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EXAMPLES OF NON-LINEAR ANALYSIS OF REINFORCED CONCRETE
STRUCTURES WITH DIANA*

Preface

Under the Marine Technological Research (MaTS) of the Industrial Council for Ocean-
ology (IRO), an extensive research program on Concrete Mechanics has been carried
out. This research was guided by CUR-Committee A 26 “Concrete Mechanics”, of
which the present constitution is as follows: Prof. Ir. B. W. van der Vlugt (chairman),
Ir. A. W. F. Reij (secretary), Prof. Dr. Ir. J. Blaauwendraad, Prof. Ir. A. L. Bouma,
Prof. Dr. Ir. A. S. G. Bruggeling, Dr. Ir. H. J. Grootenboer, Prof. Ir. J. W. Kamerling,
Ir. G. M. A. Kusters, Prof. Ir. H. Lambotte, Prof. Dr.-Ing. G. Mehlhorn, Ir. Th. Monnier,
Prof. Dr.-Ing. H. W. Reinhardt, Prof. Ir. J. Witteveen, Prof. Dr. F. H. Wittmann
(corresponding member), Ir. H. P. J. Vereijken (coordinator CUR), Ir. H. A. van Dijk
(mentor).

In 1986, Ir. H. A. van Dijk and Ir. H. P. J. Vereijken succeeded respectively Ir. W. Steve-
link and Ing. A. C. van Riel.

The main purpose of this study is to narrow the gap between consulting engineers and
the researchers, who are responsible for the development of the numerical program and
the underlying material models. In the present report, eight examples of non-linear
analysis of reinforced concrete structures with the finite element package DIANA are
discussed.

This study has been directed by a working group, in which the following persons
contributed: Ir. J. Saveur (chairman), Prof. Dr. Ir. J. Blaauwendraad, Prof. Dr. Ir. A. S.
G. Bruggeling, Ir. F. F. M. de Graaf, Ir. G. M. A. Kusters, Ir. S. E. van Manen, Ir. Th.
Monnier, Ir. B. J. G. van der Pot, Ir. A. W. F. R¢ij, Prof. Dr.-Ing. H. W. Reinhardt and
Ing. A. C. van Riel.

The analyses were all carried out at the Institute TNO for Building Materials and
Structures (TNO-IBBC) by, Ir. C. R. Braam (example 6), Ir. H. Groeneveld (example 7,
Ir. J. F. Marcelis (examples 2, 3 and 5b), Prof. Chr. Meyer (example 8), Dr. Ir. J. G. M.
van Mier (examples 1, 5a), Ir. J. G. Rots (example 4).

The relevant chapters in this report have been written by the same persons. Dr. Van
Mier wrote the introductory and final chapters, and acted as general Editor. Prof. Meyer
made his contribution during his sabatical leave from Columbia University, NY, USA.
Financial support was provided by the Ministry of Economic Affairs, Rijkswaterstaat
- (a division of the Ministry of Transport and Public Works), TNO-IBBC and the CUR
(Centre for Civil Engineering, Research, Codes and Specifications).

This report is based on CUR/IRO/MaTS report 134 “Betonmechanica - Voorbeelden
van Niet-Lineaire Berekening met DIANA”.

August 1987 Prof. Ir. B. W. van der Vlugt
Chairman of the CUR Committee A 26
“Concrete Mechanics”

* DIANA is a trade mark of TNO-IBBC.






Examples of non-linear analysis of
reinforced concrete structures with DIANA

0 Introduction
0.1 General

The Netherlands Concrete Mechanics project is an on-going cooperative research
program between the Technical Universities of Delft and Eindhoven, the Rijkswater-
staat, a division of the Netherlands Ministry of Transport and Public Works, and the
Institute for Applied Scientific Research on Building Materials and Structures (TNO-
IBBC). The first phase of the project, which ended in 1981, was subdivided into four
sub-projects as indicated in Fig. 0.1. Sub-projects 1, 2 and 4 are related to modelling of
the material behaviour: concrete cracking, bond-slip behaviour between reinforcement
and concrete, and aggregate interlock (i.e. stress transfer in cracks). This investigation
was carried out by “materials scientists”, and the results served as input for sub-project
3, global models. The global models were developed by specialists in numerical model-
ling and applied mechanics, and are used for describing the global (overall) behaviour
of (reinforced) concrete structures.

BASIC GLOBAL
MODELS MODELS
crackzone

EXPERIMENTAL

bond zone VERIFICATION

literature

Fig. 0.1. Concrete Mechanics Project.

The basic principle of the “concrete mechanics project” is to analyse structural behav-
iour of reinforced concrete members by “adding up” effects from cracking, bond-slip
behaviour and aggregate interlock into a numerical scheme which accounts for the
geometry of the structure under consideration. The first phase, mentioned above, was
concerned mainly with the development of material models for use in numerical
models with the restriction of short-term (static) loading. In the second phase, which is
in progress at present, emphasis is placed on off-shore applications (cyclic and sustained
loading).



Three numerical models have been developed: DIANA, a general-purpose finite
element code for the analysis of three-dimensional structures taking into account phys-
ical nonlinear material behaviour (De Borst et al. 1983), MICRO, a numerical model
suitable for analysing two-dimensional and axi-symmetrical structures (Grootenboer
1979), and MACRO, a two-dimensional beam model (Grootenboer et al. 1981).

In the present report, eight examples of non-linear numerical analysis of reinforced
concrete structures with DIANA are shown. The examples include the simulation of
three construction details (tooth structure of the metro viaduct in Rotterdam, a corbel
and a beam-column connection), three global structures (a reinforced concrete panel
(subdivided in two variants, a single-span deep beam and a panel on three supports),
a numericai simulation of a tunnel section, and an analysis of an LNG tank subjected to
a “fire load”), and two dynamic analyses (viz. a beam falling on a shock absorbing
element, and a numerical simulation of an explosion in a tunnel). All simulations are
two-dimensional except for the simulation of the LNG tank, which is treated as an axi-
symmetric problem. Several types of loads are considered, i.e. static loading, fire load-
ing, and dynamic loading. A general introduction on modelling with DIANA is given in
this chapter. Typical problems encountered in the analysis for a certain problem are
discussed separately for that particular example.

In general a choice has to be made as to whether for solving a complex structural
problem an experimental model study is required or whether a non-linear finite
element analysis will suffice. The examples have been chosen in order to demonstrate
the current possibilities of numerical analysis of reinforced concrete structures. The
numerical simulation technique seems to be applicable in certain practical situations,
but it should be mentioned that the analyses should be carried out by experienced
engineers who are familiar with the programs and the underlying material models.
Furthermore, also for research purposes, the numerical models provide a new and
powerful instrument, which, in combination with experiments, may lead to a better
understanding of the behaviour of reinforced concrete structures.

0.2 Modelling with DIANA
0.2.1 General

In a numerical analysis based on finite elements, a structure is divided into a large
number of “elements”, which are interconnected by nodes. The nodes are generally
situated in the corners, but also may appear along the edges (Fig. 0.2). Loads and
supports are specified, and for the system a set of equilibrium and compatibility equa-
tions is set up, which can be solved numerically. Several numerical solution techniques
are available in DIANA, and have been treated extensively by De Borst 1986.
Results are given at so-called integration points, which do not coincide with the nodes.
The element shown in Fig. 0.2 is an eight-noded quadratic iso-parametric (i.e. with
curved boundaries) element with nine-point (Gaussian) numerical integration. This
element has been used in several examples that appear in this report.
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Fig. 0.2. Eight-noded isoparametric element for plane stress analysis.

Material properties are defined for these “concrete” elements, and in contrast to a linear
elastic analysis, where only the Young’s modulus £ and the Poisson’s ratio v have to be
specified, a non-linear analysis will require knowledge of several more parameters.
These parameters and the related material models are discussed shortly in the next sec-
tion. The parameters used in the examples are summarized in four tables.

Reinforcement is modelled as bar elements and the stiffness of the reinforcement is
simply added to the stiffness of the elements in which the bar is “embedded”. When full
bond between reinforcement and concrete is assumed, the reinforcement may be con-
tained within a “concrete” element. In this case, the nodes of the reinforcing bar do not
necessarily coincide with the nodes of the concrete elements. In contrast, when bond-
slip between reinforcement and concrete is modelled, special interface elements are
used which are placed between the “bar-nodes” and the “concrete-nodes”.

0.2.2 Material models in DIANA

The material models that are available in DIANA, and are used in the examples, are dis-
cussed in the following sections. The behaviour of the “material” concrete is modelled
by means of two models: a crack model which is valid for loading combinations in which
at least one tensile component is involved, and a plasticity model for describing the
behaviour of concrete under (multiaxial) compressive stress states. The crack model is
based on a strength criterion, and is valid also in the tension-compression regions. The
crack model is discussed in Section 0.2.2.1 for the special case of direct tension. In Sec-
tion 0.2.2.2 attention is paid to the plasticity model and the strength criteria for failure in
compression and tension.

For the reinforcing steel a plasticity model is used, which is described shortly in Section
0.2.2.3. The model for bond-slip (by means of interface elements between the concrete
and the steel reinforcement) is discussed in Section 0.2.2.4.

0.2.2.1 Crack model for concrete in tension

Direct tension

In Fig. 0.3, a stress-displacement diagram obtained from a direct tension test on a plain
concrete plate is shown.

In a stable displacement controlled experiment it is possible to measure the residual
strength of the specimen after the peak stress has been exceeded (e.g. Reinhardt 1984).
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Fig. 0.3. Stress-displacement (crack width) diagram for plain concrete in direct tension.

While only a single macrocrack develops through the specimen it is customary to define
the results in terms of a stress-displacement (crack width) diagram. The falling branch
beyond the peak is called the softening branch, and the surface under the stress-crack
width diagram is the amount of energy needed for fracturing the specimen, and is called
the fracture energy Gr.

In DIANA, a smeared crack concept is used and the stress-crack width diagram has to
be translated into a stress-crack strain diagram. In this case, a certain length over which
the crack is smeared out, i.e. the crack band width has to be defined.

When a non-linear analysis of an unreinforced concrete structure is carried out, the Gy
concept is used, and the stress-crack strain diagram is schematized to a bilinear diagram
(Fig. 0.4). The value for &, for this linear softening case can be calculated using

(€]

In this equation, 4 is the crack band width, i.e. the width over which the crack is smeared
out, and in an analysis this is usually taken as the size of a typical element. This implies
that for estimating #, one should have a rough idea of the direction in which the tensile
crack will propagate.

It should be mentioned that in the analysis, the tensile strength is used as a criterion for
crack initiation; the Gy concept is used to describe crack propagation. For more
information regarding this subject, refer to Rots et al. 1985.

The G, concept is useful for analyzing those structures in which the structural behav-
jour is determined completely by the behaviour of a single macrocrack. If this is not the
case, for example when many closely spaced cracks develop due to the presence of a
dense net of steel reinforcement, the average effect of all cracks is taken into account
via the so-called “tension stiffening” concept.

Of course one might decide to use the G concept in combination with the bond slip
interface elements (Section 0.2.2.3) for the analysis of a reinforced concrete structure,
but this will generally lead to an exceedingly large number of elements. Such an ana-
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Fig. 0.4. Linear softening model.

lysis will require a vast amount of computer capacity, and does not seem very realistic at
present. Only in cases where a considerable influence of bond slip is expected might
one decide to use the interface elements, but only when the element-mesh does not
become too large.

As already mentioned, when a reinforced concrete structure is analyzed, the tension
stiffening concept is used. The principle is explained in Fig. 0.5. Due to stress-transfer
between cracks in a reinforced member, a higher “stiffness” of this member is observed
as compared with the behaviour of the reinforcement only. An estimate for the maxi-
mum tensile strain is derived from the yield-strain of the reinforcement

Sy

& =&ys E
S

()

where f, is the yield stress of the reinforcing steel, and E; is Young’s modulus of the
steel. The tension-stiffening concept is applicable for the analysis of a reinforced con-
crete structure with uniform distributed reinforcing bars, and when cracks are expect-
ed to develop perpendicular to the direction of the bars.

This is a rather severe restriction: in general cracks do not intersect the reinforcement
perpendicularly, but more likely under a certain angle. Also, the assumption of uni-
formly distributed reinforcing bars generally does not apply in structures. Note that
average steel stresses are computed, not the maximum steel stresses that occur in the
cracks. This is a direct consequence of the smeared crack approach.

Several factors will affect the rate of macrocrack growth in a reinforced concrete struc-
ture: spacing of reinforcing bars, diameter of reinforcing bars, angle between the bars
and the macrocrack, etc. The multitude of these factors makes it rather difficult to give a
“watertight” method of determining ¢,,, but in general the value obtained from equa-
tion (2) has to be adjusted. However, the magnitude of the correction factor has to be
estimated, usually by means of a parameter study. Estimating the value of the reduction
factor will be easier for experienced engineers, who are familiar with these types of
analysis.
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Fig. 0.5. Tension stiffening concept for reinforced concrete.

Shear transfer in cracks

Another input parameter related to concrete cracking is the shear retention factor g,
which takes into account a reduction of the shear stress that can be transferred through
cracked concrete. In Fig. 0.6, this so-called aggregate interlock mechanism is explained.
For unreinforced concrete, and for reinforced concrete, § = 0.20 will lead to appropriate
results in most cases. This value is based on experience. A more theoretical background
is currently being developed. The parameters for modelling tensile cracking in concrete

are summarized in Table 0.1.

uncracked cracked

At = BG.AY
~0<pel

Fig. 0.6. Reduction factor § for modelling aggregate interlock.

Table 0.1 Parameters for modelling tensile cracking

unreinforced concrete (direct tension) reinforced concrete
fracture energy G¢ 60 N/m tension stiffening & SolEs
tensile strength f, problem related shear retention factor f 0.20
crack band width A depends on the

element mesh
shear retention factor f 0.20

10



0.2.2.2 Plasticity model for concrete in compression

An elasto-plastic model is used for modelling the behaviour of concrete in compression
(Fig. 0.7). The uniaxial compressive stress-strain curve is characterized by Young’s
modulus £ and the uniaxial compressive cylinder strength f,.. It should be mentioned
that also a non-linear variant is available. Recently, the model was extended in order to
take into account softening of concrete in compression (Vermeer and De Borst 1984).

fec "'“'""/——- —

€

Fig. 0.7. Elasto-plastic stress-strain relation for concrete in compression.

In all the examples the Mohr-Coulomb yield criterion is applied for taking account of
multiaxial states of stress. A cross-section of this criterion with the biaxial principal
stress plane is shown in Fig. 0.8. The criterion is characterized by the angle of internal
friction ¢ and cohesion c. By choosing ¢ =30°, the fit between the Mohr-Coulomb
criterion for stress combinations g, < g, = g3 < 0 (i.e. stress-combinations in the triaxial
compressive region, compressive stresses are negative), is satisfactory. The cohesion ¢
depends on the uniaxial cylinder strength f,. in accordance with

C:M 3)
2 cos ¢

The Mohr-Coulomb criterion considerably underestimates the strength of concrete
under biaxial (0;#0,<0, see Nelissen 1972) and triaxial compression
(o) 5 0,5 03 <0, see Van Mier 1984). Yet, the results obtained with the model are gen-
erally a safe lower bound, but may lead in some of the examples to discrepancies
between the numerical and experimental results.

When the above values for ¢ and ¢ are used, the tensile strength of the material is over-
estimated. Therefore, but also for optimizing the fit between experimental results and
the Mohr-Coulomb model, several “tension cut-off” criteria are available. Two of these
“tension cut-off” criteria that are used in the examples are shown in Fig. 0.8. Note that
the fit between the Mohr-Coulomb criterion and experiments in the tension-compres-
sion regions also may be obtained by choosing a higher value of p. However, the tension
cut-off criteria are needed also for deciding when the crack model should be used (see
previous section for uniaxial tension).

11
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Fig. 0.8. Mohr-Coulomb yield criterion with “tension cut-off” in the biaxial principal stress

plane.

Table 0.2 Parameters for the concrete plasticity model

compression

yield criterion

Mohr-Coulomb

internal friction angle ¢
cohesion ¢

tension cut-off criterion

uniaxial compressive strength f.
Young’s modulus E,

30°

problem related
Fig. 0.8
problem related
problem related

The parameters needed for modelling the compressive behaviour of concrete are

summarized in Table 0.2.

0.2.2.3 Plasticity model for the reinforcing steel

For the reinforcement an elasto-plastic model can also be adopted (Fig. 0.9). The two
parameters that must be defined are shown in Table 0.3.

v 1

Es

€s

€

Fig. 0.9. Elasto-plastic stress-strain relation for the reinforcing steel.
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Table 0.3 Parameters for the reinforcing steel

reinforcing steel

yield stress f, problem related
Young’s modulus E; problem related

0.2.2.4 Bond between steel and concrete

As was mentioned in the general introduction to this chapter, bond between steel and
concrete can be modelled using two different approaches.

If full bond between steel and concrete is assumed, the reinforcement is modelled by
bar elements which are “embedded” in the concrete elements,

However, if relative displacements between reinforcing steel and concrete are allowed,
special slip elements (two-dimensional springs) can be placed between the bar
elements that represent the reinforcing steel and the concrete elements (see Fig. 0.10).
The consequence of this approach is that the element mesh must be adjusted to the
“reinforcement grid”, and when numerous reinforcement bars are present in a struc-
ture, this may lead to an exceedingly large number of elements. It is very important to
decide at an early stage if a detailed analysis, taking bond-slip into account, is needed.
The behaviour of the slip elements is described by means of two constitutive equations.
The first relates the bond shear stress 7, to the slip Au along the bar, the second relation
describes the relation between the radial component of the bond stress 7, and the radial
displacement Av. The first relationship (7, — Au) is conceived as a bi-linear diagram.
The stiffness of the first branch is defined by the slip modulus S% The radial relation
7, — Av is assumed to be linear with stiffness S'. The 7, — Av becomes important when
radial confinement is present. In the current examples this factor is not taken into
account, only the axial component v, — Au is used. For details regarding the bond-slip

tractions and
relative displacements

The A

Fig. 0.10. Slip element and assumed stiffness relations.



model the reader is referred to (De Groot et al. 1981, and Rots 1985). The parameters
used in the current examples are summarized in Table 0.4. Two parameters are impor-
tant, namely, the slip modulus S* and the maximum bond shear stress 7,,. The value for
these parameters are taken from (De Groot et al. 1981).

Table 0.4 Parameters for modelling bond-slip

bond-slip
slip modulus S* 200 N/mm®
maximum bond stress 7, 5 N/mm?

0.3 Graphical representation of the results

The results of the analyses are discussed in the following chapters (1-8). In all the
examples the graphical facilities of DIANA are used. In general, a load-displacement
diagram of the analysis is compared with the experimental results (if available). As
mentioned before, principal stresses, cracks, etc. are represented at the integration
points. The symbols used are listed below.

- When (principal) stresses are shown, solid lines refer to tensile stresses, whereas
dotted lines refer to compressive stresses. The direction of the line segments for the
stresses represents the direction in which the particular stress component is acting;
the length of the line segment is an indication of the “intensity”.

- Cracks are shown as line segments. In most cases only the contours of the element
mesh, or a part of the element mesh, are shown. In some of the analyses, only those
cracks, with a “crack strain” exceeding a certain value are shown. This is always
mentioned, for example cracks with “crack strains” greater than ¢, may be plotted,
which are then referred to as “open cracks”.

- Either total deformations or incremental deformations are shown. The incremental
deformations are the deformations that occur in the preceding load-step only.
Because deformations are generally quite small in comparison with the dimensions
of the element mesh, they are shown on a larger scale. The multiplication factor may
be specified, but in most cases the largest possible magnification is chosen and no
value is mentioned.

- Plasticity, either in concrete (in compression) or in the reinforcing steel, is visualized
by means of small triangles at the integration points. The relative size of the triangle
is a measure of the plastic strain.

Finally it should be mentioned that each example has its specific problems which may

require a special presentation.

1 Metro viaduct Rotterdam
1.1 Introduction
In 1965, the structural behaviour of a beam of the metro viaduct in Rotterdam was

determined in a full-scale experiment. In this experiment attention was given to the

14
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flexural behaviour of the beam, as well as to the behaviour of the tooth structures at
both ends of the beam. In those days, experimental analysis was the only available
method for determining the behaviour of complex structures. Analytical methods
could only provide a rough estimate and were sometimes inadequate. The subsequent
development of numerical tools now offers the possibility of studying the structural
mechanism of both the prestressed concrete beam as well as the tooth structures in
detail, taking into account physical non-linearities.

In this first example, the flexural experiment as well as the experiment on the “con-
ventionally” reinforced tooth structures is simulated numerically and compared with
the experiments. This example was chosen while relatively abundant experimental
information was available, but also in order to demonstrate the insight into structural
behaviour which can be obtained from a non-linear numerical simulation.

1.2 Description of the problem

The experiments carried out in 1965 have been reported in detail (CUR 1969). The
overall structure is shown in Fig. 1.1. The total span of the beam is 33 m; four pre-
stressing tendons are placed as indicated. The tooth structure at the right-hand end of
the beam was conventionally reinforced; some additional vertical prestressing was
provided in the tooth on the left-hand end of the beam. All dimensions as well as the
reinforcement details are shown in Fig. 1.1.

