Heron’s Fountain

A feature appearing from time to time, when
the occasion allows the presentation of ideas
with surprising elements, which may have
something in common with the playful inven-
tions of Heron of Alexandria, after whom this
journal is named.

What shoulder, and what art

by I. M. MORTELHAND

The buckling problem has been studied since structural analysis was in its infancy [1].
Petrus van Musschenbroek published experimental results in 1729 which tended to
show that the critical load for a compressed column is inversely proportional to the
square of the column length. Work by Leonard Euler in 1744 and 1759 provided a
theoretical basis in the form of an expression for what is now generally known as the
Euler load:
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The notation EI was not used at first, since the bending stiffness was considered as a
single quantity. Later contributions have clarified how it can be factorized into the
modulus of elasticity and the purely geometrical quantity I which depends on the shape
of the cross-section. On the other hand it was soon pointed out that linear-elastic behav-
iour, as implied by the use of E, is hardly certain for materials used in construction. If
the material involved passes through a linear-elastic stage for low stresses, there still
remains a range of valldlty, albeit restricted, for Euler’s formula. In this context it is
usually cast in another, more appropriate form:
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Buckling occurs at a low stress level for high values of A, the slenderness ratio. The
emergence of this insight prompted analysts to make the now familiar distinction
between slender columns, for which Euler’s formula is considered to be valid, and short
columns, for which non-linear material behaviour comes into play. Hence attempts
were made to establish buckling curves for several types of material. A buckling curve is
a diagram that shows the dependence of the critical stress on the slenderness ratio. Its
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general appearance is somewhat like a shoulder (see Fig. 1); this fact and a source of
poetical inspiration [2] provided the title of the present article.

Its focus of attention will be one detail of the curve, the shoulder joint so to speak: the
transition betwsen the parts that refer to short and slender columns respectively. First
however, the brief historical review is resumed.

Many proposals for buckling curves were based on a number of tests, augmented by
some artfulness on the part of the researcher. If he thought a smooth curve for all
columns was the most reasonable form, he would draw the part for short columns in
such a way that it arrived tangentially at the junction with the Euler curve. Others
thought differently and drew an angular transition.

From the theoretical side the concept of the tangent modulus was introduced to provide
a rational basis for tracing the curve. According to this theory, the answer as to whether
the junction is smooth or angular could be derived from precise knowledge about the
stress-strain relationship of the material involved. As long, however, as materials with
erratic behaviour were used, the matter was to remain in doubt.

Developments in foundry practice during the latter half of the 19th century (Bessemer-
Thomas and Siemens-Martin processes) provided more control over the properties of
materials derived from iron ore. The demands of the structural profession were met by
ductile steel. It yields at a certain stress level, a property which is deemed desirable
because the yield stress is maintained throughout fairly large deformations. Simple yet
trustworthy calculation methods for ductile steel structures (simple because only the
final plastic stage was taken into account) met with much success from the beginning of
the 20th century onwards.

Another remarkable property of ductile steel is that the linear-elastic stage seems to
continue until the yield stress is reached. Its the tangent modulus theory could be relied
on, the buckling curve would also be of the simplest kind imaginable. It would consist
only of a straight line and the Euler curve, meeting at an angle. The straight line would
be horizontal, because the yield stress would be the limit for short columns.
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Fig. 1. Various types of shoulders.
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Experimental results do not support this simple view at all; especially in the neighbour-
hood of the transition the observed buckling stress is appreciably lower than would be
expected. The tangent modulus theory appears not to hold even for the simplest of
materials, so one wonders how much credence it deserves in more complicated situa-
tions. Still, textbooks continue to treat the tangent modulus theory with deference,
possibly because in the late 19th and early 20th century it was developed by persons
justly renowned for other achievements.
In contrast a much more realistic approach to the buckling problem, also dating from
the 19th century, long dwelt in undeserved obscurity. Even now several sources must be
consulted in order to trace the development of the idea that imperfections should be
taken into account. In [1] due credit is given to the very early contribution (1807) by
Thomas Young. He considered both the case of a column with a slight initial curvature
and the case of a straight column with an eccentric force in the direction of the axis, and
gave the correct solution for each. The possible application to design did not receive
attention for half a century. The first proposal of this kind was published in 1858 by
Scheffler. Its description in [1] is unfortunately brief; even the title of the publication is
rendered incompletely. Another article, published in 1886 by Ayrton and Perry [3], is
not even mentioned. In fact only the name of the second author was remembered when
in 1925 the thread was picked up again by Robertson [4]. For some reason or other
Ayrton was left to starve on an uninhabited island.
For ease of calculation authors generally took a sine curve as the form of the axis; other
cases can be dealt with approximately by taking the first term of a Fourier series as a
representation of the true form. The case of eccentric loading with equal eccentricity at
both ends can also be treated in this way, the amplitude of the representative sine curve
being taken as 4/n times the eccentricity.
Although the names of the pioneers are almost forgotten, their formula is now very well
known. Derived by applying an amplification factor to the bending moment in the mid-
section, then combining the average compressive stress ¢ with the bending stress to
determine when yielding begins in the farthest outlying fibre, it takes the following
form after some algebraic manipulation:

