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Summary

The safety against failure of large and slender structures, such as offshore platforms, is
analyzed by means of advanced finite element programs. An offshore platform is
designed to withstand severe loading conditions, characterized by wave, wind and ice
attacks. The basement of the structure is so configured as to transfer the applied loads
by means of in-plane shear and normal stresses. The shear walls in the basement might
be cracked due to unequal settlements and deformations, thus responding in a highly
non-linear way to the applied loads. To make an accurate estimate of the structure’s ac-
tual safety against failure, this non-linear behaviour must be thoroughly analyzed and
implemented in the finite element program. The basement is subjected to static loads
on which cyclic loads are superimposed. In the case of the cyclic loads, a distinction is
usually made between “low-intensity high-cycle” loading, reflecting millions of small
wave attacks and “high-intensity low-cycle” loading, reflecting a superstorm.
Experimental and theoretical studies performed by several researchers have revealed
that the transfer of in-plane stresses across cracks in reinforced concrete is based on the
axial and lateral stiffness of the reinforcing bars and the interlocking of the aggregate
particles protruding from the crack faces.

From literature research it has become clear that there was a lack of experimental
knowledge on the response of cracked reinforced concrete to a large number of shear
load reversals with a low shear stress relative to the static shear strength. Therefore,
an experimental study was carried out with plain concrete and reinforced concrete
push-off specimens. After pre-cracking, the specimens were subjected to a repeated
shear stress ranging from 46 to 90% of the static shear strength. The number of cycles
varied between 118 and 931.731 cycles. The relationship between stress level and crack
displacements is expressed in empirical relations.

These expressions can be used to provide a quasi-static description of the load history
of millions of small wave attacks. In consequence, the crack response under monotonic
loading must be fully understood. Whereas the interlocking of the particles, the aggre-
gate interlock, was satisfactorily described by the two-phase model of Walraven. The
lateral stiffness of the bars had not yet been properly described.

Therefore, a physical description of the so-called dowel action based upon the coopera-
tion of the steel bar and the supporting concrete was given.

It is shown that the combined mechanism of aggregate interlock and dowel action
transfers the monotonically applied shear stress across cracks in reinforced concrete.
Furthermore, the crack opening path was found to be initially influenced by the bars.
After plastic hinges in the bar have fully been developed, the aggregate interlock
mechanism determines the crack opening direction.

In the case of cyclic shear loading, Walraven’s two-phase model was extended and
simplified to obtain the reduced contact model. This quasi-statical model is used to
simulate several “high-intensity low-cycle” experiments.

The cyclic dowel action mechanism is described by means of a rather simple model,
which is to a large extent based upon empirical relations.



Again, the combined model of aggregate interlock and dowel action provided a good
prediction of the crack response in reinforced concrete for the case of “high-intensity
low-cycle” experiments.

Furthermore, a few cycles of “high-cycle” tests are satisfactorily predicted. An impor-
tant conclusion was that the contributions to the shear transfer of both mechanisms
remain nearly constant during cycling.

On the basis of this observation it was possible to predict the crack opening path for the
case of “low-intensity high-cycle” loading.



Theoretical and experimental analysis of the
behaviour of cracked concrete under monotonic
and cyclic shear loading

1 Introduction

The tremendous increase in material science as well as the development of new
materials enables the construction of slender structures which are still capable of with-
standing the applied loads.

The safety against failure of such complex structures is analyzed by idealizing the
structure as an assemblage of basic elements. Advanced finite element programs are
used to simulate the interactions of these elements.

Due to the applied loads and deformations, structural elements are subjected to tensile
stresses which exceed the tensile strength, thus causing cracking of the concrete.
Furthermore, cracking of the concrete might be caused by colliding objects.

The considerable stiffness of cracked reinforced concrete is then utilized in with-
standing the applied loads and deformations during the economic lifetime of the
damaged structure. Moreover, it can be favourable to design a structure in such a way
that cracked structural elements provide a large ductility with respect to unequal
settlements. As a consequence of the development of cracks, the response of the
elements to severe loading conditions becomes highly non-linear with large irrevers-
ible deformations.

This non-linear material behaviour must be thoroughly understood and modelled.
It was for this reason that the “Concrete Mechanics” project was initiated by the
Netherlands Centre for Civil Engineering, Research, Recommendations and Codes
(CUR). This project comprises experimental research, material modelling and their
implementation in numerical programs.

The “Concrete Mechanics” project is a cooperative project involving a division of the
Netherlands Ministry of Transport and Public Works (Rijkswaterstaat), the Institute
for Applied Scientific Research on Building Materials and Building Structures
(IBBC-TNO) and the Technical Universities of Delft and Findhoven.

The first phase of the project focussed upon the investigation of the behaviour of
cracked reinforced concrete under static shear loads, the bond behaviour of reinforcing
bars, the creep of concrete in a marine environment and multiaxially loaded concrete.
Furthermore, two non-linear finite element programs (MICRO, DIANA) were devel-
oped. The current study forms part of the second phase of the “Concrete Mechanics”
project and deals with the response of cracked reinforced concrete to cyclic in-plane
shear loads.

A large number of tests [17, 20, 24, 49] were conducted with a rather large initial crack
width and a relatively high shear load.

These so-called “high-intensity low-cycle” tests especially reflected the pattern of



earthquake motions. For instance offshore structures are subjected to millions of load
cycles due to wind, wave and ice attacks. These load cycles have a relatively low ampli-
tude with respect to the static shear strength of the (cracked) shear panels, which form
the basement.

These “low-intensity high-cycle” loads might cause gradually increasing irreversible
deformations, thus influencing the strength and stiffness of the structure in the case of
subsequent higher loads.

Since there is still a lack of information with respect to this type of tests an experimental
study was conducted with “low-intensity high-cycle” loading.

The aim of the research is to determine the relationship between the stresses and dis-
placements in the crack plane.

This relationship largely depends upon the roughness of the crack faces and the dowel
action. The roughness is caused by the contact between the matrix material and the
aggregate particles protruding from the crack faces. This mechanism is referred to as
aggregate interlock.

Both the aggregate interlock and dowel action mechanisms are strongly influenced by
the interaction of the normal and lateral forces acting on the crack plane. Hence the
relationship between the stresses and displacements must reflect this interaction
between tension-softening and shear-softening. However, this interaction is generally
not taken into account in numerical programs.

Therefore, a sound description of the physical transfer mechanisms is presented and a
simplified model is derived for implementation in numerical programs.

2 Survey of the literature
2.1 Introduction

The major transfer mechanisms in cracked reinforced concrete are aggregate interlock,
dowel action of the reinforcing bars and the axial steel stress in the bars, see Fig. 2.1.
These mechanisms will be discussed separately. In the case of cracked reinforced
concrete, the interaction of the mechanisms is discussed.

The survey is limited to experimental results reported in the literature.

Existing empirical and physical models are discussed in Chapter 4.

b4

a. Aggregate interlock b. Dowel action. c. Axial steel stress.

Fig. 2.1. Major transfer mechanisms in cracked reinforced concrete.



2.2 The aggregate interlock mechanism

The role of aggregate interlock in shear transfer in cracked concrete was first reviewed
by Taylor [39] and Moe [29].

It was, however, Fenwick [10] who carried out the first detailed theoretical and experi-
mental study into this mechanism and described it as aggregate interlock.

This study as well as the subsequent surveys by various investigators [5, 7, 15, 26, 30,
31, 38,47, 50] revealed that the static shear strength of plain concrete is proportional to
the square root of the concrete compressive strength.

Furthermore, the type of aggregate influences both the shear strength and the crack
opening path (for a constant normal restraint stiffness).

The maximum particle diameter, ranging from 8 to 32 mm, hardly influences the static
shear strength, but does affect the crack opening direction.

A study into the aggregate interlock mechanism as regards cyclic shear loading was first
carried out by Colley and Humphrey [4]. The specimen tested consisted of two concrete
slabs based upon a subsoil. The joint resistance to shear load was investigated for
variations in joint width, load level, aggregate type and the quality of the subsoil.
This type of test, however, dit not represent the situation of cyclic in-plane shear
loading.

Experimental work with in-plane shear loads focussed on the “low-cycle high-intensity”
behaviour, exploring the response of cracked nuclear containment vessels subjected to
earthquake motions.

Such tests were conducted by White and Holley [55].

A total of sixteen specimens were pre-cracked and loaded to transmit shear by the crack
roughness. The shearing area was 180645 mm?. The test variables were the size and
gradation of the aggregate, the normal restraint stiffness provided by external bars, the
shear stress level, the number of cycles and the initial crack width.

The test results were used to make a first assessment of the crack response to cyclic
loading.

On the basis of these results, Laible et al. [20] performed further tests with a push-off
specimen as shown in Fig. 2.2. For this pre-cracked specimen, the shearing area was
194000 mm?.

external restraint rods

applied shear load
crack plane %

Fig. 2.2. Test arrangement used by Laible et al. [20].
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The concrete cylinder strength was 20.7 MPa for the major series, the maximum
particle size was equal to 38 mm.

In addition to the variables used in White’s test series [55] the specimen geometry and
the strength and the age of the concrete were varied in the tests.

For an adjusted initial crack width of 0.25, 0.51 or 0.76 mm, a fully reversed load of
1.24 MPa was applied to the specimen. Fig. 2.3a, b, ¢ presents a test result which is
representative of the generally observed behaviour.
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Fig. 2.3. Experimental results of Laible et al. [20].

The number of cycles was 25. For the cycles no. 1 and no. 15 the load was applied
stepwise, during the other cycles the full load was applied in one step.

The first loading cycle showed a nearly linear relationship between the crack displace-
ments and the shear stress, whereas this relation became highly non-linear for the later
cycles. During unloading, the recovery of the shear displacement was approximately
20% of the maximum slip, which was probably due to local irreversible deformation of
the contact areas.

Due to the crushing of the matrix material in the previous cycles, the initial stiffness is
very low and a “contactless” slip may occur before any contact between the opposing
crack faces is possible, see Fig. 2.3a.

Paulay and Loeber [31] carried out both static and repeated shear loading tests on pre-
cracked concrete push-off specimens, see Fig. 2.4a.

For the repeated loading experiments, some experimental results are shown in Fig.
2.4b.

The concrete cylinder strength was 37 MPa, the maximum particle size 19 mm.
A surprising result was the low shear stiffness during unloading compared with the
stiffness during loading. This result deviated from the low recovery in shear displace-
ment during unloading found in the experiments by Laible [20].

Contrary to the constant crack width used in Paulay’s tests, the crack width increased
with increasing shear displacement in Laible’s test. The unloading of the specimen in
Paulay’s investigation was probably influenced by the high normal stress required to
maintain the constant crack width.
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Fig. 2.4. Test specimen and experimental results of Paulay and Loeber [31].

Vintzeleou [46] performed both static and cyclic shear loading experiments with the
test arrangement shown in Fig. 2.5a. The cyclic tests were carried out with a fully
reversed shear displacement, representing earthquake motions.

Due to the large displacements applied, only a few cycles were used. Fig. 2.5b presents a
typical test result for a concrete cylinder strength of 30 MPa and a constant normal
stress of 2.00 MPa. The maximum particle diameter was 30 mm.

It was found that for a high normal stress (g, > 2.0 MPa) no degradation of the response
occurred.

Chung [3] carried out impact tests on push-off specimens with a shearing area of
18750 mm?, which consisted of a joint between precast concrete and concrete cast in
situ. One test series was performed with specimens which were preloaded with a low
intensity shear load during two million cycles. For a load intensity of 55% of the static
shear strength, no response degradation was found.

An intensity of 66% caused a decrease in shear strength of 14-20%. It was found that the
impact shear strength for a loading rate of 12,000 MPa/s was approximately 80% higher
than the static shear strength.
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2.3 The dowel action mechanism

A reinforcing bar embedded in concrete counteracts lateral displacements due to crack
motions. This lateral stiffness is caused by the reaction stresses of the surrounding
concrete and is called dowel stiffness.

Several failure modes can occur in dowel action, including splitting failure of the
concrete cover. This type of failure generally occurs in the case of bottom bars in a beam
with a small concrete cover. In this case the tensile stresses in the concrete cannot
achieve equilibrium with the dowel force. This failure model will not be discussed here.
In the case where adequate confinement is provided to prevent splitting of the concrete
cover, the dowel action mechanism fails due to concrete crushing around the bar. Here,
the concrete reaction force is relatively high with respect to the stress condition in the
surrounding concrete.

As for the aggregate interlock mechanism, the first experimental investigation concern-
ing dowel action focussed on joints in concrete pavements based upon a subgrade
[37, 40]. Dowel tests with push-off specimens loaded in static shear were carried out by
Paulay et al. [32]. For bars perpendicularly crossing the smooth shearing area, the test
arrangement and the test results are presented in Fig. 2.6a and b.

These tests and the experiments reported in [1, 8,9, 26, 28, 35, 45, 46] revealed that for
static loads the dowel action mechanism is characterized by a linear relationship
between the dowel stress and the lateral bar displacement. This relationship remains
valid for dowel stresses up to 40% of the ultimate dowel stress.

After that the relation between dowel displacement and dowel force becomes nonlinear
until the dowel strength is reached. In this case the concrete strength and the steel yield
strength strongly influence the ultimate dowel force.