276 544 558 537 560 550 275
= = > fe f fe—t
VlPs ‘P1 @Pz ‘Pa &PA '&Pa
b conv. reinf. tooth prestressed tooth
T v v ! H .
RAT' ‘ ! ! 3300 ! I l JRB
Al hl
4 measured bearing reaction
dimensions in cm
Fig. 1.2a. Loading procedure in the first flexural test.
275, 549.5
P IP
31 p2
|
N i! =
TRA ! : 3300 jRB
o i
150176173:3175.5
vy vy
T T
l;ﬁiPJiPA!PSE& 4ml
R T Bad's | fRe 2475.5 R,
e e 1

A measured bearing reaction

dimensions in cm

Fig. 1.2b. Loading procedure for the experiment on the conventionally reinforced tooth
structure.
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In a first flexural experiment, the beam was loaded up to 90% of the analytically deter-
mined failure load. The loading procedure is indicated in Fig. 1.2a. Loading was applied
by six hydraulic actuators in an almost symmetrical arrangement. In the experiment on
the conventionally reinforced tooth structure, the loading procedure was more com-
plicated (see Fig. 1.2b). Initially, the structure was loaded by two concentrated loads P
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Fig. 1.4b. Load-deflection curves at 7.50 m from the supports for the first flexural test.

and P,. After these loads had been increased to 700 kN, an additional support was
placed (R,) directly under load P,. This was done in order to prevent fracture outside the
end portion of the beam. Further loading was now applied by means of four concen-
trated loads (Py, Py, Ps and P;), while P, was kept constant at 700 kN. The load P,, which
was not subsequently adjusted, decreased from 700 to 290 kN during this loading
process. Some of the experimental results are shown in Fig. 1.3 to 1.5. The observed
crack pattern in the first flexural experiment is shown in Fig. 1.3. In Fig. 1.4, the load-
deflection curves from the flexural experiment are given: at mid-span in Fig. a, and at
7.50 m from the supports in Fig. b.

In Fig. 1.5a, the load-crack width diagram as measured in the test on the conventionally
reinforced tooth structure is shown. Also the result from the prestressed tooth structure
appears in this diagram. In Fig. 1.5b, the crack pattern observed in the experiment on
the conventionally reinforced tooth structure is shown. The numbers in Figs. 1.3 to 1.5
refer to the subsequent loading steps in the experiment. The tooth structure failed ata
total bearing reaction R, =2960 kN (load step 21).
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Fig. 1.5b. Cracking in the experiment on the conventionally reinforced tooth structure,
numbers refer to the subsequent load steps.

1.3 Parameters for the analysis

In the numerical analysis, the beam structure has been schematized as a plane stress
situation. In reality, the structure is three-dimensional, but a full three-dimensional
analysis would require too much effort. It should be mentioned that some phenomena
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cannot be simulated in the plane stress analysis (e.g. lateral splitting due to pre-
stressing). Some of these modelling related problems will be discussed in the following
sections.

1.3.1 Element discretization

The element mesh is shown in Fig. 1.6a. The mesh near the tooth structure is shown
enlarged in Fig. 1.6b. As mentioned before, the beam has been schematized as a plane
stress situation. Quadratic isoparametric elements with ninepoint Gaussian numerical
integration, and triangular six-noded isoparametric elements were used. Three-noded
numerical integrated bar elements were used for the reinforcement.

The reinforcement installed in the tooth structure is shown in Fig. 1.7. Perfect bond was
assumed to exist between steel and concrete. Although the simulated crack growth will
be influenced by this choice, this simplified approach has been adopted in the first
instance. The use of bond-slip interface elements will be discussed in example 2
(corbel).

The prestressing tendons were assumed to have the shape of a second-order curve.

L5 i i |

@ load case : flexural analysis (see fig 1.2.al i

®

Fig. 1.6. Element mesh: overall view (a), and enlarged mesh near the support (b).
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Fig. 1.7. Reinforcement in the tooth (dotted lines represent normal reinforcing bars, the dash
dotted lines indicate the position of the prestressing strands).

Special attention was given to modelling the three-dimensional anchorage zone of the
prestressing tendons in a plane stress situation; this will be discussed in Section 1.4,
While the loading situation in the flexural experiment was almost symmetric, only half
of the beam was considered. The element mesh was refined towards the tooth at the
end of the beam, where also the triangular elements were used. This refinement was
necessary because the same element mesh was adopted both for the overall flexural
analysis and for the analysis of the conventionally reinforced tooth structure.

In the element mesh, the nodes of four elements are not directly connected to other
nodes. This occurs when the mesh is refined. The “loose” nodes are tied to neighbouring
nodes in order to maintain compatibility in the displacements.

The supports and concentrated loads were modelled according to the loading procedure
in the experiments (see Fig. 1.2). In the experiment on the conventionally reinforced
tooth structure, the beam was additionally supported under load P, after some load
(R = 1400 kN) was applied. In the numerical simulation, this support had to be defined
from the beginning of the analysis. The loading situation was so adjusted as to assure
that the support did not “become active” before load P, and P, reached the required
level.

1.3.2 Material parameters

The material parameters used in the analysis, both for the concrete and the reinforcing
steel, are summarized below. The material models adopted have already been
explained in the introductory chapter.
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Concrete Reinforcing steel

E. =42000 N/mm? E, =200000 N/mm?
v = 02 foy= 475 N/mm’
fu= 5.2 N/mm?

fee= T19.9 N/ mm? Prestressing steel
tension cut-off 2 E, =212000 N/mm’
£4s=0.0019 foy= 1700 N/mm’
B =02

In the analysis of the conventionally reinforced tooth structure, £,; was varied: a second
analysis was performed using &,, = 0.0008, which means a reduction of the fracture
energy by a factor greater than two. It should be mentioned that ¢, is rather difficult to
determine if the structure is not “unreinforced” (i.e. when the G¢concept can be adopt-
ed), and also if it is not reinforced to such an extent that the tension stiffening concept
can be used (see Chapter 0).

1.3.3 Analyses performed

In this example, three analyses were carried out:

1. Linear elastic analysis.
The purpose of this analysis was to investigate how the prestressing anchors could
be modelled realistically in the plane stress situation. An indication for the expected
stresses in the “throat” of the tooth structure was obtained in advance from a photo-
elastic experiment (see Chapter 8 in (CUR 1969)).

2. Non-linear flexural analysis, numerical simulation of the flexural experiment.

3. Non-linear analysis of the tooth structure:

a. ¢,,=0.0019
b. &,,=0.0008
1.4 Results

1.4.1 Prestressing anchors

Three prestressing tendons have been installed in the beam. Two tendons depart from
the far end of the tooth structure where they were actually stressed in the experiment.
The third tendon consists of two cables with a blind anchorage in the lower part of the
beam. In order to avoid splitting of the concrete around the blind anchors of the two
lower cables, a spiral reinforcement mesh was placed there in the experiment. In the
analysis, the prestressing force in these lower cables was reduced linearly over the
length of the spiral reinforcement mesh (i.e. the prestress was reduced over an effective
length of 700 mm in the lower tendon). However, as a result of the lower (bottom) pre-
stress only, a tensile stress g, =4.85 N/ mm? was calculated in the throat. In the photo-
elastic experiment, a far lower tensile stress was found due to the lower prestress only
(6 =2.0 N/mm?). Yet, due to the distribution of the prestressing force over the length
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of the spiral reinforcement a considerable reduction of tensile stresses in the throat was
in fact obtained.

The principal stresses due to the separate prestressing cables are shown in Fig. 1.8. In
these diagrams compressive stresses are indicated by dotted lines, tensile stresses by
solid lines. The directions are the directions of the principal stresses.

The upper tendon (Fig. 1.8a) yields a compressive stress field in the upper part of the
beam. Small tensile stresses appear where the tendon is fixed. Hardly any compressive
stresses are generated in the throat due to the upper prestress only (i.e. g, = —0.05
N/mm?).

Fig. 1.9a. Combined effect of the three
prestressing strands.

Fig. 1.9b. Combined effect of the three
prestressing strands, dead load and 0.6*load [1].
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Fig. 1.8b indicates that larger compressive stresses are generated in the throat due to
the middle prestressing tendon.

Fig. 1.8c shows the principal stresses in the tooth due to the lower prestressing tendon
only, and the extent of the tensile stressed region around the throat is clearly visible.
When the effects of the three prestressing tendons are combined, the principal stress
distribution of Fig. 1.9 results. A tensile stress o, = 3.75 N/mm? remains in the throat.
In the photoelastic experiment (CUR 1969), the resulting stress in the throat is com-
pressive. In the analysis a compressive stress in the throat seems attainable only when
the prestressing stresses in the upper and middle tendons are exaggerated or by further
distributing the prestressing force in the lower tendon around the blind anchor.

It should be realised that in the actual experiment in the full-sized concrete beam the
prestressing force around the anchor will be distributed three-dimensionally. At the
moment, it does not seem fruitful to try to fit the results of the photoelastic experiment
more closely in view of these modelling related problems.

1.4.2 Flexural analysis

The first non-linear analysis comprises the analysis of the complete prestressed beam
in flexure. The loading was applied incrementally in steps just as in the flexural experi-
ment.

The results of the flexural analysis are shown in Figs. 1.10 and 1.11. In Fig. 1.10, the
moment-deflection diagrams, both at mid-span and at 7.50 m from the supports are
shown. In these diagrams the results of the analysis are compared with the experimental
results. The results show that a good numerical simulation of the flexural experiment is
possible by using the non-linear numerical tool. The “cracking moment” is predicted
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Fig. 1.10a. Calculated moment-deflection diagrams at mid-span (flexural analysis).
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Fig. 1.10b. Calculated moment-deflection diagram at 7.50 m from the supports
(flexural analysis).

between 8000 and 8500 kNm. The exact cracking moment cannot be determined more
accurately because load step 4 was applied in one increment. The only significant dif- -
ference between the analysis and the experiment is the amount of deformation during
load step 5a. The deformations in the experiment are somewhat larger, probably due to

creep at this relatively high loading level. Creep phenomena were not taken into
account.
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Fig. 1.11a. Cracking in the flexural analysis after load step [8], (total moment= 9500 kNm).
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The calculated crack pattern after load step 8 is shown in Fig. 1.11. Comparison with
the experimental results show that a fairly good prediction of cracking in the flexural
analysis is possible.

1.43 Analysis of the conventionally reinforced tooth structure

The results of the analyses of the conventionally reinforced tooth are shown in Figs.1.12
to 1.18. First, in Figs. 1.12 and 1.13 some results of the analysis with normal tension
stiffening are shown (e,s=0.0019). While in the experiment mainly “crack data” were
reported, emphasis is placed on these results. In Fig. 1.12, the calculated crack patterns
after load steps 6, 8 and 12 are shown (bearing reaction R is respectively 1541, 1741
and 2092 kN), and it can be seen that crack propagation is severely underestimated in
the analysis. Using the tension stiffening concept, the localized character of the
diagonal crack is not very well simulated either.

As can be seen from Fig. 1.13, a considerable amount of tensile stress is still transferred
in the crack band. Only in load step 12 has part of the crack become almost “stress-free”
and may be regarded as a true separation in the material.

The results of a second analysis, but now with a considerable lower fracture strain
(&4s=0.0008), are shown in Figs. 1.14 to 1.18. For comparison with the previous ana-
lysis and in order to demonstrate the effect of reducing the tensile fracture strain, crack
patterns and principal stress plots for step 6, 8 and 12 are shown in Figs. 1.14 and 1.15.
The crack band develops considerably faster, and tends to be less wide, especially in the
beginning of the analysis. Agreement between the computed crack patterns of Fig. 1.14
and the experiment is satisfactory. From Fig. 1.15, it can be seen that the transfer of
tensile stresses in the crack band is small from the beginning of the analysis. Upon
further increasing external load, the crack length develops in accordance with the
experiment, yet the total width of the crack band clearly is overestimated (see Fig. 1.16,
crack pattern for load steps 12, 14, 16 and 17 with R, = 2092, 2258, 2421 and 2598 kN
respectively). No localization was found when cracks exceeding a certain crack strain
were plotted. In this case both the width and the length of the crack band were con-
siderably reduced.

In step 16, a small branching crack developed in the vertical direction. This branching
crack also was observed in the experiment. After load step 17, the analysis was term-
inated. At this point the crack band had become very wide, but did not exceed the crack
band length calculated in step 16. In the experiment, at this stage of loading, a second
. diagonal crack started to propagate from the support and almost parallel to the first
diagonal crack. This second crack was not observed in the analysis. One might suspect
that the total crack band width in the analysis includes both cracks that were observed in
the experiment. However, the second diagonal crack in the experiment forms an upper
boundary for the crack band rather than being included in it. No satisfactory explana-
tion can as yet be given.

At load steps 14 and 16, small bending cracks were observed in the beam. These cracks
have not been reported in the experiment.
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a. load step [6], R = 1541 kN

b. load step [8], R =1741 kN

LGN
/4/5/77

c. load step [12], R =2092 kN

Fig. 1.12. Calculated crack patterns in the tooth (case £4s=0.0019).
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a. load step [6], R = 1541 kN

b. load step [8], R = 1741 kN
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Fig. 1.14. Calculated crack patterns in the tooth (case &,,= 0.0008).
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a. load step [6], R = 1541
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Fig. 1.16. Calculated crack patterns

in the tooth (case &,,=0.0008). e. experimental results

In Fig. 1.17, the computed total bearing reaction (R ») has been plotted against the com-
puted displacement of the lower edge of the beam (see inset). At a total bearing reaction
R, =2000 kN a sudden increase in deformation occurs. At this point a pronounced
increase in crack length is computed, and from Fig. 1.18 it can be seen that the increase
in deformation is mainly determined by the increasing deformations in the cracked
zone. Comparison with the experimental load-crack width diagram from Fig. 1.5a,
shows a similar tendency. This may indicate that the onset and propagation of cracking
in the throat is estimated rather well. Yet it should be mentioned that this could be
obtained only by adjusting the &, value. In comparison with the flexural analysis this
value is rather small. A major problem remains as to what value for the fracture strain
&4 Should be adopted in practice.
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Fig. 1.17. Calculated load-deflection diagram for the analysis of the conventionally reinforced
tooth structure.

1.5 Discussion

It has been shown that a reasonable numerical simulation of the flexural behaviour of
a prestressed concrete beam is possible. Problems are encountered when a detailed
analysis of the tooth structure is made. Especially the value for ¢,,, which has to be used
in the analysis is a major problem and seems to be not very clearly defined for different
practical situations. The value of ¢, needed for crack propagation clearly determines
the rate at which the diagonal crack in the throat propagates. The dependency of the
total structural behaviour on this “fracture energy parameter” is such that prediction of
the structural response is hardly possible. In practice, this parameter should be varied,
and it should be investigated if the structural mechanism of the tooth is influenced by

Fig. 1.18. Incremental deformations in load step [16] (case &,,=0.0008), R = 2421 kN.
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this variation. On the basis of these comparative analyses one might make a qualitative
statement on the structural behaviour of the tooth.

It should be mentioned that in the smeared crack concept, no crack widths, but rather
crack strains are computed. Summation of all crack strains over the crack band width
may give an indication of the expected crack width. It should be mentioned, however,
that the crack width will depend considerably on the fracture strain as well.

1.6 Conclusions

The following conclusions can be drawn:

- A reasonable numerical simulation of the flexural behaviour of the beam is possible.
Load-deflection curves and cracking are calculated accurately.

- Inthe analysis of the conventionally reinforced tooth structure crack initiation as well
as the direction of crack propagation are simulated quite well. However, the
development of the second diagonal crack was not observed in the analysis.

- The localized character of the diagonal cracks that were observed in the experiment
cannot be simulated with the current model. The choice of the crack parameter ¢
in the smeared crack model is still very difficult.

- In spite of the fact that a prediction of structural response is hardly possible, more
insight into the qualitative structural behaviour can be obtained from a numerical
simulation by investigating the influence of some of the model parameters.

2 Corbel
2.1 Introduction

This example comprises the analysis of a “one-sided” corbel. These structures are
widely used, and while the analysis sometimes may be rather difficult, it was considered
a good subject for numerical analysis. Surprisingly there is not much experimental
material available for “one-sided” corbels, as contrasted with experiments on “two-
sided” corbels (e.g. Krizand Raths, 1965). The example chosen is based on experiments
on full-scale corbels, carried out in 1961 (Niedenhoff, 1963). The aim of the experi-
ments was to obtain some idea of the stress-distribution in these types of structures.
This was done by comparing the results of a photo-elastic investigation with the crack
patterns of the full-scale experiments. The experiments carried out by NiedenhofT,
especially the one chosen in this example, are widely used to check results of
calculations. For example Reich, 1983 used the same corbel for calibrating the results
from scale tests on corbels.

In this example the result of two numerical analyses are discussed. First, an analysis
with perfect bond between steel and concrete was carried out. In the second analysis,
the effect of using special bond-slip elements between the reinforcing bar and the
concrete, is demonstrated.
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2.2 Description of the experiment

Experiments were carried out on four types of corbels, each type with different re-
inforcement. A total of 12 corbels was tested. The most practical experiment was
chosen for numerical analysis, viz. No. M2/B2, which was also described by Reich
(1983). Reich’s report contains more information, in addition to the (not very detailed)
material published by Niedenhoff.

Niedenhoff’s tests were carried out on full-scale corbels; the dimensions of M2/B2 are
given in Fig. 2.1a, details of the reinforcement are shown in Fig. 2.1b. The test set-up is
shown in Fig. 2.2. As shown by the structural system, only the corbel was loaded; in the
column, horizontal reactions appeared due to the loading on the corbel. During the
experiment no displacements were recorded. Instead, results from a photo-elastic
investigation were compared with the crack pattern and behaviour of the corbel at
failure. Hardly any stresses developed in the lower outside corner of the corbel, and it
was found that the resultant force of the principal compressive stresses followed the
diagonal from the loading point to the lower inner corner of the corbel. Tensile stresses
developed perpendicularly to this diagonal.

During the experiment, load-steps of 50 kN were applied. The first crack (No. 1 in Fig.
2.3) is reported in the second load-step (P, = 100 kN). This crack developed into a main
vertical crack at a load level of 150 kN. At P =300 kN this crack was fully developed,
and crack No. 2 (Fig. 2.3) developed, since the structural system changed. Cracks now
occur in the column, but more cracks also develop in the corbel. Though not reported,
it is likely that splitting cracks occur parallel to the plane of the corbel, since the radius
of the curvature of the main reinforcing bars near the hook seems rather small. Finally,
failure occurs at a load level of 585 kN when the main reinforcement starts yielding. At
this stage crack No. 1 widens and the compressive zone in the corner fails (No. 3 in
Fig. 2.3).
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Fig. 2.1a. Dimensions of the corbel. Fig. 2.1b. Reinforcement of the corbel.
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2

Fig. 2.2. Test set-up.

Fig. 2.3. Crack pattern at failure.

2.3 Parameters for the analysis

As mentioned before, two different analyses were carried out: first, model A, was
analyzed, in which perfect bond between steel and concrete was assumed, and second,
model B, in which the main reinforcement (8 @ 12) was connected to the concrete by
using special bond-slip elements. The parameters for the calculation of model B are
mentioned only where they differ from those used in the analysis of model A.

2.3.1 Element discretization

In this example no advantage can be derived from symmetry, and the complete corbel
has to be modelled. A full three-dimensional model has to be made if the structure is to
be modelled realistically. This implies that in model B also three dimensional bond-slip
elements should be used. Since this would make the analysis rather complex, the
behaviour of the corbel is simulated in two dimensions. Typical three-dimensional
effects cannot be described, such as for example splitting parallel to the plane of the
corbel. It could be mentioned that in the experiments no splitting cracks were reported,
although they could be expected (see also example 3, the beam-column connection).
The element mesh of model A is shown in Fig. 2.4a. It is schematized as a plane stress
situation. The elements are quadratic isoparametric elements with 8 nodes and 9
integration (Gauss) points. Also shown in the diagram are the supports and the three-
noded reinforcement bar elements with three integration points. The main reinforcing
bars are at the correct location, although they might give the impression that they are
situated rather low. Niedenhoff (1963) reported that the reinforcement bars had moved
during the casting of the concrete. Because in the experiment the load is applied
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through a steel platen, it has been included in the element mesh. The steel elements
are kept linear-elastic in the analysis.

For model B the element mesh is adjusted, as indicated in Fig. 2.4b. The special bond-
slip element cannot be situated in an element, as with the reinforcement bars of model
A, but has to be modelled between the elements. Only the main reinforcement bars
(8 212) are modelled as a bond-slip bar; for the other reinforcing bars full bond is
assumed.

Apart from the bond-slip relation at the interface between reinforcement and concrete,
another relation is introduced at the end of the bar. In the experiment, the bond length
was increased by means of a hook on the main reinforcing bar. In the element model,
the nodes at the end of the bond-slip bar are “tied” to the “concrete” elements that are
situated above and below the main reinforcing bar. As a result, the displacements of
both these concrete elements and the main reinforcing bar are the same (see Fig. 2.4c).
By tying the bond-slip bar in this manner, in fact a steel platen is modelled at the end of
the bar. This model was chosen, while modelling curvatures in reinforcing bars (e.g.
hooks), in combination with bond-slip interface elements has not been done before in a
numerical simulation with DIANA. Furthermore the hook is important in the third
dimension (which was not modelled): it may be of major influence on the possible
occurrence of splitting cracks in the third dimension.

