13; n=2390)

Winax/Wm = 2.04 (cv =0.17; n =390)

The location of the stirrups in the uniform bending moment zone was known precisely.
After the tests the cracks initiated by the stirrups were registered. The mean crack width
at the stirrups was compared with the mean width of all the cracks. A total (1) of 555
ratios was collected. The mean value was 1.42 (cv = 0.20). This ratio must be inter-
preted with caution since the crack width at the stirrups is the mean value of at most
four measurements (two stirrups; measurements at both sides of the beams).

Figs. 6.9a-c present the mean crack width over the height of several beams. In Fig. 6.9a
the influence of the diameter of the web rebars is shown. All three beams contain the
same amount of main reinforcement, viz. 4 * d; 20 mm. Beam 1 contains no web rein-
forcement, whereas beams 3 and 6 contain one bar at each side of the web. The diameter
of these bars is 12 and 10 mm respectively. The load P (including half the weight of the
loading frame) is presented in the right upper corner of the figure. On the vertical axis, y
is the distance to the bottom of the beam.

y [mm] force : P — 209 kN
800
600
SN beam 1
RN L
400 i
beam 1. — ~/\ o beam 6\
® @ | beam 3: dg=12mm Tt /..
b 6: dg=10mm Tl
§ eam s m 200 beam 3 ;‘--'-\;:__._.- >
4*dg 20mm : :
0
@ 0 .05 A 15 2 .25

mean crack width [mm]
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The influence of the bar spacing is shown in Fig. 6.9b. Just as in Fig. 6.9a, the load is
P =209 kN. In each side of the web of beams 4 and 6, one reinforcing bar with a 10 mm
diameter is placed. The distance from the centre of the upper main rebars to the web
rebar is 100 and 200 mm for beams 4 and 6 respectively.

Fig. 6.9¢ presents the influence of the number of layers of web reinforcement. Also in
this figure, one curve refers to a beam without web reinforcement, viz. beam 7. All three

y [mm] force : P — 209 kN
800
600
SR b 1
\'\\ eam
400 —
;o
e AN \
S beam & i "~.|_ beam 6
o - 200 = -
4%dg20mm . . &<
® ® 0 N
0 .05 A .15 2 .25
mean crack width [mm]
beam 6: 1xdg10mm ; s=200mm
(® [—beom 4 1xdg10mm ; s=100mm
beam 1. —
y [mm] force : P — 146.5 kN
800
600
\ .
400 \ N
P
/'/ beam 12 - \_beam 10 beam 7
® N e
8 200f— Yl
® o /
s} A ..
34dglbmm | @@ @ - 0 < /
0 N .2 .3 4

mean crack width [mm]

L beam 12: 2xdg10mm ; s=100mm
@ —beam 10: 1xdg10Omm ; s=100mm
beam 7. —

Fig. 6.9 The mean crack width over the height of several beams. This demonstrates the
influence of:
a. the diameter of the web rebars
b. the spacing of the web rebars
c. the number of layers of web reinforcement
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beams contain 3 * d; 16 mm as main reinforcement. Beams 10 and 12 contain 1 and 2
layers of web reinforcement respectively. The diameter of the rebars in the web is
10 mm, whereas the bar spacing is 100 mm.

Figs. 6.9a-c clearly demonstrate that, as expected, the crack widths decrease as the
amount of web reinforcement increases. Furthermore, the widest cracks in the un-
reinforced part of the web occur about half way between the neutral axis and the upper
web reinforcement.

Fig. 6.10 presents the crack patterns of beams 7 to 12. All the patterns were recorded at
the maximum load applied, viz. P = 146.5 (beam 7), 171.5 (beams 9-11) and 196.5 kN
(beams 8 and 12). It is clearly demonstrated that cracks are initiated by the web rein-
forcement. This leads to a well distributed crack pattern over a larger part of the beam.
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Fig. 6.10 The crack patterns of beams 7 to 12 after completion of the experiments.

The development of the crack patterns was also recorded. Fig. 6.11 presents the crack
pattern on both side faces of beam 13 at several loading stages. These stages refer to a
load P 0f 109, 184, 234 and 334 kN respectively. In the figure the stages are indicated by
the Roman numerals I to IV. Beam 13 is a rectangular beam, provided with a main rein-
forcement consisting of 4 bars of 20 mm diameter. One layer of 12 mm diameter rebars
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Fig. 6.11 The development of the crack pattern of beam 13.
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is placed at both sides of the web. The bar spacing is 100 mm. From the figure it can be
seen that in the first stage a rather limited number of cracks occur. These cracks pene-
trate through a relatively large part of the web. Between these primary cracks some
secondary cracks also appear. However, they are restricted to the level of the main rein-
forcement. In the following loading stages the already existing cracks extend further
into the web. The secondary cracks remain restricted to the part of the beam provided
with reinforcement.

- The cracking moments:

Of all the 15 beams tested, the cracking load was registered. Table 6.6 contains the
cracking moments, including the bending moment caused by the dead-weight of the
beams. The average concrete tensile splitting strength on the day of testing f, is also
presented. The moment of inertia of the beams was calculated (including the influence
of the reinforcement) and the concrete cracking stress was determined. When relating
these stresses to fc,, it was observed that, on average, o, = 0.97f, (cv = 0.18) (see last
column in Table 6.6). In nearly all the beams the first cracks were initiated at the
stirrups. At increasing load the number of cracks increased rapidly. In this stage, the
crack spacing was relatively large and all the cracks extended to the compression zone.
The further increase of the load caused the formation of new cracks between the
already existing ones. These new cracks were restricted to the level of the main rein-
forcement if no web reinforcement had been applied. By adding web reinforcement
these cracks can be forced to extend into the web.

Table 6.6 The cracking moments and the cracking stresses related to the tensile splitting

strength
beam Mcr Ocr fcspl Gcr/fcsp]
no. [10° Nmm] [MPa] [MPa] —
1 75 3.46 3.82 0.91
2 79 3.64 3.81 0.96
3 100 4.61 3.72 1.24
4 85 3.92 3.54 1.11
5 85 3.92 3.41 1.15
6 82 3.78 3.84 0.98
7 73 3.58 4.05 0.88
8 82 4.02 4.00 1.01
9 79 3.87 3.74 1.03
10 79 3.87 3.79 1.02
11 75 3.68 3.65 1.01
12 82 4.02 3.91 1.03
13 111 3.21 4.08 0.79
14 86 2.54 3.70 0.69
15 86 2.56 3.30 0.78
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7 Verification and comparison of the experimental results
7.1 Introduction

In section 3.2 a model is presented to predict the crack spacing /.. and the steel stress
initiating secondary cracking o, in thick concrete tensile members provided with
reinforcement concentrated at the side-faces. It is demonstrated that good agreement
with the experimentally observed cracking behaviour is obtained. The codes tend to
underestimate /.. and o s.. In this chapter the model presented is used in the case of
deep beams to calculate the crack spacing at the level of the main reinforcement. Sub-
sequently, the same model is used for the crack spacing at the web reinforcement. If the
crack spacing is known over the entire height of the beams, the “beam model” presented
in chapter 5 can be used to investigate the overall structural behaviour, i.e. the bending
moment-curvature relations.