The failure mechanism is characterized by the formation of plastic hinges in the
reinforcing bar and local crushing of the concrete under the bar.

Furthermore, the dowel stiffness is affected by the initial crack width and the initial
axial steel stress, although these parameters might interfere.

In addition to static tests, numerous cyclic dowel action experiments have been
performed.

Test series carried out by Eleiott, Stanton [36] and Jimenez [16] at Cornell University
explored the response of a dowel to cyclic shear loads. Some typical results are shown
in Fig. 2.7a, b, c.

2 shear stress tq [MPa)

/_,_-P—-—'_"

L —=| 127mm

specimen /
logding_ramf ram for_cyclic 1 95 mm e
loading
L] 6.4mm
0
0 05 10 15 20 25

shear displacement &; [mm]

a. Test arrangement b. Shear stress - shear displacement
relationship.

Fig. 2.6. Test arrangement and experimental results of Paulay et al. [32].
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Fig. 2.7. Experimental results of cyclic dowel actions tests [9, 17, 49]

Eleiott investigated the influence of an axial steel stress upon the dowel stiffness.
Fig. 2.7a presents a tests result for a bar diameter of 12.6 mm and a concrete strength of
21 MPa with an increased crack width, thus reducing the dowel stiffness with respect to
the stiffness of an unstressed bar.

In cycle no. 16, the steel stress was increased to 350 MPa, which again strongly
influenced the dowel stiffness. The tests of Stanton and Jimenez with large concrete
blocks interconnected by several bars showed a similar response in both loading direc-
tions in the case of a fully reversed load.

With the test arrangement used for the aggregate interlock test, Vintzeleou and Tassios
[48, 49] performed dowel action tests.

The specimens were subjected to cyclically imposed shear displacements. They found
that the dowel force at maximum shear displacement decreased during cycling. This
decrease was influenced by the ratio between the displacement in the positive direction

and the displacement in the negative direction.
All tests found in the literature were of the “high-intensity low-cycle” type. The test

results showed that as for the aggregate interlock mechanism, the dowel response to
cyclic loading becomes highly non-linear for subsequent cycles as compared to the
response in the first cycle.

2.4  Axial steel stress

Reinforcing bars generally cross cracks at different angles. The component of the steel
stress parallel to the crack plane provides a contribution to the transfer of shear stress
across the crack.

This contribution can easily be determined when the axial steel stress and the angle of
inclination are known. The magnitude of the axial steel stress depends upon the bond
characteristics.

For bars at angles to the crack plane or bars subjected to both axial and lateral displace-
ments the bond characteristics will be less than is found in pull-out experiments. Due to
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the lateral displacement, the bond between the bar and the concrete is broken, which
means that the bond capacity will decrease with a decreasing angle of inclination. This
was confirmed by Klein [18] who performed displacement-controlled tests with bars at
various angles to the crack plane, see Fig. 2.8a.
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a. Test specimen. b. Bond stress versus slip.

Fig. 2.8. Test arrangement and experimental results of Klein et al. [18].

The variation of steel strains was recorded by strain gauges stuck to the bar. Some
typical results are presented in Fig. 2.8b, showing that no systematic variation in bond
behaviour for several angles of inclination was obtained in these tests.

2.5 Shear transfer in cracked reinforced concrete

For design purposes, a simple shear-friction model was introduced by Mast [21] and
Birkeland [2]. According to this model the static shear strength of cracked reinforced
concrete was provided by the friction in the shear plane. The applicability of this model
was confirmed experimentally by Hofbeck et al. [14]. It was found that the angle of
friction was 39° (tan (y) =0.8). Also a cohesion was added, representing the dowel
action:

7,=2.8+0.8(afyy + 0y) (2.1)

In further tests, Mattock [22] found that the small aggregate particles must have a large
influence upon the crack opening direction.

Walraven [50, 54] conducted static tests on cracked reinforced push-off specimens, see
Fig. 2.9a.

The measured crack opening paths appeared to be insensitive to variations in the bar
diameter, and the reinforcement ratio see Fig. 2.9b. However, the number of bars
strongly influenced the shear strength, see Fig. 2.9c.
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Fig. 2.9. Test specimen and experimental results of Walraven [54].

Similar tests performed by Millard [27] confirmed Walraven’s results. The constant
crack opening direction found by Millard deviated from the average crack opening path
obtained by Walraven.

Jimenez [17] performed cyclic push-off tests on cracked reinforced concrete. The crack
response depended on the initial crack width and the applied shear stress level. It must
be noted that an increase in crack width is accompanied by an increasing axial steel
stress.

Mattock [24] carried out cyclic tests on a specimen with a reinforcement ratio ranging
from 0.60% to 1.32%.

During unloading the response was characterized by a retention of almost all the shear
displacement under maximum shear stress until the shear stress was reduced to approx-
imately 50% of its maximum value.

A decrease in crack width at zero shear stress was observed. This decrease amounted
0.08-0.13 mm as against an initial crack width of 0.25 mm. This crack width remained
constant until shortly before failure. From the tests it was found that for the cyclic test
on lightweight concrete, the shear slip was larger and the crack width was smaller than
those measured in the monotonic test at the same shear stress. For the normal gravel
concrete, the displacement in the cyclic tests was approximately equal to the slip in the
static test. However, at a shear stress level of 80% of the static shear strength, the slip
rapidly increased. The same held true for the crack width.

2.6 Concluding remarks

The experiments reported in the literature revealed that the crack response to cyclic
loads is influenced by the concrete strength, the yield strength of the reinforcing steel,
the initial crack width and the shear stress level. The available experimental knowledge
is, however, restricted to the range of high-intensity loads.



Therefore, it can be concluded that there is still a lack of experimental information on
the response of cracked concrete to a very large number of load cycles having a
relatively low shear stress in relation to the static shear strength.

3 Experimental study
3.1 [Introduction

From the survey of literature it was concluded that there is still a lack of experimental
information with respect to the response of cracks in concrete to “low-intensity high-
cycle” loading. Therefore, an experimental study focussing on “low-intensity high-
cycle” fatigue of offshore structures was started in the Stevin laboratory.

The first test series was performed with a repeated shear load on pre-cracked reinforced
concrete push-off specimens. This type of test represents a shear wall in the basement
of an offshore structure. In a substructure placed on the seabed, the static load is gener-
ally apparent, and the cyclic load is superimposed on this. For offshore structures, the
Arctic and deep sea environments provide intense dynamic forces with a loading
frequency of approximately 1 cycle per second [13].

In the second series, the dowel action was eliminated by using external restraint bars,
enabling a quantification of the contribution of the aggregate interlock mechanism to
the shear transfer. The magnitude of the contribution of the dowel action is then
known.

Finally, detailed tests are described in which the axial steel strain in the reinforced
push-off specimens was measured during the experiments.

A full survey of all the experimental results has been given in [11, 33].

3.2 Test arrangement and specimens

The geometry of the test specimen in this experimental program was similar to the
push-off specimen used by Walraven in his static tests [50]. '
The shear area was 36000 (120 x 300 mm?), see Fig. 3.1. Previously, shear tests were
performed on specimens with a similar shear area, so the test results can be compared
without scale-factors. The specimens were cast in a steel mould placed horizontally, so
that at the time of casting the shear plane was in a vertical position. The cantilevers of
the specimen were prestressed to prevent preliminary failure of these cantilevers due to
secondary cracking. Prior to the actual shear test, the crack was made in a three-point
bending test by pushing a steel knife-edge into a V-shaped groove along the shear plane.
Both sides of the specimen were subsequently cracked in this manner, resulting in an
initial crack width ranging from 0.01 mm to 0.08 mm.

In the reinforced specimens, the normal restraint stiffness was applied by means of
stirrups consisting of 8 mm diameter bars crossing the crack plane.

Contrary to this, four external restraint rods were used to apply a normal force on the
crack plane of the plain concrete specimens. This force is recorded using strain gauges
stuck to the bars.
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Fig. 3.1. Test specimens used for tests on reinforced concrete (a) and plain concrete (b).

In this case no bars crossed the crack plane. The auxiliary reinforcement was still
apparent, preventing preliminary failure of the specimen. Steel plates interconnected
by four 20 mm diameter bars were placed at the small sides of the specimen. A thin layer
of rapidly hardening sand-cement paste placed between the steel plates and the
concrete surface of the specimen ensured an almost linear interaction between crack-
opening and restraint force. However, the restraint stiffness remained low compared
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Fig. 3.2. Test arrangement. Fig. 3.3. Measuring system.
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with the specimens having embedded reinforcement. To ensure a small crack width
during the first cycles all the specimens were prestressed with an initial normal stress
on the crack plane ranging from 0.8-3.6 MPa.

After pre-cracking, the specimen was centred in the test frame, see Fig. 3.2. The
specimen was supported by a roller bearing thus preventing restraining forces from
being transmitted during crack opening. The shear load was provided by means of a
1000 kN hydraulicjack placed on the foot of the frame. A knife hinge induced the load at
the top of the specimen.

The crack displacements were recorded by means of linear voltage displacement
transducers, attached to steel footings glued on the concrete on both sides of the
specimen, see Fig. 3.3. The transducers, Hewlett-Packard type 7-DCDT-100, had a
0.01 mm measuring accuracy at 5 mm range.

The shear load was measured by means of a load cell with a measuring accuracy of
0.25 kN. All the signals were fed to a micro-computer for storage and monitor display.
In order to reproduce the sinusoidal signals each measured cycle was scanned nine
times. A trigger level was adjusted to the maximum load by means of a special circuit.
By sampling this trigger level it was possible to start the first scan after each call on the
peak value of the applied load.

During the actual test, the specimen was subjected to a shear load, which alternated
between a minimum shear stress level 7y and a maximum shear stress level t,. The
crack displacements were not recorded for the first few cycles due to the adjustment of
the shear stress levels, the load frequency and the trigger level.

3.3 Reinforced specimens
3.3.1 Test variables

The test variables were the reinforcement ratio and steel yield strength, the concrete
compressive strength, the initial crack width, the number of cycles and the applied
shear stress level.

The normal restraint stiffness depends on the reinforcement ratio ¢. For the tests, four
and six 8 mm diameter stirrups were used, yielding a reinforcement ratio of 1.12% and
1.68% respectively. The steel yield strength of the ribbed bars f;, was 460 MPa (denoted
low-strength) and 550 MPa (denoted high-strength) with a rib coefficient fx (approxi-
mately the rib height/rib distance) equal to 0.050 and 0.059 respectively. The use of two
steel grades provided an opportunity to investigate whether the reinforcement yielded
or not.

The concrete grade f,., had an average 28-day cube crushing strength of 50 MPa
(Mix A) and 70 MPa (Mix B) reflecting the high-strength concrete used in offshore
structures.

It can be expected that with increasing concrete strength an increasing number of
particles will be fractured during cracking of the concrete, thus reducing the aggregate
interlock mechanism. Both mixes had a maximum diameter of 16 mm and almost
complied with the Fuller grading curve. Detailed information is given in Appendix L.
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The initial crack width varied from 0.01 mm to 0.08 mm to ensure a small crack width
(< 0.25 mm) in order to simulate offshore service conditions. For the tests, the initial
crack width was not an adjusted, but a measured parameter. The number of cycles
ranged from 118 to 931,731 cycles for the test series. The large number of cycles inter-
fered with a good planning of the tests, in general the experiments did not start when
the concrete was 28 days old. Therefore, the concrete strength at the start of the test was
obtained from Fig. 3.4.

5 relative concrete strength fo. ft) / f..p(28)
1
Mix A
_____ Fe e = = = — — —
1.0 =
= Mix B
7
/7,
/
05/
° 8 56 84 12

age t [daysl

Fig. 3.4. The concrete strength versus the concrete age.

The applied shear stress level is related to the static shear strength obtained in the static
tests of Walraven [50]. According to the shear friction analogy, the shear strength can be
expressed as a function of the yield strength and the reinforcement ratio [53]:

t,=alofy) (3.1)
with

a =0.8220%406
b =0.1597530

During the tests, the shear stress level t,, was in a range of 46 to 90% of the static
strength and a minimum shear stress 7, equal to 0.3 MPa. Despite the shear stress of up
to 90% of the static strength, the tests were still of the “low-intensity” type because of
the very small crack width.

332 Experimental results

A total of 42 repeated push-off tests were carried out. The specimens were assigned an
identifying code consisting of 5 character sets. The first character denotes the concrete
grade (Mix A or Mix B), the second the number of 8 mm diameter stirrups and the steel
yield strength (Low or High). The next character represents the shear stress level 7,,/7,,
followed by the actually applied shear stress. Finally, the initial crack width forms part
of the identifying code.

Tables 3.1 and 3.2 in Appendix II list a review of the experimental results.
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Because of the large number of load cycles, it is hardly possible to show the crack
response for each measured cycle. Fig. 3.5 presents a typical relation between the crack
displacements in a specific cycle as a function of the shear stress related to the
maximum applied shear stress. For this test, a maximum of 1,785 cycles till failure was
obtained. Fig. 3.5 shows that even for this relatively small number of cycles the increase
in crack displacements between two subsequent cycles remained smaller than the
0.01 mm accuracy of the displacement transducer.

shear stress/maximum shear stress T/im
1.00 T T T
n=10 7 103s ] srsf

Specimen No.
AlLLI7717.21.04
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i 1 —_—
0.25 —Li W ,‘,I -m-= by
] |/

0 0.25 050 0.75 1.00
crack displacement 6 [mm]

Fig. 3.5. Typical crack response during cycling.