2.3.2 Material parameters

The complete set of material parameters is given below. The material parameters are,
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as far as possible, taken directly from Niedenhoff, 1963. The models are explained in
Chapter 0.

Concrete

E. =27000 N/mm?
v = 0.2

fu= 2.42 N/mm’
fre= 22.6 N/mm?
tension cut-off 1
eus = 0.0017

g =02

The value of the tensile strength of the concrete is based on the formula:
fu=0.87%(1.15 + 0.072%f,.). No value was reported in the experiments.

Reinforcing steel

E, =210000 N/mm?

fy= 350 N/mm? for &7

foy= 282 N/mm’ for & 12

foy= 300 N/mm? for & 14

Niedenhoff reports different values for f;, for different bar diameters, the same values
have been applied in the analysis.

Bond-slip bar (model B)

§% = 200 N/mm?

T = 5 N/mm?

E, =210000 N/mm?

foy 282 N/mm’ (2 12)

The bond-slip relation for the bar is explained in Chapter 0. Next to the total cross-
sectional area of the bars, (which is 8 # 12 in the current example), the total surface area
of the bars is important in a two-dimensional analysis. Here it is taken as 8*%(2-m-r),
with r =6 mm. It is assumed that along the edge of the bars full bond can develop.
However, this is possible only when the mutual distance between the bars is not too
small. In the experiment the distance was approximately 30 mm, which seems enough
to enable full bond to develop.

2.3.3 Load case

In this example only one load case is considered. The external load is applied through
the steel platen on top of the corbel. The load can be applied either in load or in dis-
placement control. In this case, a displacement controlled process is chosen.

2.4  Results

First, in Section 2.4.1, the results of the analysis using model A will be discussed and
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Fig. 2.5. Load-deflection curves.

compared to the experimental results of Niedenhoff. In the discussion of the results of
model B, emphasis is placed on the differences with respect to model A.

24.1 Model A

The computed load-deflection curve is shown in Fig. 2.5. The vertical displacement of
the loading point is plotted against the total load. Unfortunately, the computed curve
cannot be compared with the experiment, because no displacements were measured in
Niedenhoff’s experiments. The computed-load-deflection curves indicate that failure
proceeds very gradually. In the experiment, crack No. 1 appeared rather suddenly
(Fig. 2.3) and may have some influence on the shape of the load-deflection curve.
The displacements in the linear-elastic stage are shown in Fig. 2.6. It gives an indica-
tion if the input of the loadings and supports are correct. Principal stresses in this stage
are plotted in Fig. 2.7a, and may be compared with the results of a photo-elastic investi-
gation (Fig. 2.7b), which was part of Niedenhoff’s experimental program. The general
impression is that the results are similar: a concentration of tensile stresses appears in
the upper corner between the column and the corbel; a concentration of compressive
stresses develops simultaneously in the lower corner. Clearly visible are the stress-
concentrations under the loading platen, as well as a rather large, almost stress-free
region in the lower right corner. Quite often, the lower right corner is cut-off, and the
reason for this will be obvious.

The first crack arises, both in the analysis as in the experiment, in the upper corner. The
exact level, at which crack initiation occurs is not very well reported in the experiment
(viz. somewhere in the load-step between 50 and 100 kN). In the analysis, first cracking
occurs at a load level of 48 kN, but it may well be that these first cracks cannot be seen

39



Fig. 2.6. Displacements, linear elastic stage.

with the naked eye. It is also more interesting to compare the cracks at a load level of
around 300 kN, when the vertical crack (No. 1, see Fig. 2.3) is fully developed as well as
the other main crack (No. 2). This is shown in Fig. 2.8a, and as can be seen, the crack
lengths are predicted rather well. What is calculated, however, is not a localized crack,
but a fairly large cracked area. This problem may be partly due to the large amount of
diffuse reinforcement in the corbel. In fact, the problem is similar to that observed in
the analysis of the conventionally reinforced tooth structure (see 1.4.3).

+4 =
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Fig. 2.7a. Principal stresses, linear elastic stage Fig. 2.7b. Photo-elastic results.
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Fig. 2.8a. Crack pattern for model A, Fig. 2.8b. Crack pattern for model B,
load-level 340 kN. load-level 340 kN
(the horizontal line indicates were
the main reinforcement bar is situated).

At aload level of approximately 430 kN plasticity in the reinforcement was observed.
First, the horizontal stirrups ( @ 7) below the main reinforcement started to yield. Next,
the vertical reinforcement in the column at the side of the corbel started yielding, and
finally the main reinforcement bar. Yielding of the reinforcement is indicated in Fig.
2.9a (the integration points where yielding is observed are indicated by triangles; the
size of a triangle is an indication of the amount of plastic strain).

As soon as the main reinforcement starts yielding, the corbel fails. In the experiment a
similar failure mechanism was reported. At the same time the compressive zone (No. 3
in Fig. 2.3) failed by crushing of the concrete. Plasticity occurs in the corner, and is
indicated by triangles in Fig. 2.9b. The computed failure-load is 486 kN, 83% of the
failure load observed in the experiment (585 kN).

At failure, the crack pattern observed in the experiment can be compared with the one
predicted in the analysis. This is done in Fig. 2.10a and 2.10b. Again, the smeared crack
approach makes it rather difficult to see where the main cracks are located. Neverthe-
less, the impression is that the location and directions of the cracks are predicted rather
well.

Finally, the principal stresses are shown in Fig. 2.11 (in this case the results of model B
are shown, but there is no significant difference for the corbel part). In the corbel, a com-
pressive strut develops at an angle of approximately 30° with the vertical. This is, as also
stated by NiedenhofT, the direction from the loading point to the lower corner between
the corbel and the column.
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Fig. 2.9a. Plasticity of the reinforcement Fig. 2.9b.

at failure.

\\(//

Fig. 2.10a.
Experimentally observed
crack pattern at failure.
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Fig. 2.11.  Principal stresses at failure (only results in the shaded area of the corbel are shown; the
horizontal line indicates where the main reinforcement bar is situated).

242 Model B

Up to a load level of 300 kN, no difference between the analyses with model A or B is
found. This can be seen from the load-deflection curves in Fig. 2.5. The linear-elastic
stage as well as the appearance of first cracks is similar to results obtained in the analysis
with model A. The development of the vertical crack (between 150 and 300 kN) seems
to be simulated more realistically when the bond-slip bar is used (compare Fig. 2.8a
with 2.8b). The cracks are somewhat more localized, especially those along the bond-
slip bar. Of course, the remaining horizontal and vertical perfect-bond bars (Fig. 2.4b)
still have a “smear-out” effect on further crack extension.

The behaviour of th= bond-slip bar is shown in Fig. 2.12. In this diagram the axial stress
in the bar (Fig. 2.12a) and the bond shear stress (Fig. 2.12b) along the bar are shown at
different load levels (starting at 360 kN, after the vertical crack has fully developed). The
axial stress reaches a maximum where the vertical crack intersects the reinforcing bar
(x ~0); the highest values for the bond shear stress is calculated at both sides of the
crack. The maximum level of shear-stress, is approximately 2.5 N/mm?. At higher load
levels, the bond shear stresses do not increase very much, only the location of the
maximum changes slightly. Note that a second crack (at x ~ 200) becomes important.
At the highest load levels, around 500 kN, the bond shear stresses increase to a level of
4 N/mm?2, but this is not enough and the bar cannot slip yet. The main reason for this
may be the presence of the other horizontal bars, which were modelled with perfect
bond.

The failure load is predicted slightly better by this model: 520 kN, or 89% of the experi-
mentally determined failure load. Yielding of the reinforcing bars proceeds in the same
sequence as in the analysis with model A (compare Fig. 2.9a). First, the horizontal re-
inforcement below the main reinforcement (the bond-slip bar) starts yielding, next the
vertical bar in the column and finally the main reinforcement (the bond-slip bar, see
Fig. 2.12a). Also concrete plasticity occurs in the corner (compare Fig. 2.9b).
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Fig. 2.12a. Development of axial stresses in the bond-slip bar.
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Fig. 2.12b. Development of shear stresses in the bond-slip bar.

Cracking at failure is shown in Fig. 2.10 and can be compared with the experimentally
observed crack pattern as well as with the crack pattern computed with the perfect bond
model A. The “localized” crack which developed initially has been considerably
“smeared out”. Near the bond-slip bar the pattern is somewhat better, but it is not
spectacular.

The stress distribution in the corbel is almost similar to the one computed with model
A. As already shown in Fig. 2.11, a heavily loaded compressive diagonal develops in the
corbel. In the same diagram it can be seen that from the anchorage zone of the bond-slip
bar, schematized by tyings, a compressive strut develops to the lower corner between
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the corbel and the column. The development of this compressive strut may cause
problems such as splitting cracks, compression failure of the diagonal and splitting of
the lateral concrete cover. These problems are similar to those discussed in Chapter 3,
the beam-column connection.

2.5 Discussion

The corbel has been simulated numerically with two different models. Several simplifi-

cations have been made, which are summarized below:

- In model A and B no three-dimensional effects are taken into account (e.g. splitting
caused by the hooks of the main reinforcement, higher compressive strength in the
lower corner between the corbel and the column; see also example 3).

- The meshes in both model A and B are relatively coarse, especially for model B in
relation to the bond slip elements.

- In model A no bond-slip is taken into account, and in model B only the main rein-
forcement bar is modelled as a two-dimensional bond-slip bar.

- The hook at the end of the main reinforcing bar (the bond-slip bar in model B) was not
modelled.

Hardly any differences are observed between the results obtained with the two models.
In order to obtain more realistic results one could consider schematizing more bars as
bond-slip bars, such as for example the vertical bar in the column. This bar is severely
loaded, especially after crack No. 1 develops (see Fig. 2.3). However, for the simulation
of the localized cracks, modelling of the other reinforcement bars (for example the
horizontal stirrups) as bond-slip bars seems important.
Not only are these two dimensional simplifications important, but two other main
problems are also encountered. First, due to the smeared crack approach it is difficult
to simulate localized cracking in these types. of structures and, second, when this
problem is tackled by using bond-slip bars, the choice of the parameters for the two-
dimensional bond-slip elements is problematic. The two problems are related: when
the reinforcement is modelled completely with bond-slip elements, much better
localization of cracks is expected, but then the problem of choosing the bond-slip
parameters becomes important, especially in relation to the two-dimensional schem-
atization. The element mesh has to be refined, which undoubtedly will lead to an
increase in computer time.

2.6 Conclusions

The folllowing conclusions can be drawn:

- The failure load and overall behaviour at failure can be predicted satisfactory with a
two-dimensional perfect-bond model.

- The results give a good idea of the way forces act in the corner.

- With the current models, it is not satisfactorily possible to simulate localized crack-
ing in this structure with a diffuse network of reinforcing bars.
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- Modelling the main reinforcing bar as a bond-slip bar does not lead to significantly
better results. Relatively fine element meshes and more bond-slip elements are

needed.

3 Beam-column connection

3.1 Introduction

In this example a single-bay portal frame is modelled. Special attention is given to a
construction detail, viz. the beam-to-column connection. The behaviour of this struc-
tural joint is interesting because in this kind of structure it is commonly assumed that
the joints are as strong as the connected members. However, in certain cases the
strength of the joint may be lower.
In this example the corner joint is subjected to a negative moment and the behaviour of
the joint and the frame is analysed. The causes of failure are studied, and an analysis of
the stress distribution within the structural joint is performed. Some results are dis-
cussed and compared with findings from experiments.

3.2 Description of the problem

The overall dimensions, supports and loads on the frame are taken from investigations
carried out by Stroband and Kolpa, 1983. The portal frame chosen is shown in Fig. 3.1
(this is a 1: 4 scale model with no variation of the cross-sectional area of the beam and
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Fig. 3.1. Portal frame: dimensions and reinforcement details.




the column). The dimensions of the frame, as well as the reinforcement, are shown in
the same diagram. The frame is loaded in accordance with the conditions of a four-point
bending test (Fig. 3.2), causing a negative bending moment in the joint between the
beam and the column.

Stroband and Kolpa base the strength of the joint on the condition that it should be able
to resist a theoretical ultimate moment of the connected members at critical sections
(see Fig. 3.3). From a truss model one can deduce the location of these sections and, on
the assumption that the steel stress in the tensile reinforcement reaches a maximum,
the theoretical ultimate moment can be calculated. In this case the calculated theoret-
ical ultimate moment was equal to 2.69 kNm for Section I and 2.96 kNm for Section II
(this is calculated without compressive reinforcement). The efficiency of the joint can
be expressed by the ratio of the observed ultimate moment to the theoretical deter-
mined ultimate moment. A ratio of more then 100% means that the joint has sufficient
strength in the limit state. The efficiency of the joint is determined in this analysis.

From Stroband and Kolpa it can be concluded that the first cracks in this kind of struc-
ture normally occur in the mid-span region of the beam and in the columns (Fig. 3.4a).
Only in a more advanced stage does inclined flexural cracking (though rather randomly
distributed) occur at the corners. Attention is paid to the nucleation and propagation of
splitting cracks (Fig. 3.4b) and crushing at the inner angle causing failure of the joint.
The development of splitting cracks mainly depends on the radius of the curved rein-
forcing bar in the joint. Other important parameters for the strength of the joint include
the quality of the concrete, the lay-out of the main reinforcement and the thickness of

the lateral concrete cover.
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Fig. 3.2. Loading of the frame.
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Fig. 3.3. Location of critical sections.
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Fig. 3.4a. Example of crack pattern found in experiments.
Fig. 3.4b. Detail, cracking of corner and splitting parallel to the plane of the portal frame.

3.3 Parameters for the analysis

For a realistic analysis of the joint, a three-dimensional model would be required. Split-
ting of the concrete parallel to the plane of the portal frame influences the structural
behaviour of the joint and cannot be simulated in a two-dimensional model. Yet, for the
sake of simplicity, it was decided to perform a two-dimensional analysis of the complete
portal frame. With this restriction it is not possible to vary and investigate parameters
such as the radius of the curved reinforcing bar. Therefore, only some limited results
are compared with the experiments (viz. the crack patterns).

3.3.1 Element discretization

The behaviour of the portal frame and the joint is described in two dimensions (plane
stress). Eight-noded plane stress elements are used, with nine integration points. Due
to symmetry of the frame and the loading conditions only half of the frame has to be
modelled. The element mesh, reinforcement, loading and supports are shown in Fig.
3.5. The mesh is refined where stress concentrations are expected, i.e. in the corner and
in the midspan region of the beam. Perfect bond is assumed between the reinforcement
and the concrete.

The radius of the curved reinforcing bar in the joint was not taken into account. This
may - as shown in experiments - have considerable influence on the behaviour of the
joint (i.e. out-of-plane splitting). Moreover it should be noted that there is no experi-
ence in modelling of the anchorage of the reinforcement bars (e.g. hooks).
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Fig. 3.5. Element mesh with reinforcement, loading conditions and supports.

3.3.2 Material parameters

The complete set of material parameters is listed below. All the parameters are
explained in Chapter 0.

Concrete
E. =28000 N/mm?
v = 02

fu= 2.2 N/mm?

fee= 25 N/mm?

fec 37.5 N/mm? (in three inner corner elements)

tension cut-off 1

G¢=60 N/m (h=60-20 mm)

g, =0.00091-0.00273

g =02

In this analysis the so-called G¢concept is used. The different values for # and ¢, are due
to the different dimensions of the elements in which cracks may arise.

In the corner of the joint a three-dimensional compressive state of stress develops, and
consequently the compressive strength of the three elements in the inner corner of the
joint increased by a factor 1.5. As mentioned in Chapter 0, the Mohr-Coulomb yield
criterion underestimates the strength of concrete under multiaxial states of stress.
A confinement of 5% in the third direction (g3 = 0.050,) yields a triaxial compressive

I
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strength which is 100% higher than the unconfined biaxial strength (Van Mier 1984).
This effect comes in addition to the underestimation of the biaxial strength in the Mohr-
Coulomb yield criterion (see Section 0.2.2.2).

Reinforcing steel
E; =210000 N/mm?
fo= 450 N/mm’

3.3.3 Load case

Only one half of the frame is schematized, and consequently only one half of the load
is applied to the frame (note that in the load-deflection curve and all other results the
whole load is taken into account). The frame was loaded subject to displacement
control. The effect of dead weight of the frame has been neglected.

3.4 Results

The computed load-deflection curve of the frame is shown in Fig. 3.6. The total load is
plotted against the deflection at mid-span of the beam.

First a linear-elastic analysis is carried out. Some parameters can be checked by means
of simple manual calculations (e.g. the stiffness of the frame). This gives an indication of
the correctness of some parameters such as the modulus of elasticity. An indication of
the behaviour of the frame at this stage can be obtained from the displacement plot (see
Fig. 3.7). Positions of loads and supports can easily be checked with this plot. The
stresses in the linear elastic stage are shown in Fig. 3.8. Fig. 3.8a gives an overview of
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Fig. 3.6. Load-deflection curve (total load against deflection at midspan).
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Displacements, linear-elastic stage.

Fig. 3.7.
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Fig. 3.8a.

Theoretical model.

Detail of the corner.

Principal stresses,
linear-elastic stage.
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the stresses in the complete frame, Fig. 3.8b gives some idea of the stresses in the
corner, which is in fairly good agreement with a theoretical model of an uncracked
corner (see Fig. 3.8¢).

First cracks are computed at a load of P, =4 kN. These cracks appear in the mid-span
region of the beam, and very shortly afterwards in the column near the joint. At a
somewhat higher value of the load cracks develop in the beam close to the joint. Similar
observations are made in experiments. In Fig. 3.9 a computed crack pattern at a load
level of about 8 kN is shown.

The next interesting phenomenon occurs at a load P, ~ 17 kN, when a plateau in the
load-deflection curve (Fig. 3.6) is observed. At this point, cracks suddenly widen con-
siderably within a load step of 1 kN. This is shown in Figs. 3.10a and 3.10b where only
the open cracks (i.e. with crack strains greater the ¢,) are plotted. The widening of the
cracks is also demonstrated clearly with the plot of the incremental deformations in the
last load step (Fig. 3.10c). The open cracks are situated in the elements with the largest
incremental deformations.

After this point a redistribution of forces occurs in the corner, demonstrated by plots of
principal stresses in Fig. 3.11 (compare Fig. 3.11a with Fig. 3.11b). After cracking, the
tensile force is carried by the reinforcement, and large compressive stresses develop in
the diagonal. This is in agreement with the theoretical model, shown in Fig. 3.11c. In the
experiments these stresses cause the splitting tensile stresses at the bend of the tensile
reinforcement perpendicular to the plane of bar curvature. Due to the two-dimensional
modelling of the problem, splitting cannot occur here. In experiments the appearance
of cracks in the joint is not reported as a sudden phenomenon, but rather seems to occur
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Fig. 3.9. All cracks at load level 8 kN.
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Fig. 3.10a. Cracks (strains > ¢,) at load level 16.9 kN.
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Fig. 3.10c. Incremental displacements at load level 17.9 kN.

more gradually. The sudden appearance of the localized corner crack may be the result
of the two-dimensional schematization.

At aload level of 24.4 kN, before the joints fails, the reinforcement in the beam starts
yielding. The frame can still take more weight, since the joint has not yet failed.
The joint as well as the complete frame fail at the load level of 26.8 kN. The cracks at
failure are shown in Fig. 3.12a (crack strains larger than ¢,) and can be compared with a
crack pattern reported by Stroband and Kolpa (Fig. 3.12b).

Failure is initiated due to yielding of the tensile reinforcement in the joint, as indicated
by the triangles in Fig. 3.13b. At this stage also plasticity in the inner corner of the joint
occurs as well as in the compressive zone of the beam (Fig. 3.13a). The principal stresses
at this stage are shown in Fig. 3.14 and clearly indicate the development of a com-
pressive strut in the joint.

If the reinforcement is detailed differently, failure of the compressive diagonal may
occur. This (or the formation of splitting cracks) may cause premature failure of the
joint. As soon as the reinforcement starts yielding, equilibrium is no longer possible,
and the frame collapses.
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Fig. 3.11a. Fig. 3.11b. Fig. 3.11c.
Principal stresses, Principal stresses, Theoretical model
load level 16.9 kN. load level 17.9 kN. derived from experiments.

From the horizontal support reaction (F,) and the vertical support reaction (F,) we
can simply estimate the ultimate moment in the critical sections (of course it is also
possible to estimate the moment from the stresses in the integration points in a section):
For Section II we find:

Mu:Fh*l,

where [/ is the vertical distance from Section II to the support.
For Section I we find:

M, = Fyxl,— F+d

where d is the horizontal distance from Section I to the support. For /, see Fig. 3.2. With
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Fig. 3.12a. Cracks (strains > ¢,) at failure (P, = 26.8 kN).

Fig. 3.12b. Experimentally observed crack pattern at failure (Stroband and Kolpa, 1983).
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Fig. 3.13a. Concrete plasticity at failure. Fig. 3.13b.  Reinforcement plasticity at failure.

a horizontal support reaction at failure of the beam (yielding of the reinforcement of
the beam) of Fy,=4.4 kN and a vertical support reaction of F,=0.5+ P,=12.2 kN,
[;=0.750 m;, d =0.049 m we find for Section I: M, =2.70 kNm. The efficiency of the
joint for Section I (the beam), as defined in 3.2, can be computed:

2.70
={——1*100%= 100%
¢ [2.69} 00% = 100%

SR SPRER 1
L Rt
Fig. 3.14a. Fig. 3.14b. Fig. 3.14c.