7.2 The mean crack width and spacing at the main reinforcement
7.2.1 The mean crack spacing

In section 3.2 a model is introduced to calculate the secondary crack spacing /.. The
model is based on the three-dimensional spreading of the bond stresses in a concrete
structure, see Fig. 3.9. If the detailing of the reinforcement and the concrete quality are
known, all the parameters are defined, viz. d;, s, h — d and f,.

Table 7.1 gives an overview of a comparison between the theoretical model and the
experiments. It must be emphasized that it is assumed that the mean short-term con-
crete tensile strength (fmm,o) to be used in the model is equal to the splitting strength
(fcspl) as presented in Table 6.4. This is in accordance with Heilmann [1969], who stated
that at an age of 90 days, both strengths can be assumed to be equal. With regard to the
age of the beams at the time of testing (42 to 83 days), this assumption seems to be
permitted. In Table 7.1 the experimental results are only presented in the case where
the crack pattern is fully developed. The corresponding load P (see Fig. 6.6) is given in
the fifth column. The load is equal to half of the load applied by the hydraulic jack and
half the weight of the loading frame (9 kN). Thus, the dead-weight of the beams is not
included. With regard to the mean strain in the case of a fully developed crack pattern,
the following can be stated: Just before the secondary crack arises, the steel stress in the
primary crack is g, s.c. Over the bond-free length /; the steel stress is constant, whereas
the stress decreases linearly along the transfer length /, because of the bond stresses
between the concrete and the reinforcement (Fig. 7.1a). After the formation of the
secondary crack (Fig. 7.1b), the steel stress in the secondary crack is also ;... The
mean strain is now:

. 21y
Esm = s sec — EAES 1—— [“'] (713)

sec

with:
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Fig. 7.1 The steel stress just before (a) and after (b) secondary cracking.
1 4Tb
ASS=ES‘%(ISCC_2[0) 75 [—] (7.1b)
The combination of both formulas gives the following expression:
1 Ty ([sec — 210)2

Esm =& -_—— — [=

sm s,sec Es ds [Sec [ ] (710)

In most cases it can be assumed that &g, = 0.9¢; ..

In beams 1-6 the main reinforcement was applied in two layers (see Fig. 6.3). The
results for both layers are presented in Table 7.1. The first result refers to the rebars

Table 7.1 The mean crack spacing at the level of the main reinforcement. Comparison between
theoretical model and experiments
experiments theory
beam  d s h—d load . I O sec
no. [mm] [mm] [mm] [kN] [mm] [mm] [MPa]
1 20 75 70 89-129-209-289 109- 89- 84- 84 96 143
107- 89- 86- 84
2 20 75 70 109-209-259-334 105- 92- 88- 88 96 142
105- 82- 81- 82
3 20 75 70 109-209-259-334 82- 75- 74- 74 96 139
82- 68- 68- 67
4 20 75 70 109-209-259-334 87- 73- 72- 71 96 132
88- 79- 78- 77
5 20 75 70 109-209-259-334 81- 69- 69- 69 96 128
78- 68- 65- 65
6 20 75 70 109-209-259-334 78- 71- 68- 67 96 144
77- 66- 65- 65
7 16 50 34 72- 97-122-147 72- 69- 66- 65 83 164
8 16 50 34 97-122-147-197 70- 70- 70- 70 83 162
9 16 50 34 97-122-147-172 70- 70- 66- 66 83 151
10 16 50 34 97-122-147-172 68- 66- 64- 64 83 153
11 16 50 34 97-122-147-172 70- 69- 68- 68 83 148
12 16 50 34 97-122-147-197 73- 69- 67- 66 83 158
13 20 75 50 184-234-334 105- 98- 92 126 202
14 16 100 44 159-184-222 124-112-115 174 318
15 16 100 44 109-134-159-184 139-139-135-131 174 284
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situated closest to the tension face. The mean ratio between the theoretically predicted
and experimentally observed crack spacings is 1.25 (n =82, cv=0.11). In accordance
with the codes a coefficient k3 (see formula (2.23)) was used to account for the stress
gradient over the “effective concrete area”, 2(h — d).In the analyses this coefficient was
assumed to be constant for the main reinforcement (viz. k; = 0.85), since it was found
that the detailing of the reinforcement has little influence.

7.2.2 The mean crack width

In all the experiments presented in chapter 6, the surface strains were measured by
means of extensometers (see Fig. 6.6). By linear interpolation between the strains at the
tension and compression face of the beams, the average strain at every level along the
height of the beams can be determined. According to existing cracking theories (see
chapter 2), the mean crack width is calculated by multiplying the mean strain by the
mean crack spacing. In section 7.2.1 it was demonstrated that good agreement between
theory and experiment was obtained. Therefore, the theoretical mean crack spacing
will be used to calculate the mean crack width. The results of the analysis are presented
in Table 7.2. Just as in the preceding section, only the measurements related to a fully
developed crack pattern are considered. The mean ratio between the theoretically
predicted and experimentally observed crack widths is 1.67 (n=82, cv=0.11).

Table 7.2 The mean crack width at the level of the main reinforcement. Comparison between
theoretical model and experiments

beam experiments theory theory
no. w, [mm] w,, [mm] Wm experiments
1 0.04-0.06-0.11-0.15 0.07-0.10-0.18-0.24 1.60-1.62-1.64-1.63
0.03-0.06-0.09-0.13 0.06-0.09-0.16-0.22 1.91-1.68-1.75-1.73
2 0.05-0.10-0.12-0.15 0.07-0.15-0.18-0.24 1.36-1.52-1.57-1.63
0.04-0.07-0.09-0.12 0.06-0.13-0.16-0.21 1.71-1.86-1.86-1.79
3 0.04-0.09-0.11-0.15 0.07-0.15-0.18-0.24 1.62-1.66-1.66-1.67
0.03-0.06-0.08-0.11 0.06-0.13-0.16-0.22 2.04-2.16-2.10-2.05
4 0.06-0.10-0.12-0.16 0.07-0.15-0.19-0.24 1.28-1.52-1.57-1.55
0.05-0.09-0.11-0.15 0.06-0.13-0.17-0.22 1.41-1.52-1.47-1.47
5 0.05-0.09-0.11-0.14 0.07-0.15-0.18-0.24 1.43-1.71-1.67-1.70
0.04-0.07-0.09-0.11 0.06-0.13-0.16-0.21 1.58-1.92-1.87-1.91
6 0.04-0.08-0.10-0.14 0.08-0.15-0.19-0.25 1.70-1.88-1.89-1.86
0.04-0.07-0.09-0.11 0.07-0.14-0.17-0.22 1.72-1.95-2.01-1.97
7 0.05-0.07-0.10-0.12 0.09-0.12-0.15-0.18 1.68-1.59-1.57-1.91
8 0.05-0.06-0.08-0.12 0.08-0.10-0.13-0.18 1.61-1.60-1.54-1.53
9 0.06-0.08-0.10-0.11 0.10-0.13-0.16-0.19 1.51-1.55-1.62-1.65
10 0.06-0.08-0.09-0.11 0.10-0.13-0.16-0.18 1.71-1.64-1.73-1.66
11 0.06-0.08-0.10-0.12 0.10-0.13-0.16-0.18 1.58-1.60-1.62-1.56
12 0.05-0.06-0.07-0.10 0.08-0.10-0.13-0.18 1.64-1.74-1.75-1.81
13 0.09-0.11-0.16 0.13-0.18-0.26 1.45-1.56-1.64
14 0.13-0.14-0.17 0.21-0.25-0.33 1.62-1.86-1.90
15 0.12-0.15-0.19-0.21 0.16-0.21-0.26-0.32 1.34-1.41-1.40-1.48

mean: 1.67 (n=82, cv=0.11)
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From Table 7.2, it appears that the theory overestimates the measured values, although
the crack spacing is in correspondence with the experimental results and the average
strain was measured during the tests. An explanation for this finding is the fact that the
crack pattern is “frayed” at the level of the reinforcement: The elongation is not con-
centrated only in the major cracks. Mostly, one major crack is accompanied by several
small cracks. These cracks might be internal cracks that spread from the ribs of the rebar
and reach the concrete surface [Goto, 1971]. In most of the beams tested, all these small
cracks were within 1 cm of the major crack. Fig. 7.2 presents typical examples of a
“frayed” crack pattern in beam 13. Major cracks at the level of the main reinforcement
are shown. The minor cracks are also indicated. The load on the beam is P = 150 kN.
The distance from the tension face of the beam to the horizontal measuring line is
50 mm.