Furthermore, it was observed that the shear displacement increase was initially smaller
than the crack width increase, but exceeded the crack width increment with increasing
crack displacements.

The influence of the steel yield strength upon the crack response during cycling is
shown in Fig. 3.6a, b. The specimens Nos. A/4L/.77/7.2/.04 and A/4H/.78/8.0/.04 were
subjected to nearly equal percentages of static shear strength (77% and 78% respect-
ively). Both specimens exhibited a similar behaviour with respect to the crack displace-
ment increase during cycling and followed an identical crack opening path. This
indicates that the influence of the steel yield strength can be properly taken into
account by equation (3.1) for the static strength. The actual maximum shear stress was

crack width 8n (mm) shear displacement 6t [mm]
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a. Crack width versus number of cycles b. Crack opening path.

Fig. 3.6. Influence of the steel yield strength.
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7.2 MPa for specimen No. A/4L/.77/7.2/.04 and 8.0 MPa for specimen No. A/4H/.78/
8.0/.04 with a calculated static shear strength of 9.38 MPa and 10.26 MPa respectively.
Fig. 3.7a, b presents the effect of the variation of the reinforcement ratio. For this
parameter it was found that specimens with a different number of bars exhibited a
nearly similar response to cycling. The specimens shown in Fig. 3.7, Nos. A/4L/.61/6.1/
.03 and A/6L/.61/7.2/0.4, had four and six 8 mm stirrups respectively and were both
loaded at 61% of their static strength. Therefore, it can be concluded that the influence
of reinforcement ratio is accounted for by equation (3.1).

It is obvious that an increasing concrete strength yields a stiffer crack response to cyclic
loading.

100 grack width 8y [mm] 1o Shear_displacement 64 [mm)
075 075
0.50 0%

AIBLI 6172104 __ 4= AlLLI.61/6.1/.03

- - V2
0.25 = 025 >
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| I6L1.61/7.21,04
0 | |
10' 10? 10° 10* 10° 10° 0 0.25 050 075 20

number of cycles logln) [cycles] crack width 6, [mm]

a. Crack width versus number of cycles b. Crack opening path

Fig. 3.7. Influence of the reinforcement ratio.
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Fig. 3.8. Influence of the concrete grade.

Fig. 3.8a, b shows that the effect of the concrete strength upon this response is also
satisfactorily accounted for by the influence of the concrete strength upon the static
shear strength. The specimens Nos. A/4L/.65/6.0/.05 and B/4L/.65/8.0/.07 exhibited a
similar relation between the crack width and the number of cycles and a similar crack
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Fig. 3.9. The influence of the initial crack width.

opening path. It must be noted that the relation between the shear displacement and the
number of cycles had the same shape as the relation shown in Fig. 3.8a.

Contrary to the previously mentioned parameters, no influence of the magnitude of the
initial crack width was found within the range investigated. The specimens Nos. A/6L/
.66/8.6/.02 and A/6L/.67/8.2/.08 had a difference in the initial crack width of 0.06 mm.
Both specimens followed nearly the same crack opening path except for the small crack
displacements.

For mix A, Fig. 3.10a shows the relationship between the crack width and the number of
cycles for various shear stress levels. Similar relations were obtained for the shear
displacement as a function of the number of cycles, see Fig. 3.10b. The shear stress level
is related to the static shear strength according to equation (3.1). Fig. 3.11 presents
similar results for mix B.

As expected, the increments of the crack displacements increased with increasing shear
stress level. The influence of the parameters investigated in this test series is satis-
factorily taken into account by means of the magnitude of the static shear strength.
Therefore, the relations presented in Figs. 3.10-3.11 can be approximated by the
following empirical expressions, see Fig. 3.12:
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Fig. 3.10. The influence of the applied shear stress level for mix A.
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with 7, according to equation (3.1) and 6,, 6, in (mm).
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Fig. 3.11. The influence of the applied: Fig. 3.12. The crack response according
shear stress level for mix B. to equation (3.2).

In the expressions (3.2) for the crack displacements, the minimum shear stress 7, is not
apparent. One should assume that the ratio of the applied maximum shear stress ., to
the applied minimum shear stress 7, will strongly influence the relations expressed by
equations (3.2a, b).

However, no information on this variable was obtained in this test series.

Fig. 3.13 presents the relationship between the applied shear stress level and the
number of cycles till failure. Despite the large scatter, the following mean relation was
derived by means of regression analysis:

Tm
% =1.00—0.0736 log () (3.3)
u
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Fig. 3.13. The shear stress level versus the number of cycles till failure.

21



The specimens which did not fail during cycling were subsequently sheared-off in a
static test. Table 3.3 in Appendix II lists the ratio between the shear strength according
to equation (3.1) and the experimentally obtained strength. An average ratio of 1.01
with a coefficient of variation of 0.08 was found. Therefore, it can be concluded that pre-
loading with a low shear stress has no measurable influence upon the crack response to
higher static shear loads. A similar conclusion can be drawn with respect to higher
repeated shear loads. The specimens Nos. B/4L/.57/7.0/.03 and B/6L/.53/8.0/.06 were
first loaded to 57 and 53% of their static strength respectively. Both specimens endured
more than 250,000 cycles.

Subsequently, they were subjected to a repeated load of 65% of their static strength.
Shear failure occurred after 88,500 and 20,632 cycles respectively. These numbers of
cycles were in reasonable agreement with the 57,500 cycles according to equation (3.3).

3.4 Plain concrete specimens
3.4.1 Test variables

As for the reinforced concrete specimens, the variables used in the experiments with
plain concrete specimens were: the concrete grade, the initial crack width, the number
of cycles and the applied shear stress level. Instead of the reinforcement ratio for the
specimens with embedded bars, the initial normal stress of 0.8-3.6 MPa was now used
to ensure very small crack widths. It was found in static push-off tests [50] that for plain
concrete no actual failure occurred due to the increasing normal stress. In consequence
no shear stress level could be determined related to the static shear strength.

As in the previous experiments, the applied minimum shear stress was 0.3 MPa.

34.2 Test results

A total of 14 tests were performed. The identifying code, which was assigned to the
specimens consisted of the concrete grade (mix A or mix B), the initial normal stress,
the applied maximum shear stress and the initial crack width. Contrary to the experi-
ments on specimens with embedded reinforcement, the applied maximum shear stress
7, was not the initially applied shear stress. Since no significant crack displacements
were recorded for low shear stress levels, the applied shear stress was raised to such a
level that significant crack displacements occurred. This stress level was then sub-
sequently maintained and is adopted in the code of the specimen. Table 3.4 in Appen-
dix 1II lists a review of the experimental results. The experimentally obtained crack
response of plain concrete to repeated shear loading is presented in Fig. 3.14.

As for the reinforced specimens, the hysteresic loop indicated that dissipation of energy
occurred in the shear plane.

The shear displacement increment was initially smaller than the crack width increment.
For increasing crack displacement, the shear slip increment exceeded the increment of
the crack width.
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Fig. 3.14. Crack response during cycling. Fig. 3.15. The normal stress versus

the crack width.

The specimens were unloaded when the shear displacement was larger than 2 mm.
In fact, no shear failure occurred during the repeated tests, because even for large crack
displacements (6, > 2 mm) the shear plane was still capable of transferring the applied
shear load. This was probably due to the increase in normal force with crack-opening.
It was found in Walraven’s experiments that the static shear strength was proportional
to feem [50].

For the repeated shear loading tests, the range of the shear stress for which significant
crack displacements were recorded was 5.0-6.2 MPa for mix A and 5.6-7.7 MPa for mix
B. The average ratio between the range for mix A and the range for mix B was equal to
1.18, which was in good agreement with (70/51)% =1.19.

The relationship between the normal stress and the crack width was in the same range
for both mixes, see Fig. 3.15. The influence of the magnitude of the initial crack width
upon the crack response to repeated shear loading is shown in Fig. 3.16.

The specimens Nos. A/1.3/5.0/.01 and A/1.9/5.0/.19 had an initial crack width equal to
0.01 mm and 0.19 mm respectively.

The last mentioned specimen had a very large crack width during precracking due to
a bad fitting of the steel restraint plates to the concrete surface. Although a high normal
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Fig. 3.16. Crack width versus number of cycles as function of the initial crack width.
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Fig. 3.17. Normal stress versus crack width as function of the initial crack width.

stress was applied to the crack plane, it was not possible to re-close the crack com-
pletely. Therefore, this specimen had an initial crack width which was not in the range
reflecting offshore conditions.

However, the result is of interest for the influence of the initial crack width. The normal
stress as a function of the crack width was similar for both secimens, see Fig. 3.17.
The influence of the normal stress is shown in Fig. 3.18. The specimens Nos. A/0.8/
5.5/.01, A/1.3/5.0/.01 and A/2.1/6.1/.01 had initial normal stresses of 0.8 MPa, 1.3 MPa
and 2.1 MPa respectively. There was a slight difference in the applied shear stress.
Fig. 3.18a shows that the increase in crack width with cycling was similar for both the
specimens with the high initial normal stresses. The specimen with the relatively low
initial normal stress initially exhibited smaller crack widths, which then increased
much more rapidly than for the other specimens.

Obviously, an increase of the initial normal stress up to about 1.3 MPa influenced the
crack response. However, a further increase of the normal stress had little effect on the
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Fig. 3.18. The influence of the initial normal stress.
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increase in crack width. The effect of the normal stress upon the crack opening path was
only slight. Fig. 3.18b shows that there was no systematic variation of the crack opening
path for the initial normal stress investigated.

The influence of the magnitude of the applied shear stress is shown in Fig. 3.19a, b,
representing the crack width versus the number of cycles for both mixes and various
shear stresses. Contrary to the specimens with embedded reinforcing bars, the increase
in crack displacements appeared to be hardly affected by the applied shear stress. An
exception was obtained for the specimen with the relatively low initial normal stress of
0.8 MPa, as has already been shown in Fig. 3.18.

Shear failure occurred when the crack faces became unable to transfer the applied shear
stress and was characterized by an abrupt increase in the crack displacements, instead of
the gradual increase observed for the reinforced specimens. The crack opening paths
for mix A varied only within a small range, see Fig. 3.20a. For mix B, a somewhat wider
range was found, with a crack opening path which deviated slightly from the mean crack
opening path of mix A, see Fig. 3.20b.
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Fig. 3.19. The influence of the applied maximum shear stress.
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Fig. 3.20. Crack opening paths for both mixes.
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The number of cycles till failure was not only influenced by the applied shear stress, but
also by the normal stress. Although no ultimate shear stress is clearly defined for
experiments with an increasing normal stress, a rough approximation of the static shear
strength can be made using the experimental results of Walraven [5S0] and Daschner [5].
Daschner’s results were questionable [6] with respect to the measured crack displace-
ments, but the relation between the (constant) normal stress and the static shear
strength was properly recorded, see Fig. 3.21. The following expression for the static
shear strength was derived by means of a regression analysis [51]:

7, = 1.64775%321 50427 (3.4)

For the present test series, the normal stress at the onset of shear failure was presented
in [33]. Inserting this value of the normal stress into equation (3.4), the number of cycles
till failure is related to the (approximated) shear stress level, see Fig. 3.22. Despite the
scatter of the results, it appeared that most of the plain concrete specimens endured
less cycles than the reinforced specimens at the same shear stress level. In Fig. 3.22 this
is shown by means of the broken line according to equation (3.3).
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3.5 Additional detailed tests

The major disadvantage of push-off tests with reinforced specimens was that the
normal stress on the crack plane could not be measured. The test series with plain
concrete specimens only partially solved that problem. It appeared from the experi-
mental results that the crack opening direction of the specimens differed from the crack
opening path of the plain concrete specimens, thus yielding a different crack response
to cycling.

Therefore, additional detailed tests were performed to study the normal stress-crack
width relation for reinforced specimens. The specimen geometry and the test proce-
dure were the same as used in the main test series. However, the steel strain of the

26



reinforcing bars was in this case recorded by means of a bolt gauge, type BTM-8 of
Tokyo Sokki Kenkyojo. These tests are fully described in [11].

Half of all the bars crossing the crack plane were prepared with a bolt gauge, which was
cemented at the neutral axis near the crack plane, see Fig. 3.23.

welding points

. IL y ¥ .// ]
i — o % :
o~ o~
30 100
bolt gauge
L v g
U
8[| 125 130 125
380

Fig. 3.23. Bar prepared with bolt gauge.

The overall dimensions of the gauge were 20 mm x 2 mm with a working length of
8 mm x 1 mm [43].

The normal force was measured with an accuracy of 0.1 kN for 8 mm diameter bars or
0.2 kN for 12 mm diameter bars. This type of bolt gauge was chosen so as to prevent
changes of the bond characteristics of the bar close to the crack plane. In order to posi-
tion the gauge at the centre line of the bar a 2.5 mm diameter hole was drilled resulting
in a reduction of the cross-sectional area of approximately 10% for the 8 mm bars. The
hole was 130 mm long, which was the maximum to be achieved by drilling from both
sides. This length was important because of the attachment of the wires to the bar,
which must be situated as far as possible from crack plane.

