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Plastic design of buried steel pipelines
In settlement areas

1 Introduction

In the Netherlands, many rivers and canals have to be crossed by pipelines. The highest
water level occurring in such watercourses is often above the level of the adjacent land,
so that dykes are needed to prevent flooding. As a rule, the pipeline profile corresponds
to the existing cross-section of the dyke and, after laying, is given a covering of clay and
topsoil.

Fig. 1-1. Pipeline crossing over a dyke.
----- original dyke cross-section

new dyke cross-section

I'I'I'] .additional covering topsoil

As the subsoil of the dyke often consists of highly compressible peat and clay strata,
considerable amounts of settlement may occur. Because of the additional load on the
dyke, settlement of the dyke is likely to be greater than that of the adjacent polder and of
the river or canal bed.

As a result of such differential settlement, the pipeline is subjected to bending
moments, normal (or direct) forces and sometimes also to torsional moments. These
torsional moments occur in situations where the plane of the pipeline crossing is not
vertical, as in the case (b) shown in Fig. 1-2. Because of its greater length in this case, the
pipeline possesses greater flexibility and is thus better able to accommodate itself to
differences in settlement.

The analysis of buried pipelines has conventionally been based on elastic theory. In the
Netherlands, codes of practice embodying this approach were published in 1971 [1.1]
and 1973 [1.2]. However, when these codes were applied to pipeline crossings already in
existence at the time of publication, several of them were found not to satisfy the
requirements. Therefore the crossings in question were judged to be deficient in safety
by the dyke managers. This prompted them to call for structural measures (modification

e

Fig. 1-2.  Two possibilities for the horizontal layout of a pipeline crossing.



or replacement of existing crossings) and/or operational measures (lowering the '
permissible internal pressure).

In the course of subsequent discussions on the problem it was decided to carry out
further research. In view of the character of the loads (imposed deformations due to
differential settlement) it was expected that, by applying plastic theory, it could be
shown that the actual loadbearing and deformation capacity of the pipelines are
substantially greater than calculated with elastic analysis.

The principal results of the research are reported in the present publication.

It emerges that computational models based on plastic theory can provide an accurate
description of the behaviour of buried steel pipelines up to failure. On applying this
approach to the analysis of pipeline crossings previously considered to be deficient in
safety it has been found in a number of cases that the pipelines in question are in fact
safe enough. As for the other pipelines, it has proved possible to attain the desired level
of safety by means of relatively minor modifications (e.g., partial removal of backfill
over the pipeline). In the majority of cases replacement of the pipeline has not been
necessary.

The effect of the internal pressure on the flexural behaviour is described in Chapter 2,
while in Chapter 3 the effect of external loads such as earth pressure and bending upon
the rupturing pressure is investigated. Chapter 4 deals with the various failure modes
and indicates the limit values to be complied with.

The research has led to the development of a new design method, which is explained in
Chapter 5. Rules for practical application of the method are derived in Chapters 6 and 7.
In Chapter 8 the practical application possibilities for the new design method are con-
sidered and the principal conclusions summarized.

2 Bending and internal pressure in straight pipelines

In this chapter it is investigated what effect the internal pressure has upon the moment-
curvature diagram, the ovalization and the buckling behaviour of straight pipelines
loaded in bending. The effect of the other loads, such as earth pressure, normal force,
shear force and torsional moment will be considered in Chapter 6.

2.1 Moment-curvature diagram

In the vicinity of bends, such as those at crossings of dykes and road embankments, the
stress in the longitudinal direction caused by internal pressure (oxp) Will be practically
half the circumferential stress (ay,). This is the case because near bends the pipe
behaves more or less in the manner of a pressure vessel in which the longitudinal strains
can develop freely. In long straight pipelines, on the other hand, the longitudinal
strains are zero because of the frictional restraint of the pipe by the surrounding soil.
In the case of a pressure vessel the values of oy, and gy, are as follows:
nr*P  Pr

T 2.1-1
T = onm - 2 @.1-1)



Oyp = (2.1-2)
P Oy
[ OYP J—> ’
Fig. 2.1-1. Stresses due to the pressure Pin a pipe with butt plates.
Bending gives rise to stresses o, in the longitudinal direction.
" g A
oxm
Fig. 2.1-2.  Stress in longitudinal direction due to bending.
For o,,, we obtain:
M_M 2.1-3)
a. —_—= —a -
W
and for oy, oxm and gy, we can then write:
Ox = Oxp + Oxm = 0.5a0, + fo. (2.1-4)
Oy =0y =00, (2.1-5)

In this section: L =ay,/d. and f = oxp/0. ,
The end of the elastic range is reached when the stress combination satisfies a yield
criterion. The criterion formulated by Von Mises will be adopted for this:

ac=\/a,%+ay2—axay=ae (2.1-6)
With (2.1-4) and (2.1-5) it follows that:
1=V(0.5a +8)* +a’—(0.5a + B)a (2.1-7)

f=+V1-0750> (2.1-8)

From (2.1-8) it appears that, with increasing bending moment, the end of the elastic
range is reached simultaneously on the tensile side and the compressive side. With
further increase of the bending moment the region in which yielding occurs will,
starting from the extreme fibres, become larger. This is indicated in Fig. 2.1-3, adopting
a bilinear g-¢ diagram.

The effect of ovalization on the moment-curvature diagram will as yet not be considered
in the present chapter. Its influence will be further analysed in Chapter 6.

For the bending moment it follows that:

90 Sin 7 ”/2
M=4{Bo.trdp —rsin p+4 | Bo.trde rsin ¢ (2.1-9)
0 s @ %0
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Fig. 2.1-3. Stresses in longitudinal direction due to pressure and bending.
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After rearrangement and replacing ¢, by ¢ we obtain:

)J (2.1-12)

For the associated curvature it follows that:

M=2p0.tr’ (

[
N — 1-
Q=) Ex= E(2+ﬂ va) (2.1-13)
(7] [04
gy el =— == f— 2.1-14
P=—0)— & E(2 B va) (2.1-14)
goBTE P (2.1-15)

2¥o ~ Ersin 0o

After replacement of g, by ¢ we obtain the following expression for the curvature
associated with M according to (2.1-12):

__Poe
Ersin ¢

(2.1-16)

When ¢ becomes equal to 72, yielding is just attained. The bending moment is then
M,, and the curvature K.

M,, = nr’tpo. = W.Boe (2.1-17)
_ﬁae _ W.Bae
K = B H (2.1-18)

When ¢ approaches 0, the whole cross-section will be plastified and the maximum
moment be reached:



M, =4r*tBo, = W,Bo. (2.1-19)
K — tends to infinity (2.1-20)

With (2.1-12) and (2.1-16) the moment-curvature diagram can be drawn for different
values of the pressure P (Fig. 2.1-4). It appears from this diagram that the effect of P
upon the flexural loadbearing capacity (M,,), particularly at not too high values of P,
is relatively slight. Anyway, with regard to buried pipelines it is to be noted that the
magnitude of M, is merely of secondary importance. The deformation capacity is much
more important. Inthis case it is the curvature to which the pipeline can be bent without
giving rise to undesirable consequences such as cracking or buckling.

er Ne K

Fig. 2.1-4. Moment-curvature diagrams for pressure and bending.

At the start of the research, in 1972, little was.as yet known about ovalization and the
occurrence of buckling in the plastic range. The series of tests reported in Section 2.2
was carried out with a view to obtaining more information. These tests also provided a
means of verifying the calculated moment-curvature diagrams.

2.2 Tests relating to bending and internal pressure
22.1 Test specimens and tests performed

Thirteen tests were performed on reduced-scale pipe specimens (152.5 mm and
122 mm external diameter, 1.55 mm wall thickness)* fabricated from hot-rolled steel
plate, grade Fe 52.3, in accordance with German Standard DIN 17100. The measured
yield point was about 360 N/mm?.

In comparison with actual pipelines the specimens had a relatively large diameter/wall
thickness ratio (approx. 100 and 80 respectively). This was so chosen in order to inves-

* 2152.5-1.55 and 2122-1.55 will be further used to denote these and similar pipe cross-
sectional dimensions.



Fig. 2.2-1. Ovalization due to bending.

tigate the most unfavourable situation with regard to buckling. The bending moment M,
the curvature K and the change in the vertical diameter AD, (=the change of the
diameter in the plane of bending) were measured (Fig. 2.2-1).

" An overview of the tests performed is presented in Table 2.2-1. For further information
on the test specimens and the experimental set-up the reader is referred to the photo-
graphs and to [2.10].

Table 2.2-1.

Du t Oyp P
No [mm] [mm] .o [bar]
25 152.5 1.55 0 0
26 152.5 1.55 0 0
24 152.5 1.55 0.20 14
21 152.5 1.55 0.40 29
22 152.5 1.55 0.60 43
23 152.5 1.55 0.80 58
28 152.5 1.55 1.00 72
27 152.5 1.55 —0.014 —0.99
25b 122 1.55 0 0
25¢ 122 1.55 0 0
29 122 1.55 0.31 28
21c 122 1.55 0.40 36
23c 122 1.55 0.80 72

Photo 1. Experimental set-up, with test specimen 28 (bending moment + internal pressure)
after the test. This pipe was initially straight; D,[t=101; gy, = g..

2.2.2 Test results

Moment-curvature diagram; change of the diameter in the plane of bending
Fig. 2.2-2 shows the moment-curvature diagram of test 25 (P=0) and Fig. 2.2-3 shows
that of test 28. The measured relation between the bending moment and the change in



Photo 2. Detail of photo 1. Wrinkles are visible.

Photo 3. Test 25b with D,/tr=81 and o,,=0. The buckled shape as shown here has been
accentuated by further bending of the pipe after it had buckled.
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Photo 4. Test 21c with D,[/t=81 and gy, =0.4¢.. In this case, too, the buckled shape has been
accentuated by further bending of the pipe after it had buckled.

M

M
[kNm] [kNm] wrinkles visible
buckling $152.5-1.55mm .
10l 10} Gy = Ge buckling
$152.5- 155 mm
i Gyp = 0 i
e 1 1 1 1 1
0 0.1 0.2 03  K[m 0 0.1 0.2 03 0.4 05
[m] K [m~]
Fig. 2.2-2. Moment-curvature diagram, test 25. Fig. 2.2-3. Moment-curvature diagram, test 28.
M M
[kNm] [kNm]
buckling
10 buckling 10
$152.5-1.55mm
5| G. =0 5
e #152.5-1.55 mm
Gyp= Oe
0 0.5 1.0 15 2.0 2.5 0 0.5 1.0 1.5 2.0 25
D, [mm] AD, [mm]

Fig. 2.2-4. Relation between moment and decrease Fig. 2.2-5. Relation between moment and
in vertical diameter, test 25. increase in vertical diameter, test 28.

the vertical diameter (=the change of the diameter in the plane of bending) in these
tests is given in Figs. 2.2-4 and 2.2-5. For the other diagrams the reader is referred to
[2.10].

On comparing the measured moment-curvature diagrams with Fig. 2.1-4 it is apparent
that deviations from the “theoretical” diagrams in Fig. 2.1-4 occur even already at
relatively low values of the bending moment.

10



This is due to the following causes:
- the presence of residual stresses from rolling and welding;
- the differences between the actual ¢-¢ diagram and the assumed bilinear diagram

(limit of proportionality, strain-hardening);
- some effect of non-linear geometric behaviour.
The measured values of the maximum moment are in good agreement with the calcu-
lated values in the previous Section. Because the stresses so adjust themselves in the
fully plastic state that the loadbearing capacity becomes optimal, residual stresses have:
no effect on the maximum moment M.
In the test with P= 0 the vertical diameter is found to decrease with increasing curva-
ture. This is in agreement with what was deduced by Reissner [3.1], among others, for
the elastic range. This will be further explained with reference on an equilibrium
model. See Fig. 2.2-6.