Fig. 7.2 Major cracks at the level of the main reinforcement accompanied by several minor
cracks (beam 13; P =150 kN).
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In the measurements, attention was focused on the major cracks, and therefore the total
width of the cracks considered will be less than the total elongation. The same pheno-
menon was observed by Breen and Frantz [1978]. Van Mier[1990] also observed it in the
case of plain concrete. A comparison between the sum of the crack width and the
elongation is made in Table 7.3. The same loading stages as in Table 7.2 are considered.
It appears that 74% of the elongation can be found in the crack width measurements
(n=282, cv=0.11).

Table 7.3 The sum of the measured crack widths compared to the recorded elongation

beam sum of crack elongation
no. widths [mm] [mm]
1 1.80-3.42-6.08- 8.56 3.28-5.12-8.75-12.22
1.38-2.96-5.06- 7.32 2.96-4.61-7.88-10.99
2 2.16-4.87-6.04- 7.57 3.20-7.06-8.75-11.44
1.54-3.97-5.02- 6.64 2.87-6.33-7.83-10.23
3 2.35-5.39-6.70- 9.01 3.27-7.02-8.76-11.61
1.67-3.97-5.02- 6.64 2.93-6.30-7.86-10.40
4 2.92-6.17-7.55-10.12 3.37-7.15-8.89-11.58
2.32-5.13-6.67- 8.81 3.03-6.42-7.98-10.38
5 2.74-5.69-7.30- 9.34 3.28-6.98-8.70-11.34
2.28-4.63-6.16- 7.91 2.95-6.27-7.80-10.16
6 2.60-5.25-6.85- 9.33 3.58-7.31-9.16-12.02
2.31-4.93-6.04- 8.12 3.22-6.55-8.20-10.76
7 3.29-4.98-6.75- 8.57 4.76-6.52-8.37-10.13
8 3.16-4.25-5.46- 7.71 4.28-5.69-7.10- 9.93
9 4.16-5.34-6.74- 7.91 5.28-6.96-8.63-10.30
10 3.93-5.38-6.50- 7.90 5.51-7.01-8.61-10.10
11 4.19-5.27-6.56- 8.05 5.51-7.02-8.62-10.22
12 3.03-4.05-5.12- 7.01 4.37-5.78-7.16-10.01
13 3.92-5.26-8.06 4.70-6.39-9.62
14 4.65-5.57-6.83 5.41-6.68-8.61
15 3.93-4.92-6.43- 7.49 4.20-5.55-6.99- 8.38

Beeby [1978] also pointed to a similar observation, see Fig. 7.3: The measured mean
crack width is smaller than the mean crack spacing multiplied by the mean surface
strain. Therefore, Beeby presented a formula which introduces a factor to take account
of this finding [Beeby, 1971]:

Wi = lmém — 0.05e70913%  [mm] (7.2)

In this formula the last term is 0.029 and 0.038 mm, for a concrete cover (¢) of 40 and
20 mm respectively.

7.2.3 Comparison with existing theories

In chapter 2 it was shown that several codes and models are very well able to predict the
average crack width and spacing at the level of the main reinforcement in beams and in
tensile members provided these have a uniformly distributed reinforcement. In this
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Fig. 7.3 Comparison between the mean crack width and the average crack spacing multiplied by
the average surface strain measured [Beeby, 1978].

section attention will be focused on the mean crack spacing. The crack width is dis-
regarded since it is easily calculated by multiplying the mean spacing by the mean
strain. In the codes a coefficient k; (see formula (2.23) and Fig. 7.4) is introduced to
account for the fact that, in the elastic stage, the mean concrete tensile stress over the
“effective concrete area” is less than f,. In the case of the deep beams tested, the stress
gradient is rather small. Just as in section 7.2.1, k3 = 0.85 was used. Table 7.4 presents
the mean crack spacing to be expected according to five relations. Two values are given,
one in the case where the parameters according to “pure bending” are used (k; = 0.5),
whereas the second value refers to the case in which k; = 0.85 is used.

Only the model presented by Fehling and K6nig has no specific input parameters in the
case of pure bending: The beam is translated into a tensile member (by the “effective
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Fig. 7.4 The definition of the coefficient k;.
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Fig. 7.5 The “effective concrete area” used to calculate the crack pattern at the web reinforce-
ment.

concrete area”) and is further treated just the same way as a tensile member. The mean
value of the experimental results is also presented. The number of values from which
the results are derived is also given (n). The loading stages considered are the same asin
Tables 7.1-7.3.

Table 7.4 The mean crack spacing at the main reinforcement: Experiments versus theory

mean crack spacing [mm] bending/tension

beam no. 1-6 7-12 13 14-15
CEB [1978] 97/103 106/113 143/151 157/188
Martin et al. [1980] 125/177 146/242 169/253 213/397
NEN 3880 [1984] 84/101 91/112 118/125 124/171
Eurocode 1990 92/121 92/122 110/152 138/236
Fehling/Konig [1988] 91 77 123 211
proposed model 96 83 126 174
experiments 79 68 98 128

n 48 24 3 7

From Table 7.4 it follows that the average crack spacing can be calculated accurately
with existing codes provided that k; = 0.5. This was also concluded by Smit [1989]
(see Table 2.3), who used k3 = 0.5 independent of the height of the beams and plates
analysed.
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7.3 The mean crack width and spacing in the web
7.3.1 The mean crack spacing

In this section the same procedure as in section 7.2.1 will be followed. In section 3.2.2 a
model to calculate the secondary crack spacing is developed for tensile members. It is
shown in section 7.2.1 that the model can be extended to deep beams if the coefficient
ks is included in the calculation. This coefficient takes account of the stress gradient in
the linear elastic stage over the height of the “effective concrete area”. The height is
2(h — d) if the main reinforcement is considered. In section 7.2.1 k3 = 0.85 was used,
since the coefficient of all the 15 beams tested differs only slightly from this value. With
respect to the crack spacing at the web reinforcement the same procedure as in the case
of the main reinforcement is followed. This procedure is explained in Fig. 7.5 and is
given by the following formula, which is only a minor modification of formula (3.6):

k

> e e MPal (13)

. 30mm hlbl
i=
dx

in which:

dF, = ugty, dx

Ty = 2fum,o [Fehling/Konig, 1988]

hy =3d,+ 1.5i % dx < 2(c + 0.5d,) < 0.5b
by =3d,+1.5ixdx <3is

The coefficient k3 is now defined by the hatched area in Fig. 7.5. If k3 = 0.85 for the main
reinforcement, a value of about 0.75 can be assumed for the web reinforcement. As can
be seen in Fig. 7.5, the height of the “effective concrete area” is defined by only the half
of the bar spacing s. This was derived from the experimental results. The reason why
the whole bar spacing is not used is because the main reinforcement induces cracks that
penetrate in the web over a certain height, thus reducing the height of the concrete area
stressed by the web reinforcement.