Principal stresses at failure. Detail of the corner. Theoretical model
derived from experiments.
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For the column we find a horizontal support reaction at failure (yielding of the rein-
forcement of the column) of Fj, = 5.0 kN and / = 0.701 m. We find also for Section II:
M, =3.55 kNm. The efficiency of the joint for Section I (the beam), as defined in 3.2,
can be computed:

3.55
- *100% = 120%
¢ ‘2.96] 0 ’

The efficiency of the joint is the larger of the values, i.e. & =120%.

3.5 Discussion

In the numerical analysis, a relatively course mesh with only four elements over the
width of the frame was used, implying that there are in fact two stiff elements (the
stiffness of the reinforcement is superimposed on the stiffness of the element) near the
edges and two weaker elements in the middle. This causes the open cracks (around the
load-level of 17 kN, Fig. 3.10b) not to start at the edges, but in the middle, which may be
a reason for the sudden crack opening at a load level of around 17 kN.

From a simple analysis it is found that the compressive zone (at failure) isa mere 15 mm
high, and extends only over one or two integration points. A preliminary analysis was
carried out without assuming a higher compressive value of the three elements in the
inner corner of the joint. At the load level of 17 kN, after opening of the cracks, simul-
taneously plasticity occurred in the corner elements. The occurrence of plasticity at this
load level seems unrealistic, and by considering the three-dimensional stress distribu-
tion a higher compressive strength was assumed for the three corner elements. It should
be mentioned again that the Mohr-Coulomb failure criterion considerably under-
estimates the strength of the concrete under three-dimensional states of (compressive)
stress. Having regard to the failure load obtained from a simple manual calculation, a
50% higher value was chosen.

With a refined mesh the above-mentioned problems might give less trouble. Only one
integration point representing the compressive zone is, of course, not sufficient to give a
realistic simulation of the large stress-gradient. However, the result is still acceptable,
depending on the purpose of the analysis. An analysis with a course mesh can be made
before refining. After such an analysis it might be possible only to refine the mesh of a
detail, such as the joint in this example. Also, one might consider carrying out a three-
dimensional analysis and modelling the influence of the radius of the curved reinforcing
bar, which can be the main cause for splitting in the corner and failure of the joint at a
lower load level. However, it should be mentioned that there is no experience with
modelling of curved reinforcing bars and hooks.

3.6 Conclusions

- This two-dimensional analysis was carried out in order to obtain an idea of the overall
behaviour of the frame and, especially, of the joint.
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- The numerical simulation gave a good idea of the structural mechanism in the joint.

- For more detailed research, for example investigating the influence of the concrete
quality or the curvature of the reinforcing bar in the joint, a full three-dimensional
analysis would be required.

4 Tunnel section
4.1 Introduction

Most of the examples in this report relate to numerical simulations of laboratory experi-
ments. Such cases are illustrative in that the numerical results can be directly compared
with the available experimental results, so that assumptions and conjectures can then
always be subsequently verified.

Matters are very different when actual problems as encountered in practice are
analysed. Feedback of data for comparison with experimental results is not possible in
such cases, and the possibilities of checking are limited to carrying out approximate
manual calculations. Obviously, the designer must then place full confidence in having
made safe and justified choices with regard to the material parameters and boundary
conditions for the numerical calculation. Incorrect choices are difficult to rectify and
may have disastrous consequences.

The example presented in this chapter relates to a practical problem of this kind, name-
ly, a detail of an existing reinforced concrete tunnel structure in another country. The
problem associated with this structure was submitted to consultancy in the Nether-
lands. This led to a numerical analysis of, among other features, the shear capacity and
the bond. Some key results of this analysis will be reported here.

Since the influence of material parameters has already been illustrated in connection
with the other examples, the emphasis will here be on the influence of the assumed
boundary conditions of the problem, which are liable to be just as important.

4.2 Description of the problem

Fig. 4.1 shows the principal geometric data of the tunnel cross-section, comprising two
traffic lanes.

The first decision to be taken relates to the question as to what part of the structure is to
be dealt with by nonlinear analysis. After all, in the present state of the art of computer
hardware a nonlinear analysis of the complete cross-section is a rather time-consuming
and expensive operation. To obtain a reliable solution it quite socn becomes necessary
to work with four plane-strain elements through the thickness of the roof, the walls and
the floors. Bearing in mind, too, that the length/width ratio of such elements should
preferably be not greater than 4, this would mean that the analysis of the whole cross-
section would involve many hundreds of elements, which is impracticable with present
facilities.
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It is, however, possible to carry out a linear-elastic preliminary analysis of the complete
structure. On the basis of such an analysis the most critical member or part of the
structure is pinpointed, and the nonlinear analysis is then confined to this critical part.
A preliminary analysis of this kind is relatively simple and, if beam elements are used,
yields as its result the bending moment diagrams, shear diagrams and normal (or direct)
force diagrams. In the case of the present problem this information led to the inference
that the connection of the tunnel roof to the intermediate wall was the most critical
feature, and for this reason the nonlinear detailed analysis was confined to the part
shown shaded in Fig. 4.1.

detail for
/nonlmear analysis

Fig. 4.1. Cross-section of tunnel structure.

4.3 Modelling of the problem

The structural detail to be analysed and the finite element mesh adopted for the
purpose are shown in Figs. 4.2 and 4.3. Because a plane-strain state exists in the deep-
lying middle part of a tunnel structure, plane-strain elements were employed. In this
case they were eight-node isoparametric quadratic elements, numerically integrated
with the aid of the 3 by 3 Gaussian scheme.

The structural detail contains various reinforcing bars, and it is to be noted that the top
reinforcement comprising a lapped splice could constitute a weak link. Besides, the top

¢20/305 lapped splice $50/254
—_

1753

4 b - - el ’/

457 /
5 L $50/330
$20/305

#25/305

2020 . 838 1981 229
¢ T Tt

it
+

Fig. 4.2. Detail of cross-section for nonlinear analysis. Dimensions in mm. Reinforcement @ 20/
305 means 20 mm diameter reinforcing bars, 305 mm centre-to-centre.
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Fig. 4.3. Finite element mesh. Reinforcing bars with perfect bond are indicated by dash-dot
lines. The top reinforcement is modelled by separate bond-slip elements.

reinforcement consists of plain bars with the unusually large diameter of 50 mm, with
only 50 mm concrete cover. For this reason it was decided to make a detailed study
of the bond of this reinforcement by means of special slip elements developed for the
purpose. A nine-node slip element was employed, with which the slip layer above the
reinforcement and the slip layer below the reinforcement were represented separately.
At the lapped splice, overlapping slip elements were employed, so that any pull-out of
one of the bars could be simulated. The other reinforcing bars are “embedded” in the
concrete elements in the usual way (perfect bond).

Two loading cases were considered: dead weight and uniformly distributed vertical
load. First the dead weight was added and then the uniformly distributed load was
incrementally increased to failure.

If the nonlinear analysis is, in order to save CPU time, confined to a detail of the
structure, this means accepting that the rest of the structure will have to be replaced by
realistic boundary conditions. From the bending moment diagram of the linear-elastic
preliminary analysis it was apparent that the tunnel behaved in a substantially
symmetric manner in relation to the intermediate wall. For this reason an ordinary
restraint, indicated by roller bearings, was assumed at the intermediate wall (at the
support, on the right in Fig. 4.2). Choosing a boundary condition at midspan (on the left
in Fig. 4.2) was more difficult. The following was adopted:

boundary condition for span: u, = constant
Ny=0

The first condition implies that the span cross-section remains straight and vertical
(i.e., cannot rotate), but can as a whole undergo a free horizontal displacement. This
boundary condition has been introduced by making use of a special tying option with
which dependence relations for degrees of freedom are introduced. Here the u, of all
the nodes at the midspan section has been equated (“tied”) to the u, of the bottom node
at this section. The effect of the tyings is shown in Fig. 4.4, where the deformed structure
is represented.
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Fig. 4.4. Typical deformed mesh (dashed lines). Tyings compel the midspan section to remain
plane and vertical. In the horizontal direction the midspan section is free to displace.

The second condition means that the resultant external normal force N in the tunnel
roof is equated to zero, which can be conceived as a safe lower bound approximation,
because in reality the horizontal earth and water pressure acting on the side walls of the
tunnel will produce a normal force in the roof. This normal force will accentuate the
development of a stiffening thrust arch in the roof, which will result in an increased
failure load. This will be further considered in Section 4.5.

The complete set of material parameters is given below. For most of the parameters
safe lower bounds (design values) have been adopted. The extremely low values for the
properties of the concrete may appear strange, but are due to the fact that the tunnel was
constructed of only a moderately good grade of concrete. Because the structure has
only a limited number of dominant reinforcing bars, the G concept was used for the
determination of ¢,.

Concrete Reinforcing steel

E. = 6640 N/mm?’ E, =210000 N/mm?
v = 0.2 C fy= 220 N/mm?
foe= 20 N/mm?

fa= 12 N/mm? Bond-slip (see Fig. 0.10)
tension cut-off 1 S% =200 N/mm?
Gr= 60 N/m 7= 12 N/mm?
h =100 mm S" =20000 N/mm?
&, =0.001

g =020

4.4 Results

During the course of the analysis the load-displacement behaviour for the midspan
section was plotted as represented in Fig. 4.5.

The first nonlinearity in this diagram is due to cracking over the support. Next, yielding
of the top reinforcement over the support occurs, as a result of which the nonlinearity
rapidly increases. In this phase, diagonal shear cracks are formed and there occurs slip
between the top reinforcement and the concrete. Despite this damage, the structure
is still capable, thanks to redistribution, of resisting further load. Finally, a “ductile”
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Fig. 4.5. Load versus deflection at midspan.

failure plateau is attained when the bottom reinforcement at midspan also begins to
yield. From that instant onwards the redistribution reserve of the structure is exhausted
because the failure moment both over the support and at midspan has been mobilized.
The safety margin of the failure load with respect to the actual service load on the
structure (earth and water pressure) is found to correspond to a factor of2.9, asindicated
in Fig. 4.5.

Finding the failure load, however, was not the most surprising feature of this analysis,
since a simple manual calculation would have given the same result. Of greater interest
was the qualitative information that the numerical analysis supplied with regard to such
matters as cracking patterns, deformations, stress trajectories and the bond behaviour at
the lapped splice. Some idea of these features is given by Figs. 4.6 to 4.10.

Fig. 4.6 shows the development of cracking. First, vertical flexural cracks are formed
over the support, but with increasing magnitude of the load, diagonal shear cracks are
predicted which rapidly increase in number and importance. The deformed element
mesh at failure suggests a kind of shearing mechanism along these cracks (Fig. 4.7).
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Fig. 4.6. Crack formation with increasing load.
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Fig. 4.7. Incremental deformations at failure (g =450 kN/m?).

The concrete stress trajectories in Fig. 4.8 demonstrate the possibility of simulating the
redistribution of stresses in a structure by means of nonlinear calculations. In this
diagram the stress trajectories in the linear-elastic stage are compared with those in the
ultimate stage, i.e., at failure. In the linear-elastic stage the tensile concrete stresses
are found still to make a substantial contribution to the transfer of shear force. At
failure, on the other hand, the tensile stresses have entirely disappeared (because of
cracking), and a pronounced thrust arch can be observed which equilibrates the mid-
span tensile reinforcement. The action of such a tied-arch equilibrium system is limited
either by yielding of the tensile reinforcement or by crushing of the concrete in com-
pression. In this case the reinforcement was the governing feature; the compressive
stresses in the thrust arch remained well within the Mohr-Coulomb yield contour. In
this context it is to be noted that a three-dimensional state of stress (plane-strain)
existed in the tunnel roof. The third stress component ensured that the Mohr-Coulomb
criterion was even more conservative than in the case of a two-dimensional state of
stress, so that safety with respect to compressive failure was certainly assured.

Another result was the behaviour of the steel stress in the top reinforcement with
increasing load, as indicated in Fig. 9. At failure the lapped splice is suddenly subjected
to a large force. This numerical result is in agreement with the theory of the “displaced
bending moment diagram” envisaged in the Netherlands Code of Practice for Concrete
(VB ’74). In this context it is interesting to mention that the numerical tool can also be
used to optimize the design codes. Theories embodied in the codes are based on simple
and sometimes conservative assumptions, whereas a numerical model tries to choose

— ~/,1/////.zx}x
= o i i A LA T KKK KD
R

i At 4 A4 AR R

SN b. at failure a pronounced
a. linear-elastic stage compressive arch occurs

Fig. 4.8. Stress redistributions. Compressive stresses are indicated by dotted line segments and
tensile stresses by solid line segments.
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Fig. 4.9. Steel stresses in top reinforcement (compare Figs. 4.2 and 4.3) with increasing load.
Note that the lapped spice is subjected to tension at failure.

its starting point in an as realistic a model as possible of the material, which is formulat-
ed on the basis of experimental research.

Fig. 4.10 gives some idea of the behaviour of the bond stress along the top reinforce-
ment. At failure the maximum bond stress 7,, is found to have been mobilized along a
major part of that reinforcement. The marked discontinuities in the diagram are due to
the presence of cracks.

4.5  Effect of boundary conditions

Besides the material parameters, the assumed boundary conditions of the problem may
considerably affect the final result. In the first analysis reported above, the boundary
condition adopted at midspan was (see Section 4.2):

analysis (a): u, = constant (free)
Ny=0

The opposite condition consists in preventing the displacements, but allowing the
horizontal force to increase arbitrarily and unlimitedly:
analysis (d): u, =0
N, = free
This condition implies that a standard restraint by means of roller bearings is applied

here, just as at the support. The tyings at midspan are then not used.
Besides these two extremes, two intermediate forms were studied: analyses (b) and (c).
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Fig. 4.10. Tangential bond stresses along top reinforcement with increasing load.

In these the horizontal force was steadily increased with the vertical load, this perhaps
being the most realistic representation of earth and water pressure. In analysis (b) the
horizontal force was held constant when it had reached a particular limit which corres-
ponded to the compressive force actually occurring in the tunnel roof at service load.
The load-deflection diagrams for the two extremes (a) and (d) and for the two inter-
mediate cases (b) and (c) are shown in Fig. 4.11. The variations in the boundary con-
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Fig. 4.11.
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ditions adopted are found to have a very considerable influence. Analysis (a) can be
conceived as a lower bound and analysis (d) as an upper bound.

For the upper bound analysis (d) the crack patterns, deformations and principal stress
trajectories are shown in Fig. 4.12. The location of the diagonal crack is found to have
changed, and the thrust arch has spread over a much wider region than in analysis (a)
(cf. Fig. 4.8). Analysis (d) was not even continued to failure, but was stopped at the

Fig. 4.12.
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instant when excessive diagonal cracking developed. Actually, the load could have
been further increased until the compressive concrete stresses in the arch attained the
Mohr-Coulomb yield contour. In that case a very high failure load would have been
arrived at, this being due to the fact that the problem region is, as it were, “confined”
when the midspan section is deprived of the possibility of free displacement. Then the
thrust arch in the concrete, not the tie member formed by the reinforcement, is the
governing feature.

4.6 Discussion

Without going into details concerning the further causes of the differences, it is
nevertheless evident that considerable care should be bestowed on determining the
boundary conditions.

From this tunnel analysis is has emerged that DIANA offers good possibilities for
taking account of boundary conditions. Particularly the “tying” option is popular with
numerical analysers because it enables them to apply all sorts of simplifications in the
geometric modelling of the problem. The use of linear or nonlinear springs is another
extensively used means of replacing large structural members or parts by suitable boun-
dary conditions. The flexural stiffness of beams, columns or walls in the vicinity of the
detail can thus be replaced by a rotational spring, and the axial stiffness thereof by
a translational spring.

It is furthermore to be noted that in basing the boundary conditions on the results of a
linear-elastic preliminary analysis it is likewise necessary to be careful, because the
moment distributions, etc. obtained from that analysis are valid only for the linear-
elastic case, but it is implicitly presumed that they are valid also for the nonlinear case.
If drastic redistribution occurs, this will not necessarily be a realistic assumption.
However, in view of the tremendous rate ‘of development in cbmputer hardware and
software (more rapid solution procedures!) the problem of choosing boundary condi-
tions will dwindle in importance because it will be possible to include an increasingly
large part of the structure in the non-linear analysis.

4.7 Conclusions

The nonlinear detail analysis of an existing tunnel structure with the aid of DIANA

supports the following conclusions:

- The development of vertical flexural cracks and diagonal shear cracks can be predict-
ed reasonably well in a qualitative way.

- Redistribution of stresses is predicted surprisingly well. At failure a pronounced
thrust arch is observed in the concrete and is in equilibrium with the midspan tensile
reinforcement. .

- Bond-slip elements prove to be a suitable tool for studying the bond of reinforcement
in reinforced concrete, even if lapped splices are present.
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- DIANA offers good possibilities for replacing structural parts which are of no partic-
ular interest by realistic boundary conditions. The choices for these conditions may
have a major influence on the final result.

5 Two reinforced concrete panels

Deep beams are usually analyzed on the assumption of linear-elastic behaviour. The
behaviour after cracking is difficult to estimate,especially when deep beams continuous
over several supports are considered. Based on an extensive experimental investigation
by Leonhardt and Walther in 1966, recommendations for the design and construction of
deep beams on two or three supports were determined. The non-linear numerical tool
can also be applied for analyzing the structural behaviour of such in-plane loaded
panels. In this example, two of the panels tested by Leonhardt and Walther (1966), have
been simulated numerically. The first example comprises the analysis of a deep beam
on two supports; in the second example a deep beam on three supports is simulated
numerically. In both cases, the results of the analysis are compared with the experi-
mental results.

5.1 Deep beam on two supports
5.1.1 Introduction

From the nine single-span deep beams tested by Leonhardt and Walther, beam WT3
has been chosen for analysis. This particular beam was chosen because structural
failure occurs due to compressive failure of the concrete near the supports. This was
considered an interesting extension of the other examples, in which mostly tensile
and shear fractures are the dominant mechanisms.

5.1.2 Description of the experiment

Details of the loading procedure and the specimen (WT3) are shown in Fig. 5.1. In
Fig. 5.1a the dimensions of the deep beam are given, as well as details of the rein-
forcement. WT3 is a single-span beam 1600 mm x 1600 mm in size. The thickness of the
panel is 100 mm and it is loaded by a distributed load along the upper edge as indicated
in Fig. 5.1b. Details of the supports are shown in the same diagram: two steel platens on
roller bearings are used. A thin layer of mortar was placed between the beam and the
steel loading platen as well as between the beam and the supporting steel platens. The
entire structure was loaded in a 5 MN compressive testing apparatus. Load was applied
in steps of 100 kN, after which measurements were taken (which lasted approximately
40 min.).

Eight 8 mm diameter reinforcing bars were installed in four layers in the lower part of
the beam. Furthermore, a square grid of 5 mm bars was placed over the entire panel (see
Fig. 5.1a).
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Fig. 5.1.

Results of the experiments are shown in Figs. 5.2 to 5.4. The moment-deflection curve is
shown in Fig. 5.2, together with some of the results of the other beams that were tested
in the same program. Fig. 5.3 shows the crack pattern after failure of the beam. The
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Fig. 5.2.  Experimental results, moment-deflection curves at mid-span.

concrete over the left support failed at P, = 1000 kN. This part of the beam was rein-
forced by confining the concrete between two steel platens, and after these steel platens
were fixed, the external load could be increased again, until the right support failed at
P, =1290 kN. Finally, in Fig. 5.4, the steel stresses in the lower reinforcement bar are
shown. The steel stresses were determined over the supports and the middle of the
beam, and can therefore serve only as an indication. As will be shown in the subsequent
sections, a much more detailed distribution of steel stresses was obtained from the
analysis.

5.1.3 Parameters for the analysis

The panel could realistically be schematized as a plane stress case. In the following the
element discretization is shown, and the parameters for the analysis are mentioned.

5.1.3.1 FElement discretization

The element mesh adopted is shown in Fig. 5.5. Due to symmetry only one half of the
complete structure has to be modelled. Again the eight-noded quadratic isoparametric
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Fig. 5.3. Cracking observed in the experiment.

elements have been used. The support platen has also been modelled, and the mesh is
refined over the support. This was done because in general it is rather unfavourable to
define a support in a middle node. By refining the mesh, the support reaction coincided
with the corner nodes as indicated. The support platen was rigidly fixed to the concrete
elements, and Poisson’s ratio of the support platen was taken as equal to Poisson’s ratio
of the concrete elements (i.e. v=10.20).

Loading was applied to the panel as concentrated loads in the nodes along the upper
edge (i.e. the distributed load in the experiment was replaced by a series of concen-
trated loads). In a preliminary analysis the panel stiffness was found to be overestimated
when the loading platens were modelled as similar to the support platens.

The dotted lines in Fig. 5.5 show the locations of the reinforcing bars. Three-noded
numerically integrated bar elements were used for the reinforcement. Full bond was
assumed between reinforcement and concrete.