— =2 2

9

M& S )M 9
9 9 g<}f

Fig. 2.2-6. “Ovalization forces”.

Because of the curvature the flexural stresses, here conceived as having been com-
pounded to forces g, will have components f which can be conceived as constituting an
external load: “ovalization forces”.

It is obvious that when internal pressure is acting in the pipeline the ovalization will be
less than when there is zero internal pressure. That the vertical diameter increases
instead of decreases in the plastic range when there is a high internal pressure (Fig.
2.2-5) is due to the fact that, besides yielding in the longitudinal direction, yielding
occurs also in the circumferential direction.

This can be demonstrated with the aid of the property that in isotropic materials the
direction of the strains is perpendicular (normal) to the yield surface. Fig. 2.2-7 shows
the yield surface for the stresses in the pipe wall. It is the Von Mises yield criterion.

‘Fig. 2.2-7. Yield surface according to Von Mises.
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f(0x,0,) =0} +0}—0xoy—02=0 2.2-1)

Combinations of g,/0, and oy/o, (stress points) which are located within the yield
surface are in the elastic range. Stress points which are located on the yield surface
satisfy the yield criterion according to (2.2-1). Stress points outside the yield surface are
not possible (strain-hardening will not be considered here).

When the internal pressure is applied, the loading path OA is followed, while g, = 20y.
Next, bending is applied: the path AB is followed for the tensile fibres, and the path AC
for the compressive fibres. Yielding is attained at the points B and C.

When, for this stress combination, the deformations - in this case the curvature - are
increased, the deformation vector will be perpendicular to the yield surface. The plastic
strains associated with the stresses gy and gy are &, and &y, Together they form the
strain vector ¢, indicated in Fig. 2.2-7.

The strains &, produce the additional plastic curvature. The strains &y, produce a
plastic change in the circumference of the pipe. It is apparent from Fig. 2.2-7 that the
strain &y is positive both at the tensile fibres (point B) and at the compressive fibres
(point C). Therefore bending in the plastic range in conjunction with internal pressure
results in an increase in the circumference of the pipe and thus an increase in diameter.
From the above it follows that in the case of bending with internal pressure there are
two factors which play a part in bringing about the change in vertical diameter:

- the reduction due to the ovalization forces;

- the increase due to yielding in the circumferential direction.

If the internal pressure is high, the second factor is the governing one. This accounts for
the result of test 28 as represented in Fig. 2.2-5.

With the aid of the normality principle applied here it is possible to calculate the plastic
increase in circumference as a function of the curvature, ds follows:

The slope () of the yield surface is obtained by differentiation of (2.2-1) with respect
to ay:

df (oy,0 do do
———(dx Y)=20x+20-y d—ai—ay“‘ax a&i=0 (22-2)
d X
tan y = 8% _29x =% (2.2-3)
doy o0x—20y
The direction of the strain vector ¢, is:
tana=— =220 (224)

tan y o, — 20,

So this means that the plastic strain in the circumferential direction &yp1is equal to the
plastic strain in the longitudinal direction ¢, multiplied by tan a:

Eypr=tan a - &y (2.2-5)

12



For the plastic strains e, we obtain:

Expl = €x — éxe (22-6)
where:
. 050y, vay,
_ _ 2.2-7
e, =Krsin ¢+ B z (2.2-7)
1
&e =g (0x—vay) 2.2-8)
Pr
pr = 7 (2.2"9)

For the tensile zone (point B in Fig. 2.2-7) we obtain for o, with (2.2-1) and o, =g,:

01 =0.5(0,p + V02, —4(02, — 52)) (2.2-10)
and for the compressive zone (point C in Fig. 2.2-7):
00 =0.5(0,, — V02, — 4(02, — 02)) (2.2-11)
so that:
1
Sxe1 = (0x1 = v0y) (2.2-12)
1
Exer = 7 (052 —vayy) (2.2-13)

For the increase in circumference (A0) it follows that (see also Fig. 2.1-3):
T — 2 — o
A0 = § &xp tan ayrde + § &xp tan ayrde
?0 T+ 90
A0 =2Kr*(tan a, — tan a,) cos gy —
—1(m —2¢0) { &xe1 tan @ + &4y tan @, —

_0.50y,—vay,

E
Where with (2.1-15), (2.1-8) and (2.1-5):

Va2 —0.7502,

(tan a; +tan a,) (2.2-14)

@ = arcsin XEr (2.2-15)
The plastic change in diameter due to the pressure P is:
AQ A0
ADy=—.D="—"" 2-
LRy P (2.2-16)
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From calculations for some practical cases [2.8] it appears that value of AD,; is very
small in relation to the diameter anyway. This is also apparent from the test results. For
example, for ¢, = 0, and K= 10K, in test 28 the calculated AD,, is only 1.3 per cent of
the diameter [2.8]; see also Fig. 2.2-5.

For buried pipelines with gy, m.x = approx. 0.7¢, and a maximum curvature which is in

general considerably less than 10K, as envisaged above, the effect that AD;, has upon

the stresses is negligible.

Finally, attention must be drawn to some notable points on the yield surface in Fig.

2.2-7:

- Point D occurs when the pipe is subjected to internal pressure only. When yielding
is attained, g,,=1.150, and o4, =0.5750.. As appears from the direction of the
normal, then no plastic strains occur in the longitudinal direction. This is in accord-
ance with what has been observed in rupturing tests, in which the diameter does
increase, but the length of the specimen remains unchanged.

- Points E and F occur in the case of bending without internal pressure. Because the
strain component &y, at point E is positive, and is of the same magnitude but negative
at point F, the total circumference will remain unchanged.

- At points E and F, where o, =0, the ratio of &y, to &y, is as 2:1. This shows that
Poisson’s ratio in the plastic range is 0.5.

Buckling

Asis to be expected, the internal pressure has a positive effect on the magnitude of the
curvature Ky ycing at Which buckling of the pipe occurs. This is clearly manifest in Figs.
2.2-2 and 2.2-3. In Fig. 2.2-8 the measured values of Kyycing/K. have been plotted
against the values of @ = gy,/a.. The smallest measured values of Ky yckiing WETE€ approx.
2.0K, and occurred for P=0.

In the pipes considered here, for low values of P, buckling occurs fairly suddenly when
the curvature increases. It is something of a “snap-through” effect. The buckled shape
is sharp and angular. Photo 3 illustrates such a case of “crease buckling”. On the other
hand, with high internal pressure in the pipe, buckling occurs much more gradually.

Khucklinq
K!
-~ - - — — == === == ;;f
e P
6 /// 7 |
D, ~
—=81 s |
12 n — _ y ~ |
8 * VS
r P = |
- - |
4 o _ — - Ve
0 Q="__° _ _ o7 |
1 L ! | ! |
0 0 0.2 0.4 0.6 08 1.0 Gyp
as=s—

Ge

Fig. 2.2-8. Measured buckling curvature as a function of the internal pressure.
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Quite often it is then not possible to determine clearly at what curvature “true” buckling
develops. In this report the buckling curvature is defined as the curvature at which the
highest value of the bending moment is attained. In many instances small waves in the
pipe wall, occurring at lower curvatures than the buckling curvature, gave advance
indication of buckling (Photo 2). The buckled shape was smooth (Photo 4).

The factors affecting the buckling curvature will be further considered in Chapter 4.

3 Effect of external loads on the rupturing pressure

The effect that the internal pressure has upon the magnitude of the maximum moment
has been examined in Chapter 2. In the present chapter the effect of bending and other
external loads on the rupturing pressure will be investigated. In seeking to answer this
question the following basic assumptions are made:

a. The pipe material is ductile, i.e., it possesses sufficient strain capacity, so that the re-
distribution of stresses attended by a certain amount of yielding is possible without
cracking.

b. The differential settlement affecting the buried steel pipelines under consideration
is at most of such magnitude that, if the pipeline had zero flexural and/or torsional
stiffness and would therefore accommodate itself completely to the differences in
settlement, the strains occurring in it would not exceed the strain capacity of the
material.

W
(fo o B 1) 4

PRERLERE?

Q

Fig. 3.1-1. Pipe loaded by internal pressure and external loads.

3.1 Behaviour associated with increasing internal pressure

[n the following, this behaviour will be investigated with reference to a pipe loaded in
bending, shear and earth pressure. These loads are indicated in Fig. 3.1-1.
The stresses due to these loads are:

Ox = 0Oxp+ Oxm =+ Oxq (31-1)
Oy =0ypk 0yq (3.1-2)
T =174 (31-3)

where:

oxp = stress in x-direction due to P
gyp, = stress in y-direction due to P
oyq = stress in y-direction due to Q

15



0xq = stress in x-direction due to Q; because of lateral contraction,

the (flexural) stresses gy also give rise to stresses in the x-direction
Oxm = Stress in x-direction due to M
T4 = shear stress due to shear force D

With increasing internal pressure, yielding will occur when the stress combination
satisfies the yield criterion. The Von Mises criterion will be adopted:

oe=V0l+02—0.0,+3t =0, (3.1-4)

When yielding occurs, Poisson’s ratio is v = 0.5. For oy, g, and ¢ according to (3.1-1),
(3.1-2) and (3.1-3) it follows that:

0x=0.50y, + 04+ 0.50y4 (3.1-5)
Oy = 0yp + Tyq (3.1-6)
T =Tg 3.1-7)

With these expressions (3.1-4) becomes:
02 =0.75(0yp + Oyg)? + 02m + 374 (3.1-8)

With further increase of P, after incipient yielding at the extreme fibres, yielding will
gradually develop in all parts of the cross-section. This will be accompanied by some
stress redistribution, because oy, will have to decrease when P and oy, increase, the
reason being that the yield criterion as stated in (3.1-8) must always be satisfied. This
redistribution of stresses is associated with some yielding. The curvatures will increase
somewhat.

If the internal pressure increases further after yielding has developed in all parts of the
cross-section, the yield criterion can be satisfied only if oy, further decreases. This
means that the moment which can be resisted becomes smaller and that the pipe there-
fore offers less resistance to the deformations due to differential settlement. If P is suffi-
ciently high, g, and therefore also M will become zero, so that the pipeline will then
accommodate itself “passively”, as it were, to the differences in settlement.

When M decreases, the shear force will of course decrease at the same time, and for
M =0 the value of 74 will likewise be zero.

Fig. 3.1-2. Earth pressure Q “carried” by the internal pressure P,

16



As for the flexural stresses due to ¢, these will decrease due to the “rerounding” effect
when the internal pressure increases.
In view of the above, (3.1-8) becomes:

02 =10.75(0yp + 0yq) (3.1-9)
Oyp £ 0yq= +1.150, (3.1-10)

If P is still further increased until gy, = 1.150,, the value of gy, will gradually have to
become zero.
The stress gy, is equated to:

aypzp—;’rz 1.150, 3.1-11)
For reasons of equilibrium, Fig. 3.1-2:

2ny + Q=2P)(r+a) (3.1-12)
For n, we obtain:

ny = toy, = Pyr (3.1-13)
so that (3.1-12) becomes:

0=2Pa (3.1-14)

This means that the earth pressure Qis, as it were, supported by the internal pressure.
The wall of the pipe resists no bending moments. The situation that thus arises is com-
parable to that of a fire-hose loaded by internal pressure. A hosepipe in that condition
is able to support an imposed external load.

In consequence of these circumstances, the only stresses which act in the pipe subject-
ed to the pressure P, in accordance with (3.1-11) are due to this pressure P, itself. This
means that, if the pressure in the pipe is further raised above the yield pressure P,, a
situation will be reached which is similar to that of a pipe not subjected to external
loads. In connection with this the rupturing pressure of a pipe which is subjected also to
external load will be no different from that of a pipe loaded by internal pressure only.
This leads to the conclusion that, provided the conditions as to the pipe material and the
imposed loads are satisfied, the rupturing pressure is not adversely affected by external
loads.