Where no web reinforcement is applied, the crack pattern is in accordance with the
pattern that occurs in a concrete wall cast after the floor slab has hardened. Fig. 7.6a
presents the schematized crack pattern of a wall without longitudinal reinforcement,
cast on an infinitely stiff slab [CUR, 1978]. It was observed that the stiffness of the slab
has minor influence on the type of crack pattern [CUR, 1978]. Therefore, the same
procedure can be followed in the case of a deep beam, see Fig. 7.6b. The average crack
spacing in the unreinforced web depends on the level considered. About half way down
the beam, the mean crack spacing is:

ln=h—h,—(h—d) [mm] (7.4)

In section 3.3.1 it was concluded that, for the experiments under consideration, the ratio
between the average crack spacing in the web and at the level of the main reinforcement
is about 4. This finding can be explained with the aid of formula (7.4): In the case of

81



-

©owall

KN\ —  — T T T T
(28
Q
o
—H
I
|
I
>
=
= 2 Bl
|
al
— <
LI
|

Fig. 7.6 The crack pattern of an unreinforced wall cast on a hardened slab [CUR, 1978] (a) and
the corresponding model of a deep beam without web reinforcement (b).

a rectangular beam, 4, is calculated by formula (7.5).

M 0w+ V(nael + 2n00 = 1.05(ng"* -] (7.5)

d

The effective depth d is assumed to be 0.94. According to the Eurocode 1990, the
average crack spacing at the main reinforcement is:
ds
Ih=50+0.1— [mm] (7.6)
Qeff
with:

d
=——<04=3.6
Qeff 25(/1 _ d) Qd Qd

The Eurocode presents good agreement with the experimental results provided that

ky= 0.5 is used in formula (7.6) (see sections 2.3.1 and 2.3.2). Thus, the following
formula for the ratio between both crack spacings can be derived:

Low £{0.90 — 0.94 045
lm fab _ { (ni,d) } [__] (77)
m reint 50 +0.028 =

Qd

Formula (7.7) is graphically presented in Fig. 7.7 where the ratio is shown as a function
of the reinforcement ratio, for several combinations of bar diameter and beam height. It
is demonstrated that in the case where combinations used in the experiments presented
in chapter 3 are considered, good correspondence with the experimentally observed
mean value of 4 is obtained. In these experiments the beam height was in the range of
700-1000 mm, and the reinforcement ratio g4 = 0.003-0.010.
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Fig. 7.7 The ratio between the mean crack spacing in the web and at the main reinforcement of
beams without web reinforcement.

Now, the experimentally observed crack spacings at the web reinforcement will be
compared with results obtained by the model presented. Table 7.5 contains the mean
web crack spacing of 13 of the beams tested. Beams 1 and 7 are disregarded since they
were not provided with web reinforcement. The load P is also presented. Several load-
ing stages are not considered since the crack pattern is in general fully developed at

Table 7.5 The mean crack spacing at the level of the web reinforcement. Comparison between
theoretical model and experimental results

theory experiments
beam Oy sec lec load P I theory
no. [MPa]  [mm] [kN] [mm] ™ experiments
2 334 133 259-334 135-131 0.99-1.02
3 410 167 259-334 184-159 0.91-1.05
4 305 109 209-259-334 98- 96- 94 1.11-1.14-1.16
5 406 150 334 135 1.11
6 574 188 - - -
8 316 120 122-147-197 135-128-118 0.89-0.94-1.02
9 370 150 122-147-172 159-153-153 0.94-0.98-0.98
10 246 99 122-147-172 96- 94- 94 1.03-1.05-1.05
11 327 136 147-172 131-131 1.04-1.04
12 254 99 97-122-147-197 112-107-100-100 0.88-0.93-0.99-0.99
13 311 116 184-234-334 107-102-100 1.08-1.14-1.16
14 226 124 159-184-222 139-131-124 0.89-0.95-1.00
15 327 150 159-184 148-148 1.01-1.01

mean: 1.02
(n=31, cv=0.08)
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higher strains than in the case of the main reinforcement. This is due to the relatively
high steel stress initiating secondary cracking. Moreover, the web reinforcement is
situated closer to the neutral axis, which implies that a certain desired average strain is
reached at rather high load levels. Therefore, only the lower bars of the beams provided
with two layers of web reinforcement are considered. The average ratio between the
calculated and the measured crack spacings is 1.02 (n =31, cv=0.08). For beam 6
no experimental results are presented since the crack pattern in the web was not fully
developed.

7.3.2 The mean crack width

Table 7.6 presents the mean crack widths at the level of the lower web reinforcement for
the beams and loads from Table 7.5. The measured mean surface strain was used as
input for the theoretical crack width.

The same finding is observed as for the main reinforcement, viz. the theory over-
estimates the mean crack width measured. Also for the web reinforcement the sum of
the measured crack widths can be compared tc the elongation as derived from the mean
surface strains. If the same loading stages as in the Tables 7.5 and 7.6 are considered, it is
found that the crack widths present only 72% of the total elongation (n=31,cv= 0.14).
This is in agreement with the result for the main reinforcement, see Table 7.3.

Table 7.6 The mean crack width at the level of the web reinforcement. Comparison between
theoretical model and experiments

experiments theory

beam Wi Wi w theory
no. [mm)] [mm)] ™ experiments

2 0.12-0.14 0.16-0.22 1.31-1.63

3 0.13-0.16 0.17-0.23 1.32-1.44

4 0.09-0.11-0.15 0.12-0.15-0.20 1.30-1.32-1.33

5 0.16 0.24 1.51

6 - - -

8 0.08-0.10-0.13 0.14-0.18-0.23 1.75-1.77-1.86

9 0.11-0.13-0.14 0.15-0.19-0.23 1.36-1.46-1.57
10 0.08-0.10-0.12 0.10-0.13-0.18 1.27-1.29-1.50
11 0.14-0.17 0.19-0.23 1.35-1.33
12 0.06-0.08-0.10-0.14 0.10-0.13-0.16-0.18 1.56-1.51-1.56-1.31
13 0.07-0.09-0.15 0.10-0.13-0.20 1.36-1.39-1.33
14 0.09-0.11-0.13 0.11-0.13-0.17 1.13-1.20-1.27
15 0.12-0.14 0.17-0.20 1.41-1.40

mean: 1.42

(n=31, cv=0.16)
7.4. The bending moment-curvature diagram

7.4.1 Introduction

In the previous sections 7.2 and 7.3, it is demonstrated that the average crack spacing
can be calculated over the entire height of deep beams, either with or without web rein-
forcement. In the analyses, the mean surface strains measured during the experiments
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are used to calculate the crack widths. To complete the cracking theory, the calculation
of the mean surface strain is now presented. For that purpose, the “beam model”
presented in chapter 5 is used.