5.1.3.2 Material parameters

The material parameters used in the analysis are summarized below; the parameters
used for modelling the support platens are also included. In Fig. 5.6, both the measured
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Element discretization; dotted lines indicate the location of the reinforcement bars.

71



350 l

ﬂp =302 kp/t:m2

300 [l - o] o

s
250 // / /
4

150

stress o [N/mm?)

0 0,5 1,0 1,5 2,0 2,5 3,0
strain ¢ [OIOO]

Fig. 5.6. Elasto-plastic model for concrete in compression.

compressive stress-strain curve and the elasto-plastic model are shown. The adopted
material models are explained in Chapter 0.

Concrete Reinforcing steel

E . =24000 N/mm? E,=210000 N/mm?
y = 02 : fo= 400 N/mm?
fao= 3.65 N/mm

fee= 30.2 N/mm? Support platen
tension cut-off 2 E,=210000 N/mm?
£us=0.0010 v = 0.2

g =020

5.1.3.3 Analyses performed

Two different analyses were carried out for the deep beam on two supports. The first
analysis was performed with ¢,, = 0.0019; in the second analysis &,, was taken as 0.001,
almost identical with the value adopted in the analysis of the conventionally reinforced
tooth of the metro beam (see Chapter 1).

5.1.4 Results

In this section mainly the results of the analysis with the low ¢,-value (0.001), are
reported. Only in load-deflection diagrams and steel stress plots is a comparison made
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between the two analyses, and is the influence of the ¢, variation shown. The results of
the analysis are shown in Figs. 5.7 to 5.13.

First, in Fig. 5.7, the computed load-deflection diagrams are compared with the experi-
mentally observed behaviour. The failure load of the panel is estimated rather well in
the analysis. Experimental values are 1000 kN and 1290 kN for the left and right support
respectively. In the analysis, a failure load P, = 1100 kN is computed, which fits nicely
between the experimental bounds. In both analyses the stiffness of the panel is clearly
overestimated at higher load levels. Reducing &, only has a minor effect on the
stiffness. As we have seen before in the analysis of the reinforced concrete tooth of the
metro viaduct (Chapter 1), a reduction of ¢, leads to increased crack extension.
Plots of the computed crack development for the case ¢,,=0.001 are shown in Fig. 5.8.
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a. P, = 400 kN b. P, = B0O kN c. P, = 1000 kN d. P = 1100 kN

Fig. 5.8. Calculated crack development (e, = 0.0010).
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Fig. 5.9. Calculated crack pattern at P,= 1100 kN (g,,=0.0019).

The cracks are shown at four loading levels; P, =400, 800, 1000 and 1100 kN respect-
ively. Fig. 5.9 shows the crack pattern observed at P,= 1100 kN in the analysis with
£,s=0.0019. In Fig. 5.10 the principal stresses, computed in the analysis with
&ys = 0.001, are shown for four load steps (respectively P, = 400, 800, 1000 and 1100 kN).
The incremental deformations for the same load steps are shown in Fig. 5.11, while
Fig. 5.12 shows the calculated total deformations.

Finally, the calculated stresses in the lower reinforcing bar are shown in Fig. 5.13. Also
the experimental results are indicated in these diagram. In the experiment, steel
stresses were measured only at three positions: over both supports and in the middle
section of the beam. In Fig. 5.13 only the average result of the steel stresses above the
supports is shown, as well as the measured value in the middle section. Unfortunately,
no results are available along the rest of the bar. In these diagrams the influence of ¢,
is shown (Fig. 5.13a), as well as the effect of increasing the external load (Fig. 5.13b).

Fig. 5.10. Principal stresses at different loadlevels (¢,, = 0.0010).
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.a. Py = 400 kN b. P = .c. P, = 1000 kN d. P, = 1100 kN

Fig. 5.12. Total deformations at different loadlevels (e,, = 0.0010).

5.1.5 Discussion

The expected influence of the variation of ¢ is clearly apparent from the results shown
in Fig. 5.8 and 5.9. Increased crack extension occurs when the tension stiffening param-
eter is reduced (compare Fig. 5.8d with Fig. 5.9). However, the effect on the computed
load-deflection curve is only marginal (see Fig. 5.7). Comparison of the computed crack
patterns with the experimentally observed crack pattern indicates that a better fit
between analysis and experiments is obtained when the tension stiffening parameter
isreduced. The diagrams indicate that even a larger reduction of ¢, is needed (compare
Figs. 5.3 and 5.8d).

In the analysis a dominant crack develops to the left of the supporting steel platen. This
crack is dominant from the beginning, and its development is a direct result of the
linear-elastic stress-distribution calculated in the beam. From the incremental defor-
mation plots the dominant character can clearly be seen at the lower load levels
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(45 =0.0010).

(P, =400 and 800 kN respectively); the influence seems to diminish somewhat at higher
load levels. Yet, the total deformation plot shown in Fig. 5.12, indicates that the
concrete element next to the support platen has the largest deformation. In the experi-
ment, this dominant crack was not observed. No good explanation can be given for
these deviations between experiment and analysis. Possibly the thin mortar layer be-
tween the support platen and the panel has some influence on the stress distribution. In
the analysis Poisson’s ratio of the supporting steel platen was taken as equal to that of
the concrete. This was done in order to avoid major disturbances in the stress field
directly over the support, and to simulate the mortar layer. One should bear in mind that
already in the linear-elastic analysis the largest tensile principal stress was calculated
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next to the support platen, and was responsible for crack initiation at this particular
place. In the experiment cracking started in the middle of the beam, as can be seen from
Fig. 5.3.

The steel stress plots also clearly show the position of the dominant crack near the
support platen, although the effect diminishes when the external load is increased (Fig.
5.13b). The effect of reducing ¢, is shown in Fig. 5.13a, and the expected result is
obtained. Unfortunately no more data are available in the mid-section of the reinforcing
bar. In the second deep beam analysis, some more experimental results were available.
From the stress plots, it can be seen that at the highest load level hardly any tensile
stresses are transferred in the cracked zone. A second dominant crack near the centre of
the panel is even visible. The results indicate that after the panel cracked in the central
region, the load is transferred directly through the “concrete column” over the support,
to this support.

Finally, the panel fails due to “yielding” of the concrete over the supports. This is clearly
visible in the incremental deformation plots, but also in the plot of the total deforma-
tions at P = 1100 kN (Fig. 5.12d). In the load-deflection diagram a stiffer response of the
panel was calculated at higher loading levels (e.g. P, > 600 kIN). The fact that the behav-
iour of the panel is completely determined by the behaviour of the “concrete column”
over the support (see Fig. 5.10) may be responsible for these deviations. As can be seen
from Fig. 5.6, the behaviour of concrete in compression is simulated by an elasto-plastic
model, which does not give a good fit with the experimentally observed stress-strain
curve. Only recently, a better model has been implemented (Vermeer and De Borst,
1984), but was not generally available at the time when these analyses were carried out.

5.1.6 Conclusions

The following conclusions can be drawn:

- A realistic simulation of the structural behaviour of the reinforced concrete panel on
two supports is possible. The load-deflection curve observed in the experiments, but
also crack patterns, are quite well simulated.

- The behaviour of the panel is, after the central region has cracked, completely deter-
mined by the compressive response of the “column” over the support. The results
indicate, that as soon as this central region is separated from the “column”, failure is
inevitable. This separation seems to occur through the development of a dominant
crack in the panel next to the support platen. This dominant crack was not observed
in the experiment.

- When small problems such as this beam on two supports are analysed, a parameter
study can easily be carried out, which is considered very favourable.

5.2  Deep beam on three supports
5.2.1 Introduction

Leonhardt and Walther also tested two deep beams on three supports. One of these

77



[.4: 4gcm—r—r 48 —-T-— 487~T— 48—T~~~48—~Tﬁ 48 wj A-A
3 -
| P P | P P | P
M)
| l ‘ ; |
i I 16 | l X
- Bu. 45! 1 | | \
‘ L2525 ] ‘ \
—t ‘ :
L }—foo! ! r
R 0 r—r ! ]ﬂé o §
o0 9 @ ! | 3
DWT = . 5 y :
il & 2 1pe | X
) 5 1g60 | \
I o~ T
i —"l’ 160 N
. = s o X
| = - 206 l
l " ]
3 1]
e ﬂi ] =52
4gsm i 4p8l
7 ’ Foael
144 i 144 13710 13
wl‘ 128 —wJ 16L lza;ﬁ-llé 36—
} 304 {.
®  dimensions in cm, @ reinforcement in mm
L | l \
T
Bl ]
N [
i 0|
-t Tt
: | \LJ [
o
Li ‘\ |
B i
= = steel roller bearings 80 mm | ! i | |
—— load distributing beams |4l ‘ l
. T steel roller bearings @ 50 mm I | | ‘
¥ B T N steel plates 300+ 120+ 80 mm | I |
=300= =30 =30 =30 5 mm mortar ‘ | |
1 | EEPT ST SRNPTS  I0T- SR U I } | |‘ |
!
[ | l‘
3 : o 1313 )
' ~ ——*,—L =304 cm o | I |
| | i
- <144 - 144 — | l‘ |
6= 6}~ 16} Pl | |
1 ced 5 mm mortar | | nﬁL o
_ 250 Mp-Load cells steel support steel plates 300- 160- 120 mm ‘ steel [
2 50 Mp-Load cells - support
160-400-480 mm 2 steel roller bearings @50 mm | | | ‘ |
Do T-F'F ]
|
an o
TR }-H
- 7
dimensions in cm : ‘
o~/ , L,l@
Fig. 5.14. Reinforced concrete panel DWT2, dimensions and reinforcement details (a) and test

set-up (b).

78




beams, DWT2, has been chosen for the numerical simulation with DIANA. Particularly
this beam on three supports has been chosen because rather dominant shear cracks
determine the behaviour of this beam. It was considered interesting to ascertain
whether such behaviour could be simulated in a non-linear analysis.

522 Description of the experiment

The loading procedure and the specimen (DTW2) are shown in Fig. 5.14. Details of the
test set-up and loading conditions are shown in Fig. 5.14b. The dimensions of the beam
as well as details of the reinforcement are given in Fig. 5.14a. It is a beam on three
supports with a 360 mm thick supporting member in the middle. The thickness of the
panel is 100 mm, with overall dimensions of 3040 mm x 1600 mm. For the three
supports two steel platens on roller bearings are used and, in the middle, a block made
of steel. A thin layer of mortar was placed between the beam and steel loading platens
as well as between the beam and the supporting steel platens. The load was applied in
steps of 100 kN and 200 kN.

Four 8 mm diameter reinforcing bars were installed in the lower part of the beam, and
a double square grid of 5 mm bars was placed over the entire panel (see Fig. 5.14a).
Furthermore, six reinforcing bars of 6 mm diameter were installed over the middle
support as indicated in Fig. 5.14b.

The load-deflection curve is shown in Fig. 5.15a. The deflection was measured in the
middle of each of the two spans (the measurements were performed up to a load level of
2200 kN). Since hardly any difference between these two deflections was observed, only
one of them is shown. The crack patterns recorded during the test are givenin Fig. 5.16.

BXpPeriment .cscsoeas Lx P
=EXP 3 lorr

tctal load [kN]

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 {.6 1.8 2.0 2.2 2.4

—r—r —r—r—T —r—rT T T T T T T T T
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Fig. 5.15.a Load-deflection curve at midpsan.
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The first crack appears about 500 mm from the right support of the beam, at a load level
of 1200 kN. The steep shear cracks beside the supporting beam appeared suddenly
during the load step from 1400 to 1600 kN: the crack on the left of the supporting
member at a load level of 1550 kN and the one on the right at 1600 kN. The develop-
ment of these cracks caused the plateau in the load-deflection curve at 1600 kN.
Up to 2000 kN, load steps of 100 kN each were taken. Thereafter the load step size was
increased to 200 kN, until failure of DWT2 occurred at 2510 kN. Fig. 5.16f shows the
beam at failure. Two failure zones developed, one next to the loading platen, and the
other beside the supporting member. The reinforcement acts like a dowel and deformed
considerably. Yielding of the reinforcement (6 @ 6) over the middle support was report-
ed at this point. The stresses in the main reinforcement (4 @ 8) remain just below the
yield stress. In Fig. 5.19b the steel stresses in this reinforcement are shown at a load
level of 2200 kN. These stresses were determined at 12 positions in both spans. Both
spans are drawn in one diagram, starting from the middle support. In this case the span
to the left of the middle support is mirrored.

5.2.3 Parameter for the analysis
5.2.3.1 Element discretization

The adopted element mesh and reinforcement are shown in Fig. 5.17. Due to symmetry
it is possible, as with the deep beam on two supports, to model only one half of the
beam. Plane stress elements are used, with 8 nodes each. Full bond is assumed between
the reinforcement and the concrete. Support platens are modelled in the same way as
described in 5.1.3.1. Three triangular plane stress elements were used for refining the
mesh near the right (left) support platen. This was done to avoid having to define the
whole support reaction at a middle node.
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Fig. 5.17. Element mesh, dash-dotted lines indicate the location of the reinforcing bars.
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In the experiment the loading was applied through loading platens. These platens were
included in the finite element model.

5.2.3.2 Material parameters

The complete set of material parameters used in the analysis is listed below. The param-
eters used for the support- and loading platens are included. For an explanation, see
Chapter 0.

Concrete

E. =32000 N/mm?
v = 02

fu = 3.02 N/mm?’
foo = 302 N/mm?
tension cut-off 1

eys =0.001

B =02

The value for the tensioning stiffening parameter ¢,, was taken as similar to the value
used in the preceding analysis (viz. the panel on two supports). This seems possible
because the element mesh and reinforcement are comparable.

Reinforcing steel
E, =210000 N/mm?
Sy = 430 N/mm?

Support and loading platens
E, =210000 N/mm?
= 0.2

5.2.3.3 Load case

In a preliminary attempt a load-controlled process was chosen for analyzing the beam.
For reasons explained in Chapter 5.2.5 the load-controlled process caused numerical
problems. The simplest way of solving this was to adopt a displacement-controlled
process. This means that the two concentrated loads do not necessarily remain equal
during the loading process. However, in the present analysis the differences were not
very large, as will be shown later on.

524 Results

In Fig. 5.15a the computed load-deflection diagram is compared with the experiment-
ally observed behaviour. The stiffness in the linear-elastic stage is described rather well,
but the non-linear behaviour seems somewhat too stiff. The diagram shows an interest-
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Fig. 5.18a. _ ] Fig. 5.18b.
Cracking observed in the experiment at failure. Calculated reinforcement

plasticity at failure.

L

Fig. 5.18c. .

Calculated total displacements Fig. 5.18d. T

at failure Calculated principal stresses
' at failure.

ing dip between 1550 and 1800 kN, when the dominant shear crack arises beside the
supporting member. The load level at which the shear crack develops is predicted rather
well. The failure load is underestimated in the analysis, 2333 kN, or 93% of the failure
load observed in the experiment (2510 kN).

The computed crack development can be compared with the reported crack patterns at
five different load levels (respectively at 1400, 1600, 1800, 2000 and 2200 kN) and with
the reported crack pattern at failure (see Fig. 5.16). Only the “open” cracks are shown,
with crack strains greater then ¢,, = 0.001. Note that only one half of the panel is shown
without loading or support platens. The cracks can be compared with the reported ones
to the right and left of the middle support. The steep shear crack next to the supporting
member is simulated quite well in the numerical analysis. Also, the development of the
cracks in the spans between the supports is closely similar to the experimental results.
The behaviour at failure is shown in Figs. 5.18 and 5.19. As in the experiment, the rein-
forcement in the shear cracks yields and failure occurs when all the bars over the middle
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support start to yield (see Fig. 5.18b). The calculated stresses are shown in Fig. 5.18d,
and exhibit almost the same distribution on the right-hand side of the panel when com-
pared with the results obtained from the analysis of the beam on two supports (Fig.
5.10d). In Fig. 5.18c the calculated total deformations are shown. Compare the upper
edge with the part to the left of the middle of the panel in Fig. 5.18a.

In Fig. 5.19 the calculated stresses in the lower reinforcing bar are shown at a load level
of 1800 and 2200 kN. The stresses in the lower reinforcement bar in the span remain
just above the yield stress level. This was also observed in the experiment.
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5.2.5 Discussion

The development of a dominant crack just beside the left or right support as reported in
the analysis of the deep beam on two supports, does not occur in this example. Though
the first cracks are computed at the same position, they do not become dominant.
The steep shear crack next to the supporting member in the middle of the panel is
predicted rather well. From the load-deflection curve in Fig. 5.15a it can be seen that the
loading force undergoes a considerable drop. Since the experiment was load-controlled,
the curve of the experiment cannot be computed this way. Numerically, this kind of
calculation causes problems when a load-controlled proces is used, although DIANA
procedures are available to “get through the dip” with a load-controlled proces (the Riks
method). The difficulty can also be solved by using a displacement-controlled process,
as was done here. Only then does a difference between the two (or, rather, the twice two)
applied loads occur as shown in Fig. 5.15b. Only minor influences on the results are
expected, since the loads differ only slightly.

The calculated crack development in the span of the beam shows a very good resem-
blance to the reported crack patterns in the left span, also the span where failure
occurred. Direction and length of the cracks are predicted satisfactorily.

The stiffer response of the panel is probably due to the same cause as that mentioned
for the deep beam on two supports in Chapter 5.1.5: the behaviour of the “concrete”
column over the support (see Fig. 5.18d). At failure another reason may be that in the
shear cracks beside the supporting member the reinforcement acts like a dowel (see Fig.
5.18a). In the experiment these bars will slip. In the analysis bond-slip of the reinforce-
ment has not been taken into account.

The results of the stresses measured in the reinforcing bar are also interesting. At a load
level of 1800 kN (Fig. 5.19a) the influence of open cracks is clearly seen. In two places
where the cracks develop (compare the crack pattern at this level, Fig. 5.16c¢), a large
increase in stress occurs. The experimental results give higher stresses in the middle
of the spans, since more cracks have developed there. No higher stress for the steep
shear crack next to the middle support are reported, since no measurements were taken
in that region.

At a higher load level of 2200 kN far better agreement between the calculated and
experimental stresses in the reinforcement is observed (Fig. 5.19b). More cracks have
now opened (Fig. 5.16e) and the calculated stresses in the reinforcement in the span
are also higher and compare more favourably with the experimental stresses. Un-
fortunately, the stress in the crack beside the supporting member cannot be compared
with the experimental results.

In this example, failure by “yielding” of the concrete above the supports (see 5.1 5, the
analysis of the beam on two supports) does not occur. Failure occurs (before com-
pressive failure of the concrete can occur) by yielding of the reinforcement in the shear
crack. The deformations of the panel are “predicted” quite satisfactorily in the analysis
(compare Figs. 5.18a and 5.18c¢); note especially the resemblance near the edges.
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5.2.6 Conclusions

The following conclusions can be drawn:

- A realistic simulation of the structural behaviour of the reinforced concrete panel on
three supports is possible. Crack patterns and the sudden appearance of a steep shear
crack are quite well simulated.

- The steep shear crack determines the behaviour of the panel: as soon as this crack has
developed and reinforcement in the crack yields, failure is inevitable.

- The compressive response of the “column” over the supports is not important for fai-
lure, but seems to influence the stiffness.

- The previous analysis of the beam on two supports proved to be fruitful, especially for
determining the tension stiffening parameter &,,.

6 LNG tank
6.1 Introduction

In recent years much attention has been given to cryogenic storage of hydrocarbons.
Hydrocarbons can be stored under atmospheric pressure in liquefied condition when
cooled to a temperature below the evaporation point. The volume of the gas decreases
to 1/600 of the original volume for LNG (Liquefied Natural Gas) and to 1/270 for LPG
(Liquefied Petroleum Gas). Therefore, the storage temperature has tobe ~ — 160°C for
LNG and = — 50°C for LPG.
The most commonly used type of tank is a double-walled tank, consisting of an outer
tank of mild steel surrounding an insulated tank of 9% nickel-steel. In order to obtain the
necessary security against external hazards (for instance fire, impact loads or explo-
sions) concrete can be used, and an obvious choice is to replace the outer tank by a
concrete one. This has resulted in the development of a so-called C-IS (concrete-
insulation-steel) tank. The storage tank is single-walled and is provided with an insula-
tion layer on the outside in order to maintain the desired low temperature. The outer
wall is separated from the insulation by a cavity. In this analysis the outer tank will be
subjected to two different load cases, which will be analysed separately:
1. The tank will be filled with water to a certain height in order to investigate the liquid-
tightness.
2. The tank will be subjected to a fire load caused by an adjacent tank which is on fire.
Before a new storage tank structure is commissioned, test loadings have to be per-
formed. In principle, there are three possibilities: the “water test”, the “gas test” and the
“cooling test”.
The so-called “water test” means that the tank has to be filled with water until the load
on the base of the tank is equal to 1.25 times the maximum working load. Assuming a
density of LNG of about 500 kg/m® and a maximum height of 30.0 m results in a water
level of 18.7 m.
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6.2 Description of the problem

The storage tank which will be investigated was designed and analysed by Muller

(1985). This tank has been chosen because a substantial amount of information on this

tank is available. Its cross-section is shown in Fig. 6.1. The roof and the base are mono-

lithically connected to the wall. The storage tank is supported on 497 precast concrete
piles, each with a cross-section of 0.45 m«0.45 m. These piles are placed in concentric

circles and are equally spaced at 2.0 m within each circle. The circles are spaced at a

distance of 2.083 m.