The foregoing considerations can be applied also to other external loads than those
envisaged here and will lead to the same conclusion.

3.2 Direct derivation of the above with the aid of plastic theory

For this purpose the stress distribution is so chosen that Prager’s third theorem is
satisfied. For the present case this theorem implies that, provided the chosen stress
distribution fulfils a number of conditions, the associated load is the failure load. Since
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Prager refers his theorems to the yielding stage, here the yield pressure P, will
provisionally be regarded as the failure load.
The chosen stress distribution is as follows:

Pyr
Oy=0yp = TD (3.2-1)
PByr
Ox = Oxp = T 3.2-2)
where:
150t
p, = 110! (3.2:3)

r

The conditions to be satisfied by the chosen stress distribution according to (3.2-1),

(3.2-2) and (3.2-3) are:

a. The stress distribution must satisfy the requirements of equilibrium. This condition
is satisfied. The stresses oy, = 1.150, and g, = 0.57 g, are of such magnitude that the
load can be supported by the yield pressure P,. The load due to the earth pressure is
supported by the internal pressure, while the bending moment and shear force are
zero. Because the pipeline is buried and the differential settlement is of limited
magnitude, no bending moment, no torsional moment, no normal force and no shear
force are necessary for equilibrium.

b. The stress combination must everywhere be so constituted that the Von Mises
comparison stress is not exceeded. This condition is satisfied in the case of the
stresses gy, and oy, since:

0. =V1.1562+0.5762 — 1.15-0.5702 = o, (3.2-4)

¢. The stress combination must everywhere be in conformity with the strains that
occur. Having regard to the tensile stresses and the corresponding strains this
condition is likewise satisfied.

d. A plastic mechanism must be formed. This is indeed the case because at every point
in the pipe wall the stress combination satisfies the yield criterion. A small increase
in P produces a large increase in the circumferential strains.

In this way it has been proved that the yield pressure according to (3.2-3) is the “failure

load”. This failure load is not affected by the external loads.

That the “true” failure load, namely, the rupturing pressure, is higher than the yield

pressure is due to the occurrence of strain hardening after the strains have attained the

appropriate magnitude for this. Hence it follows that if the maximum working pressure
is linked to the yield pressure, the actual safety against rupturing is greater according as
the ratio between the tensile strength ¢, and g, is higher. The strain at which g, occurs

also plays a part. According as this strain is greater, the increase in diameter at which o,

is attained is likewise, so that, for equal g, the rupturing pressure associated with a

greater strain is less.
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3.3 Experimental verification
3.3.1 Tests on reduced-scale pipes

By means of a series of rupturing tests [2.8], [2.12] it has also been shown experimentally
that external loads do not adversely affect the rupturing pressure. The tests in question
were always based on two specimens as nearly identical as possible. This was achieved
by making the two specimens from the same length of pipe ( z 108 — 2 mm) or from the
same bend (2 114 — 3.8 mm) with a radius of 270 mm.

The following load combinations were investigated:
a. Straight pipes

al. earth pressure (Qq + Q;) + bending (M) + internal pressure (P)

a2. bending (M) + torsion (M,) + internal pressure (P)
b. Smooth bends

bl. earth pressure (Q;) + bending (M) + internal pressure (P)

b2. bending (M) + torsion (M,) + internal pressure (P)
c. Mitred bends

cl. earth pressure (Q;) + bending (M) + internal pressure (P)
The procedure adopted was as follows:
First, at P=0, the external loads were applied to one of the two specimens until the
deformations (ovalization, curvature, rotation) were so great that the limit states
defined in Chapter 4 had amply been exceeded. In many cases buckling occurred.
After these deformations had been imposed, the specimens were maintained in the
deformed condition, and the deformed specimen as well as the non-deformed specimen
were connected to the same pump. This set-up is shown diagramatically, for test (al), in
Fig. 3.3-1.

pump

Fig. 3.3-1.  Schematic set-up of the rupturing test q,.

In nearly all the tests the first rupturing was found to occur in the specimen not
deformed by external loads. In those cases where this was not so, the difference
between the two rupturing pressures was negligible.

What had theoretically been deduced with the aid of plastic theory was thus experi-
mentally confirmed for all kinds of load combinations, for straight pipes as well as for
smooth bends and mitred bends. Photos 5 to 14 show the experimental set-up and
specimens employed.
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Photo 5. Rupturing test under the action of “earth pressure” (Qq + Qi) and bending (M) upon

straight pipes (Nos. 107 and 107A, test al).

Photo 6. Detail of ruptured pipe (No. 107A).
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Photo 7. Rupturing test under the action of bending (M) and torsion (M,) on straight pipes (Nos.
104 and 104A, test a2).

Photo 8. Detail of pipe No. 104: buckling due to bending and torsion (before internal pressure
was applied).



Photo 10. Rupturing test on smooth bends under the action of “earth pressure” (Q;) and bending
(M) (Nos. 105 and 105A, test bl).
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Photo 12. Rupturing test on smooth bends under the action of bending () and torsion (M,)
(Nos. 106 and 106A, test b2).
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Photo 14. Rupturing test on mitred bends under the action of “earth pressure” (Q;) and bending
(M) (test cl).
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3.3.2 Full-scale tests

Purpose of the tests

With the exception of the full-scale tests mentioned here, reduced-scale pipes were
used for all the approximately 70 tests performed within the scope of the research (scale
factor 1:4 to 1:8). Provided that the laws of similarity and scaling-down are duly taken
into account, the conclusions to be drawn from these tests on reduced-scale specimens
are validly applicable also to full-size pipes.

In connection with the acceptance of these conclusions by the licensing authorities for
the management of dykes and flood defences* bending tests followed by rupturing tests
were moreover performed on two full-scale specimens.

Specimens and tests performed

The tests were substantially similar to those described in the preceding section. After
being subjected to a bending test, the buckled pipe together with a pipe not deformed
by external loads was loaded by internal pressure until rupturing occurred. The test
specimens were fabricated from pipes (2609.6 —6.4 mm) made from steel whose
specifications complied with API SLX 52. The measured yield point of this steel was
360-380 N/mm? in the longitudinal direction. The tensile strength both in the longi-
tudinal and in the circumferential direction was 500-510 N/mm?, and the elongation at
fracture in the d,s tensile test bars was 30-35 per cent. A circumferential (girth) weld
was located in the middle of the measuring zone (Fig. 3.3-2).

J 20400 mm )
= =
F measuringrange £
vy S
girthweld
s it} P
I 1HF

l buckling ‘

t=12.7 mm t=6.4 mm t=12.7 mm

Fig. 3.3-2. Schematic set-up of the full-scale bending test.

The experimental set-up for the bending test is shown schematically in Fig. 3.3-2. The
loads F were applied to the pipe by means of thin steel straps (see Photo 15). By
employing a thicker-walled pipe at those locations where these forces were largest, the
occurrence of buckling at those point of load application was prevented.

During the bending test a negative pressure of about — 1 bar was maintained in the
pipe by means of a vacuum pump. This was the most unfavourable situation from the
point of view of buckling. While the test was being performed the curvature was
measured at various points, as was also the change in the vertical and in the horizontal
diameter (Photo 15).

* Technical Advisory Committee for Dykes and Flood Defences (Technische Adviescommissie
voor de Waterkeringen: TAW); the Provincial Civil Engineering Works Departments; the
Polder Management Boards; etc.
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L

" Photo 15. Buckled pipe in the full-scale test.

Photo 16. Full-scale rupturing test set-up.
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Photo 17. Ruptured pipe in the full-scale test.

After buckling had occurred the pipe was removed to an outdoor testing site, where it
was subjected to further deformation (deeper buckling). The deflection was thereafter
maintained (fixed) in the condition that had been attained. The rupturing test was then
performed. The set-up is shown schematically in Fig. 3.3-3; see also Photo 16.

Result of bending test

The measured moment-curvature diagram is given in Fig. 3.3-4, while Fig. 3.3-5 gives

the relation between the moment and the ovalization. The buckled pipe is shown in

Photo 15.

The buckling curvature was approximately 1.5K,, which was less than had been

obtained in the reduced-scale tests (Section 2.2). The difference was, however, within

the range of scatter associated with such tests. The following causes of scatter may be

mentioned:

- Variation in the stress-(compressive) strain properties of the steel used: more partic-
ularly the limit of proportionality and the strain-hardening modulus [2.8],[2.11]. The

crack

Fig. 3.3-3.  Schematic set-up of the full-scale rupturing test.
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Fig. 3.3-4. Measured moment-curvature Fig. 3.3-5. Measured moment-ovalization diagram.
diagram. AD, is the change (decrease) in diameter
K in the plane of bending.
(m™]
0.010
buckling
0.008-
¢ 609.4-6.40 mm
Gyp=-0.00130,
s . . .
0 2 4 6
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Fig. 3.3-6. Measured curvature-ovalization diagram. Aﬁv is the change (decrease) in diameter in
the plane of bending.

applied steel had virtually no limit of proportionality. This is of major influence
particularly in cases where the critical compressive buckling strain is not much
greater than &..

- Variation in the geometric deviations from the ideal circular shape.

- Variation in the mechanical properties in the circumferential direction in relation to
the longitudinal direction (o-¢ diagram).

- Variation in the magnitude of the residual stresses.

The absence of the limit of proportionality is probably the main reason for the present

test result.

Result of rupturing test

In the rupturing test the rupturing pressure in both test specimens was approximately
110.1 bar. On the basis of the nominal diameter of the pipes and the minimum
measured wall thickness the stress gy, was:

_ 110.1 x107'(609.6 — 2 x 6.35)

= =517N 2
Typ 75635 517 N/mm
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On the basis of the actual diameter at the instant of rupturing the value of gy, was:

110.1 x 1071(609.6 — 2 x 6.35 + approx. 55)
Ty = 2%635

This latter value is larger than the measured failure stress by a factor 565/510 = approx.
1.11. The reason is that, besides g, there also acts a stress o, in the longitudinal direc-
tion (biaxial state of stress).
While the internal pressure increased, the bending moment was found to decrease, as
had been expected. At high values of the internal pressure the tensile force at the
bearings became zero and the ends of the pipe rested on the sand-filled containers, i.e.,
the curvature further increased. Moreover, the buckle that had formed in the pipe
gradually disappeared with increasing internal pressure. The rupturing that ultimately
occurred was in a different location from the buckle (see Fig. 3.3-3 and Photo 17).
In these full-scale tests it was again confirmed experimentally that under the stated
conditions the rupturing pressure is not affected by the external loads.

=565 N/mm?

4 Limit states and limit values
4.1 Introduction

The failure modes that may occur in buried pipelines are:

- Development of leakage due to cracking or rupturing.

- Development of inadmissible large deformations, such as excessive out-of-
roundness and buckling. This failure mode is especially important from the pipe-
line manager’s point of view. Since buckling may, for example, be associated with
very large local strains, buckling increases the danger of cracking and leakage. Thus
the failure mode “inadmissible deformations” is also of importance to the dyke
manager.

When either of these two failure modes occurs, a so-called limit state is attained. This is

a state in which the structure is deemed to have become unserviceable or in which one

+or more of its parts have ceased to perform the function for which they were designed.

In the “Technical principles for the design of buried steel pipelines” (TGSL - 1986) [2.1]

the above possibilities of failure have been worked out to the following five limit states

and their associated limit values. With regard to the limit values stated there, it is to be
noted that they relate to the design loads given in the TGSL. These are the service loads
multiplied by factors incorporating the required margin of safety.

4.2 Limit state “stresses”

This is the limit state where the calculated stress exceeds the limit value represented
‘by the yield point a,.