7.42 Input parameters for the “beam model”

In the “beam model”, a part of a beam is modelled. The length of this part is one of the
input parameters. In chapter 5 it was demonstrated that tension stiffening can be
accounted for by the stress-average strain curve of a reinforcing bar. Thus, the stiffening
is implemented in the reinforcement instead of the concrete. The latter schematization
was used in the DIANA calculations presented in section 4.3. In the “beam model”
another approach was chosen, since the stress-strain curve of the concrete can now be
used to model the softening of plain concrete in tension. For the rebars, the major
parameters are the secondary crack spacing /;.. and the stress initiating secondary crack-
ing o, s... The model to calculate both these parameters is discussed in sections 7.2 and
7.3. With regard to the softening of plain concrete a model is presented in section 5.2.2:
The length over which the softening is “smeared” depends on the crack height and the
length of the part of the beam analysed. With regard to the crack pattern presented in
Fig. 7.6b, it is decided to “smear” the softening over (also see Fig. 5.5):

L =2(he—y)<h—hy [mm] (7.8)

Using the “beam model” four of the beams tested were analysed. Both the measured
and calculated bending moment-mean curvature curves of four bars are presented in
Figs. 7.8a-d. To test the validity of the model, beams with considerably varying param-
eters were chosen. Beams 1 and 8 have a T-shaped cross-section, whereas 14 and 15 are
rectangular. Furthermore, beam 1 contains no web reinforcement. With regard to the
main reinforcement, beam 1 is provided with 4 % d; 20 mm, while the other beams
contain 3 * d; 16 mm. In the experiments, the dead-weight of the beams is not incor-
porated in either the bending moment or the curvature. Therefore, the measured values
were adjusted, so that the curves can be compared directly. Moreover, in the experi-
ments the curvature increased during the time required for the crack width measure-
ments. In the curves presented in the Figs. 7.8a-d, the increase of the concrete compres-
sive strain during these measurements was eliminated in the calculation of the curva-
ture. It is emphasized that the influence was found to be relatively small. From the
figures presented, it appears that the “beam model” is well able to predict the behaviour.
The figures also present the curves in the cases where no tension stiffening and soften-
ing are taken into account. Thus, these curves correspond to the behaviour calculated
on the basis of a cracked cross-section, i.e. the concrete tensile strength is assumed to be
zero. The mean curvature can be calculated accurately by using the following well-
known formula from the codes:

2
Koy =% [1 - (A:l) ] [mm™] (1.9)

for M > M,,.
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The curvature x refers to a cracked cross-section. Formula (2.5) and Fig. 2.5 present the
same approach for a tensile member. It is emphasized that the tension stiffening
according to formula (7.9) must be reduced if a sustained or varying load is applied.
With regard to the strains the same procedure can be followed. From the steel strains &
in a crack, the mean steel strain ¢, can be calculated if the curvature in formula (7.9) is

bending moment [10°Nmm] BEAM 1: 4 ds 20 ; ——-
500
400 | laininl i
‘beam model’ J° \ cracked
j_ . cross - section
300
experiment
200 y
100/7/,""
0
0 1 2 3 4 5
@ curvature [10 /mm]
bending moment [10°Nmm] BEAM 8: 3 ds 16 ; 2¢ ds 12150
500
400
300
200
100
of
0 1 2 3 4 5 6

® curvature [10‘6/mm]
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BEAM 14: 3 ds 16 ; 2* ds 16-150
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BEAM 15: 3 ds 16 ; 2* ds 12-150
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Fig. 7.8 Bending moment-mean curvature relations of four beams:

oo o

. beam 1:4%d, 20 mm, ---

. beam 8:3*d; 16 mm, 2 layers d; 12 mm (s =150 mm)
. beam 14: 3*d, 16 mm, 2 layers d; 16 mm (s =150 mm)
. beam 15: 3*d; 16 mm, 2 layers d; 12 mm (s =150 mm)
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replaced by a strain. Thus, the mean strain in the main and the web reinforcement can
be calculated. If the mean strain is less than about 0.9¢ s, the crack pattern at the level
of the relevant reinforcement is not fully developed. The steel stress in a crack is then
equal to 0, .. If the mean strain exceeds 0.9¢ ., the crack pattern is fully developed.
The mean steel strain is then about &g, = 0.9¢,. Thus, the steel stress in a crack is
11E &m.

7.5 Conclusions

In this chapter, the experimental results are analysed and compared with computa-
tional results obtained using models presented in chapters 3 and 5. With regard to the
cracking behaviour of the beams, it is found that the model based on the “effective
concrete area” around the reinforcement is well able to calculate the crack spacing at
the main and the web reinforcement of beams. For the calculation of crack widths the
average surface strain is also required. In section 7.4 it is demonstrated that the average
curvature can be calculated accurately with the beam model. For practical use, it is
advisable to perform a calculation on the basis of the behaviour of a cracked cross-
section. The tension stiffening is then accounted for by existing theories.

The average strains can be derived from the mean curvature. Then, it can be judged
whether the crack pattern is fully developed. As long as the crack pattern is not fully
developed, the steel stress in a crack is equal to the steel stress that initiates secondary
cracking. If the crack pattern is fully developed, the steel stress is directly related to the
mean steel strain.

Thus, a calculation based on the behaviour of a cracked cross-section is only suitable for
calculating the mean curvature and the mean strains. This was already demonstrated in
chapter 4. If the stresses in the reinforcement are required, the mean strain must be
related to the steel stress that initiates secondary cracking in order to judge whether the
crack pattern is fully developed or not.

The crack widths are overestimated if they are calculated on the basis of the average
crack spacing and the average strain at the level considered. This phenomenon was
already observed by several other investigators. From the experimental results, it was
derived that about 75% of the elongation is concentrated in the major cracks. The rest of
the elongation is found in minor cracks that accompany the major cracks.

8 Design curves and working examples
8.1 Introduction

In chapter 7 it is demonstrated that the cracking theory developed in chapter 3 can be
used to predict the cracking behaviour at the level of both the main and the web rein-
forcement. The mean surface strain can be calculated according to existing theories
based on the behaviour of a cracked cross-section. The tension stiffening is accounted
for by reducing the strain in a crack by a factor that depends on the load level and the
type of loading. If both the mean crack spacing and the surface strain are known, the
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crack widths can be calculated. However, the formula that defines the mean crack
spacing (see chapters 3 and 7) is complicated and not suitable for the use in engineering
practice. Therefore, attention is focused in this chapter on design curves for the detail-
ing of the reinforcement. These curves are presented in section 8.2. In section 8.3, the
theory developed will be applied to a deep beam and a tension member with reinforce-
ment located at the side-faces. The results will be compared with the present design
rules.

8.2 Diagrams for the detailing of the reinforcement

The secondary crack spacing /.. is calculated with formulae (3.6)/(3.8b) and (7.3)/(3.8b)
for the main and the web reinforcement respectively. If the crack pattern is fully
developed, the mean crack spacing is /,, = /... The secondary crack spacing depends on
the bar diameter d;, the bar spacing s and the “effective concrete area” 2(h — d). The
concrete tensile strength has no influence on the crack spacing, since £, is used in both
the bond stress and the cracking criterion as a linear function. The steel stress initiating
secondary cracking o ... can be calculated if the secondary crack spacing is known (see
formula (3.7b)). Furthermore, the coefficient ks that takes account of the stress gradient
in the uncracked stage must be used. This coefficient is 0.5 and 1 in the case of a trian-
gular and rectangular stress distribution over the “effective concrete area” respectively.
Since the formulae are complicated, both /.. and oy ;.. are presented in diagrams, see
Fig. 8.1. This figure presents the results for f; =2.5 MPa, k3 = 1.0 and 2(h — d)/n, =
100 mm. ng is the number of layers of reinforcement.