Therefore a small piece with a length of 130 mm was sawn out of the original stirrup,
prepared and replaced by means of an electric welding and upsetting machine. Special
care was taken to obviate the influence of the welding heat upon the material properties
of the steel.

Finally, the bolt gauge was glued in the hole using polyester resin adhesive. A series of
preliminary tests was performed to investigate the actual characteristics of the prepared
bars.

First a tensile test on the bare bar was carried out to determine the stress-strain relation
of the prepared bar. At a steel stress of 240 MPa brittle fracture of the weld occurred. All
prepared bars were then preloaded up to 160 MPa in order to derive the actual stress-
strain relation, see Fig. 3.24a.

Second, a pull-out test was performed.

The steel strain was measured by means of a bolt gauge glued at the centre line of the
bar, which was positioned at a distance of 50 mm from the bearing plate of the pull-out
specimen. This relation is shown in Fig. 3.24b, for a 8 mm bar and a concrete strength of
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Fig. 3.24. Preliminary tests with prepared bars.

approximately 40 MPa. The bond length used was rather long, 90 mm. Due to this trans-
mission length the bar yielded before pulling-out.

A total of six push-off tests was performed.

Three series of two specimens were subjected to static, sustained and repeated shear
loading. The results of the static shear loading tests will be described here.

For the static loading tests, the concrete cube strength was approximately 50 MPa.
The parameter investigated in these tests was the bar diameter. Specimen No. D1 was
reinforced with eight 8 mm diameter bars, while specimen No. D6 had three stirrups
consisting of deformed 12 mm diameter bars. Some experimental results are shown in
Fig. 3.25.
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Fig. 3.25. Experimental results of the static shear loading tests.
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4 Theoretical analyses of the response of cracked concrete to shear loading
4.1 Introduction

Physical models properly describing the mechanisms of aggregate interlock and dowel
action are derived for the case of increasing shear loads [12, 35, 50]. These models will
be briefly discussed and their presentation will be adapted to the case of constant shear
loads.

Furthermore, newly observed material behaviour is incorporated in these models.
In the case of cycling shear loading, a distinction is made between the description of
“high-intensity low-cycle” fatigue on the one hand and “low-intensity high-cycle”
fatigue on the other hand. The existing static models will be adapted in line with the
situation of cycling loading. On the basis of the basic transfer mechanisms, the cyclic
shear transfer in cracked reinforced concrete will be discussed.

4.2  The aggregate interlock mechanism

Walraven [50] developed a physical model, based upon the assumption that concrete
can be conceived as a composition of two basically different materials; the strong and
stiff glacial river aggregate particles and the matrix material consisting of hardened
cement paste with a much lower strength and stiffness. If a crack is formed in the con-
crete, it will run through the matrix material and along the interface of the matrix and
the particles. Therefore, the crack plane exhibits a global ondulation caused by the
irregular shape of the crack faces and a local roughness due to the particles protruding
from the crack plane. The crack plane can therefore be approximated by a flat plane
intersected by stiff particles. Next, the irregularly shaped particles are randomly
orientated. The most accurate simplification of the particles according to Walraven’s
assumptions is shown in Fig. 4.1.

His schematic two-phase presentation of the actual crack plane provides a physically
close approximation of the experimentally observed crack response to static shear
loads. The particles are regarded as rigid spheres embedded in the matrix material,
which is considered as a rigid material with crushing strength o,,. In consequence, the
particles are undeformably crushing the matrix during shear sliding.

a. Crack plane. b. Wairaven's two-phase model

Fig. 4.1. Crack plane according to Walraven’s two-phase model [50].
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Whether a particle makes contact with the opposing crack face depends upon the
particle size, its embedment depth, the crack width and the shear displacement. An
interesting aspect of Walraven’s schematic presentation of the crack plane is that the
total contact area of all the particles in a unit area of the crack plane can be determined
analytically. Considering a gradation according to Fuller’s ideal curve, Walraven quan-
tified the projected contact areas a, and a, for any given particle during shear sliding,
see Fig. 4.2a. For a thin slice of the crack plane the particles reduce to circles, whose
occurrence in the crack plane is described by a probability density function. The
projected contact areas in this thin slice can be determined analytically as the distance
between the intersection point of two circles and the intersection point of a straight line
and a circle. All the projected contact areas a, and a, are summed up numerically
yielding the total projected contact areas 4, and A, for unit area of the crack plane.

Now, the equilibrium condition for this unit area can be described by, see Fig. 4.2b:

T = Gpu(Ay + ﬂAx) (4.1a)
Oy = a;)u(Ax - #Ay) (4.1b)
in which

1, = shear stress

0, =normal stress

o,u = strength of matrix material

A, = total projected contact area per unit area of the crack plane parallel to
the crack plane

A, = total projected contact area per unit area of the crack plane normal to the
crack plane

The strength of the matrix material a,, and the coefficient of friction were derived from
the experimental results of Walraven’s static tests [S0]:

0.56
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a. Contact areas. b. Projected contact areas.

Fig. 42. Contact area during shear sliding.
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Fig. 4.3 presents a comparison of the model with some typical test results [50]. Apart
from his own experimental results, Walraven’s model provides good predictions for
tests by Paulay et al. [31] and Millard et al. [26].

8 shear stress 1q [MPa)
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AEXF' o mm v

1.0mm
v
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05 10— 5
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Ne.

v
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,\
—
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8 Normal stress O MPa]

Fig. 4.3. Comparison of the model with experimental results [50].

The two-phase model as presented in Fig. 4.3 describes a unique relationship between
the stresses and the displacements in the crack plane.

For the purposes of this paper, it was preferred to present this relationship as crack
opening paths for constant shear or constant normal stresses.

These stresses are related for the matrix strength according to equation (4.1c), see
Fig. 4.4a, b.

According to the model the maximum particle size has a slight influence upon the crack
response. This is shown in Fig. 4.4 for particle diameters of 10 mm, 16 mm and 32 mm.
The lower the size of the maximum particle the steeper the crack opening path
(d,-increment > J,-increment). For this particular case, the determination of the con-
tact areas according to Walraven’s model is too complex. Therefore, empirical relations
are derived which satisfactorily describe the relationship between the contact areas and
the crack displacements.

shear displacement 8 [mm] shear displacement 6 (mm)
. T T

25 25
Dmax= 16 mm ¢ %100 Jg x100 _
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/14 10 ’
15 e L
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05 - /‘: /‘///lz o 05 //Vo
i Zzml
05

@

0 0

0 05 10 1.5 0 10 15
crack width & (mm) crack width & (mml
a. Shear stress b. Normal stress

Fig. 4.4. Crack opening path according to the model.
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Bl o) e
with
K =bla-d, (4.2b)
for 4,: a =4 (4.2¢)
b =7.00D%0%6 107 (4.2d)
p =0 (4.2e)
for A4y a =2 (4.21)
b =3.00D%280sm (4.2g)
m = — 1.47D006 (4.2h)
p =0.5(6,—6,]—abs [6,—6])-exp (= 1 — Dpyy/32 — 0.562) (4.21)

The limitations of the equations are:
- 0,<1.26,;
-~ Particle distribution according to Fuller.

In the case of settlements, large shear displacements can occur. In that case the orig-
inal formulas of the two-phase model must be used.
In the case of the cracked plain concrete subjected to cyclic or repeated shear loading, a
distinction is made between “high-intensity low-cycle” fatigue.
This distinction is made for practical reasons as it appeared from the low-intensity
experiments described in Chapter 3 that the crack displacement increments per cycle
can be less than the numerical accuracy of any mathematical model. Therefore, the
response of a cracked element to this type of cyclic loading must be described by the
over-all degradation and the irreversible deformations of the concrete due to cycling.
Subsequent cycles with a very high amplitude can be described by the model for “high-
intensity low-cycle” fatigue. For this type of fatigue, Walraven gave a qualitative
description the crack response in plain concrete to cyclic shear loading [50], (1980). He
derived the following expression for the reduction in shear stress before any displace-
ment backwards can occur during unloading the specimen:

v A.—pA, A, — uAy

— = 4.3
Tm  Ax+pAy A, + uA, (43)

This expression is based upon the two-phase model, which predicted a crack response
as shown in Fig. 4.5.

During re-loading in the second or any subsequent cycle, the shear displacement can
increase without (hardly) any shear load. This free slip is caused by the already
deformed matrix material. A further increase in the shear load brings the particle firmly
into contact with the matrix material. However, the contact area cannot be calculated
according to the analytical two-phase model.
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Fig. 4.5. Qualitative description of the response to cyclic shear loads.

Walraven modified the calculation of the contact areas of the particles (1986, [52]) by
replacing the analytical solution by a numerical solution. In this the shape of the contact
area of each particle in the crack plane is monitored by means of several points situated
on the surface of the deformed matrix material, see Fig. 4.6.

For a specific combination of the crack displacements, it is possible to determine the
highest and the lowest points which are situated in the contact area. Now, the projected
contact areas a, and a, can be determined as the distance between those points in
parallel and normal direction respectively. Taking into account several particle diam-
eters and embedment depths, the total contact areas per unit area of the crack plane
Ay and A4, can be calculated as in the original analytical two-phase model. Again, the
presence of a specific particle is accounted for by a probability density function [50].
This modification of the two-phase model will be referred to here as the numerical
contact model.

With this model, Walraven simulated the cyclic push-off tests of Laible [19, 20]. The
particles used in this test series had a moderate strength. Consequently, the number of
particles fractured during cracking of the concrete was large in relation to the number of
fractured glacial river particles used by Walraven. Hence, a reduction of the total
contact areas must be taken into account.

Furthermore, the coefficient of friction must be adjusted to the proper value for this
type of aggregate.

From the experimental results of the first cycle of the test, Walraven derived a reduc-
tion factor of 0.75 and a coefficient of friction equal to 0.20.

Ax = X10 - %4

*0,Y0

Fig. 4.6. Representation of the contact area by means of points situated in the contact area [52].
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After these values had been inserted into the model, the subsequent cycles were
simulated, see Fig. 4.7.

For reasons of symmetry, only the results of the positive direction and shown. A good
agreement between the experimental and the calculated results is found. It appeared
from the calculation that no reduction of the matrix strength due to cycling has to be
taken into account. This is probably due to the fact that the high contact stresses are
only apparent in the contact areas. In Laible’s tests, the displacement increments in
each cycle are large enough to crush the previously loaded matrix material and sub-
sequently to load new material.
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Fig. 4.7. Comparison of the experimental result of test No. Al of Laible with the numerical
contact model [52].

The experimentally obtained normal restraint stiffness served as input data for the
program. Walraven demonstrated that the numerical contact model is suitable for
describing the crack response to cyclic and repeated shear loads. This model can be
used to perform sensitivity studies, but is too complex for implementation in advanced
finite element programs. Although the numerical contact model developed by
Walraven is suitable for all loading types, its major disadvantage is that all cycles have to
be taken into account. For practical use, the physical model must describe the over-all
response degradation and the irreversible deformations due to “low-intensity” load
cycles. Therefore, it s assumed that the load history is fully incorporated in the contact
areas which are formed in the last load step of the previous cycle. This assumption is
shown in Fig. 4.8.

An important conclusion resulting from this assumption is that it holds true for all
the intermediate load steps in a cycle. Then the magnitude of the contact area can be
determined analytically by means of the intersection points of three circles. With this
model, referred to as the analytical contact model, test No. Al of Laible [19] was simu-
lated using ten particle diameters and ten embedment depths, see Fig. 4.9.
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Fig. 4.8. The load history incorporated in the end-deformation of the crack plane.

Input in the program was the end displacement of the first load cycle. Therefore, the
first cycle was not simulated. It appeared that the crack response is satisfactorily
described even if the three pairs of coordinates of the three circles remain the same for
all particle diameters. Therefore, six coordinates determine the total contact areas in
normal and parallel direction.

A further simplification can be obtained by reducing the number of particle diameters
and embedment depths.

There is, however, an even simpler method. During cycling, the stresses in the crack
plane for a given combination of the crack displacements are as large as or less than in
the case of a static test. This is due to the reduced size of the contact areas, thus:

T, = apu(/lyAy + Ui A,) 4.4)
0, = O-pu(/lex - /‘/IyAy) (45)

with

w4y = reduction factors|
J

Ay, Ay = total contact areas for the static case
As A
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Fig. 4.9. Comparison of the experimental result of test No. Al of Laible with the analytical
contact model.
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For test No. Al, these reduction factors are derived on the basis of the calculation
process using the analytical contact model, see Fig. 4.10. It appeared that these factors
can be approxomated by:

8, — 0 )2
Ix=08 "% 4.6
<5tm_50 ( )
1.=0.7 (M>3 4.7
! . 6lm'_ 50 .

with

8o =6 — V2 — 02,<0.670

dom, Oum = €nd displacement of previous cycle
0o = initial crack width

With equations (4.6-4.7), the calculation process becomes quasi-static.
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Fig. 4.10. The contact area reduction factors.

Substitution of equations (4.2a-i) in the model yields a simple version of the model,
which is referred to as the reduced contact model. The calculated response of test No.
A1 shows a good agreement with the exerimental results, see Fig. 4.11.

Equations (4.6-4.7) are derived on the basis of the results of Laible’s test No. Al of
Laible. Fig. 4.12 shows that the reduced contact model also provides good predictions
of tésts with smaller crack widths and higher normal restraint stiffnesses.