4.3 Limit state “strains”

The material of which the pipeline is made must be able to withstand the strains due to
the design loads and design settlements without giving rise to cracking. The material
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(parent metal and welds) must therefore possess sufficient strain capacity. In judging
whether sufficient strain capacity is available it is necessary to take account of possible
discontinuities that may be present, e.g., in the form of weld imperfections.

One consequence of applying plastic theory is that, by more deliberately making use of
the plastic properties of steel, the strains occurring in the pipeline material will in
general be greater than when elastic theory is applied. This gives rise to the question
whether the pipe wall with the possible discontinuities it contains, can suitably take up
these greater strains. The research undertaken in response to this question led to the
report [2.9], in which it is proposed that the “Crack Tip Opening Displacement”
(CTOD) approach to the problem be adopted.

Ot

Fig. 4.3-1. Dimensions of a discontinuity assumed to be present in the material.

PD 6493 [1.8] has been used in [2.9]. With the CTOD approach a quantitative relation

can be established between:

a. the CTOD value, which is a toughness parameter of the material considered and is
determinable by means of a standard test;

b. the dimensions of a discontinuity assumed to be present in the material, e.g., a
welding flaw with dimensions a and /;

c. the minimum strain capacity available in the material in question.

4.4 Limit state “deformations”

This limit state is attained when the ovalization becomes unacceptably large. A second
possibility is the occurrence of buckling of the pipe wall (local buckling, with “wrin-
kling” or “creasing”) and a third possibility is the occurrence of overall buckling (lateral
instability of the pipeline, in the manner of a strut).

4.4.1 Ovalization
The limit value of the change in diameter in the design state is put at 0.15D;:

AD,=0.15D, (4.4-1)

Fig. 4.4-1. Limit value for the ovalization in the design state.
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442 Local buckling

Bending, normal force and pressure P
The value calculated in [3.3] for the critical buckling stress for P= () in the elastic range
(v=0.3) is:

o= 0.605Ei— (4.4.2)

Tests have shown that the actually occurring buckling stresses are considerably smaller
than the values given by (4.4-2) and moreover exhibit considerable scatter. The causes
of this scatter have already been stated in Section 3.3.2.

On the basis of the available experimental results the following limit values have been
adopted, both for the elastic range and for the plastic range:

- for #f/r' > 1/60:

! Pr- P
&q=0.25 i 0.0025 + 3000 (Et) LPl (4.4-3)
- for #/r' < 1/60:
2
eer=10.10 ;t,+ 3000 (g) % (4.4-4)
where:
r=—> (4.4-5)

|_3a
‘

a = ovalization at ¢ = 7/2, 37/2 (Fig. 4.4-2)

In [2.11] these formulae for ¢ have been compared with the available experimental
results from the present writer’s own research and from research reported by Sherman
[3.4], Kato [3.5], Murphey [3.6], Reddy [3.7], Korol [3.8], Kimura [3.9] and Bouwkamp
[3.10]. In practically all cases (4.4-3) and (4.4-4) give lower (= safe) values for . In Fig.
4.4-2 the formulae given for &, are compared with some experimental results [3.7]. The
latter relate to pipes which were subjected to bending and/or normal force in conjunc-
tion with P=0.

In the case of a buried pipeline the pipe cross-section will become oval due to the action
of earth pressure. As a result of this, the radius of curvature of the pipe wall in the zone
where buckling will ultimately occur (compressive zone) is increased to r’.

Formula (4.4-5) has been derived as follows. The ovalization w is assumed to be:

W= —acos 2¢ (4.4-6)
The additional curvature AK of the pipe wall is:
d’w w

31



v REDOY -steal

® REDDY -cluminium
v Wilhoit 8 Merwin
o Botterman

& Bousnamp

Classical elastic

0.008j—
0.008j~
Q005
QOo04~
Qoo
\
000z~ 0,25 t/r - 0,0025 -
(RN
0.001 1 ! 1 11 L\
10 20 30 40 %0 50 80 100
T
(a) (b)
Fig. 4.4-2. a. Results of buckling tests [3.7]
b. Ovalized pipe.
so that
3a cos 2¢
AK:——7—£ (4.4-8)

For ¢ =n/2 and — /2 it follows for the total curvature of the pipe wall:

K=-- (4.4-9)

r=—= (4.4-10)

Comparison with the available test results in Chapter 6 reveals good agreement.
Torsion

In [3.3] the critical buckling stress, for P= 0, in the elastic range (with v = 0.3) has been
calculated as

¢t
Tor = 0.253E; \/; (4.4-11)
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The values of 7, thus calculated are found to be in good agreement with the available
test results. There is little scatter, certainly in comparison with that associated with
bending. With (4.4-11) the critical rotation is found to be:

T 0.253E 4/t

bu=Gr=E@r2v)r |
tft
0..=0.66 e[ (4.4-12)
If a pressure P is acting, then:
ty[t 3000 Pr\*|P|
Bes — 0.66 p\ﬁr 20 (E) 4 (44-13)

In the case of a pipe which has ovalized (due to earth pressure) the radius ris replaced by
r" according to (4.4-10). On comparing (4.4-13) with results obtained from tests,
including tests in the plastic range, there is found to be good agreement [2.8], [2.11].

Bending, normal force, pressure P, torsion
The following interaction formula for bending and torsion is given in [3.15]:

1.5 2
(Mp buckling) + (Mt buckling) _ 1
Mcr Mcr

(4.4-14)

where:

M, = buckling moment for bending only
M, = buckling moment for torsion only

This interaction formula is based on experimentally obtained data and is valid for the
elastic range. For the deformations this formula can be transformed into:

ucklin; '3 Ouckii 2
(Eb kl_g) +< bzklng) -1 (4.4-15)

gcr cr

On checking this formula against available test results it appears that it can be validly
applied also in the plastic range, the values of ¢ and 6, for this purpose being those
given by (4.4-3) or (4.4-4) and (4.4-13).

44.3 Lateral buckling

The (overall) lateral buckling stability of a buried pipeline subjected to normal force
(i.e., direct or axial force) is favourably influenced by the restraint of the surrounding
soil, which acts as an elastic support [3.3]. If the critical compressive strain ¢, associated
with local buckling of the pipe wall is less than the yield strain, the notational yield point
o, is introduced [3.16]:

Oe=¢&uE (4.4-16)
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Curves for the analysis of lateral buckling are contained in publications issued by the
ECCS [1.9], [3.16].

4.5 Limit state “alternate yielding”

Variations in the pressure P and in the temperature give rise to stress variations. So
long as the stress points remain within the yield surface shown in Fig. 4.5-1, no yielding
will occur. In the event of variation of the pressure and/or the temperature after a
certain flexural deformation has been imposed, there will, the first time that such varia-
tion occurs, generally be some stress redistribution attended by yielding. After the first
pressure and/or temperature variation the stress system will have so established itself
that all the phenomena associated with subsequent variations will be elastic unless
stress paths such as AB and CD do not fit within the yield surface. In this latter case
alternate yield will occur.

O2

Gt
/ DC
-G
/"
D/B
& Ge\G2+ G- Gy Gy = Gy

Fig. 4.5-1. Yield surface with possible stress paths within it.

4.6 Limit state “fatigue”

The procedure for fatigue analysis of buried steel pipelines is described in [2.6], where
the German Standard DIN 2413 is adopted as the basis [1.6]. In developing this analysis,
some fresh insights have been taken into account, as also the importance of the dyke
concerned (damage factor) and the number of pipeline crossings of the dykes around
the polder in question.

5 OQutline of the new method of analysis

What has been stated in the preceding chapters leads to the conclusion that three prin-
cipal aspects are to be distinguished in connection with the analysis and assessment of
buried steel pipelines - namely, the calculation of the strength, the calculation of the
strains and deformations, and the calculation of the effect of load variations. These
aspects will be further considered in this chapter.

In this context, attention is drawn to Section 4.1, stating that the calculations are based
on design loads obtained by multiplying the service loads (e.g., the maximum operating
pressure and the settlements) by factors incorporating the required margin of safety.
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5.1 Strength

Because the rupturing pressure is not affected by the external loads and imposed
deformations, the design value of the pressure P must satisfy:

Pr
Oyp =f7<ae (5.1-1)

where for straight pipes f=1 and
- for the inner (concave) side of bends:

R—1r[3
f=foi= R / (5.1-2)
—r
- for the outer (convex) side of bends:
R+1[3
S=fou= Rir (5.1-3)
The radius R of the bend is indicated in Fig. 5.1-1.
K
" (5.1-4)

(a)
Fig. 5.1-1. Bend angle and bend radius for a smooth and for a mitred bend respectively.

5.2 Deformations and strains

Pipeline crossings as shown in Figs. 1-1 and 1-2 can be conceived as elastically
supported beams of three-dimensional configuration. In the calculations the properties
of the soil are generally schematized as actual springs, as indicated in Fig. 5.2-1.

In analysing this system it is necessary to take account of the nonlinear character of the

Fig. 5.2-1.  Schematization of a pipeline with “earth springs”.
a = vertrical earth spring
b = horizontal earth spring
¢ = frictional earth spring
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various “earth springs”. In general, a finite element computer program is necessary for
carrying out the analysis of this system. The input data are the soil properties, the
imposed settlement differences and other loads, and the properties of the pipeline.
These properties relate more particularly to the bending moment-curvature diagram
and the torsional moment-rotation diagram. In Chapter 6 these diagrams and the effect
thereon of, for example, earth pressure will be calculated for straight pipes and for
smooth bends respectively. For mitred bends the reader is referred to [2.4].

The result of the “beam-analysis” as envisaged above is that at every cross-section ofthe
pipeline the following are known:

bending moment and curvature;

torsional moment and rotation;

- normal force and lengthening or shortening;

- shear force and shear deformation;

- earth pressure and displacements.

Finally, by means of supplementary “cross-section analyses” the deformations such as
ovalization, strains, rotations etc. can be calculated and be checked against the limit
values given in Chapter 4.

These calculations will be dealt with in greater detail in the following chapters.

5.3 Load variations

In this stage of the analysis it is investigated what effect the anticipated variations in
pressure and temperature will have upon the strains in the longitudinal and in the
circumferential direction. Particularly in greatly ovalized pipes the variations in
pressure may produce considerable strain variations.

In the following chapters, computational models for the calculation of these variations
will also be considered.

6 Derivation of design rules for buried straight steel pipelines

In Section 6.1 the maximum bending moment My, that can be resisted is calculated asa
function of the properties of the pipe and of the other loads such as earth pressure,
torsional moment, etc.

In Section 6.2 the ovalization distortions which occur are calculated as a function of
earth pressure, curvature (bending) and rotation (torsion).

In the calculations presented in Sections 6.1 and 6.2 it is presupposed that the pipe
cross-section has become fully plastic under the influence of the loads.

The transition between the elastic range and the fully plastic range is considered in
Section 6.3. Sections 6.4 and 6.5 deal with the effect of the pressure upon ovalization
and with the calculation of the strains. Finally, in Section 6.6 some results of tests are
compared with the results obtained by applying the design rules established here.
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6.1 Maximum bending moment M,, that can be resisted

The formulae which are derived in Sections 6.1.2 to 6.1.4 are summarized in Section
6.1.5.

6.1.1 Overview of the loads

The maximum moment M,, that can be resisted by the pipeline conceived as a beam is
influenced by the magitude of:

the earth pressure Qg4 + Q;;

. the difference between internal and external pressure P;

the normal force F;

the shear force D;

the torsional moment M;;

the ovalization a;

. the curvature K.

The loads that possibly act on the pipeline are indicated in Fig. 6.1-1, where Qy is the
directly transferred earth pressure and Q; the indirectly transferred earth pressure. It is
in fact due to this latter earth pressure that the pipeline acts as a beam and undergoes
bending: Q; causes a change in the shear force by an amount AD.