With regard to the web reinforcement, the following remarks must be made: For the
web reinforcement, i — d is equal to the sum of the concrete cover, the diameter of the
stirrups and half the bar diameter. With regard to the bar spacing, only the half of the
actually applied spacing must be used in the diagrams. This was concluded in chapter 7
(see formula (7.3)) and is explained by the reduction of the “effective concrete area”
around the web reinforcement by cracks initiated by bars located lower down in the
cross-section.

If the parameters differ from the assumed values, the following formulae can be used to
calculate /s, and oy !

20h—d
leee = 1S, <O.875 * 1072 2k~ d) + 0.125) ky [mm] 8.1)
S
2h—d .
Ogsec = Olsec (0.875 % 1072 —( ) + 0.125) ks -2% [MPa] (8.2)
Ny .

In formulae (8.1) and (8.2) the superscript “d” refers to the “diagrams” (Figs. 8.1a-b).
The crack pattern is fully developed if the mean strain &, exceeds about 0.9¢, .., see
section 7.2.1. The mean crack width is:

Wm = 0.751ne5m = 0.75[lec6 — H(liee — 21p) Agg]  [mm] (8.3)

In this formula, & is the strain at the level considered, calculated on the basis of a
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cracked cross-section. Ag, is the tension stiffening term, and is calculated according to
(see formula (7.1b)):

4Tb

$(lsee — 200)) — [-] (8.4)

1
Agg=—
E, dy

secondary crack spacing [mm]

de e

(mm] Y

16
300 / % ]
— 27—

200 - / — |
e
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0
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Fig. 8.1. Secondary crack spacing (a) and steel stress initiating secondary cracking (b) for f,=
2.5 MPa, k;=1.0 and 2(h—d)/n,=100 mm.
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The factor 0.75 in formula (8.3) is introduced in correspondence with the experimental
results, as discussed in sections 7.2.2 and 7.3.2. The 95%-upper bound crack width is
calculated according to:

wie=17w, [mm] (8.5)

The factor 1.7 is used in most of the codes, and the experimental results presented in
chapter 6 are in close agreement with this value.

In the case of a not fully developed crack pattern, the characteristic crack width is
[Fehling and Ko6nig, 1988]:

Wy = 0.75 * 2lsecesm = 0'75[2155065,560 - %(2[sec - 2[0) Ags] [mm] (86)
in which:
1 4t
Bes=p (o= 1) 7 1] 8.7)

The mean crack width is:
wm=w/1.4 [mm] (8.8)

For the bond-free length /, = d, is assumed.
Formulae (8.3-8.5) and (8.6-8.7) can be approximated as follows:

Not fully developed crack pattern:

Wi = 0.75 % 200 0.665 e = 0.9/ 65 o [mm] (8.9a)
Fully developed crack pattern:

wi=LTwy =1.7%0.75/;..0.9¢, = 1.15/;..6, [mm] (8.9b)

In the case where a long-term or varying load is applied, the relations (8.9a-b) must be
adjusted since the bond stress decreases. This is incorporated by reducing the bond
stress by 30%, thus 7y, = 1.4/, . In the case of a not fully developed crack pattern, the
transfer length increases by about 40%, which means that 1.4/ instead of /. must be
used in the formulae. When the crack pattern is fully developed, the mean steel strain
increases, i.e. &gy is 0.95¢; . instead of 0.9¢,. Thus:

Not fully developed crack pattern:

Wy =13/ Es5ec [mm] (8.10a)
Fully developed crack pattern:

wg=12l.e [mm] (8.10b)

It is not necessary to place reinforcement along the side of the whole web, since the
mean strain is small close to the neutral axis. Now, the position of the upper web rebars
will be discussed.

The widest cracks occur half way down the unreinforced part of the web, see chapter 6.
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The mean crack spacing at this level is h, see Fig. 8.2. This assumption is in
accordance with Fig. 7.6b. The characteristic crack width is:

Ay
wk=1‘7hw0%(h 3;)8'“ [mm] (8.11)
— Ity

r I XT7
ey
— ] = _ o
1
s 2hwo g, fI
< h—h
| = X
<
I
;.C
o | &
° ° +
NN ]
Em

Fig. 8.2. The crack pattern in the part of the web not provided with reinforcement [CEB, 1985].

This formula was also presented by the CEB [1981]. In this formula, ¢, is the mean
strain at the tension face of the beam. The part of the beam where reinforcement must

be applied is:
Wk(h - hx)
hy=h—hy,—|—— 8.12
05+ 176, MM (8.12)
The CEB [1981] assumed ¢, = 0.8 % 1073 and presented Fig. 8.3 to determine h,,.
If the mean strain &, exceeds 0.8 * 1073, h,, must be increased by the values according
to Table 8.1.

hy [mm] wy [mm] 01 02 04
800 -
600
400
200

0

0 400 800 1200 1600

h'—hx[mm]

Fig. 8.3. The distance over which web reinforcement must be applied [CEB, 1981].
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Table 8.1. The increase of A, in mm at increasing mean surface strain

. w, [mm]

[—ni 0.1 0.2 0.4
0.0012 75 100 150
0.0016 100 150 250

8.3 Working examples
8.3.1 Introduction

In this section the theory is illustrated by two working examples. The first example
concerns a deep T-beam analysed by Leonhardt [1976a]. Leonhardt used this beam to
demonstrate the use of the “effective concrete area” for the calculation of crack widths
and spacings. The web reinforcement was likewise detailed on this basis. In the second
example a tensile member provided with reinforcement at the side-faces is presented.
This structure was also analysed by Helmus [1989]. Thus, the difference between the
various approaches can be demonstrated.

8.32 Deep reinforced concrete T-beam

The cross-section and the main reinforcement are presented in Fig. 8.4a. The strains in
a crack under the bending moment for which the crack widths must be checked are
given in Fig. 8.4b.

The following material properties are used: f.x = 25 MPa, f;, = 400 MPa. The concrete
cover ¢ =20 mm and the beam is provided with stirrups d,, = 12 mm. The main rein-

2100

, - 0.12%107°
i |
O‘I_I l :
-
> 926%10°Nmm
o
"
dgg=12
+
24520 - 0.79%1073
baoa 5dg25 4 # \
350 <
@ dimensions mm @

Fig. 8.4. Cross-section of deep reinforced T-beam (a) and the stfains in the cracked stage (b)
[Leonhardt, 1976a].
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forcement is placed in two layers, consisting of 5 * d; 25 mm and 5 * d; 20 mm respect-
ively. The clear spacing between both layers is 25 mm. The effective depth
d =h—67=1433 mm. In the serviceability limit state, the bending moment is
1320 %« 10° Nmm. The cracking moment M, =458 * 10° Nmm. Crack widths are
checked at 40% of the live load, viz. M = 926 * 10° Nmm. The allowable characteristic
crack width is w, = 0.20 mm. Since M = 2M,,, the mean strains are equal to about 75%
of the strains in the cracked stage (see formula (7.9)). In the uncracked stage, the com-
pression zone is 525 mm deep. Thus, the coefficient k; for the main reinforcement is:

h—h,—2(h—d)
h—h,
2

(h = 1500 mm, h, =525 mm, h —d =67 mm)

1+

ky = =093

For the web reinforcement a somewhat lower value can be assumed. Therefore,
ky = 0.85 is used in the web.