The amount of prestressing steel has been calculated on the following assumptions

(Muller, 1985):

- The outer vessel will be filled with water to a height of 18.7 m (the so-called water
test) or will be filled with LNG to a height of 30.0 m.

- The amount of horizontal prestress in the outer wall is calculated using the so-called
tangential force balancing method. This means that the tangential force which is
introduced by the horizontal prestress balances the tangential force caused by the
water test or the LNG-load.

steel roof structure . 300
~

8925
I _——s——_———"
aluminium Slﬂlﬂs wool blanket
= |
450 [
T concrete structure !
cavity (800 mm) [
_insulation klegecell (250 mm.) |
30000 _ Ni-steel innertank |

LNG (—160°C) |

perlite foamed glass  Ni-steel innertank

1380 3'2084J 9*2083

o - -n—

—J[ dimensions in mm
I
[

25000
Fig. 6.1. Cross-section of the LNG tank.
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- When the tank is loaded with water or LNG, the average tangential stress in the
concrete must at least be equal to — 0.7 N/mm?.

The horizontal prestress in the wall is induced by 84 Freyssinet 12/12.5 prestressing

cables. These cables are variously spaced. The smallest distance is 0.2 m at a height of

5.4 m above the base. The vertical prestress in the wall isinduced by Freyssinet 12/15.2

cables, which are equally spaced at a distance of 2.0 m. They induce a mean compressive

stress of — 2.0 N/mm?. As the horizontal prestress in the wall is based on the so-called
tangential force balancing method, the shear force acting at the wall-to-base connection
will introduce tensile stresses in the base if the vessel is loaded beyond a certain level.

Therefore the base is prestressed using 10 cables Freyssinet 24/12.9, which introduce a

compressive stress of — 1.5 N/mm?. The base is extended outside the wall in order to

provide room for these cables.

The yield stress of the prestressing steel is 1860 and 1760 N/mm? for the 12/12.5 and

24/12.9 cables and for the 12/15.3 cables respectively.

The quantity of reinforcing steel is:

- At the bottom and top of the base @ 20-250, both in the radial and the tangential
direction.

- Attheinside and outside of the wall @25-250 in the vertical and the tangential direc-
tion. Only over the bottom 3.6 m at the inside of the wall, the quantity of reinforcing
steel is equal to @ 32-250 in the vertical direction and @ 20-250 in the horizontal
direction.

6.3 Parameters for analysis

In the numerical analysis, the tank has been schematized using axi-symmetric
elements. Not only the water test, but also the fire load can be schematized in this way.
This is due to the fact that the circumferential temperature gradient is not very steep.
Elastic finite element analysis was performed in order to investigate this assumption.
Stresses and strains in the hottest section were calculated. It appeared that there is no
significant difference between the calculation with an axi-symmetric temperature
pattern and the calculation with a temperature pattern that varies along the circum-
ference of the tank (Walther, 1983).

It should also be mentioned that a three-dimensional analysis would require very many
elements and a vast amount of computer-time.

6.3.1 Element discretization

The element mesh is shown in Fig. 6.2. The mesh has been refined near the wall-to-
base connection. The wall as well as the base have two elements through depth. The
foundation piles are modelled as axial springs. The lateral resistance due to the flexural
stiffness of the pile has been neglected. The axial stiffness has been schematized by
using a linear elastic force-displacement diagram.

The concrete roof is omitted, since major attention will be paid to the wall-to-base
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connection. The stresses in this region are not much influenced by whether the roof has
been taken into account or not. A uniform axial load is acting on the wall as a substitute
for the roof loading.

The axi-symmetric model consists of 76 rectangular eight-noded isoparametric nu-
merically integrated elements using a 3+3 Gaussian integration scheme. A total of 13
axial springs were used for schematizing the foundation piles. The reinforcing steel is
schematized as indicated in Fig. 6.3.

6.3.2 Material parameters

The material parameters used in the analysis are summarized below.

Concrete

E. =17500 N/mm?
v = 02

fa= 1.8 N/mm?

fee= 30.0 N/mm?
tension cut-off 2
&,s=0.0019

B =02
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Reinforcing steel

E, =210000 N/mm?
foy = 400 N/mm’
v o= 0.3

Prestressing steel
E, =210000 N/mm?

foy= 1760 N/mm’ (FeP 1760)
foy= 1860 N/mm’ (FeP 1860)

vV = 0.3
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In the fire load analysis some material properties are temperature-dependent, viz.:
- the thermal coefficient of expansion ar, and

- the modulus of elasticity of concrete and of the reinforcing and the prestressing steel.
The temperature dependence of these material properties is indicated in Fig. 6.4 (CEB,
1982).

The thermal coefficient of expansion of both the reinforcing and prestressing steel is
assumed to be constant (12.0¥107%/°C).
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Fig. 6.5a. Development of the temperature in the wall of the tank as a function of time.
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6.3.3 Analyses performed

In this example, two analyses were carried out:
1. Tank subjected to water test.
In this analysis the behaviour of the tank subjected to static loading was checked.
2. Tank subjected to fire load.
In this second analysis the development of temperature with time is important. This
is shown for both the wall and the base in Fig. 6.5 (Muller, 1984). The “manual cal-
culation” was performed on the following assumptions: The fire load is caused by a
burning adjacent storage tank which is at a distance of 62.5 m from the tank analyzed.
The fire causes a thermal radiation of 30 kW/m?, which is assumed to be constant
over the height of the tank. This radiation is also assumed to be constant with time
(40 hours).
Since the strength and the modulus of elasticity of the prestressing steel depend on the
temperature, the prestress will decrease with time. This decrease has been determined
by “manual” calculation (Muller 1984), and the result is shown in Fig. 6.6.

6.4 Results
6.4.1 Water test

In this paragraph the results will be presented when the tank is subjected to a water test.
In order to investigate the behaviour of the tank, it was not only filled with water to a
level equal to the water test level, but was filled as high as possible. In the analysis the
tank was completely filled with water, and the water test level (18.7 m) was considerably
exceeded (30.0 m).

The results from the analysis will be presented at the following loading situations:
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Fig. 6.6. Decrease of the prestress with time.
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- The situation after prestressing.

- Water load up to 18.7 m (water test).

- Water load up to 24.6 m: the level at which the first crack occurs on the inside of the
tank.

- Maximum load: the tank is completely filled with water.

Fig. 6.7 shows the development of the deformation of the tank (deformations are

enlarged 250 times). After prestressing, an “inside bulge” develops in the wall of the

tank. This is caused by the horizontal prestress in the wall. It can also be seen that the

dead weight of the wall and the roof introduce relatively large deformations on the

outside of the base. When the water load increases, the vertical deformation of the base

increases gradually. The horizontal deformation of the wall decreases, due to the

hydrostatic liquid pressure.

after prestressing loaded up to 18.7 m

(CDooIoTLTIIIUTIIIIIIIIIITIIIIIIZIIIIIIIIE

loaded up to 24.6 m loaded up to 30.0 m
Fig. 6.7. Deformation of the tank (250 times enlarged).
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Fig. 6.8 shows the development of the crack pattern. Four integration points located on
the outside of the tank are cracked when the prestress is applied. When the tank is load-
ed with water, these cracks gradually close. At a water level of 15.6 m, all the cracks are
closed, and the first crack on the inside of the tank develops when the water level is
raised to 24.6 m. When the level increases, the number of cracks gradually increases
and when the tank is completely filled, seven integration points are cracked.

In Fig. 6.9 the tangential force in the wall of the tank is shown at different loading levels.
From this diagram it can be seen that the minimum tangential force is equal to — 340
kN/m' when the tank is subjected to the water test. This is equal to a mean compressive
stress of —0.70 N/mm?. In this case, the compressive stress varies between — 1.23
N/mm? on the inside of the tank and —0.19 N/mm? on the outside.

d

1
0

——— e

after prestressing loaded up to 18.7 m

oo % ¢
N
°

loaded up to 24.6 m loaded up to 30.0 m
Fig. 6.8. Crack pattern of the tank (dotted lines indicate closed cracks).
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Fig. 6.9. Tangential force in the wall.

If the loading increases, the first tangential tensile stresses occur at a water level of
about 24.6 m. This is equal to the level at which the first cracks at the inside of the tank
are formed.

When the tank is completely filled, the tangential tensile force reaches a maximum of
710 kN/m', about 2.9 m above the base. This is equal to a mean tangential tensile stress
of 1.45 N/mm?.

The bending moment and the shear force in the wall are given in Figs. 6.10 and 6.11.
The results of the static analysis (water test) are as expected and give confidence in the
numerical simulation technique. We can now proceed with more complicated load
cases.

6.4.2 Fire load

The development of the temperature in the tank is, as already stated, shown in Fig. 6.5.
The temperature dependence of the material parameters were shown in Fig. 6.4. It
should be mentioned again that in this analysis no plasticity, neither in the concrete nor
in the reinforcing and prestressing steel, is taken into account.

The results of this analysis will be shown at the points of time at which the temperature
is calculated (see Fig. 6.5).

The deformation of the tank is shown in Fig. 6.12, while Figs. 6.13 and 6.14 show the
cracks which occur in the entire tank and in the wall-to-base connection. It should be
mentioned that only cracks with a crack strain greater then ¢,, are shown.
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after prestressing after 15 sec

after 1 min after 3 min

after 10 min

: after 40 min

C

Fig. 6.12a. Deformation of the tank, ¢ = 0-40 min (25 times enlarged).
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after 2 h

after 4 h

after 6 h after 10 h

after 20 h after 40 h
Fig. 6.12b. Deformation of the tank, t =2-40 h (25 times enlarged).
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Fig. 6.14. Cracks with cracks strain > 1.0¢,, wall-to-base connection.
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Since the cracks which are perpendicular to the tangential direction, i.e. the cracks
which are in the plane of the diagrams are represented by rectangles, the dark areas in
Fig. 6.13 occur. In Fig. 6.14 a detail of the tank is shown, and some of these tangential
cracks are visible.

The first cracks occur on the inside of the tank, which is due to the fact that the tempera-
ture reaches the highest level at the outside of the wall. Already after 15 seconds the
four cracks which occurred on the outside of the tank due to the prestress are closed
again.

The total number of cracks decreases after about 6 hours, as a result of the decreasing
temperature gradient in the wall with time.

After 3 minutes the stresses on the outside of the wall are equal to — 30 N/mm?, which is
equal to the compressive strength of the concrete. Plasticity should now occur in the
lower 1.1 m of the wall, but as already mentioned, this has not been taken into account.
The results indicate that after 10 minutes plasticity should occur at least in the lower
14 m of the wall. Because plasticity is not taken into account, the deformations are
largely underestimated and will therefore also influence the behaviour of the tank.

6.5 Discussion

In this example a storage tank comprising a nickel-steel ir.iner and a concrete outer tank
has been analysed. The outer tank is reinforced and prestressed.
In the first analysis the concrete tank was subjected to a water test. The crack patterns

} Strain,%es /
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/ —t
%:é'\ bor
| _———— r Temp,°C

Pa———— =

———x"2 400 600 |E4 800
\.
\ Measured
total def.

Fig. 6.15. Relation between different strain components.
This diagram gives an indication of different strain components as calculated by a
model developed by Anderberg and Thelandersson, 1976.
The load level is equal to 35% of ultimate load.
&, = thermal strain, including shrinkage
&, = instantaneous, stress-related strain
& = creep strain
&, = transient strain
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which are shown suggest that the tank is well designed: hardly any cracks occur when
the water test load is applied.

The second analysis comprised the behaviour of the tank when subjected to a fire load.
This fire was assumed to be caused by a burning adjacent tank and lasted approximately
40 hours.

The reported crack pattern and the deformations are in agreement with the expected
behaviour. The fact that plasticity could not be taken into account is of course a restric-
tion that should be mentioned. Furthermore, in the numerical analysis only crack
strains are calculated.

Another restriction is that the so-called “transient strain” has not been taken into
account. This effect comprises the large deformations which concrete can undergo
without increase in stress, when subjected to high temperatures (Anderberg and
Forsen, 1982; Khoury et al., 1985), see Fig. 6.15.

6.6 Conclusions

In this example a prestressed concrete storage tank was subjected to a water test and a

fire load. The following conclusions can be drawn:

- The water test analysis demonstrated good agreement between “elementary calcula-
tions” on the one hand, and “numerical simulation” on the other hand. No cracking
was observed when the tank was subjected to the water test, which indicates that the
tank was well designed.

- The results of the fire load analysis are presented as numerically calculated crack
patterns and deformations, and are in agreement with theoretical considerations.
However, one should realise that some simplifications were made in the numerical
analysis. The most important ones are that combined plasticity and temperature
dependence and “transient strain” effects are not taken into account.

7 Beam falling on a shock-absorbing element
7.1 Introduction

In the late seventies the Institute of Structural Engineering of the Swiss Federal
Institute of Technology in Zurich started a test series under the title “Experimental and
Numerical Investigations of Reinforced and Prestressed Concrete Beams for Shock
Loading”.

The object of these investigations was to ascertain the energy-absorbing capacity of
concrete in its plastic range. The tests are reported by Ammann et al., 1981 and 1982.
Now - more than S years later - considerably more is known about the material prop-
erties of reinforced concrete under dynamic loading and finite element programs, as
DIANA make it possible to perform dynamic non-linear calculations. Hence the results
of the test-series of Zurich can now be obtained numerically.

This example of a beam falling on a shock- absorbing element will demonstrate this.

103



7.2 Description of the experiment

In the test-series - of which one test has been chosen for simulation with DIANA -
8.15 m long beams are supported by means of a hinge at one end around which it can
rotate freely in a vertical plane (Figs. 7.1, 7.2). The other end of the beam is lifted
vertically to the desired drop-height H by means of an overhead crane and then
released. The beam falls onto a shock-absorbing element and undergoes severe bending
within fractions of a second (Fig. 7.3) after striking the shock absorber.

~_load cell

shock
absorber

785 m

4

Fig. 7.1. Test set-up. The beam is hinged at one end and can be rotated in a vertical plane. The
other end of the beam is lifted to a height of 3.75 m and dropped onto a fixed shock-
absorbing element.

Fig. 7.2. Beam BI raised to a height of 3.75 m. The black longitudinal line and the triangular
markings on the upper edge of the beam serve as reference marks for defining the
deflected shape in the film.
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Fig. 7.3. Beam B1 after the test. The permanent maximum deflection is 0.59 m.

After a maximum deflection is reached the beam vibrates, provided that it does not
rupture due to failure of the steel. When the vibrations die away the final value of
deflection is reached.

Several characteristic values of the beam were simultaneously and continuously
registered. Typical results are shown in Fig. 7.4. In addition, each test is photographed
at the rate of 1000 exposures per second. The film is also used for evaluation purposes
(Figs. 7.5 and 7.6).

A total of 23 beams were tested, the following parameters being varied:

shape of cross-section (rectangular or T-shaped);

quantity of reinforcing steel (0.20 to 1.50% of the concrete area);

type of reinforcing steel (hot rolled, cold worked, high strength);

degree of prestressing;
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Fig. 7.4. Force-time relationship of the shock-absorbing element measured on the top of the
shock absorber for beam B1. The zero response of the shock absorber during the first
0.01 s is incomprehensible.
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Fig. 7.5. Deflected shapes of beam B1. The maximum deflection of 0.65 m occurs at a distance of
4.05 m from the shock absorber. These deflected shapes have been determined directly
from the film.

- mass of beam (could be doubled by using lead sheets);

- method of testing (single or multiple drops);

- type of shock-absorbing element.

The test specimen which was labelled “B1” in the tests at Zurich was chosen for the
calculation. The basic idea behind this choice is that not too many difficulties must be
combined with the dynamic calculation. In this way the results of the calculation can be
shown in their most elementary aspect, not overlaid with other problems.

When this basic idea did not impose the choice of a certain parameter, an average value
was chosen for the parameter. These “rules” led to test-specimen “B1”. It has a rectang-
ular cross-section(0.4 m deep; 0.3 m high), 0.56% hot-rolled reinforcing steel, no pre-
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x=235m

Fig. 7.6. Deflection-time relationship for selected points of beam B1 as determined from the
film. The locations of the points are referenced by means of their distance from the
shock obsorber. The maximum deflection is reached after 0.163 s.
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Load

Spring-type shock absorber
Test 15

| H = 750 mm

Small plate

Spring-type shock absorber
Test 154

’ H = 750 mm

Wide plate

A7
y/'//
2 ! Spring-type shock absorber
Test 8
i H = 300 mm
7/'/‘ i Small plate
=1 .= Spring-type shock absorber
=7 =T Test 1
i = H=50mm
Paarr—ro——rus Small plate Deflection
el zO 30 LX) ) 50 6 O T Crmm)

Fig. 7.7. Load-deflection characteristic of the spring-type shock absorber with different con-
crete-protecting steel plates and different drop heights (H).

stressing and no extra mass (i.e. 2470 kg/m*). It was dropped only once from a height
of 3.75 m onto a spring-type shock absorber. The load-deflection characteristic of this

shock absorber - as determined by tests - is given in Fig. 7.7.

7.3  Parameters for the analysis
73.1 Element discretization

In the numerical analysis the beam is schematized with plane stress elements com-
prising eight nodes (Fig. 7.8). So the actual beam is simplified to a two-dimensional
problem.

In the test the part of the beam that hits the shock absorber was protected by a steel plate
to prevent crushing of the concrete. In the calculation this is simulated by leaving the
four elements above the shock absorber linear-elastic. This avoids modelling of extra
steel elements, but creates a somewhat different introduction of the force from the
shock absorber into the beam.

The hinge is modelled as a vertically and horizontally supported point. The location of
this hinge is the same as it was in the test: at 0.15 m from the right end of the beam, at

mid-depth of the cross-section.
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Fig. 7.8. Element mesh. On the left under the beam element No. 50: the shock absorber. Over
the shock absorber the four elastic concrete elements. On the right in the middle of the
four square elements: the hinge (not shown).

7.3.2 The shock-absorbing element

The spring-type shock-absorbing element is schematized by a spring with a load-deflec-
tion characteristic comprising three branches (Fig. 7.9). Because at the time of calcula-
tion a more advanced spring was not available in DIANA, this spring is hyper-elastic,
which means that the loading and unloading paths of its load-deflection curve are the
same.

In reality the shock-absorbing element will show a considerable amount of hysteresis.
A part of the energy in the beam will be absorbed by the shock absorber. In the calcula-
tion this energy must be absorbed by the beam, which will cause some more cracking
than in reality.

Also, the load-time curve of the shock absorber will be somewhat different from reality.
A slack negative branch of the spring is modelled (upward movement of the beam). This
part of the load-deflection curve has a non-zero stiffness to prevent numerical problems.
One more remark about the shock absorber must be made. The load-deflection curve of
Fig. 7.7 shows the behaviour of the shock absorber only up to a load of about 400 kN.
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Fig. 7.9. Load-deflection curve of the shock-absorbing element as modelled in the numerical
analysis. The negative branch with a small stiffness that is modelled for numerical
reasons is not shown.
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The load-time curve of Fig. 7.4 shows that the forces in the buffer in the actual test
increase to 720 kN. Owing to lack of information on the loading-region between 400
and 720 kN it is assumed that the third branch extends into this region as well. This
necessary assumption may influence the compatibility between the analytical results
and the measurements during the test.

7.3.3 Material parameters

Ammann et al. 1982 do not give all the material properties of beam B1 which are needed
for the analysis, and some had to be derived with the aid of known design formulas.
From the compressive strength of the concrete the tensile strength was calculated as
follows:

JSee

fct= ‘26

fo+ ) N/mm? (7.1)
in which fy=1 N/mm?.

The material response is different under dynamic conditions (e.g. Van der Veen and
Blaauwendraad 1983, CUR 1982 and Miiller et al. 1983), and in order to calculate the
material parameters the strain rates in the material must be known. Strain rates of 107°¢
to 1073 s7! can still be regarded as static loading. At these rates no increase in strength of
stiffness are to be expected.

From a preliminary linear-elastic calculation strain-rates of 2.5 x 1073 t0 25 x 107> s~
were expected in the present case (1000 to 10000 times higher than a “static” loading).
From CUR (1982) it emerges that at constant strain rates of this order the tensile
strength of concrete is about 1.5 times higher than in a static case. But from the same
report it appears that under load repetition the tensile strength decreases again: from
0.8/, with N =100 to 0.5/, with N =2 x 10°. Because the first stress wave in the beam
will be of great importance to the crack formation in the beam a tensile strength of 1.5
times the static strength is used in this calculation, i.e.:

fct,dyn = 1~5fct,stat (72)

From Van der Veen and Blaauwendraad (1983) it can be learned that at these strain
rates hardly any increase in compressive strength or Young’s modulus can be expected.
The same authors show that an increase in the yield stress of the reinforcing steel can be
expected at a higher loading rate:

s\ 1/5
Ssy.dyn —14 (ﬁ) (7.3)
fsy,stat 40

In this formula &, is the time-derivative of the steel strain in s~!. More recent investiga-
tions show the influence of dynamic loading on the yield stress of reinforcing steel to
be much lower: the factor “40” in (7.3) should in fact be considerably higher.