The effect of earth pressure, curvature, internal pressure and ovalization is calculated in
Section 6.1.2. Section 6.1.3 deals with the effect of normal force, while the effect of shear
force and torsional moment is considered in Section 6.1.4. Finally, Section 6.1.5 givesa
summary of the interaction formulae with which the effect of all the above-mentioned
factors on the maximum moment M,, can be calculated.
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Fig. 6.1-1. Moment-curvature diagram with the other loads acting on the pipe. The force AD
provides an indication of the shear force contribution due to Q, per unit length of the
pipe.

6.1.2 Effect of earth pressure Qy and Q;, curvature K, pressure P
and ovalization a on the magnitude of M,

The earth pressure, the curvature, the ovalization and the pressure in the pipeline give
rise to so-called plate forces in the pipe wall: bending moments m, and my, normal
forces n, and n,. The plate forces acting on a wall element are indicated in Fig. 6.1-2.
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Fig. 6.1-2. Plate forces on a pipe wall element dx- dy- . The x-direction is the longitudinal direc-
tion of the pipe, the y-direction is the circumferential direction.

The normal forces ny, are responsible for the bending moment M and normal force F
acting on the pipeline (Fig. 6.1-1). The maximum magnitude of my, is affected by the
magnitude of the other plate forces. In Section 6.1.2.1, my and ny are calculated, and in
Section 6.1.2.2, my, ny and the maximum moment M, that can be resisted are
considered.

6.1.2.1 Moments and normal forces m, and ny in the pipe wall

Due to Qq and Q;

The plate moments which are produced by Qg and Q; at the top (my) the side (my) and
the bottom (myy,) are indicated in Fig. 6.1-3. In this report, Q4 and Q; are in N/mm, the
plate moments in Nmm/mm, and the plate normal forces in N/mm.

LT T e T e,
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; \\ﬁj
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Q4

Fig. 6.1-3. Plate moments due to Oy and Q.

From the conditions of equilibrium (Fig. 6.1-2) it follows for the load Qy:

g + 2y + | = Qar {1 3 (sin % +sin g) 6.1-1)
For the average moment at the top, the side and the bottom:

Myq =211 Qur {1 —% (sin%+ sin g-) (6.1-2)
Similarly, for the load Q;:

My =7} O {%—% sin% (6.1-3)
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The sum of myqq and myy; can be written as:

Myq = Myqd + Mygi (6.1-4)
For nyq at the sides it can be written approximately:

fyqs = 0.504 +0.250; (6.1-5)

At the top and at the bottom the value of nyy is much less. The average nyq at top, sides
and bottom is approximately:

fyq =0.2504 +0.1250; (6.1-6)

Formula (6.1-6) gives too high a value for the top and bottom, and too low a value for
the sides. Because these differences have only a negligible effect on M,,, they will, for
the sake of simplicity, not be further considered.

With (6.1-3) and (6.1-2) it is possible to express Q; in an equivalent earth pressure Q.
which gives the same myq as Qy does:

2 —sin y[2
—sin a2 —sin /2

Oeq=0; 4 (6.1-7)
The quantity Q.q will be used in Sections 6.5 and 6.6 and also in Chapter 7.
Due to the curvature K

With the aid of the equilibrium model considered in Section 2.2.2 the ovalization forces
and plate forces can be calculated as follows.

Gxm

% Gy SIN @
2
v

Fig. 6.1-4. Calculation of ovalization forces.

geometrically linear
----- geometrically non-linear

The stress gy, sin ¢ due to the bending moment M acts in the axial direction. Over a
distance r dg there acts the force:

dg= rtoyy, sin ¢ de (6.1-8)

where:
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O = ExmE= é E (6.1-9)

The force dg has a component df directed towards the diameter of the pipe:

2E
df=dg d@ =r—Q~ sin ¢ dg d@ (6.1-10)

The length ds shown in Fig. 6.1-4 is:

ds=rdgsin ¢ (6.1-11)
The forces df can be conceived as a uniformly distributed load ¢ shown in Fig. 6.1-5:
df rk
= = 6.1-12
1= ,d0ds o2 (6.1-12)
EREREREL
I
[
AN
* * Nyk=Ar
Fig. 6.1-5. Equivalent load g due to Fig. 6.1-6. Calculation of moments
the ovalization forces. my, and my, due to q.
For my, is obtained on the basis of equilibrium:
My, = ys + qr(r—rcos g) —0.5g(r—rcos p)’
mMyy = mys + qri(0.5 — 0.5 cos? p) = my; +0.25gr*(1 — cos 2¢) (6.1-13)

The condition that the angular rotation at the top and at the sides is zero can be written
as:

{2 My, Oy,

dop = -
VE 6mysr =0 (6.1-14)

Now mys can be determined with the aid of this formula, giving:

72
(5) {mys +0.25gr*(1 —cos 2¢)} dp =0

[mysp +0.25qr*(¢ — 0.5 sin 2¢)]§> =0
so that: |
Mys = — 0.25gr? 6115
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For the associated ovalization it follows, for P= 0 and neglecting the lateral contraction:
72 m
Yo .2 o
a= ) —*r’singpde
(S) EI

qr 4 nj2
a="7 (5] —0.25 cos 2¢ sin ¢) dg
qr 4 72
a=" (j} —0.25(2 cos? ¢ sin ¢ —sin )} do
2 /2
az%[o 25 (3 cos® ¢ — cos (p)]
_a gr'
12E— ¢
12
With (6.1-12) is obtained:
2\2
"2’(5}) (6.1-17)

The distribution of the stresses g, is changed in consequence of ovalization. The stress
distribution which develops in the longitudinal direction in consequence of this geo-
metrically non-linear behaviour is indicated in Fig. 6.1-4. Reissner and Weinitschke
have taken this into account in [3.1]. For P=0 and neglecting lateral contraction, the
following expressions are obtained according to [3.1]:

a2+71a4+ 44551 ° N
%

4 2 78640 " 75607200
pe (% 0t 2089’
- 12 960 168-7200

6.1-18)

where:

2
a——,/—_ K ) (6.1-19)

For buried pipelines the ratio diameter to wall thickness (D) is between about 10 and
about 120. With these values of D/tthe second and following terms in (6.1-18) are very
small in relation to the first term. They are therefore neglected:

72\ 2
a= ——b=r<~) (6.1-20)
ot
This result is in agreement with that of the geometrically linear analysis with the
ovalization forces. In the further treatment of the subject the effect of the above-
mentioned non-linear behaviour will not be considered.
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For the bending moment at the sides we obtain with (6.1-12), (6.1-15) and (6.1-9):

rlt

mys = —0.25 —é- Oxm (6.1-21)
where:
M
Oxm = m (61-22)

From (6.1-13) and (6.1-21) it follows that the moments at the top, the sides and the
bottom are all equal in absolute value.

For the average moment due to curvature we can write:

M
=025 — . —— = 0.080MK (6.1-23)
o mret

For ny (Fig. 6.1-6) it follows with (6.1-12), (6.1-9) and (6.1-22) that:

ME nt MK
nykzqrzr_f=r_ Uxm=0-32 B . (61-24)
o [ r

Similarly, for the fully plastic cross-section, myy can be derived by replacing oy, sin ¢ in
(6.1-8) by g.. We then obtain:

2

t
= 0.285 ’—Q— oe (6.1-25)
With
MP
o=t (6.1:26)
this gives:
M
= 0.071 = F = 0.07 LMK 6.1-27)

If M, is reduced to M, by earth pressure, the pressure P, etc., it is assumed that the
following expression may be adopted for myy:

my, = 0.071M, K (6.1-28)
The normal force at the top and at the bottom due to curvature is zero. The normal force

at the sides in a fully plastic cross-section is a little greater than ny, in the elastic range as
expressed by (6.1-24). The average for the fully plastic cross-section is taken as:

MK
rye=0.20 —— (6.1-29)
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7 \
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1
Myp N s Myp
Nyp Nyp

Fig. 6.1-7. Plate forces in y-direction due to the pressure P.

Due to the pressure P
In a pipe of circular cross-section the pressure P produces normal forces ny, and ny, in
the pipe wall. In an oval-section pipe the moments m,, will additionally occur.

For a circular-section pipe:

ny, = Pr (6.1-30)

For an oval-section pipe, for reasons of simplicity, ny, is also taken as equal to Praccord-
ing to (6.1-30). For my, we then obtain:

myp:_Pra (61'31)

The magnitude of ny, depends on the boundary conditions. For example, in the case ofa
pipe which is free to deform longitudinally:

Ny = 0.5Pr (6.1-32)

Influence of ovalization on my
As aresult of ovalization the moments m,q and my, are increased by a factor fjaccording

to:

b

So=1~— ; (6.1-33)
Because of a=~ — b the factor f; can alternatively be written as:
a
fo=1+; (6.1-34)

In Fig. 6.1-5, ais shown as having a positive and ba negative value. For small amounts of
ovalization: |a| =~ |b|. For larger amounts of ovalization the difference between |a| and
|b| increases, while then |a| > |b|. On adopting (6.1-34), values that are somewhat too
high are obtained for m,, and my,. For buried pipelines this is on the safe side because
the calculated values of M, will be lower in consequence. For further calculation it is
advantageous to work with (6.1-34) because only one parameter need be considered for
ovalization.

The calculation of ovalization will be dealt with in Section 6.2.
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Totals
The totals of the plate moments and plate normal forces are:

my = Myq + My + My, (6.1-35)
ny = fyq + Ay + Ny (6.1-36)
My = Mgk + Ny (6.1-37)
my = (see the next section) (6.1-38)

The plate forces ny and m, will be calculated in the next section.

6.1.2.2 Maximum moment M, that can be resisted

The plate forces acting on an element of the pipe wall are shown in Fig. 6.1-2.
According to plastic theory the stresses associated with these plate forces are allowed to
be so chosen that the largest possible values for Qq4, Q;, P and M are obtained. The condi-
tions are that the yield point must not be exceeded, that there is equilibrium and that
the stresses are in reasonably good agreement with the strains that occur. The chosen
stress distribution is shown in Fig. 6.1-8.

Gyn Gym Gxn Gxm
ny my, n, m,
\_"‘\/_“'—“/ ;—V—_/
circumferential longitudinal

Fig. 6.1-8. Chosen stress distribution in the pipe wall.

Applying the Von Mises criterion, the condition that the yield point must not be
exceeded gives:

O+ O2n — OymOxm = 02 (6.1-39)
and

O + 020 — OynOxn = 02 (6.1-40)

With the stress distributions in Fig. 6.1-8 it follows that:

my = 0.25t%0xm — 0.25d%0xm (6.1-41)
my = 0.25t2,m — 0.25d%0ym (6.1-42)
ny =doy, (6.1-43)
ny =day, (6.1-44)
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With

n, = to,

it follows that:

t
my d*\7!
Oym=—"|1——=] o
m, t
My _ Oyn
Hy O
o = £a
n— e
", d
o = ta
=2.-g,
Xn n d

Substitution of (6.1-47) to (6.1-50) into (6.1-39) and (6.1-40) gives:

[ () - () )=
() - ) G-

Elimination of d]t gives:

2 2 2 2 2
m m mym n n nyn
ny, my, my ny ny ny

(6.1-45)
(6.1-46)

(6.1-47)

(6.1-48)

(6.1-49)

(6.1-50)

(6.1-51)

(6.1-52)

(6.1-53)

The plate moment m, can still be freely chosen, since my is not essential to equilibrium.
The bending moment M and the normal force F acting on the pipeline conceived as a
beam have maximum values when ny, reaches its maximum in the tensile zone and
reaches its minimum in the compressive zone. This means that the first three terms of
(6.1-53) must have minimum values, which will be the case if the following equation is

satisfied:

2 2
ABRHE R
omy |\ my my my my  m
so that:

my =0.5m,

(6.1-54)

(6.1-55)
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The result m, = 0.5m, is in agreement with the normality principle. This means that the
deformation vector is perpendicular to the yield surface. The yield surface for the plate
moments m, and m, according to (6.1-51) is shown in Fig. 6.1-9.