In Fig. 4.13 the results of test No. E1 of Laible are shown. In this test, twenty load cycles
with a maximum shear stress up to 0.69 MPa were applied to the specimen, followed by
five cycles with a maximum shear stress of 1.24 MPa. Because of the assumption that
the end deformation of the contact areas incorporates the load history, only the cycles
Nos. 21 to 25 are simulated. Although the calculated crack response is somewhat too
stiff, the over-all behaviour is satisfactorily predicted. It must be noted, however, that
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Fig. 4.11. Comparison of the experimental result of test No. Al of Laible with the reduced
contact model.
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Fig. 4.12. Comparison of the experimental result of test No. C1 of Laible with the reduced
contact model (6,,=0.51 mm).

both the analytical and the reduced contact model are only valid for load cycles in which
the maximum shear stress is at least equal to the maximum shear stress in any previous
éycle.

Simulating the above-mentioned shear tests, it emerged from the calculation that there
was no decrease in matrix strength due to cycling. This is probably due to the fact that
the crack displacement increments are relatively large in the case of “high intensity”
fatigue.

The high stresses causing fatigue of the matrix material are restricted to the volume
close to the contact areas. Due to the increasing displacements, the previously loaded
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Fig. 4.13. Comparison of the experimental result of test No. E1 of Laible with the reduced
contact model (d,,=0.76 mm).

matrix material is crushed and the matrix material lying behind is then subjected to
high contact stresses. This matrix material was subjected to low stresses in the previous
cycles, so no fatigue of the material has occurred. In the case of “low-intensity high-
cycle” fatigue, the crack response can theoretically be simulated with the proposed
models. If the initial crack width is reduced to 0.15 mm and a normal restraint stiffness
of 7.5 MPa/mm is used, a shear stress of 3 MPa can be transferred by the crack plane.
The crack displacement increase in each cycle rapidly diminishes until it becomes
smaller than the numerical accuracy, indicating that the actual displacement increase is
even smaller. In this case the crack displacement increments are very small, so a reduc-
tion of the matrix strength now occurs due to cycling.

On the other hand, “high-cycle” tests are generally performed with a rather high load-
ing frequency, which might cause rate effects and thus increases the matrix strength.
Because of the small displacement increment, the fatigue of the suggested matrix
material and the rate effects, empirical expressions must be used to describe the
increase in crack displacements due to “low-intensity” cycles.

4.3  The mechanism of dowel action

The mechanism of dowel action is based upon the response of a bar and the surround-
ing concrete to a lateral bar displacement. As described in Section 2.3, failure of a dowel
occurs due to crushing of the concrete and yielding of the bar when the concrete cover
of the bar is sufficient large to prevent splitting failure.

In the case of crushing failure three mechanisms can be distinguished, according to
Paulay [32]:

a. bending; the dowel force is transmitted due to bending of the bar. For this mech-

anism the ultimate load is reached due to yielding of the bar;
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b. pure shear; it is expected that the transfer of dowel force by means of pure shear is
unlikely because of the deterioration of the concrete in the vicinity of the bar. There-
fore, the resulting dowel forces at both sides of the crack plane have a relatively large
eccentricity resulting in yielding of the bar due to bending;

c. kinking; for a considerable lateral bar displacement the axial bar force in the crack
plane has a component parallel to the crack direction. In the case of cracked concrete
the crack width remains small relative to the bar diameter. Hence, the effect of kink-
ing of the bar will be small (except for the case of large crack widths in combination
with small bar diameters).

The dowel load-lateral displacement relation can be described using the theory of
beams on elastic foundation, as published by Timoshenko and Lessels [42]. Now the bar
is considered as a flexible beam of infinite length supported on an elastic foundation.
This mechanism was first used by Friberg [12] and accounts for the bar diameter and the
concrete strength. According to this mechanism, the following relation can be derived:

1
51 = Fd ﬁ [mm] (48)
with
5o
4 EI

K; = foundation modulus of concrete [MPa/mm]
¢ in [mm], E in [MPa], I in [mm]

According to experimental observations [32], the foundation modulus is not a material
constant, but decreases with increasing lateral bar displacement, see Fig. 4.14.

The beam on elastic foundation theory provides a good prediction of the dowel load-
lateral bar displacement relation up to a dowel force of approximately 50% of the dowel
strength. With increasing dowel force the concrete stresses in the vicinity of the bar
exceed the uniaxial compressive strength. However, the surrounding concrete provides
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Fig. 4.14. Foundation modulus as function of the lateral bar displacement [32].
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a considerable confining pressure, thus yielding a triaxial compressive zone under the
bar. Therefore, the concrete strength may be several times as high as the uniaxial
strength. Now, the bar itself becomes the weakest link and the ultimate dowel force is
reached when the bar yields. Rasmussen [35] performed tests on dowels protruding
from a large concrete block, see Section 2.3. Apart from his experimental study,
Rasmussen modelled the dowel action according to the behaviour of the steel dowels
in timber structures. Fig. 4.15 presents the failure mechanism in which a plastic hinge
is situated at some distance from the “crack plane”. In the plastic hinge the plastic
moment of the bar is reached, which is equal to 0.167f, @,

Now, the equilibrium condition yields:

Fa=B¢*Vfeenfsy [N (4.92)
with

B=C{/1+[eC]—eC) (4.9b)

e CC,
_3 & Len (4.9¢)
PV Sy
e = eccentricity of the dowel load (mm)
C = empirical constant

It was found experimentally that C was equal to 1.3, assuming a zero-eccentricity of
the dowel load.

Similar expressions are derived by Dulacska [8] and Vintzeleou [48].

Rasmussen’s failure mechanism accounts for the reduced reaction stresses in the
vicinity of the crack plane as observed experimentally by Dulacska [8] and Utescher
[45]. Equation (4.9) provides a good prediction of experimentally obtained dowel

Fig. 4.15. Failure mechanism according to Rasmussen [35].
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strengths, although the calculated dowel strength is somewhat too low for very small
load eccentricities. Because of its good over-all description of the dowel strength,
Rasmussen’s model will be used here for a further analysis of the dowel failure mech-
anism.

Fig. 4.16 presents a bar protruding perpendicularly from a concrete block. At a distance
X from the “crack plane” a plastic hinge had been developed. The magnitude and the
distribution of the reaction stresses in the concrete under the bar are not known before-
hand. According to the theory of plasticity the plastic moment of the bar is equal to
0. 166¢3fsy. However, this plastic moment can only be applied to a bare bar. In the case of
a dowel embedded in concrete, the concrete supporting the bar in the cross-section
situated at the plastic hinge of the bar is deformed due to the lateral bar displacement.
In consequence, the bond between the bar and the concrete above the bar must be
broken. Contrary to this, the bond between the bar and the concrete supporting the bar
will be extremely good due to the high reaction stresses. For the cross-section in which
the plastic hinge is situated, the equilibrium condition is shown in Fig. 4.17. The
resulting force due to the bond stresses between the bar and the concrete supporting the
bar is situated at a distance z, from the neutral axis of the bar.

Due to the bond force the neutral axis of the bar is shifted over a distance z, see Fig. 4.18.

Fig. 4.18. Shift of the neutral axis.
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To obtain equilibrium the bond force N must be equal to 24, - f;,. Now, according to the
equilibrium condition it follows:

with

ZN =0: (Aa + Ac)fsy = (Ab + 2Aa)fsy
XM =0: (Aa+Ac)fsy'zc+Abfsy-zb+2Aafsy(zn—z)=Mu

T
A==r'—4
2T
Ay, =r*[6 —0.5 sin (26)]
A, =0.57r
0.67r3 sin® (6)
Zy =—"————Z
Ap
0.67r> sin® ()
Z, =————————— 42
A, + A,

For a bare bar, the following expression is valid:

(Ay + Ao) fiyze=Ap foyzuo + 2Aafsy(zn —z) with z=0

(4.9a)
(4.9b)

(4.9¢)

(4.94d)
(4.9¢)

(4.99)

(4.9g)

(4.9h)

Since in the case of a bar in concrete it is expected that the shift of neutral axis remains
small, it is assumed that equation (4.9h) provides a satisfactorily close prediction for a
dowel in concrete.
The plastic moment can now be calculated as a function of z, which is related to the
radius of the bar r, see Fig. 4.19. The shift of the neutral axis of the bar can be deter-
mined if the eccentricity of the bond force is known. The eccentricity of the bond force
isrelated to the distribution of the bond stresses. This distribution is not exactly known,
but can be determined with reasonable accuracy.
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Fig. 4.20. The distribution of the bond stresses.

First, the bond stresses are related to the steel strain. Therefore, the bond stress is pro-
portional to r cos (a), see Fig. 4.20. Second, the bond stress is influenced by the normal
pressure on the bar. Untrauer [44] found that the bond stress is proportional to 1/a_n.
According to a linear elastic response, the normal stress can be approximated by:

AD

Oy = COS (a) (4.10)

Thus yielding for the bond stress:

Thona =/ (c0s'? (a)) (4.11)

The magnitude of the eccentricity of the bond force can now be calculated (see
Fig. 4.20) according to:

n/2—p n/2—p

Thong COS (8) d& | cos" (a) cos (0) do

Zn=7r 0 =r 0 (4.12a)

n/2—f n/2—f
5 Thona 46 5 COSI'5 (a) déo
0 0
with
— T 6
Y

The steel close to the shifted neutral axis of the bar will slip relative to the concrete due
to the reduced bond as a result of the low normal stresses. Therefore, the concrete in the
vicinity of the shifted neutral axis will provide only a minor contribution to the bond
force. This is shown by the broken line in Fig. 4.20, assuming that for an angle y there is
little bonding between steel and concrete. Now, equation (4.12a) becomes:

n/2—f—y
cos!” (a) cos (#) d@

0 (4.12b)

Z“/r = n/2—B—y

cos' (a) d@
0
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Fig. 4.21. The eccentricity of the bond as function of y.

Equation (4.12b) is shown in Fig. 4.21‘for S equal to 10 degrees. With the eccentricity of
the bond force taken to be equal to the average value of 0.93r, it is found in Fig. 4.19 that
the plastic moment is equal to:

M, =178, = 0233, (4.13)

Note that the plastic moment is 34% higher than the plastic moment of the bare bar
according to the theory of plasticity. In this case the neutral axis is shifted over a
distance equal to 0.14r. In consequence § is equal to 8° which is in good agreement with
the assumption of 10°. Now, the equilibrium according to Fig. 4.16 becomes:

Fyu(e + aX) =0.2234°f,, (4.14)
and

Fou=Xfeen ¢ (4.15)
in which

fety1 = mean compressive strength of the multi-axially loaded concrete
Combining equations (4.14)-(4.15) yields:

Fyu=05C[V4 %0223 + (Ce)? — Cel *Vfoy foon [N (4.16)

in which

C =YVn/a = empirical constant
n =fctyl/fccyl

g =) Leen
® l/ Ty
¢, e in [mm], fey1, Sy in [MPa]
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The constant C can be solved empirically by means of the experimental results of
Rasmussen. Assuming zero-eccentricity, Rasmussen found from these test results:

05CY4%x0223=13 (4.17)

Thus C is equal to 2.75. However, some eccentricity was inevitable during these tests.
Therefore:

0.5C[V4x 0223 + (Ce)®— Ce]l =13 (4.17a)

According to Rasmussen’s formula the ultimate dowel is equal to:

qu = 13¢2 ] f;y f(l:cyl [N] (418)

Assuming that the contact zone between the bar and the loading frame is loaded
beyond its yielding strain up to the ultimate strain, the length of the contact zone can be
determined. For the steel used in Rasmussen’s tests the ratio between the yield strength
and ultimate strength was approximately 0.6. Now, the eccentricity (see Fig. 4.22)
becomes:

0.5F,,
$/4,]0.6

e=039¢ l/fTYY‘ [mm]

e=05L= [mm] (4.19)

thus

loading frame | | concrete

Fig. 4.22. Load eccentricity in Rasmussen’s tests.

The average value of the ratio between steel strength and concrete strength was equal to
10.77 for the tests of Rasmussen. Now, combining equations (4.17a) and (4.19) yields:

C=31
Thus:

Fyu =1.55[/0.892 + (3.16)2 — 3.1) 4>V 7y foey [N] (4.20a)
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with

] [ .f;:cyl

1+ 96 =3¢’V £y foem [N] (4.20b)

_ & Seem
e—(p 1

In Fig. 4.23 equation (4.20b) is compared with the available test results of Bennett [1],
Paulay [32], Rasmussen [35], Vintzeleou [46] and Utescher [45]. It was found that for
76 experimental results the average ratio between the theoretical and the experimental
dowel force was equal to 0.998 with a coefficient of variation of 17.2%. Lit [34] presents
detailed information on these tests. Now the model will be extended to the case of
a combined axial and lateral load. In practice, axial steel stresses develop because
embedded reinforcing bars crossing the crack plane are strained due to the crack open-
ing during shear sliding. In consequence, this increasing axial steel-tensile force will
influence the equilibrium of forces and bending moments in the bar. The axial steel
force will achieve equilibrium with axial stresses in the vicinity of the (shifted) neutral
axis of the bar, see Fig. 4.24. Fig. 4.24 is similar to Fig. 4.18 except for the influence of
the axial force. The contribution of the axial force to the equilibrium can be easily taken
into account in equations (4.9a-h). Fig. 4.25 presents the influence of the axial force
upon the magnitude of the ultimate dowel force. For small values of the axial force the
shift of the neutral axis is hardly influenced. For increasing axial force the shift of the
neutral axis decreases, until it reaches zero for an axial force equal to the yield force, see
Fig. 4.26.
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theoretical dowel force Fay t kN

100

.135&/1.952 -3e) tV\/Sy eem L7
- feem et
¢ fsy e
80
s
’
s
v v
od //V
60 v
580°,
© 4
90
/
’
p
,
40 &
‘B%V A Bennett
:,m/ﬁv o Paulay
=P v Rasmussen
20 %) o Vintzeleou
B?g o Utescher
@(Z ° ¥=0998 : cov=172%
0 .
0 20 L0 60 80 100
experimental dowel force f [kNl

Fig. 4.23. Comparison of the experimental and theoretical results.
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due to bending due to axial force

Fig. 4.24. Equilibrium of the forces in the plastic hinge.