No influence on Young’s modulus of the reinforcing steel is mentioned by Van der Veen
and Blaauwendraad (1983).



Based on the above considerations relating to material properties under dynamic load-
ing, and the material models as explained in the introductory chapter, the following
material properties are adopted:

Concrete Reinforcing steel
E. =39750 N/mm? E, =210000 N/mm?
v = 02 fy= 650 N/mm?

fu= 4.8 N/mm?
foo= 43.8 N/mm?
0 = 2470 kg/m’
tension cut-off 1
£us = 0.0027

B =02

The value of ¢, is calculated with the tension stiffening concept based on the static
yield stress of the reinforcing steel. No bond-slip is modelled, and “perfect bond” is
assumed. The material properties are not varied in the analysis.

7.3.4 Velocity field

In the test the beam is supported by a hinge at one end. The other end is kept 3.75 m
above the shock absorber. Next, this end falls onto the shock absorber.

The calculation starts at the instant when the beam strikes the shock absorber. At that
instant the time is set to zero (t =0's). Consequently at ¢ = 0 s the beam is “loaded” with
a velocity field. The calculation (manually performed) of this vertical velocity field
results in a triangular field:

o) = 2 gt (7.4

in which

wo(x) = initial velocity at point x

X = ordinate along the bar axis (measured from the shock absorber)
! = length of the beam between hinge and shock absorber (7.85 m)
g = acceleration of gravity (9.81 m/s?)

H  =drop height (3.75 m)

The horizontal velocities and the rotations at t =0 s are neglected as well as the initial
deformations and the initial stresses in the beam. '

7.3.5 Type of numerical time-integration method

A choice must be made between implicit and explicit numerical time-integration
methods. Dealing with an implicit method in every time step a set of equations must
be evaluated by decomposition of matrices. The form of the equations depends on the
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type of implicit method used. In an explicit method the equations can be solved direct-
ly, but explicit methods are numerically less stable than implicit ones. All explicit
methods and some implicit methods are conditionally stable (i.e. the time step is limit-
ed by numerical stability); other implicit methods are unconditionally stable.

In structural dynamic calculations, in which the loading does not contain the highest
frequency components, mostly implicit numerical time-integration methods are used.
In this analysis the Newmark implicit method is chosen, which is an unconditionally
stable method (provided that the proper time-integration parameters are used; see
Bathe (1982)).

73.6 Lumped or consistent mass matrices

Another choice is between the use of lumped and consistent mass matrices. Experience
shows that there is less integration inaccuracy in the combination implicit method /con-
sistent mass matrix than in the combination implicit method/ lumped mass matrix.
Therefore a consistent mass matrix has been chosen.

7.3.7 Magnitude of the time step

From experience it can be stated that dynamic wave propagation (including the shear
deformation) can be satisfactorily simulated with plane stress elements, provided that
the elements are “small enough”, a condition which seems to be satisfied in this case.
If a conditionally stable time-integration method were used (which is not the case), the
magnitude of the time step would have to be smaller than the critical time step.
Belytschko and Hughes (1983) (page 102) show how the critical time step should be
calculated in some very simple cases. With the parameters chosen in this analysis this
should lead to a critical time step of about 5 x 107® s. By calculating with a time step
smaller than the critical time step, waves in the smallest elements can also be well distri-
buted in conditionally stable time-integration methods.

Because an unconditionally stable time-integration method is chosen (see 7.3.5), this
very strict rule does not have to be obeyed to obtain a numerically stable process. In this
case the choice of the magnitude of the time step is not completely free, however, but is
governed by rule-of-thumb (see Bathe (1982)) by means of which it is endeavoured to
incorporate an adequate frequency range in the analysis. The time step must be approx-
imately 20 times smaller than the time step that corresponds to the highest frequency in
the loading spectrum.

As indicated by Fig. 7.4, the shock absorber seems to respond with a highest frequency
of about 200 Hz, and from Fig. 7.6 the beam seems to respond with a frequency of about
3 Hz. In most cases the frequencies involved will not be known and will have to be
estimated. For a more detailed analysis of the frequencies of the beam and the shock
absorber see Section 7.4. Based on the frequency of 200 Hz, the time step must be
smaller than:
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t =.00025 s (7.5)

~20.200

As appears from Fig. 7.5, it seems interesting to continue the analysis at least up to
0.164 s. With a time step of (e.g.) 10™* s this means that more than 1600 time steps have
to be applied which was at first considered to be practicable in the context of this
example.

Later on it appeared that this magnitude of the time step (107* s) would require too
much (elapsed) time for completing the analysis; so the time step was increased to
1073 s (coping with frequencies up to only 50 Hz, not enough to simulate Fig. 7.4 very
well).

7.3.8 Analyses performed

In this example three different analyses were performed:

1. linear-elastic dynamic analysis: to check the input and to obtain an idea of the strain
rates that occur in the experiment;

2. calculation of eigenfrequencies: to obtain an idea of the frequencies that can play a
role in this example;

3. non-linear dynamic analysis: the results of this (main) part of the example are com-
pared with the results of the experiment in Zurich.

7.4 Results
7.4.1 Linear-elastic dynamic analysis

By performing a linear-elastic dynamic analysis the input data could be checked. The
linear-elastic deflection curves were qualitatively the same as the deflection curves
from the experiment (Fig. 7.5). The point of maximum deflection shifted from the
shock absorber to the middle of the beam. The deflections were smaller, of course,
because the beam was not allowed to crack. Evaluation of the shear force in the beam
near the hinge gave an idea of the stress and strain rates that occur in the beam. These
stress and strain rates were used for determining the dynamic material properties for the
non-linear dynamic analysis (see Section 7.3.3).

7.4.2 Eigenfrequencies

The eigenfrequencies are calculated in two situations: the unloaded (linear-elastic)
beam and the cracked beam at ¢ =.150 s. In both situations 10 eigenfrequencies were
calculated. The results are assembled in Table 7.1.

As expected, the lowest eigenfrequency of the beam is even lower than 10 Hz and the
cracked beam is less stiff than the linear-elastic beam (which means lower eigen-
frequencies). As mentioned earlier, in the main calculation only frequencies less than
50 Hz can be simulated.
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In the test the first eigenfrequency was measured too. For the uncracked beam the first
eigenfrequency was 8.14 Hz and for the cracked beam 3.75 Hz!.

Fig. 7.10 gives the shapes of the eigendeformations corresponding to the ten lowest
eigenfrequencies, both for the linear-elastic beam and for the (cracked) beam after
t =0.150 s. The overall shapes of these eigendeformations are the same for the cracked
and the uncracked beam, only the curves of the eigendeformations of the cracked beam
are sharper (because it is less stiff).

Table 7.1 Calculated eigenfrequencies at t =0 and 0.150 s

eigenfrequencies of the beam in Hz

at t=0.000 s at t=0.150 s
no. (linear) (cracked)
Ist 7.5 39
2nd 19.5 13.5
3rd 459 24.6
4th 92.1 429
Sth 125.1 64.6
6th 154.3 70.2
7th 230.9 104.0
8th 320.4 145.4
9th 375.2 177.8
10th 421.3 189.0

743 Progress of the non-linear dynamic calculation

As mentioned in Section 7.3.5, the analysis was started with time steps of 0.0001 s. For
the non-linear phenomena the modified Newton-Raphson method was used. With this
method at every iteration a new stiffness matrix is calculated. This worked quite well
until time step No. 200 (viz. the energy variation in one time step mostly decreased by a
factor of 10% in less than 10 iterations). After step 200 and especially at step 204 to 206
the process diverged, and the specified accuracy was not obtained (viz. 10* in not more
than 10 itertions). The energy variation within one time step increased when more
iterations were carried out.

This phenomenon is known from static calculations. It occurs when after a descending
part of the load-deflection curve this curve increases again. With the modified Newton
scheme too small a stiffness is calculated in the descending branch and no equilibrium
can be found in the ascending part. The solution is to take the linear stiffness matrix (the
stiffness as it was at the beginning of the calculation) and to keep it constant during the
entire calculation. A disadvantage of this method is that it converges rather slowly
(because the linear stiffness matrix sometimes differs considerably from the moment-

! In the experiment in which the eigenfrequencies were determined, probably lower strain rates
occurred than in the main experiment and, consequently, other dynamic material properties
were involved. This is one of the reasons for the differences between the experimental and the
numerical first eigenfrequencies.
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ary stiffness of the structure). But divergence problems as described above occur less
easily.

This method is applied in this dynamic calculation too. The idea was that also in this
calculation the divergence may be caused by a dip in the “load”-deflection curve. In this
case the “load” must be explained as a combination of accelerations. So the calculation
was restarted at time step 200 with the linear stiffness-matrix. This worked well.The
time steps 204 to 206 could be calculated, although the convergence was not very good
(a factor of 100 in the decrease of the energy variation within one time step was not
reached in 10 integration steps). In the subsequent time steps the convergence became
increasingly better.

So this calculation could be continued, and 250 time steps were analyzed.

It appeared, however, that one time step took about 200 CPU s (on the current hardware
configuration). Including the drawing of some diagrams every 50 time steps, each day
only 50 time steps could be calculated. So the complete analysis of at least 1600 time
steps would have taken more than a month. A major part of the numerical facilities
of the Institute would have been occupied by this analysis for a whole month. So it was
decided to increase the magnitude of the time steps to 107> s, though knowing that the
highest frequency that is satisfactorily calculated with this time step would drop to
50 Hz.

To increase the magnitude of the time step in the actual version of DIANA the calcula-
tion had to be restarted at t =0 s. An implicit advantage of this is that the results of the
two calculations can be compared. It appeared that (in the first 0.025 s) the deflection
curves at comparable time steps showed only minor differences. However, the crack
patterns showed one striking difference. The analysis with the small tirne steps revealed
some (not opened) cracks at the upper edge at the hinged end of the beam. The first
crack arose at 0.015 s at approximately two metres from the hinge. At 0.025 s all these
cracks “closed” again. None of them reached the maximum crack strain ¢,,, and none of
them increased further than about one third of the depth of the beam. In the crack
patterns of the calculation with the larger time steps these cracks were not observed.
The analysis with larger time steps was first started with the (faster) Newton-modified
iterative scheme. However, already at time step No. 12 the analysis diverged, and the
calculation was restarted with the constant (linear) stiffness-matrix. No differences in
results between both (non-linear) iteration methods were observed.

In this report only results of this last analysis with time steps of 107> s and the constant
(linear) stiffness matrix method are presented.

7.44 Response of the shock absorber

The calculations of the shock absorber are shown in Fig. 7.11. Note that the scale on the
horizontal axis is 107! s, just as in Fig. 7.4, which shows the response of the shock
absorber in the experiment. Fig. 7.11 has been corrected for the incomprehensible zero
response during the first 0.01 s as presented in Fig. 7.4. Having done so, the two
diagrams can be compared. As expected, the response in the numerical analysis is
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Fig. 7.11. Force-time relationship of the shock-absorbing element as calculated in the numerical
analysis. It is corrected for the incomprehensible zero response during the first 0.01 s
as is shown in Fig. 7.4 to make the two diagrams comparable.

“smoother” than in reality. This is due to the larger time step, which smoothes out the
higher frequencies in the analyses.

Where in reality the maximum force in the shock absorber is about 720 kN, in the
analysis it is about 500 kN. One of the possible reasons for this is the unknown behav-
iour of the shock absorber at forces higher than 400 kN. It is quite possible that the
assumed behaviour is not in accordance with reality (see paragraph 7.3.2).

Because of an incorrect unloading path in the model of the shock absorber (again see
Section 7.3.2) the descending branch of the diagram between 0.02 and 0.03 s is calcu-
lated not steep enough.

7.4.5 Deflection of the beam

Fig. 7.13 shows the deflection curves during the first 150 time steps (=0.150 s). Every
0.010 s one line is drawn. This diagram can be compared with Fig. 7.5, which gives the
same curves for the experiment (but at different times and intervals). There is a very
good qualitative agreement between these two figures. The point of maximum curva-
ture shifts from the shock absorber to the middle of the beam. In the test a maximum
deflection of 0.69 m is reached at t = 0.164 s at 4.0 m from the shock absorber; in the
calculation the maximum deflection is 0.57 m which is reached at t =0.149 s at 3.6 m
from the shock absorber.

For three points of the beam the deflection-time characteristic is given in Fig. 7.13 at
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1.35, at 2.35 and at 3.35 m from the shock absorber. The solid lines give the test results
and are derived from Fig. 7.6, while the broken lines give the results from the calcula-
tion for the same points. The points of maximum deflection are located at 1 = 0.163 s in
the experiment, whereas in the calculation they are found at about ¢ = 0.150 s, mainly
because the maximum deflections are smaller. In fact the complete diagram shows
some less deflection for the calculation and a little shorter vibration (higher frequency).

7.4.6 Steel stresses

The stresses in the bottom reinforcement were calculated (see Fig. 7.14). The reinforce-
ment is first loaded near the shock absorber: at 1.5 m from the shock absorber at
t = 0.005 s. The reinforcement near the hinge is loaded only later: at 6.5 m from the
shock absorber at + =~ 0.035 s. This result is as expected.

The steel stresses become negative after about 0.20 s. This is due to the decreasing
deflection after 0.15 s. In the experiment, this change of polarity occurred later, because
- as discussed before - the decreasing deflection started later than in the numerical
analysis.

7.47 Crack pattern

At time step No. 4 (0.004 s) the first cracks were formed at the lower edge of the beam at
a distance of approximately 1 m from the shock absorber. These are typical flexural
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Fig. 7.14. Steel stresses obtained from the numerical analysis.
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cracks. In the following time steps the flexural crack region expanded. This is shown in
Fig.7.15, where the contours are given that enclose at a certain time step all the integra-
tion points that are cracked (¢ > ¢, see Fig. 0.4). The velocity of this expansion in the
horizontal direction is about 150 m/s (for comparison: the so-called linear-elastic bar-
wave velocity is about 4000 m/s).

No cracks occurred in the four elements over the shock absorber because they were
kept linearly-elastic (see Section 7.3.1).

In the first instance, the lower two-thirds of the beam cracked (which implies that cracks
arose in the four lower integration points). Five to fifteen time steps later the fifth
integration point cracks too. The upper one-sixth of the beam exhibits splitting cracks
because of the strong concentration of compressive stresses.

Fig. 7.18 shows some of the calculated crack patterns. At different time steps the
integration points are shown where ¢ > ¢, (the crack directions are also indicated).
In Fig. 7.16 the contours are given for the open cracks (& > ¢, see Fig. 0.3). The first
cracks opened at t =0.010 s. The opening of the cracks spread over the beam in about
the same sequence in which they arose. Only the velocity in the axial direction is some-
what lower: = 110 m/s. As an example, Fig. 7.19 shows the open cracks at some later
time steps.

N I O (A S S A I N B O
T N N I S Y A s s O S B AN I O
t=0.005s
I 72 Y R O P [ 1 1T 1T T T T T T T "7T"T7
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Fig. 7.18. Plots of all “cracks” at several time steps (i.e. all “cracks” with & > Ec)-
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Fig. 7.19. All cracks with crack strain ¢ > ¢, at several time steps. See also Fig. 7.16.

At a certain time step the crack strain of all the cracks decreased (Fig. 7.17), and near
the shock absorber this occurred at t = 0.015 s. This is probably due to the fact that the
point of maximum curvature shifts from here to the middle of the beam.

From ¢ = 0.050 s cracks near the hinge also showed a decreasing strain. The last cracks
with a negative strain rate are located slightly to the right of the middle of the beam,
and the decrease in their crack strain started between time steps 150 and 175. This is
in agreement with the fact that the beam moves upwards again after time step 150.
In general, the cracking of the beam is very complex. Existing cracks close temporarily
when another crack is formed close by or when a second crack at the same point, but in
another direction, develops. In the compressive region, at the upper edge of the beam,
splitting cracks in the second (axial) and sometimes in the third (out-of-plane) direction
were observed.

The description of the crack behaviour of the beam as given above is intended as an
overview of the main features of this behaviour.

7.4.8 Velocity field

As described in Section 7.3.4, the analysis is started with a triangular velocity field as an
approximation of the real situation of the beam as it hits the shock absorber. Of course,
this velocity field changes with time. Fig. 7.20 and Fig. 7.21 give an idea of the develop-
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ment of the velocity field. The velocity field at each time step is individually scaled in
these two diagrams, and only qualitative comparisons can be made between two time
steps’.

During the first 0.050 s the velocity field moves from the shock absorber to the hinge ata
velocity of about 85 m/s. Then it seems to reflect against the hinge and returns to the
shock absorber.

Next, at ¢+ =0.150 s the direction of the velocities changes. At that particular time step
the right and the left part of the beam are moving in opposite directions. As mentioned
before, at approximately 0.150 s the beam reaches it maximum deflection in the calcu-
lation.

7.5 Conclusions

It has been shown that a non-linear dynamic finite element analysis is possible. Good

results can be obtained.

In the analysis the stiffness of the beam was a little overrated, resulting in somewhat

smaller deflections and a higher frequency than observed in the experiment. The

influence of dynamic loading on the material properties has possibly been over-
estimated in the input. But in general the numerical results can stand comparison with
the experimental results.

- A non-linear dynamic analysis of a beam with a finite element program is perfectly
feasible.

- Inthe analysis as described here the influence of the dynamic loading on the material
properties of reinforced concrete is probably overestimated (see 7.3.3). Further
research in this field seems necessary.

- Development of a spring element with hysteresis could improve the results of this
analysis because a better model for the shock absorber could then be implemented.

- Such an improvement can also be expected from a concrete model with even better
unloading behaviour than the model employed in this analysis.

8 Dynamic analysis of underwater tunnel for gas explosion
8.1 Introduction

Road tunnels that pass under waterways are very common in the Netherlands. They are
normally designed to resist the loads associated with soil and water pressure. In the
event of an internal gas explosion, the tunnel experiences a load reversal for which it
may not be adequately reinforced. Thus, the question whether hazardous cargo should
be permitted to pass through such tunnels is of some importance. Of primary concern,
of course, is the question whether an accidental gas explosion can cause failure of the

! The reason of this is that these diagrams are a compilation of different DIANA plots.
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tunnel. But even if the answer to this question were to be in the negative, it would still
be important to determine whether the tunnel would be damaged to such an extent that
its serviceability is impaired.

The development of non-linear finite element software has advanced to such an extent
inrecent years that it is now possible to provide rational answers to such questions. It is
for this reason that this problem has been included in this book of examples. Actually,
the purpose of this example analysis is twofold. First, it is intended to demonstrate that
an advanced analysis tool such as DIANA is capable of solving nonlinear dynamic
analysis problems, for which it is very difficult if not impossible to find reliable answers
by any other means. Second, the analytical approach itself serves as an illustration of
how a complex analysis problem should be solved. It is a reminder of the fact that such
an analysis is by no means a simple affair. It should be performed only by experienced
analyst and can consume considerable amounts of man-hours and computer resources.
For this reason, such analyses should be performed only in special situations where it
can be shown that no simple analysis methods can provide answers with reasonable
accuracy.

8.2 Description of the problem

The Rijkswaterstaat has developed standard tunnel cross-sections that are widely used
throughout the Netherlands. Fig. 8.1 shows a typical cross-section. In order to select a
specific structure, the 327 m long Vlake Tunnel for the A58 Highway in Zeeland was

29.8 m
Fig. 8.1. Typical tunnel cross-section.
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chosen. It was the purpose of this analysis to predict the response of the tunnel to the
pressure load associated with a hypothetical internal gas explosion.

The solution of a problem of this nature requires a careful step-by-step approach, with
constant verification of

- the correctness of the program used;

- the correctness of the model chosen;

- the correctness of the results obtained.

In order to achieve these goals, the following analyses were performed:

a linear-elastic static frame analysis of the entire tunnel cross-section;

a linear static finite element analysis of a segment of the tunnel roof;

a non-linear static finite element analysis of the same tunnel roof segment;

an eigenvalue analysis of the finite element model;

a non-linear dynamic time history analysis of a grossly simplified finite element
model;

6. the non-linear dynamic time history analysis of the actual finite element model.

At each step great care had to be taken to verify that the analysis results were reason-
able. For this purpose it was very helpful, that a 1:5 scale model of this tunnel section
had been tested at TNO-IBBC in 1976. The experiment is completely documented in
(TNO 1976), which also contains detailed information on dimensions, reinforcement,
material properties and service loads on the prototype structure.

8.2.1 Description of the structure

Fig. 8.2 shows the detailed dimensions of one-half of the tunnel section, and in Fig. 8.3,
the reinforcement is indicated for a 1.5 m wide section of the tunnel.
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Fig. 8.2. Dimensions of tunnel cross-section.
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Fig. 8.3. Tunnel reinforcement for a 1.5 m wide section.

8.2.2 Material properties

The material properties used in the analysis were based on those reported in the TNO-
IBBC report. In the final shock analysis, all the strength parameters were increased by
20% to allow for the strain-rate effect. These increased values are indicated below in
parentheses.

Concrete

E.= 22000 N/mm?
y = 0.2

fo =2.8 (3.36) N/mm?
Sfoe= 25 (30) N/mm?
tension cut-off 1

45 =0.0010

g =02

Note that the Von Mises yield criterion was used in this example, as contrasted with all
the other examples, in which the Mohr-Coulomb criterion was adopted.