The normal to the yield surface indicates the direction of the associated deformations -
in this case, the plate curvatures.

Since the plate curvature in the longitudinal direction &, is virtually zero, this means
that the ratio my/mj in this situation is represented by the points A and A’ in Fig. 6.1-9.

m

Fig. 6.19. Yield surface for the moments m, and mj in the direction of the curvatures occurring
in the pipe wall.

From (6.1-53) it follows with my =0.5m, that:

2 2 2 2
(0.25+1—0.5)(—Z—y) =[1—(5) —-(ﬁ> +"—'2’y} (6.1-56)
P

ny y ny

2
n =05 <nyinp\ﬁ—3(ﬂ) —2‘/§|ﬂy~|) (6.1-57)
Ny my

A possible curve for n, as a function of ¢ and m, and n, is shown in Fig. 6.1-10. The
bending moment M and the normal force F are obtained by integration over the cross-
section of the pipe.

The average of the absolute values of mj at the top, the sides and the bottom has been
calculated in Section 6.1.2.1. This average will be adopted in the further treatment of
"the subject. This is in accordance with plastic theory, since the moment distribution
obtained in this way is in agreement with equilibrium and with the direction of
deformations that occur.

05n, n,-05n,
[Ny

¥ i

F M
Fig. 6.1-10. Distribution of the piate forces n, and m;.
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However, the distribution for which:
|rtye| = |mys| = [y = rmy (6.1-58)

need not necessarily be the most favourable, i.e., optimum, distribution. Comparative
calculations [2.2] have established that the differences in M associated with other
distributions of m, are only a few per cent of M.

To calculate M, it is necessary first to determine ny as a function of g. With (6.1-58) the
following expression for n, according to (6.1-57) can be written for ¢ =0, /2, 7 and
372

ne=0.5n,+0.5n,c, (6.1-59)

where:

2
_ hy |my|
a _\/4—3 (n:) —23 . (6.1-60)

For o =n[4, 3n[4, 5[4, Tr[4 it is assumed that the plate moment m; is zero. For n,
according to (6.1-57) the following expression can be written for these values of ¢:

ny=0.5n,+0.5n,c, (6.1-61)

n 2
c2=\/4—3(;§) (6.1-62)

For intermediate values of ¢ a sine function is adopted:

where:

g, =0.5n, £0.5m,{c; + (c; — ¢;) sin 2¢) (6.1-63)
Integration of (6.1-63) yields expressions for the associated bending moment M and
normal force F:

n[2
M=0.5n,r"-4 | {c;+ (c; — ¢) sin 2¢} sin ¢ do
0

i O T O
M=4n,r? (€+§) =M, ( g*E) (6.1-64)

2n
F= { ny,rtdp
0
F=2nr-0.5n,=mnrn, (6.1-65)

In the integrals on which (6.1-64) and (6.1-65) are based a circular cross-section has
been adopted for the pipe. In[2.2] it has been calculated that, in consequence of ovaliza-
tion, the bending moment is reduced by a factor A:

h=1 —3; (6.1-66)
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so that (6.1-64) becomes:
G, O
=hM, | —+ = RE
M, p<6+3) (6.1-67)

The ovalization a to be introduced into (6.1-66) is calculated in Section 6.2.

The formulae (6.1-65) and (6.1-67) are valid for one particular distribution of n, around
the cross-section (Fig. 6.1-10). For other distributions of 7, other combinations of M,
and F are found. This will be considered in the next section, and the influence of an
arbitrary normal force on the bending moment will be calculated.

6.1.3 Influence of an arbitrary normal force on Mp

In the preceding section the normal force acting in the pipeline was, for the chosen dis-
tribution of 7, found to be equal to F according to (6.1-65). It will now be investigated
what effect an arbitrary normal force F has.

This force can be written as:

F=nmy,+N (6.1-68)
where N is called the effective normal force:
N=F—mnrn, (6.1-69)

In Fig. 6.1-11 it is shown how, in consequence of a different distribution of r, from that
considered in the preceding section, the effective normal force N can be resisted.

FEL
_ €4

05n, "x'0'59y ffffT? for M for N
N=0

n,-05n,

Fig. 6.1-11. Distribution of n, in response to the bending moment and the effective normal
force N.

With (6.1-63) and (6.1-66) we obtain for M:
72
M=h-0.5n*-4 | {c+(c;—¢) sin 29} sin ¢ dg
90

2 n/2
M=0.5hM, [ —¢ cos p+(c—a) 3 sin® ¢]
0

1 1 1 .
M= hM, l?: (C2_Cl)+5 ¢ cos qoo—g(q—cl) sin® g,

(6.1-70)
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With (6.1-63) we obtain for N:

0

N= +0.5n,r-4 | {e; +(c; — ¢;) sin 29} dg
0

N= +2nyr[cip —0.5(c;— ¢;) cos 240

c 1 1
N=tN, ;I¢o+2;(62—cl)—g(<fz-—cl) cos 2¢ (6.1-71)

where:
N, =2nrn, (6.1-72)

The maxima for M and N according to (6.1-70) and (6.1-71) are My, and N,,. They are
obtained by successively equating g, to 0 and n[2.

For ¢y=0:
€ O
M, = hM, (E + 5) (6.1-73)
For gy =7/2:
2! €2
=+ N|{—+— 1-
Nor= £ p(5.50+3.14) (6.1-74)

The terms in parentheses in the formulae (6.1-73) and (6.1-74) are very similar. For
¢ = ¢, the numerical values of these respective terms are equal; the greatest difference
occurs when ¢; =0 and ¢, =2:

. O 2

a9 20667 B
<6+3) 3 (6.175)
a a2 _
550 T304 304~ 007 (6.1-76)

The differences turn out to be very small. For the sake of simplicity the formula for Ny
can therefore be written as follows:

Ny= £ N, (% + %) (6.177)

M, according to (6.1-73) is applicable when N=0, while N, according to (6.1-77) is
applicable when M = 0. The following expression can be written to represent the inter-

action:

My ( N\

M_er(N_) —1 (6.178)
pr

pr

This formula has been derived in [3.11] for pipes loaded in bending and normal force. In
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[2.2] it has been shown that (6.1-78) yields good results also for the load combinations
considered here.

Finally, some comments are offered on the effective normal force N. In the case ofa pipe
which can deform freely and is not subjected to external normal forces (Fig. 6.1-12) the
value of N according to (6.1-69) is very small in relation to that of N, according to
(6.1-72). This is so because the contributions made by nyq and ny in ny according to
(6.1-36) are very small in relation to n, = to.. If nyq and ny, in (6.1-36) are neglected, this
has no significant effect on the value of My, that is ultimately calculated. This being so,
instead of (6.1-69) the following formula can be adopted for N:

N=F—nmy,=F—Prr? (6.1-79)

m(_ : D

Fig. 6.1-12. For a pipe which can deform freely in the longitudinal direction it is permissible to
take N as zero.

6.1.4 Influence of shear force and torsional moment on My

The maximum shear force D, that can be resisted by a pipe is:

/2
D,=4 | trdg 7. cos p =4trz, (6.1-80)
With
A=2rrt (6.1-81)

the following expression can alternatively be written for Dy :

D=2 4, (6.1-82)
T

Fig. 6.1-13. Distribution of the shear stresses for D;.

If other loads are present, such as Qg and Q;, P and M, it is assumed that the shear force is
resisted by that part of the pipe wall which was originally intended to resist bending.
This approach is in analogy with the treatment of the normal force as indicated earlier
on.
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With reference to (6.1-77), the area available for the purpose is:

Nr CT O
A :A‘p—_— |y —+ — -
=, 2 <6+3) (6.1-83)

With (6.1-82) and (6.1-83) writing 7 for 7., D for D, and A, for 4 the following approxi-

mate expression is obtained for the average shear stress:
z D (6.1-84)
T=—— B Bl
2 Ay

Thus the stresses oy and 7 act in the part of the pipe wall intended for M, N and D.
According to Von Mises:

o2+312=g? (6.1-85)
ox=0c|[1-= (6.1-86)

With 7, = 0./y/3 we obtain:

T

2
Ox =0, 1_(1:) (6.1-87)

which can alternatively be written as:

D\2
Oy =0, 1_(D_pr) (6.1-88)
where:
2 2 2nrto, [¢; c ¢ c
Dy="1,Ag=""2¢°(L 2\ _p [L 2 (6.1-89)
”nednﬁ(63 63

In (6.1-88), D, is the maximum shear force that a pipe loaded by Q4, Q; and P is able to
resist. With reference to (6.1-88) it appears that ¢, and thus the moment M, and force
N, according to (6.1-73) and (6.1-77) are reduced by the shear force D:

D 2

Mg, = hM, (%-l-%) 1_(—Dpr> (6.1-90)
c D \?

oo (529 (2] wn

The torsional moment can be taken into account in similar fashion. The formulae are
given in the summary of the interaction formulae in the next section.

Finally, it is to be noted that in practical cases the reduction due to normal force and
especially shear force is fairly small. '
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6.1.5 Summary of interaction formulae

The interaction formulae derived in the preceding sections are summarized in this

section:

Mm ( Nm )1‘7
+ =1

Mpdtr ditr

where:

M., = maximum bending moment

N,, = maximum effective normal force = F— Prr?

D Mt
Myae = Myr \[ Dpr Mtpr

w D M\?
Npgir= + Nyt 1—(Dppr+m)

M, =ghM,
¢
(39
2a
h (1—5;)
=ng
D, pr :gDD
M, =gMy,
M, =4r’w,
N, =2rnno.

D, =4na /3
My, =2nr’to 3
my

n 2
€= 4—3(;1!) -2y3 o
p

P

ny = Ryq+ Nyx + Nyp

va=0.2504+0.125Q;
MK

nyk—O 20——
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(6.1-92)

(6.1-93)

(6.1-94)

(6.1-95)
(6.1-96)

(6.1-97)

(6.1-98)

(6.1-99)
(6.1-100)
(6.1-101)
(6.1-102)
(6.1-103)
(6.1-104)
(6.1-105)

(6.1-106)

(6.1-107)

(6.1-108)
(6.1-109)

(6.1-110)



hyp = Pr (6.1-111)

n, =tg, (6.1-112)
My = Myq + My + My, (6.1-113)
Myq = Myqq + My (6.1-114)
myqd:O.ZSer{l —0.25 (sin%+ sin g)} 5 (6.1-115)
Myqs =0.25Qir ‘0.5 —0.25 sin %} S (6.1-116)
my =0.071MuK-fy (6.1-117)
my, =— Pra (6.1-118)
m, =0.25¢0, (6.1-119)
Ko =142 (6.1-120)

The following are furthermore of importance:

2 —sin 4
=0;——— 6.1-121
Gz 4 sing siné ( :
2 2
M, =nr’o, (6.1-122)
M =é o, (6.1-123)

6.2 Ovalization of the fully plastic cross-section and the relation between
bending moment and torsional moment

The set-up of the new method of design and analysis has been outlined in Chapter 5.
Hence follows the need for a relation between the deformations obtained from the
“beam analysis” (curvature, rotation, etc.) and the ovalization that occurs. In the present
Section 6.2 this relation is derived for a fully plastic section, while in Section 6.3 an
approximation is given for the case where the section is only partly plastic. In Section
6.2, too, the relation between the bending moment and the torsional moment is deter-
mined as a function of the imposed flexural deformation and torsional deformation.
The formulae derived in the present Section 6.2 are summarized at the end thereof.
The calculations in this report are always based on a bilinear stress-strain diagram,
without strain-hardening.
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€e €

Fig. 6.2-1. Assumed stress-strain diagram.