10 Fq 1Fqy oL zlr
05 0.07
0
0 05 05 10
Fs /Fsy
Fig. 4.25. The dowel force as a function Fig. 4.26. The shift of the neutral axis
of the axial steel force. as a function of the axial force.

The interaction between the axial steel force and the ultimate dowel force can be satis-
factorily predicted by equation (4.21) proposed by Vintzeleou [46] in which n and m are
equal to 2. See Fig. 4.25:

Fa, F5>m o /i (F)m (421)
S = = r =|1-{= .
Fa F, d Fyy

sy

in which
Fy =dowel force
Fy, = ultimate dowel force according to equation (4.20b)

F, =axial steel force
Fy, = steel yield force

Yd =Fd/qu

Equations (4.20b) and (4.21) can be combined for the ultimate dowel force, thus yield-
ing an expression for bars with an axial steel force. This expression is compared with
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Fig. 4.27. The experimental and theoretical results for Millard’s tests [26].

experimental results of Millard [26], see Fig. 4.27. The experimental result of test 25L is
obviously abnormal. This was probably due to the fact that for the small 8 mm diameter
bar used in this test, the strain gauges were stuck to the surface of the bar, thus influ-
encing the bonding of the bar to the concrete.

If this result is disregarded, an average ratio of the predicted to the experimentally
obtained dowel strength is found which is equal to 1.02 with a coefficient of variation
of 8.1%.

Detailed information is presented in [34].

In the case of cyclic dowel loading, numerous tests [9, 16, 46] have not yet yielded a
fundamental insight into the physical behaviour of dowels embedded in concrete and
subjected to cyclic loads. Therefore, empirical expressions for the dowel stiffness are
derived for practical use. Vintzeleou [48] proposed a formalistic model for fully
reversed shear displacements, see Fig. 4.28.

Vintzeleou’s formalistic model can be easily implemented into numerical programs.
However, there is still a need for a more theoretical approach to the behaviour of a
dowel subjected to cyclic loads. Therefore, an attempt is made to derive a model largely
based upon material behaviour. Fig. 4.29 shows the mechanism of loading and unload-

Dowel force Fy [kN)

Fa1

- ARC
Fd,n'EjJ“ 7n1l Bnlr--~-----—>
N

|
|
|
[
|
!

L L
D400, 0706, 106,
'0-25%‘.—\ shear displacement 6‘ [mm]

-Fin

Fig. 4.28. Formalistic model for fully reversed shear displacements as proposed by Vintzeleou
[48].
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Dowel force Fy [kN]
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shear displacement 6 [mm]

Fig. 4.29. Mechanism of loading and unloading in the first cycle.

ing in the first cycle. For the maximum applied dowel force, high triaxial stresses
support the bar. After reaching the maximum dowel force, the force decreases. Now,
the triaxial stress state first rapidly loses its confinement.

In consequence, the dowel force can decrease without (hardly) any restitution of the
concrete deformation, see Fig. 4.29.

The drop in concrete stress is strongly related to the loading path of the concrete. For
triaxially loaded concrete, Van Mier [25] found that at the moment of unloading a
sudden stress drop occurs. This causes a drop in dowel force, which was found to be
approximately 25% of the maximum dowel force. After that, the shear displacement
decreases with decreasing dowel force. Some non-recoverable shear displacement
remains for zero-dowel force, which is about 25% of the maximum shear displacement.
For a fully reversed dowel force, the deformed matrix material after unloading is shown
in Fig. 4.30.

Upon re-loading in the positive direction, the bar initially responds as a beam partially
fixed at one side;see Fig. 4.31. For this loading situation, the dowel stiffness is deter-
mined by linear elastic material behaviour and can be expressed by:

39K
60¢L% + 40L°

K, [N/mm] (4.22)

Fq
plastic hinges KT:
8o 5
Fig. 4.30. Matrix deformation after Fig. 4.31. Initial dowel stiffness K;.

a load cycle.
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On the basis of the experimental results of Vintzeleou [46] an experimental relation was
derived for L:

L=2.560V8 max(n— 1% [mm] (4.23)
with

0 max = Maximum shear displacement in previous cycle

n = number of cycle; Note that the first load cycle in the negative direc-
tion is cycle 2. In consequence, the second cycle in the positive direc-
tion is cycle 3. In the case, where the imposed displacement in the
negative direction is, for instance 50% of the displacement in the
positive direction, the cycle in the negative direction is cycle 1.5. The
second cycle in the positive direction is then cycle 2.5 and so on

The term (n — 1)*! in equation (4.23) accounts for the fatigue of the concrete under-
neath the bar. Because of the fact that for increasing dowel displacements, previously
strained matrix material is crushed and unaffected material is loaded, the number of
cycles can be reset to 1 in the case of load-controlled tests.

The stiffness K; determines the dowel response until the shear displacement O iS
reached, see Fig. 4.31. For this shear displacement, the bar is supported by the concrete
over the length L — ¢, see Fig. 4.32.

K2

Fig. 4.32. The dowel stiffness K,.

Due to the support of the concrete, the dowel stiffness increases until it becomes equal
to stiffness K,. The response of the concrete is approximated by regarding the bar as a
beam on an elastic foundation. As stated above, the coefficient of the subgrade reaction
is related to the dowel displacement. The following expression is derived:

Ky =390(6%)"" [MPa/mm] (4.24)

However, in this expression the shear displacement does not include the slip related to
K,. Substitution of ¢ by an average value of 0.36 max yields:

Ke=998(8, may) *7®  [MPa/mm] (4.24a)

Because the subgrade reaction is proportional to the modulus of elasticity, which is
approximately proportional to the square root of the concrete grade, the following
expression is obtained:

K =168V frem(Oima) 7 [MPa/mm] (4.24b)
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Accounting for the load eccentricity, the dowel stiffness can be expressed by
K, =55¢"7 £2375 5705 [N/mm] (4.24¢)

This stiffness is valid until the plastic hinge develops. As in this state there is still no
contribution of the concrete to the section modulus of the bare bar, the dowel force at
the onset of yielding is:

Fd,sy = Msy/e = 01¢2 f;y [N] (4.25)

Because of the development of the plastic hinge, the bar makes contact with the
concrete close to the crack plane, see Fig. 4.33. For the coefficient of subgrade for this
part of the concrete equation (4.24b) can again be used. This part of the concrete now
determines the dowel stiffness. As it has been observed that the 25% of the maximum
shear displacement is non-recoverable, it is assumed that the deformation of the
concrete over the length L — ¢ contributes 25% of the total shear displacement. Thus,
the dowel stiffness Kj is expressed by:

Ky =0.75-168¢"" f037 5 030 =1264" 7 £037° 57059 [N/mm)]

4

|%

K3

plastic hinge

5

Fig. 4.33. The dowel stiffness K;.

The total loading path according to the proposed model is shown in Fig. 4.34. Unload-
ing causes a drop in dowel force of 25% of the maximum value. Subsequently, the
unloading stiffness is equal to K; until Fy 5, is reached. Finally, the stiffness K, is used to
obtain zero-dowel force. In the case of a repeated dowel force, the response is calcu-
lated according to the model for reversed dowel loads. However, the stiffness Kj is used
to connect the zero-stress state to the re-loading branch, see Fig. 4.34a. Apart from that,
another restriction should be made. The dowel force is not allowed to exceed 85% of the
dowel force for the monotonic case, see Fig. 4.34b. The stiffness is then equal to the
stiftness K, which was found for the monotonic case for the given shear displacement.
Fig. 4.35 presents a comparison of this model with experimental results of Vintzeleou
[46] and Jimenez [16]. This corresponds fairly well with the experimental results.
Jimenez’s test results shows that the model can also be applied to the case of imposed
dowel loads. From the monotonic dowel tests of Eleiott [9] it is known that the dowel
stiffness is strongly influenced by the magnitude of the axial steel force, and so the
following expression is proposed to reduce the dowel stiffness:
F\°3
Py = (1 — ) 4.27)

sy
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Fig. 4.34. Loading and unloading according to the model.
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Fig. 4.35. Comparison of experimental results with the proposed model.
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Fig. 4.36. The model in the case where the dowel strength is reached.




A special situation arises when the dowel strength Fy, is obtained in a cycle. In this case
the whole cross-sectional area of the bar will yield. In the case of a reversed dowel force,
the only restriction is that the force cannot exceed the dowel strength. However, in the
case of a repeated dowel force, the yield of the bar strongly influences the bar stiffness.
In this case the bar remains in close contact with the supporting concrete, thus approx-
imating the situation in the first load cycle. Because of the already deformed bar, this
can be regarded as a shift of the initial stiffness of the bar, see Fig. 4.36. Now, the force-
displacement relation for the static case must be applied.

4.4 The combined mechanism of aggregate interlock and dowel action

Vintzeleou [46] and Millard [27] have already demonstrated that the combined mech-
anism of aggregate interlock and dowel action is suitable for predicting the shear
resistance of cracked concrete according to the equilibrium condition shown in Fig.
4.37. However, for push-off experiments with a very small initial crack width as
performed by Walraven [54], their models underestimate the measured shear strength
of the crack.

S

S
—_—
4 external shear load.
dowel force

normal force due to 4
aggregate interlock.

w N =

~

shear force due to

- aggregate interlock
ZT 5 axial steel force. 43———2.T
1 ¥ ;
a. Bars perpendicularly crossing b. Inclined bars.

the crack plane.

Fig. 4.37. The equilibrium condition for cracked reinforced concrete.

Furthermore, for practical use the equilibrium presented in Fig. 4.37 can only be deter-
mined if the relation between the axial bar force and the crack width is known. The
magnitude of the axial bar force can be calculated by means of the equilibrium with the
normal force due to aggregate interlock. The bond characteristics for a bar subjected to
the combined action of axial and dowel forces have not yet been determined experi-
mentally. Due to the lack of knowledge about the actual bond behaviour, empirical
relations are still used for describing the crack opening path. In this Section the
previously described mechanisms will be combined, whilst also taking into account the
magnitude of the initial crack width. In order to predict the crack response accurately,
the effect of these mechanisms and of their interactions upon the crack opening direc-
tion must be known.

On the basis of the experimental results of tests on pre-cracked reinforced push-off
specimens by Walraven [54] and Millard [27], it was concluded that the crack opening
path followed during these tests ensured a constant contribution by the aggregate inter-
lock mechanism to the transferred shear stress. The plastic hinges in the bars due to the
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dowel action are already developed during this phase. According to Walraven’s two-
phase model, this crack opening path followed in a displacement-controlled test
requires the minimum amount of energy.

For Walraven’s experiments, Fig. 4.38 presents the calculated and experimental crack
opening paths.

Furthermore, the calculated crack opening direction explains the difference in crack
opening paths obtained in the experiments of Walraven [54] and Millard [27].

The maximum particle diameter used by Walraven and by Millard was 16 mm and 10
mm respectively. If allowance is made for the particle diameter, the crack opening paths
can be calculated, see Fig. 4.39. These correspond well to the experimental results.
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15
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crack width & (mml crack width 6 (mml

Fig. 4.38. Theoretical and experimental crack Fig. 4.39. The crack opening paths for

opening path for reinforced specimens [54]. different maximum particle diameters
according to the two-phase model.

However, it appeared from the test results that the aggregate interlock mechanism
provides a prediction of the crack opening direction for constant shear stress contribu-
tion only. For the phase in which there is an increasing contribution of the aggregate
interlock to the shear transfer, the plastic hinge in the reinforcing bars is still develo-
ping. Therefore, the bars will also influence the crack opening direction. To account for
this influence, the deformation of the bar due to the dowel force is roughly approxima-

ted by:
‘/5
5= é‘f&(an—ano)o-w [mm] (4.28)

0, = initial crack width

with

Applying equation (4.28) provides combinations of the crack displacements. The
contribution of the aggregate interlock mechanism to the shear transfer can now be
calculated according to the two-phase model.

At the onset of a decrease in shear stress, the crack opening direction is fully deter-
mined by the aggregate interlock mechanism, as is shown in Fig. 4.40a.
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Fig. 4.40. Theoretical and experimental crack opening paths.

During this phase, the equilibrium condition in the bar is determined by the axial steel
force. The bar itself does not influence the crack opening path, due to the plastic hinge,
which is now fully developed. In the plastic hinge any combination of the axial bar force
and the dowel force according to equation (4.21) is possible.