Reinforcing steel

E,= 210000 N/mm?

foy =440 (528) N/mm’

For the dynamic analysis, 10% damping was specified for the two frequencies w; = 125
Rad/s and w, = 1250 Rad/s. This is equivalent to the Rayleigh damping parameters
a=22.7 and # =0.000145.

8.2.3 Gravity load data

For determining the dead weight of the tunnel, the weight of the concrete was taken as
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2400 kg/m?, which corresponds to a density input value of 2.4 x 10~ Nsec’/mm* and
should be combined with a gravity acceleration of 9810 mm/sec?.

For the soil weight, a 2 m layer of sand weighing 1900 kg/m® was assumed, and a 10 m
depth of water weighing 1000 kg/m® was included. Soil and water exert a pressure of
0.1353 N/mm on a 1 mm wide section of the tunnel.

8.2.4 Gas explosion load data

The determination of dynamic pressure loads generated by internal gas explosions is

not easy, because there are few useful experimental data available. The TNO Prins

Maurits Laboratory, in cooperation with other organizations in Belgium and The

Netherlands, conducted a series of tests on an experimental tunnel near Beveren,

Belgium, with internal cross-sectional dimensions of 1.8 m by 1.8 m and a length of

27 m. From these experiments it was possible to identify the following characteristics

of a pressure-time history due to an internal gas explosion (Fig. 8.4a):

1. For all practical purposes the shock front is vertical, i.e. the pressure rise from
ambient to peak pressure is instantaneous. The measured peak pressure was about
25 bar.

2. The peak pressure decreases parabolically to an overpressure plateau.

3. The overpressure remains approximately constant at the value of 6 to 7 bar. This
value can be computed from the gas-air mixture, considering the energy released

t, - arrival of shock front

— tz - begin of overpressure plateau
s ts - end of overpressure plateau
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Fig. 8.4. Pressure time history for an internal gas explosion.
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during the chemical reaction. The length of the plateau is a function of the time
needed to release the overpressure.

4. Once the depressurization of the tunnel starts, the decrease in overpressure again
conforms to an approximately parabolic curve.

The scaling of these experimental pressures for tunnels of different dimensions is not

straightforward. Concerning the tunnel cross-sectional dimensions it can be argued that

the energy released per unit volume is invariant; therefore both the peak pressure and

the plateau pressure are approximately independent of the cross-sectional area, assum-

ing the entire cross-section to be filled with combustible gas. Since the shock wave

travels at a speed of about 2000 m/s it is logical to assume that the length of the pressure

plateau is equal to the time it takes the wave to travel from the point of observation to

the nearest tunnel exit and back. Only then can the depressurization start. The experi-

ments revealed the inexplicable phenomenon that also the time from peak pressure

(arrival of the shock front) to overpressure plateau is approximately proportional to the

distance travelled by the shock front.

In addition to this information, the following assumptions were made in order to arrive

at a pressure-time history to be used in this analysis:

1. The Vlake Tunnel of 327 m length was entirely filled with gas.

2. The detonation commences at the centre of the tunnel.

3. The tunnel section to be analyzed is located at the quarter point, i.e. at a distance of
about 80 m from the tunnel exit.

4. The shock wave velocity is 2000 m/s.

5. The velocity of the depressurization wave is half that value, i.e. 1000 m/s, because
depressurization is associated with fluid flow, a considerably slower process.

Combining this information, one can arrive at the approximate pressure history shown
in Fig. 8.4b, which was used in the analysis.

It is to be noted that the peak pressure of 25 bar equals 2.5 N/mm?. Even the pressure
plateau of 7 bar or 0.7 N/mm?, applied for the duration of 0.1 s, represents a formidable
load which a conventionally reinforced structure is unlikely to survive without severe
damage.

Fig. 8.5 summarizes the three load cases relevant to this analysis.
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Fig. 8.5. Tunnel load cases: (1) dead weight, (2) sand and water, and (3) internal pressure.
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8.3 Modelling of structure and model verification

As already mentioned in the introduction, the finite element model was developed in
stages, and at each stage steps were taken to verify the correctness of the results and to
build up confidence in the results of the final dynamic analysis.

8.3.1 Frame model analysis

As a first step, a frame model of the entire tunnel section was developed (Fig. 8.6): 34
ordinary beam elements were used to model the section, and rigid links took account of
the finite joint sizes. A simple linear static analysis of this model was performed for the
load cases: (1) soil and water pressure, and (2) internal pressure. Qualitative bending
moments are shown in Fig. 8.7 and indicate that the moment distribution in the tunnel
roof is very similar in both cases. Thus, it is possible to model only one quarter of the
entire roof slab by finite elements and to apply boundary conditions which are applic-
able to both load cases.

832 Linear-elastic static analysis of finite element model

The finite element model used for this analysis and the subsequent analyses is present-
ed in Fig. 8.8. For comparison with the frame element model results, 45 eight-noded
plane stress elements of the type CQ16 M were used for the concrete, and the reinforce-
ment was modelled by 34 bar elements as shown. The model represents a 1500 mm
wide segment of the tunnel. Third-order integration was used for both plane stress and
bar elements. The model has 172 nodes with a total of 344 potential degrees of freedom
(Fig. 8.9).

This analysis was performed primarily for calibration purposes to obtain linear elastic
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4930 28
Figid 33 ] 34
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Fig. 8.6. Frame element model (dimensions in mm).
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Fig. 8.7.

Bending moments obtained with frame element model.

results comparable with those obtained with the frame model. Difference in the results

were due to the following factors:

1. The right-hand face of the finite element model was fixed against rotation, whereas
the frame analysis indicated that due to the flexibility of the outer walls the points
of maximum positive moment (and the point of zero rotation) is shifted a certain
amount towards those walls. To correct the finite element model, the midspan
rotation of the frame model was prescribed as a rotation of the right-hand face of the

finite element model.
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Fig. 8.8. Finite element model of tunnel roof (dimensions in mm).
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Fig. 8.9. Nodal point and element numbers.

2. The axial deformations of the vertical walls were included in the frame element
model but not in the finite element model.

3. The effect of steel reinforcement on the roof stiffness was explicitly accounted for in
the finite element model, whereas in the frame element model only gross moments
of inertia were used.

4. The representation of the haunched segment of the tunnel roof by a series of prismat-
ic beams introduces a considerable error, which can be reduced by increasing the
number of beam elements.

On taking due account of these four factors, both moments and displacements obtained
by the two models agreed to within 15%.

8.3.3 Nonlinear static finite element analysis

This preliminary analysis was performed because experimental data were available
for comparison which could serve as an additional check of the finite element model.
In the experiment, the 1:5 scale model of a 1.5 m wide tunnel section was subjected to
a complex loading history. The service loading pattern to be simulated is shown in Fig.
8.10, and the experimental set-up in Fig. 8.11. The load level was increased in stages, in
multiples of the service load level. At each stage, the load would be held constant for
about 40 minutes to permit creep deformations to take place. Thereafter, the deforma-
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Fig. 8.10. Service loading pattern simulated in experiment.

tions were held constant for another 80 minutes for taking the measurements. After
this, the load would be reduced by about 90% and increased again to reach the previous
displacement level. 10000 load cycles were thus applied at 4 seconds per cycle. The five
load levels equal to 1.0, 1.2, 1.4, 1.6 and 1.7 times the service load can be seen in Fig.
8.12. At the last load level, only 8700 load-cycles were applied because the specimen
showed signs of failure.

133



Fig. 8.11. Experimental set-up.

Before making a meaningful comparison between analytical and experimental results,

anumber of factors had to be taken into account. First, in the experiment, the displace-

ment ¢ referred to in Fig. 8.12 constitute the sum of roof and floor slab displacements.

From the linear elastic analysis of the frame element model it was found that the bottom

slab contributes 17% to J, while the axial deformation of the vertical wall and the

rotation of the fixed end contribute another 11%. Thus only 72% of the experimental
displacements should be compared with the analytical results.

The boundary conditions for the finite element analysis were determined from the

results of a linear elastic analysis of the frame element model for 1.0 times the service

load. These were as follows:

1. The right-hand face of the model was fixed against horizontal displacements.

2. The right-hand face was subjected to a rotation of 0.000158 by prescribing appro-
priate horizontal displacements for the affected nodes.

3. The left-hand face was fixed against rotation but free to move horizontally to prevent
unrealistic arch action in the roof slab. This condition was implemented by use of
the tying option.

4. An axial compressive force of 818 kN was applied to the left-hand face, this force
being caused by the horizontal pressure applied to the outside walls.
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Fig. 8.12. Load history in the experiment.

In the analysis, cracking started at 0.5 times the service load. After that, load increments
of 0.05 were applied up to 2.5 times the service load. Up to 15 modified Newton itera-
tions were allowed to give convergence of the results to an energy tolerance of 0.001.
Experimental and analytical load-deflection information is given in Fig. 8.13. Most
striking in this comparison is the large discrepancy in stiffness between theory and
experiment. A number of factors are responsible for this:
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Fig. 8.13. Experimental and analytical load-deflection information.
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1. The experimental data points were obtained from Fig. 8.12, adjusted with the 0.72
factor mentioned earlier. This diagram is a rather incomplete documentation of load-
deflection behaviour, as it does not indicate, for example, the change in stiffness due
to concrete cracking.

2. The large number of load cycles in the experiment caused damage, which could not
be reproduced by the monotonic load application used in the analysis.

3. The analysis did not attempt to reproduce the creep deformations that took place in
the experiment.

4. It can be expected that the moment redistribution due to cracking affects the results
in a way that was difficult to reproduce analytically, since the boundary conditions
were based on the moment distributions of the cracked structure.

5. From the documentation of the experiment it was difficult to determine to what
degree of accuracy the laws of similitude have been satisfied.

Although the stiffness of the tunnel roof was apparently not simulated too well in the
analysis, both the extent and nature of cracking and the failure load level were repro-
duced rather well. Figs. 8.14 and 8.15 show comparisons between experimental and
analytical crack patterns at 1.0 and 1.7 times the service load respectively. The shear
cracks observed in the experiment are clearly visible in the analysis results as well. It is
interesting to note the horizontal splitting cracks over the support, caused by the large
horizontal thrust. Failure was eventually coupled with crushing in the highly stressed
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Fig. 8.14. Cracking at 1.0 times the service load.
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Fig. 8.15. Cracking at 1.7 times the service load.
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Fig. 8.17. Principal stresses at 1.0 times the service load.

corner, as can be seen both in Fig. 8.16, which is a photo of the test specimen after
failure, and in Fig. 8.17, which illustrates the severe stress concentration at the corner
point near the support.

From this analysis it can be concluded that DIANA is capable of simulating the
response of this structure through the various cracking stages up to failure. Both the
program and the model can therefore be expected to provide useful results in a dynamic

analysis.

8.3.4 Eigenvalue analysis

In order to compute the mode shapes and frequencies of the finite element model of
Fig. 8.6, it was necessary to model the inertia of the soil and water over the tunnel roof.
Rather than undertaking an elaborate structure-fluid interaction analysis, it was
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Fig. 8.18. First six modes and frequencies of finite element model.

decided to simply account for the mass of the 2 m soil and 10 m of water by concen-
trating it as lumped masses at the nodes along the upper boundary of the model. For the
response of the structure to the initial shock of the blast load this approximation was felt
to be permissible. The first six computed frequencies and mode shapes are summarized
in Fig. 8.18.

For a “manual” check of the fundamental frequency we may assume L =6910 mm
(span between the inflection points), 7 =9.1 x 10! mm* £ = 22000 N/mm? = 22 x 10°
kg/s?mm, and m = 3.24 + 20.70 = 23.94 kg/mm; we thus obtain:

l/EI
w=n’ —=>59.8 Rad/s=9.5 Hz
mL

The difference between this value and the first frequency computed for the finite
element model can be attributed to the effect of the haunches.

83.5 Nonlinear time history analysis of simplified finite
element model

Before performing an expensive nonlinear dynamic analysis with the full finite element
model it was decided to perform trial analyses using the grossly simplified finite
element model of Fig. 8.19. There were a number of reasons for this:

1. Thisisarelatively inexpensive way for the novice user to familiarize himself with the
program’s dynamic analysis options and to set-up the command files for shock
analysis initialization and time step integration.

2. In this specific case, the small test problem served to identify a few programming
errors and to prompt their correction.
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Fig. 8.19. Grossly simplified finite element model.

3. The model, by exhibiting modes and frequencies surprisingly close to those of the
large finite element model, was capable of giving a first impression of the structure’s
dynamic response.

4. Currently, the program has the limitation of being able to combine static and
dynamic loads. For this reason, the simplified model was used to assess the impact of
applying all gravity loads dynamically.

Fig. 8.20 depicts the time history of the midspan deflection due to a sudden application
of all gravity loads. As can be clearly seen, the deflection oscillates around the value of
8.9 mm, which is somewhat larger than the computed static deflection of 6.8 mm,

displacement

0.0 ' 0.1 ) 0.2 ’ 0.3 ) 0.4 " 0.5
time ————e=

Fig. 8.20. Midspan deflection of simplified model due to dynamically applied gravity loads.
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because the dynamic effect of the load application causes more severe cracking. Also
the apparent fundamental period of about 0.36 s is much larger than the 0.15 s com-
puted for the uncracked linear elastic model.

Concerning the program’s limitations regarding static and dynamic load combinations,
it was felt that the internal pressure load is so much larger than the gravity loads that all
loads could well be applied dynamically at the same time.

8.4 Nonlinear time history analysis of finite element model

All the analyses so far described now had been performed as preparatory studies for the

“final” run, namely the time history analysis of the finite element model of Fig. 8.8 for

the pressure time history of Fig. 8.4. Prior to this analysis the following model modifica-

tions were introduced.

1. The plane stress elements CQ16M were replaced by the plane strain elements
CQIG6E.

2. In compliance with the plane strain analysis convention, the model thickness was
changed from 1500 mm to 1 mm. All masses, loads, etc. were adjusted accordingly.

3. Inthe longitudinal direction of the tunnel, reinforcing bars were assumed with areas
20% of the transverse steel areas.

The final run involved 150 time steps of At = 1.25 ms. To evaluate the effect of the time
step size, a second run with 100 time steps At = 0.625 ms was carried out. The accelera-
tion, velocity and displacement time histories of the roof midspan section are plotted
in Fig. 8.21, together with the applied pressure history for reference. From these and the
other results, the following observations were made:
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Fig. 8.22. Propagation of the concrete cracking wave front, (a) for the analysis with A7 = 1.25 ms,
and (b) for the analysis with Ar =0.625 ms.
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. The first impact experienced by the structure is the axial load applied at the left-

hand boundary. This tensile impact wave propagated to the right causing cracking
of the concrete at all integration points along its path. Fig. 8.22a shows this “cracking
wave front” after the first seven time steps, after which it arrived at the right-hand
boundary, long before the roof had any time to respond in bending to the upward
pressure. The wave speed is approximately 6450/0.00875 mm/s =737 m/s.

. The reduction of the integration time step to 0.625 ms, did not affect the results

very much, as can be seen by comparing Figs. 8.22a and b. Only the vertical midspan
accelerations showed some changes.

. Up to 111 integration points cracked during time step 7, yet the solution converged

almost at each time step within at least 10 iterations to the specified energy tolerance
of 0.001.

. The first reinforcing bar integration point started to yield in the fourth time step. The

concrete cracking wave is followed by a somewhat slower steel yield wave, which
reached the midspan section after 22 steps. Fig. 8.23 shows the total number of steel
integration points that yield at a certain time. As the total number of steel integration
points is 96, this diagram signifies that for the entire duration of the pressure plateau
a little less than half of the steel integration points yielded at any point in time.
The steel stresses in the two vertical reinforcing bars, which tie the roof slab into the
vertical walls are plotted as a function of time in Fig. 8.24. It is interesting to observe
that for a while these two bars provide a fixed end moment, but as the vertical
pressure tends to lift the roof off its supports, also the tensile stress in the left bar
builds up. At time step 150, the steel strain in the right bar has reached the value
0.022. The largest steel strain at this time was computed for the bottom steel over the
support (within concrete element 7, see Fig. 8.8) and was equal to 0.083. The top
reinforcing bar at midspan has undergone a strain of 0.024 at this time.

. The concrete stresses were not critical at any time of the analysis. The combination

of flexure with axial tension compelled the reinforcing steel to resist most of the
load.
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Fig. 8.23. Total number of yielding steel points.
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7. Theresults presented tend to point to the conclusion that the tunnel roof'is not likely
to survive a gas explosion load of the kind stipulated in Fig. 8.4. The weakest detail
appears to be the inadequate quantity of vertical reinforcement which cannot
prevent the vertical pressure from lifting the roof slab off its supports. Also the
plastic hinge both over the support and at midspan in the roof undergo large rota-
tions, causing a midspan deflection of as much as 38.5 cm after 150 time steps, which
can only be interpreted as failure.

8.5 Conclusions

Considering the various objectives of this analysis, the following conclusions can be

drawn:

- A conventionally reinforced underwater tunnel is unlikely to survive an internal gas
explosion.

- DIANA is a powerful tool to provide rational solutions for complex nonlinear
dynamic analysis problems.

- Such an analysis is a very difficult task, which may take an experienced analyst at
least one full month or more and consumes considerable computer resources. These
man-hours and computer expenses are needed primarily for the step-by-step
development of the finite element model and its verification.
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9 Concluding remarks

In addition to the concluding remarks made at the end of each example, some general
conclusions can be drawn.

A non-linear finite element analysis may be required when complex problems must be
solved for which loadings, boundary conditions and geometrical factors cannot be dealt
with by using existing analytical procedures. In general a choice has to be made as to
whether a model study or a non-linear analysis should be carried out. This choice will
largely be influenced by the reliability of the results obtained by either of the methods.
As demonstrated, the numerical tool can largely increase the structural insight, and can
serve as a research tool or as a means for improving model codes as well. Yet, in general,
an analysis is a very difficult task and should be carried out only by an experienced
analyst who is familiar with the material models adopted.

The use of a finite element package in its simplest form (i.e. linear-elastic), may already
give considerable insight into structural behaviour. In several of the examples, the
structural mechanism remained unchanged, irrespective of the development of cracks,
and a sound and solid structural design can then be based on a partial analysis. The dif-
ficulty is that these cases are not easily predictable, so that always some investigations
have to be made. In the more complicated analyses, redistributions or changes of the
structural mechanism were observed (e.g. the beam-column connection, example 3,
and the analysis of the tunnel section, example 4), and consequently the analysis
required more effort.

The performance of the programme seemed rather problem-dependent, which of
course puts some restrictions on its predictive powers. In many cases, the lack of pre-
dictive power seemed to be induced by a misunderstanding of the material behaviour
(of the material concrete), although also in some cases the way in which the structure is
divided into “basic building blocks”, may be open to some debate.

Table 9.1 CPU times (in seconds) for some of the examples (P, is the fracture load)

CPU times

example 0.75P, P,

1 30000 86000
2a 11000 29900
2b 13000 58200
3 9800 34200
Sa 580 1500
5b 2160 29000

How far a computation should be carried through is also dependent on the type of
problem. When only information concerning the service loads is needed, a tremendous
reduction in computation time is obtained. When fracture conditions are also to be
investigated, the effort increases considerably, as indicated in Table 9.1 for several of
the examples. For an analysis up to 70% of the fracture load, only roughly 30% of the
computer time is needed as compared with the fracture analysis.
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It should be mentioned that the above times will decrease, depending on developments
in computer technology (hardware and software). However, effort needed for inter-
preting the computational results will remain the same. Some further comments are
called for. In example 5b, only 8% of the CPU time needed for analysing the fracture
conditions was devoted to analysing the response of the panel on three supports up to
75% of its failure load. In this particular example, the panel had hardly cracked at this
level, and by slightly increasing the load, a pronounced plateau was observed in the
load-displacement diagram (see Fig. 5.15). The emergence of this plateau coincided
with the development of a pronounced shear crack in the panel. The reason for men-
tioning this example in this place is that in every analysis it is necessary to look out for
such structural response. The effort expended should be weighed against the informa-
tion needed. Safety considerations and structural aspects should be taken into account.
Nevertheless, in several of the examples, especially those where no large changes of the
structural mechanism occur after 75% of the fracture load, a partial analysis may be
sufficient. In those cases, the structural behaviour can be simulated quite accurately
with the numerical tool. If more information is needed, the performance of the program
is rather problem-dependent, and it seems that lack of knowledge of material properties
(of the concrete) is the main source for the observed discrepancies. However, the
current (general) structure of the DIANA programme forms a solid basis for future
improvements and extensions.

10 Notation

The following symbols are used in this report:
c cohesion

E. Young’s modulus of the concrete

E, Young’s modulus of the reinforcing steel
fec concrete compressive strength

Se concrete tensile strength

foy  yield stress of prestressing steel

Ssy yield stress of reinforcing steel

Gy fracture energy

h crack band width

ST slip modulus, radial direction

S? slip modulus, axial direction

w crack width

Ji] shear retention factor

y shear strain

Ect fcl/Ec

e SuolEs

£y ultimate tensile strain (G-concept)

Eus ultimate tensile strain (tension stiffening concept)
o friction coefficient
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0 density

a; principal stress (i =1,2,3)
T shear stress

T maximum bond stress

v Poisson’s ratio
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