In the fully plastic section there is, for the stress-strain diagram of Fig. 6.2-1, no direct
relation between the stress and the strain and therefore no direct relation between the
forces acting on the section and the deformations. This being so, the analysis will make
use of the principle of virtual work and of the normality principle already applied in
Sections 2.2 and 6.1. A condition for the application thereof is that geometrically linear
behaviour must be presumed. For this reason the determination of the ovalization is
based on a somewhat modified formula for the maximum moment:

Mz(%l +c§2) S My =g/ M, (6.2-1)
where
D M, 2 N, 1.7
f=\/1_<ﬁl;+m) ‘[l_<ditr> | (62'2)

For the relation between M according to (6.2-1) and M, according to (6.1-92) we have:

2a
Mm=<1 _5;) M=hM (6.2-3)

The equation of virtual work for the loads acting on the pipe cross-section can be written
as follows:

M. 6K+M[-60+D-§y+N-(5ex+P-5A+2Qd-(5ad+Qi-éai+2q-(5aq=5Ai (6.2-4)
where:

0K =variation in the curvature

84 =variation in the cross-sectional area (rr?)
06 =variation in the torsional deformation

dy =variation in the shear deformation

de, = variation in the change in length

day = variation in the average displacement of Qq
da; = variation in the average displacement of Q;
daq = variation in the average displacement of g
g =ovalization forces (see Fig. 6.1-5)

0A; = variation in the internal work
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This equation of virtual work is valid for any variation of the degrees of freedom. For
ovalization:

P.-0A4+ 2Qd . 5(1(1 + 0;- 5(11 +2q- 6aq = 5A10 (62-5)

where d4; is the variation in the internal work associated with ovalization.
Ovalization is assumed to occur in consequence of rotation at the plastic hinges marked
by the heavy dots in Fig. 6.2-2 (¢ =0, /2, 7, 37/2). No deformations are assumed to
occur in the intermediate parts of the circumference of the pipe cross-section.

Fig. 6.2-2. Model for the calculation of ovalization.

The right-hand side of (6.2-5) can now be written as follows:
0Aiy=4my-60'+4n, - de, (6.2-6)
With (6.2-5) and (6.2-6) the following can be written for (6.2-4):
M-6K+M-60+D- 5y + N- 6ey +4my- 60" +4ny - S, = 04, (6.2-7)
Next, an adjacent loading situation will be considered which is associated with the same

deformation mechanism and does the same internal work. The equation of virtual work
for this loading situation is:

(M+dM) - 0K+ (M, + dM,) - 66 + (D+ dD) - 6y + (N+ dN) - dey +

+4(my + dmy) - 60" + 4(ny + dny) - de, = 6 4; (6.2-8)
From (6.2-7) and (6.2-8) follows:

dM- 6K+ dM,- 660 + dD- 6y + dN-dex+4 dmy- 60" +4 dny-6e, =0  (6.2-9)

Equation (6.2-9) gives the formulation for the condition of normality within the limits of
the deformation mechanism envisaged here.

In the further analysis of the problem the pressure P is assumed to be constant during
the further application of the flexural and the torsional deformation. Moreover, the
terms dD- 6y, AN - e, and 4 dny - de, in (6.2-9) will be neglected in relation to the other
terms. In fact this means that D, N and n, are assumed to be constant.

Having regard to the above, (6.2-9) becomes:

dM- 6K+ dM;-660 +4 dmy-66' =0 (6.2-10)
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, dM dm,
466" = ~dm (5K—-an—1; 00 (6.2-11)
For the relation between 68’ and da it follows from Fig. 6.2-2 that:

50"
5 =
=5

r (6.2-12)

With this relation, equation (6.2-11) becomes:

5a=£(—iﬁz6K—%d0>

5\~ am °K am, (6.2-13)

For calculating the ovalization as a function of the imposed flexural deformation 6K
and torsional deformation &4 it remains to determine the quotients dM/dm, and dM,/
dmy,. These quotients can be determined by making use of (6.2-1) and (6.2-2) and of the
normality condition. For the sake of simplicity, in this report the normal force N and the
shear force D will be equated to zero. A derivation in which the effect of D and NV has
been incorporated is given in [2.2] and [2.7]. However, comparative calculations have
shown the effect of D and N on the ultimate ovalization of buried pipelines to be of only
very limited magnitude.

As a result of the above, (6.2-1) and (6.2-2) become:

M\? [ M\,

— | +{—)| =8 (6.2-14

() (it )
where:

_a. @ .

g= e + 3 (6.2-15)

In Fig. 6.2-3 the relation between M, M, and my, (g is a function of my) according to
(6.2-14) is shown for P=0 and only for positive values of M, M; and my. The surface
represented in this diagram is called the yield surface. For P= 0 other yield surfaces are

Fig. 6.2-3. Yield surface for M, M, and m,, with directions of"the deformations.
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obtained, which lie within the surface represented in Fig. 6.2-3. For constant m, the
sections through the yield surface are always circles, for in that case gin (6.2-14) is cons-
tant and this equation then represents a circle. The following derivation is therefore va-

lid also for values of P other than P=0.

For determining the interrelation of M and M, the term 4 dm, - d6'in (6.2-10) can be put

equal to zero, so that:
dM- 6K+ dM,-66 =0
On differentiating (6.2-14) with respect to M we obtain:

WM 2M, dM,
2t gy =0
M2 ML dAM

From (6.2-16) and (6.2-17) it follows that:

After some rearrangement this gives:

() ~(50) (o) )

From (6.2-19) and the yield condition (6.2-14) it follows that:

(é’f)z (%)2 (%)2+(%)2_g2
s56) \My) \My,) T\ M,

so that:
M, = M_H__
V(66)? + (6K)?- ¢

where:

2 2 2 2
cz(%> z( v "’e__) =<2J/-§-) —1.22
M, 2nrttof|3 T

We similarly obtain:

g-M, 0K

V(0K)* +(36)"]c

M:

(6.2-16)

(6.2-17)

(6.2-18)

(6.2-19)

(6.2-20)

(6.2-21)

(6.2-22)

(6.2-23)

With (6.2-21), (6.2-22) and (6.2-23) the values of M and of M, are determined as func-
tions of 6K]66 and of m, (gis a function of m). For a particular value of §K/d6 and of m,
the point of intersection of the curves AB and DE in Fig. 6.2-3 determines M and M,.
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The deformation vectors at that point are also shown in the diagram. They are obtained
from (6.2-16). For the interrelation of 6K and 66 we can write:
oK-M, dM /M.,
06-M,  dMIM,

(6.2-24)

The right-hand side of (6.2-24) indicates the direction of the normal (perpendicular
line) with respect to the section ABC through the yield surface shown in Fig. 6.2-3. The
left-hand side of the equation relates to the components of the deformation vector
[6K-M,; 66 - My,] indicated in Fig. 6.2-3.
For the interrelation of the ovalization parameter 6@’ and dK and of 68’ and 56 we
similarly obtain:
OK-M,  dmym,
460" -m,  dMIM,
06 - My, dmy[m,

460" -m,  dM[M,,

(6.2-25)

(6.2-26)

With the values of M and M, which are now known - according to (6.2-23) and (6.2-21) -
and with the yield condition (6.2-14) the quotients dM]dm, and dM,/dm, in (6.2-13) can
then be determined, so that the relation between da and 6K and 66 is known.
Formula (6.2-13) can alternatively be written as follows:

dMIM, M dM, /M., M,
sae_ (MM, My o MMy My o (6.2-27)
8\ dmy[m, m, dmy[m, m,
Substituting:
M, 4r’t, r?
my, 02500, ¢ (©228)
and:
%zwzg_” r (6.2-29)
m, 025t’s. [3t
it follows that:
sa=—" Q- 0K+ = - 60) (6.2-30)
- t l//m ‘/—3' Wt '
where:
dM|M,
= 6.2-31
Ym dmy[m, ( )
and:
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V= dmy[m,

(6.2-32)
are the slopes of the yield surface shown in Fig. 6.2-3. These slopes depend on the
magnitude of m,. The maximum value for mj is reached if ¢; according to (6.1-106) is
ZEro:
n\2

Mym=1.15m, {1 —-0.75 (n_Z) } (6.2-33)
With increasing my the slopes y, and y, become greater and thus also the rate at which
ovalization occurs. For m, = my,, the values of y, and y, become very large. In Fig.
6.2-3 with n,, =0 and n, =~ 0 this is the point where my =~ 1.15m,. This means that in
response to a small increase in the curvature and/or the rotation the ovalization under-
goes a very considerable increase. This failure mode is called failure due to progressive
ovalization. In reality this failure mode is not very likely to occur, the reason being that
with increasing ovalization the buckling stability is lowered (Chapter 5), so that
buckling then usually becomes the governing mode.

Summary of formulae presented in Section 6.2 (see also the formulae in Section 6.1.5)

Mm=<1 ff) M=hM (6.2-3)
3r
1 O
M :<g+§) fM,=gf M, (6.2-1)
D Ml 2 Nm 1.7
=\[1-(= d1- 2-
f \/ <Dpr " Mlpr) (ditr) } (6 2 2)

If D and N are neglected, the following formulae for §a and the relation between M and
M, apply*.

Mo S M 0K (6.2:23)
V(6K)2 +(66)1.22
M= 8 M0 (6.2-21)
V(66)? + (6K)?-1.22
3
da = —’7 Q- 0K+ 181y, 66) (6.2-30)
AMM,
- 6.2-31
V/m dmy/mp ( )
th/M(p
6.2-32
l//t dmy/mp ( )

* Formulaé with the effect of Dand N incorporated are given in [2.1], [2.2] and [2.7].
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2
y < My = 1.15m, {1 ~0.75 (;’%) ] (6.2-33)
In Section 6.1 it has been shown that m, depends upon, among other quantities, the
magnitude-of the curvature and of the ovalization. For P=0, increasing curvature and
ovalization cause m, to increase. This means that the calculation must be performed
stepwise, since yy, and y, are dependent on my,.

The effect of the pressure upon the ovalization that occurs will be further considered in
Section 6.4.

6.3 Elastic-plastic range

In Sections 6.1 and 6.2 the loads that the pipe can support and the ovalizations have
been calculated for the fully plastic section. The present section examines the situation
where the section is only partly plastic.

6.3.1 Moment-curvature diagram

Two moment-curvature diagrams are shown in Fig. 6.3-1.
In the elastic range the flexural stiffness is reduced in consequence of ovalization. This
has been derived in [2.2]:

El g = Enr’t (1 —-15 ;’) (6.3-1)

My === —==— M

(2)

|

I |

¢ |
|

|

|
|
|
K, K

e e

Fig. 6.3-1. Moment-curvature diagrams: (1) bending only; (2) bending + other loads.

K

For K= K, the end of the elastic range is reached. On a conservative estimate this is the
case when:

M M¢ m n, D N

—t et =+t —+—=1 (6.3-2)

M, My, m. n, D, N,
For the situation comprising bending and other loads the moment-curvature diagram of
Fig. 6.3-1 is again presented in Fig. 6.3-2, together with the curve representing M,
according to the formulae of Section 6.1. M, has been calculated from the end of the
elastic range. In calculating M, according to Section 6.1 it has been assumed that the
section is fully plastic, i.e., that yielding has developed in every part of it. Since m,
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I
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Fig. 6.3-2. Moment-curvature diagram for bending and other loads, together with the relation-
ship for My, It is to be noted that strain-hardening has been left out of account in the
calculation of My, If strain-hardening occurs, the line representing M,, will show less
downward slope with increasing curvature or may indeed slope upward.

increases with increasing curvature, M,, will decrease with increasing curvature. In
the actual pipe the cross-section will, for curvatures exceeding K., gradually develop
plastic behaviour, so that the bending moment will increase until the section has
become fully plastic and M, is attained.