Fig. 4.40b-d presents a comparison of the calculated crack opening paths with opening
paths experimentally obtained by Millard [27], Mattock [23] and Walraven [54].
There is reasonable agreement between the calculated and experimental crack opening
paths. During the phase of increasing shear stress the contribution of the dowel action
mechanism to the shear transfer also increases.

An empirical relation is given by:

— =<1 (4.29)

with

0. = maximum slip occurring during the elastic deformation
=1.31-1078"(f .o fy) " [mm] (4.30)

For a large crack width, equation (4.30) decreases in importance in proportion to the
crack width.

Here, the crack opening path can be described according to the transfer mechanisms.
However, the bars crossing the crack plane restrain the crack opening due to normal
stress caused by the mechanism of aggregate interlock. For increasing crack displace-
ment this normal stress can become so high that the restraining force in the bars is equal
to the yield force. A further increase in crack displacements should fulfill the equi-
librium condition according to Fig. 4.37. Therefore, it was expected that the crack open-
ing direction would now be determined by a constant contribution of the aggregate
interlock mechanism to the normal stress. However, it was found experimentally [54]
that the crack opening path was hardly affected by the yielding of the bars. This can be
easily explained by Walraven’s two-phase model.

Where yielding of the bars occurs, the increase in crack width exceeds the increase in
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shear slip, thus causing a dramatic decrease in the magnitude of the contact areas. In
consequence, the normal stress decreases and reaches equilibrium with the yield
strength in the bars. Due to the decrease in contact areas the shear stress also decreases.
According to the two-phase model this decrease is less pronounced than the decrease
of normal stress.

However, to provide an easy calculation method, the reduction in shear stress is related
to the decrease in normal stress.

This yields:

_Jy_ofy
s (4.31)

Now, the combined mechanism will be shown by means of an example of Walraven’s
test specimen No. 110208t. For this test, the cube compressive strength was 35.9 MPa.
The maximum particle diameter was 16 mm.

The steel yield strength was equal to 360 MPa.

Four 8 mm bars were used, corresponding to a reinforcement ratio of 0.0056. The
externally measured shear stress consists of the contributions of dowel action and
aggregate interlock according to:

Ya

Teal = YaTa + YdTd (4.32a)
Ocal = Va0Oa (4.32b)
with

1, = according to equation (4.1a), g, according to equation (4.1b)
y, = according to equation (4.31)

74 =according to equation (4.20b) (Fy/shear area)

y4 = according to equation (4.21)

The theoretical crack opening path is calculated according to equation (4.29) and
according to Fig. 4.4 where 7, is equal to 3.8 MPa. The theoretical results are in reason-
able agreement with the experimental results. This holds true for both the crack open-
ing path and the shear stress-crack width relation. Both relations are shown in Fig.
4.41a-b. Fig. 4.41 presents the comparison between a few experimental and calculated
Vresults. The calculations for these tests are carried out in the same way as has been done
for specimen No. 110208t. The agreement between the calculated and experimental
results is quite satisfactory.

In the case of the cyclic loads, the crack opening path or the normal stress-crack width
relation must be input in the calculation. Unfortunately, contrary to the static crack
opening path, the crack opening direction in a cyclic shear loading experiment cannot
be determined without exactly knowing the normal stress-crack width relation. The
normal stress was, however, not recorded during the tests reported in the literature.
In order to obtain information on this normal restraint stiffness for reinforced concrete,
some additional tests were performed with bars prepared with a bolt gauge situated in
the crack plane, see Chapter 3.
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Fig. 4.41.
It was found that that the normal stress can be approximately related to the crack width;
see Fig. 4.42:
(4.33)

0, = agQ fsy(‘sn - 5[1,0) (MPa)

with
a=0.25 (mm™") for “low-intensity high cycle fatigue”

a =——=>0.25 for “high-intensity low cycle” fatigue

n+
n = number of cycles (fully reversed)

normal stress op

feem = 50 MPa
*8

crack width Gn
Fig. 4.42. The relation between normal stress and crack width during cycling [11].
The normal stiffness according to equation (4.33) was applied to the tests of Jimenez

et al. [20].
The cylinder compressive strength of the concrete used was approximately 23 MPa, the

steel yield strength was 455 MPa. In test No. S the initial axial steel stress was 331 MPa
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The specimen was reinforced by means of four 22 mm diameter bars (¢ = 1.08%). The
experimentally obtained and the calculated response for cycle number 15 is shown in
Fig. 4.43. The calculated response is in reasonable agreement with the experimental
result, although the calculated response is a little bit too soft. The end-displacements in
each cycle are satisfactorily predicted. The load was fully reversed, but only the
response in the positive direction is shown. The crack response in the opposite direction
might be slightly different due to the position of the bars with respect to the casting
direction.

Because of this, the bars may have a different support of the concrete in both directions.
The calculation yielded information about the contributions of both transfer mech-
anisms to the externally applied load. The contributions of both mechanisms were
found to remain nearly constant during cycling.
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Fig. 4.43. Test No. 5 of Jimenez [20] compared with the proposed model.
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Fig. 4.44. Test No. 5 with different displacement increments.
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For this experiment the aggregate interlock mechanism transfers approximately two-
thirds of the total shear load. The sensitivity of the model was investigated by perform-
ing the same calculation with two different displacement increments. The results are
shown in Fig. 4.44. The differences between both calculations are in fact negligible.
The combined model proposed in this Section can of course be applied to the case of
“low-intensity high-cycle” fatigue. Experiments of this type are described in Chapter 3.
The experimentally obtained crack displacements must, however, be larger than the
smallest displacements which can accurately be predicted by the model. Therefore,
some cycles approaching shear failure are simulated so as to ensure a sufficient increase
in the crack displacements in each cycle. Again, the normal restraint stiffness according
to equation (4.33) was used in the calculation.

The cycles 640 and 1620 of test No. A/6H/.66/7.9/.03 are considered (page 57, [33]), see
Fig. 4.45. The maximum repeated shear stress applied during cycling was 7.9 MPa. The
cube compressive strength was 48.0 MPa. The crack plane was reinforced by means of
twelve 8 mm diameter bars with a yield strength of 550 MPa. For the cycles considered,
the shear displacement largely exceeds the shear displacement for which the ultimate
dowel strength is obtained for a monotonic increasing shear load.

Therefore, it is expected that a large plastic deformation has occurred in the plastic
hinges in the reinforcing bars. For the calculation process this plastic deformation is
accounted for by applying the static dowel action model to the measured shear displace-
ment at zero stress according to Fig. 4.36. Furthermore, the measured crack width at
zero stress was input into the calculation. The theoretical results are also presented in
Fig. 4.45, showing a reasonable agreement with the results obtained experimentally.
Because of the large contribution of the dowels to the transfer of shear stress, restitution
of the shear slip during unloading starts at 75% of the shear load, as is predicted by the
dowel action model.

For tests of this type, in which the contribution of the dowel mechanism to the shear
transfer is equal to its ultimate value, an interesting scenario for the tests can be found.
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Fig. 4.45. Test No. A/6H/.66/7.9/.03 compared with the proposed model [33].
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During the first few cycles the mechanism of aggregate interlock transfers the dif-
ference between the applied shear stress and the ultimate dowel stress.

The combination of the end-displacements in these cycles will be determined by the
matrix strength and the maximum particle size according to Fig. 4.4. In view of the fact
that the contribution of aggregate interlock to the shear stress transfer remains constant
during cycling, it can be expected that the crack opening path is determined by a
constant ratio of 7, to ay,.

On the bésis of this assumption it can be easily checked whether the tests described in
Chapter 3 are in agreement with the proposed model. For all the tests, the crack opening
path should follow the theoretical opening path for a constant ratio (r, — rpu)/ Opy- In
Fig. 4.46 a few typical test results are compared with this assumption. It was found that
for a total of 42 repeated loading tests, 16 experimental crack opening paths are in close
agreement with the theoretical opening path. There is reasonable agreement for three
tests, while the difference between the result of six tests and the model can easily be
explained. In 12 experiments the measured displacements were too small to draw any
conclusions.

shear displacement §; [mm] shear displacement &y [mm]

1.00 7 1.00

/ /,

/ /,

0.75 0.75 4
P /
exp model 7
T exp
model
050 0.50
I /
/ v
/
/ /’
0.25 7 0.25
Y
// //
2
/
0 0
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a. Test No. A/6H/.66/7.9/.03 b. Test No. A/LH/.78/8.01.04

Fig. 4.46. The experimental crack opening path compared with the opening path according to
the model.

In consequence, only five measured crack opening paths showed large deviations from
the theoretical crack opening paths. From these results it can be concluded that also in
the case of “high-cycle” repeated shear loading the crack opening direction is deter-
mined by a constant ratio between 7, and the matrix strength ay,.

4.5 Concluding remarks

Shear stress transfer in cracked reinforced concrete depends upon the aggregate inter-
lock mechanism and dowel action. The interaction between both mechanisms is deter-
mined by the equilibrium of forces normal to the crack plane. The static crack opening
path is initially determined by the bar deformation until the plastic hinges in the bar
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have been fully developed. Subsequently, the crack opening direction is related to a
constant contribution of the aggregate interlock mechanism to the shear transfer. In the
case of cyclic loads it was found that the model as developed, predicts a constant ratio
between the shear stress transferred by aggregate interlock and the dowel stress.
Furthermore, it was found that in the case of plain concrete the load history can be
accounted for by the end-displacements of the crack in the previous load cycle. The
simple quasi-static calculation according to the reduced contact model for the aggre-
gate interlock mechanism provides good predictions of the crack response during
cycling. However, a simplified model cannot be used as general as the original two-
phase model.

5 Further interpretations
5.1 Introduction

This chapter deals with some aspects of the models developed. First, the case of
inclined bars subjected to static shear loading is discussed.

Second the measured steel stress in the reinforced specimens is analyzed using the
model for aggregate interlock and dowel action.

Finally, the cyclic tests on plain concrete are evaluated.

5.2 Inclined reinforcing bars

Fig. 5.1 represents a bar with an angle of inclination to the crack plane. The bar is
subjected to a load F,, parallel to the crack plane. According to Vintzeleou [46], the
concrete reaction force is provided by a layer of concrete with a depth equal to twice the
bar diameter. For small bar inclinations the concrete supporting the bar in the vicinity
of the crack plane has a depth which is much less than twice the bar diameter. Apart
from that, inclined cracking can occur in the concrete.

In consequence, the ultimate dowel force will be less than the dowel resistance in the
case of a bar perpendicular to the crack plane. The actual stress distribution in the
concrete is not accurately known, so that the influence of the angle of inclination upon
the concrete’s response to a lateral bar displacement must be roughly estimated.
To account for this influence, the dowel resistance is related to the inclination accord-
ing to:

Fyu = Fyy 90 sin (6) 5.1

In consequence the externally measured force is equal to Fyu90- Furthermore, the dowel
force in the crack has an eccentricity e to the concrete. This eccentricity is equal to:

e=0.5¢ cotan (6) + 0.56,/sin (#) = approx. 0.5¢ cotan () (5.2)

This eccentricity can now be inserted in equation (4.20b).

61



inclined crack ‘Er_\‘ 1.0 FeX‘/FdU-L °
- sir;z(el
5 —— model
) © exp. Dulacska °
N
0.5
Fext. 4
7&\
PR
DR
00° 45° 90°
angle of inclination © [degrees]
Fig. 5.1. Bar with a small angle of Fig. 5.2. Dowel strength related to
inclination. angle of inclination.

The result is shown in Fig. 5.2 for the ratio f;,/fecm Which is equal to 10. The dowel force
is taken as being proportional to the dowel force for a bar perpendicular to the crack
plane with zero-eccentricity. It is shown that for the range of investigated by Dulacska
[8], equation (5.2) provides a reasonable prediction of the experimental results.
Equation (5.2) isin close agreement with the reduction according to sin? (6) as proposed
by Mattock [22]. It can be concluded that the influence of small inclinations can be
taken into account in equation (4.20b) with an additional eccentricity and by multi-
plying the resulting dowel force by sin (6). In the case of a large angle of inclination the
additional eccentricity has a negative sign.

It can be expected that the response of the concrete lateral bar displacements is stiffer
than for the bars perpendicularly crossing the crack plane. However, since this increase
is limited to the concrete close to the crack plane, the increase in stiffness is less
pronounced than the decrease in stiffness for small angles of inclination. The minor
increase of concrete stiffness will be disregarded here. Again, the dowel force can be
determined with equation (4.20b).

5.3  Measured axial steel stress

In Chapter 3 some additional detailed push-off tests are described, in which the steel
strain was recorded using bolt gauges.

In theory, the bolt gauges, which were in the neutral axis of the bare bar, reflected the
strain due to the equilibrium with the normal stress caused by aggregate interlock,
However, according to the model of dowel action, the neutral axis was shifted to the
supported side of the bar. As a result, the ends of the strain gauges were situated in
regions in the bar which were highly strained. According to the model, the plastic
hinges are situated rather close to the crack plane, so that the ends of the gauge nearly
reached the yield strain. Thus, the average recorded strain according to the model will
be considerably larger than is necessary to achieve equilibrium with the normal force
due to aggregate interlock. Indeed, this phenomena was observed in the experiments.
Taking into account the yield strength at the ends of the gauge, the average normal
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Fig. 5.3. Normal stress versus crack width for test D1 [11].

stress according to the model agrees reasonably with the experimental results, see
Fig. 5.3.