The bar spacing of the main reinforcement is 350/5 = 70 mm. According to Fig. 8.1a
(2(h — d)[ns=100 mm, k;= 1.0, f,, =2.5 MPa), it follows that the secondary crack
spacing is 125 mm (d; = 20-25 mm).

In fact, since k3 = 0.93 and 2(h — d)/ns = 67 mm should be used, the secondary crack
spacing is (see formula (8.1)):

looe = 125 * (0.875 % 1072 67 + 0.125) % 0.93 = 83 mm

According to the Eurocode 1990, the mean crack spacing is:
ds
l[,=50+0.1-—=283 mm
Qefr

According to Fig. 8.1b, the steel stress initiating secondary cracking o; s is about
120 MPa.

The concrete quality f.o = 25 MPa, i.e. fiem = 25 + 8 = 33 MPa. According to Heilmann
[1969] the mean concrete tensile strength is:

Sumo =024 (33)"" =2.5 MPa

Thus, the tensile strength is in accordance with the one assumed in Fig. 8.1b.
Thus, 0y s iS:

Ossec = 120 % (0.875 * 1072 67 + 0.125) x 0.93 x 1.0 =79 MPa

In the cracked stage, the steel strain is 0.79 # 10> (see Fig. 8.4b). Since &5 sec = 0.38 % 1073,
a fully developed crack pattern at the level of the main reinforcement can be assumed.
The characteristic crack width is (see formula (8.10b)):

we=1.20%83%0.79 % 107> = 0.08 mm

With regard to the web reinforcement dy =12 mm is assumed. Thus, in this case
2(h — d)[ng=2(c + dy + 5 ds) = 76 mm. The bar spacing is assumed to be 125 mm. For
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the web reinforcement this value must be halved in order to use the diagrams.
From Figs. 8.1a-b it follows that /.= 185 mm and o, =320 MPa for 2(h — d)/
ny =100 mm. If k3 = 0.85 is assumed for the web reinforcement, the secondary crack
spacing and steel stress then become:

lee =185%(0.875+ 1072+ 76+ 0.125) % 0.85 = 124 mm
Oy sec =320 % (0.875 % 1072 % 76 + 0.125) % 0.85 1.0 = 215 MPa

The mean strain in the case of a fully developed crack pattern is (see formula (8.9b)):
Esm =093 5ec=0.9 % 215/2.1 10°=10.92 107

The mean strain at the level of the web reinforcement is less than this value (see Fig.
8.4b), In other words, the crack pattern is not fully developed. The characteristic crack
width is (see formula (8.9a)):

Wi = 0.9l O e = 0.9 % 124 % 215/2.1 % 10° = 0.11 mm

In the case where long-term or varying loading is applied, the crack width increases to
(see formula (8.10a)):

Wi = 1.3/5e¢ O sec = 0.16 mm < 0.20 mm

Thus, a web reinforcement of d; 12 mm (s = 125 mm) suffices to ensure a long-term
characteristic crack width less than 0.20 mm. The part of the web where reinforcement
must be applied is s, =700 mm (Fig. 8.3; h — A, = 1300 mm, w, = 0.20 mm).

In his analyses, Leonhardt [1976a] found that the lower 250 mm of the web must be
provided with d; 12mm, s =70 mm (see Fig. 8.5a). The remaining part contains d
10 mm (s = 100 mm) over 250 mm. The reinforcement according to the model present-
ed is given in Fig. 8.5b.

The CEB [1981, 1985] design rules (see Table 3.3 and Fig. 8.3) lead to an amount of web
reinforcement presented in Fig. 8.5¢ (concrete quality B25).

In most cases the crack pattern at the level of the main reinforcement will be not fully
developed since o, . is mostly rather high. Therefore, the Figs. 8.1a-b are combined so
that the characteristic crack width can be determined directly. Furthermore, allowance
is made for the fact that the bar spacing of the web reinforcement must be halved to use
the Figs. 8.1a-b. Therefore, in Figs. 8.6a-b the actual bar spacing must be used.
Figs. 8.6a-b present the crack width when formula (8.10a) is used. In these figures it is
assumed that k3 =0.85 and f;; =2.5 MPa. In other cases, the crack width is:

_ oKV S
Wi = Wi (0.85) 25 [mm] (8.13)

Also in this formula the superscript “d” refers to the diagrams. If the parameter
2(h — d)/nj differs from the 100 and 150 mm used in Figs. 8.6a-b, then the following
formula can be used (see formulae (8.1-8.2) and (8.13)):

ky \2 f. 2(h—d) 2
d 3 ct 2
= —— | —(0.875% 107" ——+0.12 mm .
Wi wk( . 5) . ( 15 * : 5 [mm] (8.14)
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Fig. 8.5. Detailing of the web reinforcement according to Leonhardt [1976a] (a), the model
presented (b) and the CEB [1981, 1985] (c).

In formula (8.14), the crack width from the diagram (w{) refers to Fig. 8.6a

(2(h — d)/ny =100 mm). Now, the web reinforcement of the beam will be detailed with
Fig. 8.6a. The reinforcement must be detailed in such a way that wi = 0.20/
(0.78)? = 0.33 mm. From Fig. 8.6a it follows that the crack width requirement is satisfied

characteristic crack width [mm]

1
d
[m;] 10 12
75 /
16
.5
/
25 =
// =
I
’ — ]
0
0 100 200 300 400
® bar spacing [mm]
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Fig. 8.6. The characteristic long-term web crack width in an not fully developed crack pattern for
2(h—d)/n;=100 (a) and 150 mm (b) respectively (k;=0.85, £, =2.5 MPa).

for dy=10 mm, s =100 mm; d, =12 mm, s = 125 mm or d,= 16 mm, s =225 mm.
However, it must be checked whether the assumption that the crack pattern is not fully
developed still holds. Thus it is required that the actual mean steel strain is less than
about 0.9¢ ... This can be verified with Fig. 8.1b.

8.3.3 Tensile member

Helmus [1989] discussed the detailing of the reinforcement in a 2 m thick concrete
foundation, see Fig. 8.7. Due to shrinkage, the structure is loaded in pure tension since
it is assumed that the deformation is prevented along the whole length. The concrete
tensile strength at the instant of cracking is f, =2 MPa.

2000 mm

Fig. 8.7. Concrete foundation; Side-view (a) and cross-section with the reinforcement (b)
[Helmus, 1989].
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According to the German code DIN 1045, the characteristic crack width must be less
than 0.4 mm [Helmus, 1989]. With his model (see chapter 3), Helmus demonstrated that
bars with a 25 mm diameter, spaced at 100 mm, are sufficient for the control of crack
width. This reinforcement must be placed at both sides of the member, thus 4, = 9820
mm?/m. Helmus performed calculations in the stage of a not fully developed crack
pattern since the strain due to shrinkage was assumed to be 230 107°.