(0,— 0)(o — 0) = % oo (4)

Here w, denotes the amplitude of the sine curve that describes the form of the column
axis and Z is the section modulus; other symbols have been used earlier. The values of
A, Z and g, are known for a given cross-section and material; furthermore oy can be
derived from E and the slenderness ratio, which is the independent variable of the
buckling curve. The imperfection amplitude w, is estimated with some support of
measurements, but it remains the most uncertain of the quantities. In the ideal case of
the perfectly straight column the right-hand side of the formula becomes zero, leading
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us back to the diagram consisting of a straight line and the Euler curve. This is now
considered as an upper bound, the ideal as opposed to reality beset with imperfection.
Taking a value of the amplitude w, different from zero, we can still easily solve (4) as a
quadratic equation for the average compressive stress. The lowest of the two roots is the
desired result. It serves as the dependent variable when the whole range of the slender-
ness ratio is explored; of course the imperfection amplitude may also vary across this
range. In view of the earlier considerations it-is remarkable that just one equation gives
the whole of the curve: there is no natural separation between parts that describe short
and slender columns. By way of illustration, in Fig. 2 the diagram has been drawn for
Awo|Z equal to 0.12/A*, which corresponds roughly to wy=1//2000, a rather small
imperfection. The diagram is actually nearer to the upper bound than a realistic buck-
ling curve should be, but it brings out a salient point. The influence of the imperfection
is obviously much larger at the transition than for either low or high values of the
slenderness ratio. This observation, combined with the assumption that 4w,/Z is a
small number, may now be exploited in order to derive useful approximations for the
various cases.
For fairly short columns ¢ and o, are nearly equal and both are small when compared
with o; this allows the following approximations of equation (4) and its solution:
Aw,y Awy

Oy—0=—>"0y and a=ay(1—7) (4a)
Conversely, for fairly slender columns ¢ and og are nearly equal and both are small
when compared with og; this time different approximations of equation (1) and its
solution are possible:

oy(aE—a):% ot and o=o0g (1—%~Z—j) (4b)
Comparison of (4a) and (4b) shows that the relative shortfall (difference of the buckling
stress with the upper bound, divided by the bound itself) is directly proportional to the

A
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Fig. 2. The influence of the imperfection —Z = 0.1 I

118



imperfection amplitude in either case. But whereas in (4a) this is the sole factor, in (4b)
the relative shortfall is also proportional to o and therefore inversely proportional to
the square of the slenderness ratio. By a fortuitous coincidence (4a) and (4b) give the
same result at the transition where oy = gy, setting a trap for the unwary (see Fig. 2).
One might be tempted to make the naive assumption that (4a) and (4b) together con-
stitute a good approximation to the buckling curve across the whole range of the
slenderness ratio. The truth is rather different.

Some care must be exercised in seeking a reliable approximation for the intermediate
case. First the left-hand side of (4) is rewritten as {g — (a, + o)}’ — (0, — o§)*. Since it
provides the definition of A* the relation og = g, holds exactly at the transition and
approximately in its neighbourhood, and we may neglect the second term. For the
right-hand side of equation (4) we use the approximation that ogo ~}(a, + og)’. This
can be justified by the fact that the right hand term is small. The result of these manipu-
lations is:

A + A
o =40, + o) == oy + o) or a:f’!—;‘fﬁ(l—]/—;-‘-’ﬂ) (4c)

On substituting Awy/Z = 0.14/1%, as before, we arrive at:

A< d* o=0,(1—0.14/4% (52)
A= g =5L;ﬂ (1 —y/0.12/7%) (5b)
A% o=op(1—0.14%/2) (5¢)

The occurrence of a square root in (5b) explains how a small imperfection can have a
disproportionate influence in the transition zone. For example, with 4Awy/Z =0.1 at
A=2* the approximation gives 0.316 for the relative shortfall of /o, (exact 0.27, see
Fig. 2).