5.4 Analysis of the plain concrete tests

For the test series on cracked plain concrete described in Section 3.3, no straightforward
relationship was obtained between the stress level, the number of cycles and the crack
displacements. Generally, the crack response was initially stiffer than could be expect-
ed on the basis of the two-phase model. This phenomenon is probably due to the
relatively high initial normal stress, which was used in this test series. During cracking
of the concrete prior to the actual push-off test, some matrix material and small
particles will be completely torn out of the crack faces, as is shown theoretically by
Termonia and Meakin [41]. Due to this material the crack cannot be re-closed to its
original value. This rubble transfers the initial normal stress and is thereby pushed into
the crack faces. A subsequent shear sliding will force this rubble to act like stiff struts
transferring both normal and shear stresses. Five different stages can be distinguished.
Initially, the struts only transfer normal stress, see Fig. 5.4a. A shear displacement will
cause a rotation of these struts. In consequence, the struts provide a positive contribu-

. 7 Vi ;

. 7 7 o

P S 5 4

z e/ Z Wi
5n 6n bn 6n
a. No slip b, Stiff response. c. Strut transfers d. Negative shear

no shear stress stress contribution

—— experimental ——— acc. to aggr int for Ty —-+— acc to aggrint. for Uexp

Fig. 5.4. The strut mechanism due to the initial normal stress.
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tion to the transfer of shear stresses and determine the crack opening direction, see
Fig. 5.4b. Simultaneously, the transfer of stresses due to aggregate interlock increases.
For a given shear displacement the average orientation of the struts is perpendicular to
the crack plane, see Fig. 5.4c. In this case only normal stress is transferred by the struts.
A further increase in the shear displacement will cause a rapidly decreasing negative
contribution of the struts to the shear transfer. A steep crack opening path is then
obtained, see Fig. 5.4d.

Finally, the normal stress due to aggregate interlock is in equilibrium with the exter-
nally applied normal stress. The struts now become inactive, like in the case of a very
low initial normal stress.

However, the crack opening direction is already determined by the struts. According to
the two-phase model, a less steep crack opening direction will cause a sharp decrease in
the shear stress transferred by the crack plane. Therefore, the steep crack opening path
is followed despite the inactivity of the struts.

6 Conclusions

The transfer of the static and cyclic in-plane shear stresses in cracked reinforced
concrete panels depends upon the combined mechanism of aggregate interlock and
dowel action. The interaction between both these transfer mechanisms is caused by the
equilibrium condition normal to the crack plane.

Experimental results as well as theoretical considerations lead to the conclusion that
bond characteristics of embedded bars determined in an axial pull-out test cannot be
applied to the case of shear sliding. The lack of experimental and theoretical knowledge
about the proper bond characteristics is a major problem in describing the dowel action
mechanism.

An important conclusion is that in this case of plain cracked concrete the load history is
fully incorporated in the end crack displacements of the previous cycle.

For the stress levels investigated, no decrease in matrix strength was found. Further
study is, however, necessary in this field. First, only one stress ratio was investigated.
Second, a constant loading frequency was used in the test series.

Both parameters are expected to have a major influence on the stiffness degradation of
the crack due to cycling. The cyclic aggregate interlock model is a highly simplified
representation of the physical reality. This model is, however, applicable to a wide ran-
ge of tests. The dowel action model for cyclic loads is partially based upon empirical
relations, thus limiting its application.

Under special circumstances the dowel action mechanism can provide an important
contribution to the shear transfer in cracked reinforced concrete. In most cases, how-
ever, the direction of the principal stress after cracking deviates only slightly from its
direction during cracking. Then, the dowel action mechanism is of minor importance
due to the relatively high axial steel stress.
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7 Notation

a, b

2

Ao N T ok x>

>

N

<

T QO
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,,,,,

numerical constants

projected contact area in x-direction [mm?]
projected contact area in y-direction [mm?]
eccentricity [mm)]

cylindrical concrete crushing strength [MPa]
cube concrete crushing strength [MPa]
steel yield strength [MPa]

element size [mm)]

numerical constant

number of cycles

number of cycles till failure

volume of the particles/total volume
radius [mm]

length [mm)]

direction in the two-dimensional space
direction in the two-dimensional space
distance to neutral axis [mm]
cross-sectional area [mm?]

total projected contact area in x-direction [mm?]
total projected contact area in y-direction [mm?]
numerical constant

maximum particle diameter [mm]

specific particle diameter [mm]

modulus of elasticity of concrete [MPa]
modulus of elasticity of steel [MPa]

dowel force [kN]

ultimate dowel force [kN]

shear modulus [MPa]

moment of inertia [mm®]

numerical constant

dowel stiffness [N/mm]

foundation modulus of concrete [MPa/mm]

length [mm)]

ultimate bending moment [Nm]

numerical constant

angle of inclination

retention factor of the stresses due to aggregate interlock
retention factor of the stresses due to dowel action
retention factor of the dowel stiffness

shear displacement [mm)]

residual shear displacement [mm]
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10.

66

maximum shear displacement [mm]
shear displacement due to elastic deformation [mm]
crack width [mm)]

numerical constant

, Tretention factors of the contact areas
coefficient of friction
reinforcement ratio
normal stress [MPa]
normal stress due to aggregate interlock [MPa]
normal stress due to dowel action [MPa]
steel stress [MPa]
strength of material [MPa]
normal stress acting upon the crack plane [MPa]
shear stress due to aggregate interlock [MPa]
bond stress [MPa]
shear stress due to dowel action [MPa]
minimum applied shear stress [MPa]
maximum applied shear stress [MPa]
shear strength [MPa]
angle of inclination
bar diameter [mm]
angle of friction

0
Ono initial crack width [mm]
&
A

..
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APPENDIX 1

Mix proportions

Mix code B1632550 strength f/,=51 N/mm? (mix A)

sieve analysis of aggregate

sieve opening

components [keg/m?] [mm] [kg]
sand 877.2 8 -16 623.7
gravel 1065.0 4 -8 441.3
cement-B 325.0 2 -4 312.1
1 -2 220.9
water 162.5 0.5 -1 156.2
- 0.25- 0.5 110.3
2429.7 0.10- 0.25 71.7
1942.2
Mix code B1642037.5 strength £/, =70 N/mm? (mix B)
sieve analysis of aggregate
sieve opening
components [kg/m?] [mm] [kg]
sand 857.3 8 -16 596.5
gravel 1018.5 4 -8 421.9
cement-B 420.0 2 -4 298.3
water 147.0 1 -2 212.0
superpl. 212% 10.5 05 -1.0 148.6
o 0.25- 0.50 105.0
2453.3 0.10- 0.25 935
1875.8

Sieve analysis of aggregate [cum.%)]

mix A mix B Fuller sieve opening [mm]
100.0 100.0 100.0 8 -16
67.9 68.2 70.7 4 -8
452 45.7 50.0 2 -4
29.1 29.8 35.4 1 -2
17.7 18.5 25.0 05 -1
9.7 10.6 17.7 0.25- 0.5
4.0 5.0 12.5 0.1 - 0.25
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APPENDIX II

Experimental results

Table 3.1. Test results of mix A

failure

Seem T, T No. of during

code [N/mm?] [N/mm?] [N/mm?] To/Tu cycles cycling
A/4L/.61/6.1/.03 54.47 10.00 6.1 610 455000 no
A/4L/.63/6.0/.06 50.20 9.47 6.0 634 263337 no
A/4H/.64/7.0/.06 54.30 10.97 7.0 .638 368000 no
A/4L/.65/6.0/.01 46.83 9.29 6.0 .646 34000 no
A/4H/.66/6.9/.02 50.99 10.50 6.9 657 550000 no
A/41/.70/7.0/.01 54.49 10.00 7.0 .700 2410 no
A/4L/.73/7.2/.05 53.70 9.90 7.2 127 14000 yes
A/4L /.74/7.0/.01 49.85 9.42 7.0 743 435 no
A/4L/.76/7.0/.02 48.20 9.20 7.0 761 5925 yes
A/4H/.76/7.7/.03 48.50 10.15 7.7 7159 4762 yes
A/4L/.77/7.2/.04 49.48 9.38 7.2 .768 1785 yes
A/4H/.78/8.0/.04 49.30 10.26 8.0 .780 5198 yes
A/4L/.79/8.6/.02 53.47 10.86 8.6 792 895 yes
A/4L/.80/7.3/.03 47.20 9.09 7.3 .803 1192 yes
A/4L/.80/7.5/.05 49.60 9.39 7.5 799 299450 yes
A/4L/.82/7.4/.05 46.43 8.99 7.4 823 996 yes
A/4L/.90/9.0/.05 54.50 10.00 9.0 .900 118 yes
A/6L/.51/6.0/.04 51.37 11.89 6.0 505 508000 no
A/6L/.56/6.7/.05 51.41 11.90 6.7 .563 386000 yes
A/6L/.58/6.8/.01 50.40 11.73 6.8 578 194000 no
A/6L/.61/7.2/.04 51.30 11.88 7.2 .606 160300 no
A/6L/.62/8.0/.04 57.30 12.89 8.0 621 410781 no
A/6H/.66/7.9/.03 45.10 11.84 7.9 663 1750 yes
A/6L/.66/8.6/.02 58.60 13.10 8.6 .656 40722 yes
A/6L/.67/8.2/.08 53.20 12.20 8.2 672 21000 yes
A/6L/.68/8.0/.03 51.04 11.83 8.0 676 1000 yes
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Table 3.2. Test results of mix B

failure

Seem 7, T No. of during
code [N/mm?] [N/mm?] [N/mm?] T/ Tu cycles cycling
B/4L/.57/7.0/.03 73.54 12.27 7.0 570 665000 no
B/41/.59/7.0/.20 69.90 11.85 7.0 .591 1331 yes
B/4L/.60/7.0/.06 69.46 11.74 7.0 .596 512660 no
B/4L/.60/7.4/.08 73.54 12.27 7.4 .603 82500 yes
B/4L/.61/7.3/.04  70.80 11.95 7.3 611 23500 yes
B/4H/.61/8.5/.04 75.34 13.89 8.5 612 355716 no
B/4L/.63/7.3/.04 67.89 11.61 7.3 .629 931731 yes
B/4L /.65/8.0/.07 73.47 12.26 8.0 .653 62000 yes
B/4H/.66/9.0/.04 74.00 13.69 9.0 657 2224 yes
B/4L/.75/8.4/.05 65.10 11.28 8.4 745 219029 yes
B/4L/.79/8.8/.08 63.88 11.11 8.8 7192 1150 yes
B/4L/.81/9.1/.04 64.70 11.23 9.1 .810 1441 yes
B/6L/.46/6.9/.04 70.70 15.11 6.9 457 550000 no
B/6L/.52/7.9/.02 71.70 15.26 7.9 518 290000 no
B/6L/.53/8.0/.06 71.40 15.21 8.0 .526 250000 no
B/6L/.56/8.9/.02 75.10 15.81 8.9 .563 325900 no
Table 3.3.  Comparison of the theoretical and the experimental static shear strength

Tu Tu,lh

code [N/mm?] [N/mm?] Tu/Tuin
A/4L/.61/6.1/.03 10.00 10.17 0.98
A/4L/.63/6.0/.06 9.47 10.10 0.94
A/4H/.64/7.0/.06 10.97 11.77 0.93
A/4H/.66/6.9/.02 10.50 12.44 0.84
A/6L/.51/6.0/.04 11.89 12.10 0.98
A/6L/.58/6.8/.01 11.73 11.21 1.05
A/6L/.61/7.2/.04 11.88 12.30 0.97
A/6L/.62/8.0/.04 12.89 12.48 1.03
B/4L/.60/7.0/.06 11.74 10.60 1.11
B/4H/.61/8.5/.04 13.89 12.66 1.10
B/6L/.46/6.9/.04 15.11 13.50 1.12
B/6L/.52/7.9/.02 15.26 14.27 1.07
B/6L/.56/8.9/.02 15.81 15.99 0.99

average ratio=1.01, s=0.08
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Table 3.4. Experimental results of plain concrete specimens

failure

Seem ) T No. of during

code [N/mm?] [N/mm?] [N/mm?] cycles cycling
A/1.3/4.0/.12 51.53 1.30 4.0 30800 yes
A/1.2/5.0/.01 52.06 1.22 5.0 20326 no
A/1.3/5.0/.01 54.60 1.27 5.0 3080 yes
A/1.9/5.0/.19 48.40 1.90 5.0 9756 yes
A/0.8/5.5/.01 49.56 0.80 5.5 1520 yes
A/2.1/6.1/.01 54.53 2.14 6.1 8640 yes
A/1.3/6.2/.01 48.09 1.34 6.2 283549 yes
A/1.3/6.2/.02 52.57 1.26 6.2 3120 yes
B/1.1/5.0/.04 71.64 1.07 5.0 254369 no
B/1.2/5.6/.01 68.36 1.15 5.6 89500 no
B/1.0/6.2/.04 72.25 0.99 6.0 2736 yes
B/2.0/6.5/.01 69.14 2.02 6.5 343 yes
B/3.6/6.9/.19 70.20 3.58 6.9 82378 no
B/1.5/7.7/.01 67.54 1.99 7.7 3970 yes
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