Taking account of long-term loading, the new model presented in chapter 3 gives the
following formula for the characteristic crack width in a not fully developed crack
pattern (see formula (8.10a)):

Wy = 1.3 Isec €5 sec

If the reinforcement according to Helmus is used, Figs. 8.1a-b give /. = 150 mm and
Ossec = 120 MPa. Since f, =2 MPa and 2(h — d)/nS = 150 mm, these values must be
adjusted, see formula (8.1) and (8.2):

liee = 150 % (0.875 % 1072 % 150 + 0.125) = 216 mm
2
g sec = 120 % (0.875 % 1072 150 + 0.125) * 35 138 MPa
The characteristic crack width is:

138
17 10° =0.18 mm < 0.40 mm

w=13%216=*

Thus, the amount of reinforcement can be further reduced if the new model is used. If
the bar spacing is increased to 150 mm, the crack width requirement is still satisfied:
lsee=215%1.44=310 mm and g4z, = 170 * 1.44 x 0.8 = 196 MPa gives:

196
we=135310%

10 0.38 mm < 0.40 mm
Compared to Helmus, the amount of reinforcement is reduced from 9820 to 6540
mm?/m.
These calculations will be compared to the concept of the new CEB-FIP Model Code
1990. The code requires a minimum reinforcement ratio so that o . <f;, where the
total cross-section of the concrete is considered. The amount of reinforcement per m'
becomes:

2
As min = A4 St = 2000 = 1000 500 8000 mm?

sy
For the reinforcement the same amount as calculated with the new model is used, viz.
dy=25 mm (s = 150 mm) at both side-faces (45 = 6540 mm?/m).
The transfer length is:

T cr ds

=25+ 1 [mm] (8.15)

Ty

98



In this calculation the long-term bond stress 7, = 1.4f,, must be used.
The crack width in a not fully developed crack pattern can be calculated by assuming
that:

=062 []
Esm =Y. Es (816d)
with:
St . ‘
o= (1 + ngey) (tensile member) [MPa] (8.16b)
eff

Just as in the case of the Eurocode I, the reinforcement ratio in formula (8.16b) is cal-
culated by reference to an “effective concrete area” at each side-face of the member:

A A 62

el = o 2.96(h—d)  25%1000%75
2 (14 740017) =132 MP

L = * U, =
% Z0.017 a
§o—2s 1 32254

= —— — =319 mm
i 28 4

e —2%319%0.6 —2 024
Wy = I‘gsm_ . 21*105— . mm

Insection 3.2.2 (see Table 3.1) it is demonstrated that the codes underestimate the crack
spacing by about 20%, whereas the stress in the reinforcement is underestimated by
35%. If these findings are taken into account, the crack width becomes:

wy=1.2%135%0.24 =0.39 mm

This value is in correspondence with the crack width calculated with the new model
presented in chapter 3.

This example clearly demonstrates that the codes present too optimistic values for the
crack width in the case where the reinforcement is located at the side-faces of thick con-
crete tensile members. However, if corrections are introduced in accordance with the
findings of section 3.2.2, good correspondence is obtained between the new model and
the code.

In the case of thick members subjected to an imposed deformation, the crack pattern
will mostly not be fully developed. Figs. 8.8a-b present the characteristic long-term
crack width in a not fully developed crack pattern. In both figures k3 =1 and f,, =2.5
MPa is assumed. The following formula can be used to calculate the crack width in case
where other parameters must be used:

ks )2 Ja 2(h — d) 2
2.5

W = W (1 5 ——(0.875* 102 =-—-40.125) [mm] (8.14)

ng
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The crack width w{ refers to Fig. 8.8a. If this formula is used in this example, the rein-
forcement must be detailed provided that (2(h — d)/n, = 150 mm):

0.4=wl*1%08x144">wl=0.24 mm

From Fig. 8.8a it can then be directly deduced that the following amounts of reinforce-
ment satisfy the crack width requirement:

d;=16 mm, s= 75 mm
d, =20 mm, s = 100 mm
d;=25 mm, s =150 mm
d,=32 mm, s =250 mm

It should, however, be checked whether the crack pattern is not fully developed. It is
emphasized that the foundation is assumed to be loaded only by an imposed deforma-
tion A¢. In the case where a load Ny is also acting, the same procedure can be followed
[Braam, 1990b]. One only has to calculate the actual steel stress by adding the imposed
load and the load caused by the imposed deformation. The latter load depends on the
axial stiffness of the structure. The stiffness can be deduced from the force-elongation
curve. In this curve a point must be found where the total load N is in correspondence
with the stiffness:

N = Ng + (EA) Ae [N] (8.17)

The strength of the model presented is the possibility it offers for detailing the rein-
forcement independent of the thickness of the member, provided that the rebars are
concentrated at the side-faces. In the codes however, the reinforcement must not only
be detailed with regard to the control of crack widths, but also in such a way that the
cracking force of the entire member can be carried by this reinforcement without the
occurrence of yielding.

According to most of the research carried out in this field [e.g. Puche, 1988; Henning
and Rostasy, 1990], the cracking force of thick tensile members can be reduced by a
certain factor (e.g. 20-50%), but still depends on the total specimen depth. However, the
model introduced in chapter 3 demonstrates that crack widths are controlled provided
that g, e < fiy- Thus, only an “effective concrete area” around the reinforcement has to
be considered when calculating the minimum amount of reinforcement. The size of
this area is independent of the total depth of the tensile member.
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Fig. 8.8. The characteristic long-term crack width in a not fully developed crack pattern for
2(h—d)/n,=100 (a) and 150 mm (b) respectively (k;=1.0, f,, =2.5 MPa).
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9 Notations

a,b
b
bcH'

factors for the bond stress-slip relation
width

width of the “effective concrete area”
concrete cover

effective height

bar diameter

stirrup diameter

characteristic cube compressive strength
mean cube compressive strength

cube tensile splitting strength

concrete tensile strength

mean short-term concrete tensile strength
specific rib area

steel yield stress

total height

initial crack height

height of the “effective concrete area”
initial crack height

distance from the compression zone to the main reinforcement
“bond-free” length

mean crack spacing

minimum crack spacing

maximum crack spacing

secondary crack spacing

transfer length

bar spacing

circumference of reinforcing steel
crack width in a not fully developed crack pattern
characteristic crack width

mean crack width

maximum crack width

concrete cross-section

effective concrete area

steel cross-section

cross-section of the web reinforcement
fracture energy

cracking moment

force in the compression zone

bond force

slip

mean surface strain

steel strain in a crack

(]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[MPa]
[MPa]
[MPa]
[MPa]
[MPa]
(-]
[MPa]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
[mm]
(mm]
[mm]
[mm]
(mm]
[mm]
[mm]
(mm]
(mm]
[mm]
[mm]
(mm’]
(mm’]
(mm’]
[(mm’]
[N/mm]
[Nmm]
[N]
[N]
[mm]
(-]
(-]



Ag, tension stiffening -]

Eam mean steel strain -]

g steel yield strain [—]
X mean curvature [mm™]
Ty bond stress [MPa]
T mean bond stress along the transfer length [MPa]
Oem mean concrete stress [MPa]
T4 steel stress prior to cracking [MPa]
gy steel stress in a crack [MPa]
0.  steel stress after cracking [MPa]
O.sec  Steel stress initiating secondary cracking [MPa]
04 reinforcement ratio -]
Quit reinforcement ratio of the effective concrete cross-section -]
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