A peak in the shortfall is to be expected, since it bridges the gap between the smooth
buckling curve and the upper bound diagram consisting of a curve and a straight line
meeting at an angle. Even if the imperfection would be imperceptibly small, the buck-
ling curve would still have a slightly rounded corner.

About two decades ago the ECCS (European Convention for Constructional Steel-
work) carried out an extensive testing program on columns of various types with much
theoretical work in its wake [5], that paved the way for a rational approach to the buck-
ling problem in European codes. With the purpose of obtaining realistic buckling
values, the columns were tested in the form they would have in constructional work;
no attempt was made to remove imperfections. The accompanying theoretical studies
gave attention to geometrical imperfections, residual stresses and redistribution of
stresses in the elastoplastic stage. These aspects will not be gone into here, except to
note that redistribution has a favourable effect mainly for short columns, that residual
stresses depend strongly on the shape of the cross-section and the method of fabrication
(their influence being generally unfavourable, but sometimes slightly favourable), and
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finally that geometrical imperfection increases with the column length, an effect that is
unfavourable for slender columns. For section types with the least influence of residual
stresses, a buckling value of about 0.7g, is found at the transition (as in the example of
the present article), but lower values of 0.5g, or 0.4, are possible.

A recent trend in the formulation of codes is to make some kind of reference, however
indirectly, to probabilistic methods. Since imperfections are never intentional, their
influence on the buckling strength of columns is certainly a stochastic phenomenon.
Analysis of this aspect for the test results just mentioned has brought out a complicated
picture. The example of the present article is continued as an academic exercise, in
order to draw attention to another peculiarity of the subject.

Suppose the (geometrical) imperfection amplitude to be a stochastic variable with
a Gaussian probability distribution and let its mean value be zero. Negative values
of the amplitude are not substituted as such in the Young-Scheffler-Ayrton-Perry-
Robertson formula. The bending stress is compressive in the fibres at the inner side of
the bend; its extreme value at this side is to be combined with the average compressive
stress. It comes to the same thing when one always uses | wy|, the absolute value of
the amplitude. The probability distribution is then folded over to the positive side,
giving the following result in terms of a normalized variable (see Fig. 3):

2
o) = \ﬁ e with u>0 / 6)
- >

A probability distribution of type (6), such as we have now assumed for the absolute
value of the amplitude, would also very nearly describe the related distribution for the
shortfall in the buckling strength of fairly short and fairly slender columns. The
approximations (4a) and (4b) for these cases show the shortfall to be nearly proportional
to the amplitude, hence the similarity of the distribution type. This would entail a value
zero for the modal value, i.e. the value with the highest probability density, of the short-
fall. The buckling strength itself would have its modal value at the upper bound; in
experiments many columns would buckle under loads quite near to the theoretically
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Fig. 3. The probability density of the critical stress is zero at the shoulder tip.
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attainable maximum. Remember, this is an academic exercise: for real test results the
effect is obscured beyond recognition by other factors coming into play, e.g. the yield
stress itself is a stochastic variable.

Approximation (4c) shows the shortfall at the transition to be proportional to the square
root of the amplitude. The relevant probability distribution type is obtained when a
transformation v = 1/; is carried out. Since this relation is monotonous (vincreases with
u everywhere), the probabilities associated with an interval du and the transformed
interval dv are the same:

2
@(v) dv=®(u) du and hence @(v)=2v \/: e @)
n

This result typifies the influence of the geometrical imperfection at the transition value
of the slenderness ratio. Comparison of diagrams for the distribution types (6) and (7)
shows a large difference: the latter is much more like a bell curve. The probability
density drops to zero at the boundary; buckling test results will clearly fall short of the
maximum attainable load (see Fig. 3).

Summarizing, the present article endeavours to draw attention to the following points.
When one considers the influence of a small geometrical imperfection on the buckling
strength of ductile-steel elements, the shortfall will be proportionally small for fairly
short and slender columns. At the transition between short and slender columns the
shortfall is much more pronounced, because there it is proportional to the square root
of the imperfection. This result may be combined with probability considerations,
restricted here to an academic exercise in which only the geometrical imperfection is
treated as a stochastic variable. The occurrence of the square root is reflected in the
| probability distribution for the buckling strength at the transition, of which even the
| type differs markr‘édly from that in other places.
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