A theoretical derivation of the moment-curvature diagram in the region between M,
and the attainment of M,, is, when bending and other loads are acting, a very com-
plicated problem. For this reason the following approximation will be adopted:

M, M,
MC’ T ~ 3
M, ™ 127 (6.3-3)
. M
K, = ElL.q (6.3-4)
3 a
EIred =FEnr’t|1—-1.5 7 (63'5)
@ = arc sin X (6.3-6)
M=M,-05( -2 +cos g (6.3-7)
m \sin g '

In these formulae:

K =the curvature for which M is calculated
M., = the maximum moment, according to Section 6.1, associated with K
’

a' =the ovalization on attainment of K; this ovalization is calculated in
Section 6.3.2

The formulae (6.3-6) and (6.3-7) have already been derived in Section 2.1.
The approximation presented here for the elastic-plastic range is in reasonably good
agreement with the experimental results. An important advantaged of the compu-

tational model that has here been adopted for the elastic-plastic range is the relatively
simple application of the “beam analysis” described in Section 5.2. By introducing
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notional values for the modulus of elasticity £’ and the yield point g’ it is possible to
simulate the actual moment-curvature diagram quite simply:

E
E' = — (6.3-8)
1-15—
P
M,
O¢= ﬁp o (6.3-9)

In the “beam analysis” the “standard” moment-curvature diagram for a pipe cross-
section, as described in Section 2.1, can then further be employed.

6.3.2 Curvature-ovalization diagram

Because the cross-section is not yet fully plastic in the elastic-plastic range, there will be
a gradual transition from the “elastic” rate of ovalization to the “fully plastic” rate. To
link this behaviour pattern to M/M,, appears an obvious choice:

M
= 60 -_— 6. '10
a,=a;+ M, ( 3 )
where:
da = ovalization that occurs when the curvature increases by 6K and/or

torsion by 66
a;, a, = ovalization at the end of the previous step and the new ovalization
M =M according to (6.3-7)

6.3.3 Torsional moment-rotation diagram

The reduction of the torsional stiffness in the elastic range is negligible. For the elastic-
plastic branch (6. < 6 < 6,) we have approximately:

(0 — 0c)(Mip — Mim)

M =0-GI(1— 6.3-11
t t (ep_ ee)Mlp ( )
M,
M(p ““““ (1)
|
My - = = 7= @
e d
Mee [ : !
5 o o g

Fig. 6.3-3. Torsional moment-rotation diagram.
1. Only torsional moment
2. Torsional moment + other loads
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The quantities M., My,, My, 8. and 6, are indicated in Fig. 6.3-3.

6.4 Further consideration of the effect of pressure on ovalization

If an internal excess pressure (P= P, — P, > 0)is acting, with increasing curvature and
therefore also increasing ovalization the magnitude of m,, will also increase. Because
my, differs in its algebraic sign from myq and myy, the value of my, will, if P is sufficiently
high, not increase with increasing curvature but will instead decrease. When m,
decreases, the slope of the yield surface also decreases, so that the “rate of ovalization”
diminishes.

The minimum value for m, is zero. When this value has been reached, the equilibrium
condition (6.1-113) determines the magnitude of the ovalization:

(6.1-113) — my = myq + my + my, =0 6.4-1)
With (6.1-118) it then follows that:

Myq + Myg
a= yq Y

Pr (6.4-2)

This means therefore that as soon as this situation has been attained, the formulae
derived in Section 6.2 for the calculation of the ovalization are no longer applicable.
Then the earth pressure and the ovalization forces are, as it were, supported by the
internal pressure.

6.5 Calculation of the strains

For the longitudinal direction the strains are relatively simple to determine from the
curvatures and rotations obtained from the “beam analysis” calculations. For the
circumferential strains it is in general necessary to use a finite element computer
program with which both the geometric and the physical non-linear behaviour can be
taken into account. In the context of this research a special computer program design-
ated as REK*, based on the finite difference method has been developed for the
purpose. The result of a calculation of this kind is shown in Fig. 6.5-1.

Qg+ Qg
I

I
|
Y increasing a caused by
, bending and/or torsion
|—L>[ a

A ——, V

== ===

maximum strain
€

Fig. 6.5-1. Calculation of the strains.
* REK is the Dutch word for STRAIN.
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6.6 Experimental verification
6.6.1 Overview of the tests performed

The design rules have been incorporated in the IBBC-TNO’s computer program
RECHT* by means of which the results of the following tests have been analysed:
8 tests on pipes @ 152.5-1.55 mm: bending + pressure;
5 tests on pipes @122 -1.55 mm: bending + pressure;
- 10 tests on pipes @ 152.5-1.55 mm: bending + torsion + pressure;
- 1 test on pipe ©609.6-6.4 mm: bending -+ pressure

(full-scale test, Section 3.3.2);
5 tests on pipes @149 -1.62 mm: earth pressure + bending + pressure;
- 2 tests on pipes @ 12" -9.5 mm: earth pressure + bending.
There is found to be good agreement between the measured and the calculated values
for the bending moment, the torsional moment and the earth pressure. The same is true
of the ovalization. It is to be noted that in nearly all cases the calculated ovalizations
were higher than the measured values and the calculated curvatures and rotations with
respect to buckling were lower than the measured values. Hence it can be concluded
that the design rules yield results that are on the safe side.
By way of illustration one of the tests of the series earth pressure + bending + internal
pressure that were performed will be described in the next section.

6.6.2 Test 112: earth pressure, bending, P=—1 bar

The test set-up employed is shown diagrammatically in Figs. 6.6-1 and 6.6-2. See also
Photographs 18 and 19. With the aid of the equipment adopted for applying the bend-
ing load it was ensured that the moment acting at the circumnferential welds was a little
smaller than in the measuring region in the middle of the test specimen. Premature
buckling at the non-representative welds was thus prevented. In the case of the
specimens purpose-made under our own control it was, with the available equipment,
not possible to avoid a relatively pronounced “high-low” situation at the welds.

The deformation was determined from the displacements measured with the aid of the
displacement transducers K; and K, mounted in steel frames welded to the pipe. The

*F
| ok |
In T 1 | i |
weld Ky weld
—@-
t
"'l"‘ —= ~a—

Fig. 6.6-1. Schematic set-up with the equipment for the bending moment and measuring
devices for the curvature (@ 149-1.62).

* RECHT is the Dutch word for STRAIGHT.
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8 x 250 = 2000 mm

dynamometer

hydraulic ram

I
1
. o ) . o
T I oI I If I 1T X
+

with water
vacuumpump

Fig. 6.6-2. Schematic set-up with the equipment for the “earth pressure” load and measuring
devices for the change in the horizontal diameter in the points k; through k.

earth pressure was simulated by means of the loading system shown in Fig. 6.1-2, where
itisalsoindicated that air was extracted from the pipe by a vacuum pump so as to obtain
a pressure P practically equal to — 1 bar. The loading angle « and the bearing angle 8
were 30°. The measured yield point was about 354 N/mm?.

The testing sequence was as follows:

a. apply P= —1 bar (air pump);

b. apply earth pressure Qy;

c. apply bending moment M.

Photo 18. Central part of the testing arrangement for the load combination of earth pressure and
bending.
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Photo 19. Testing arrangement with the fire-hose for the application of “earth pressure” and the
measuring device for determining the change in the horizontal diameter.

Qg
N
mm
0 e .
8¢ a
test /& m d
6 4 computer calculation 6'
L ; Y
/i A
G / fftq,
/ — - S =
4 Qq increases Qg4 constant a=3=30°
2t /7 M =0 | M increases
4 P:-1bar P =-1bar
1 1 1 1
0 5 10 15

0
AD,[mm]

Fig. 6.6-3. Earth pressure-ovalization diagram. AD, is the change (increase) in diameter perpen-
dicular to the plane of bending (= horizontal diameter).
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The measured results together with the results calculated with the aid of the RECHT
computer program, already mentioned, are indicated in Figs. 6.6-3, 6.6-4 and 6.6-5.

M
[kNm]
15 +
M, -
M1EU:,~‘_AA,,.._“~7__/,: buckling
S0
7 | test
Mm - - - )
5L e e : computer calculation
-, // T I
A !
// Ker :
|
~ | 1 JK' . .
0 0.01 0.02 0.03 0.04

K [m"]
Fig. 6.6-4. Moment-curvature diagram.

As shown in Fig. 6.6-3, a very high value of 0, was applied in this test (equal toabout 90
per cent of the ultimate value for failure due to Qy alone in conjunction with P= — 1
bar). This large Q4 accordingly brings about a considerable reduction of the maximum
moment (Fig. 6.6-4).

[m™']
0.03 |
Q
a,
0.02 -
1.0
0"3
r— computer calculation
0.01 05
1 1 e |
0 5 25
ADh[mm] 0 . . 1.5 Ee_cr
Fig. 6.6-5. Curvature-ovalization diagram. Fig. 6.6-6. Interaction formula
ADy, is the change (increase) in and test results.

diameter perpendicular to the
plane of bending.

6.6.3 Interaction formula

The interaction formula (6.6-1) has been established on the basis of the calculations
performed. It can be used to make a quick assessment of whether particular combina-
tion of earth pressure and imposed curvature will comply with the limit value with
respect to buckling:

Q 2 e 2
(2]
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where:

0= 04+ Qcq (6.6-2)

Qeq =the design value of Q; converted into an equivalent earth pressure
(Section 6.1.2.1)

Q4p = the load-carrying capacity with regard to Q4 for the pressure P under
consideration

¢ =the compressive strain calculated in the design state

&, =the critical compressive strain according to Section 4.4.2

Formula (6.6-1) is represented in Fig. 6.6-1, together with the results obtained in the test
series on @ 149-1.62 mm pipes.

In the case of test 113 (Fig. 6.6-1) the loading sequence was reversed. First, the pipe was
loaded in bending and then Q4 was applied. With the aid of the normality principle,
already referred to, it can be shown that this latter loading sequence leads to more
favourable buckling curvatures [2.11].

7 Derivation of design rules for smooth bends in buried steel pipelines

The design rules for smooth bends, as embodied in the various codes of practice ([1.7],
for example), have been derived for the elastic range. An extension of the rules to com-
prise the plastic range is therefore necessary. Besides, the existing design rules do not
take account of various influences - more particularly, the influence of earth pressure,
of the stiffening effect of the straight lengths of pipe to which the bend is connected,
and of ovalization of the cross-section.

An approximate description of elastic-plastic behaviour is given in Section 7.1. In
Sections 7.2 and 7.3 the above-mentioned influences are calculated in the case of elastic
and of plastic material behaviour respectively. Next, the influence of variations in
pressure and the calculation of strains are considered. Finally, some test results are
reported.

Only bending within the plane of curvature of the pipe is treated in this report. Design
rules for bending not confined to this plane are given in [2.3].

7.1 Approximate description of elastic-plastic behaviour; sign conventions

Among others, the following insights were gained form the investigations:

a. The bend may be substantially stiffened by the straight pipes to which it is con-
nected. As a result, the stiffness factor k is reduced, especially in the case of bends
with a small central angle a. Also, the ovalization associated with bending is reduced
by the connected straight pipes.

b. In consequence of the ovalization that occurs the flexural stiffness of the bend
changes. For positive bending, i.e., the bend becomes more sharply curved (see
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Fig. 7.1-1. Deformation of a pipe bend due to bending (flexural deformation).

M /a/b
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Fig. 7.1-2. Moment-angular rotation diagram for positive and for negative bending respectively.

Fig. 7.1-1), the flexural stiffness decreases with increasing ovalization and bending
moment. For negative bending, i.e., the bend becomes less sharply curved
(“straightens”), the flexural stiffness increases with increasing ovalization and
bending moment. In Fig. 7.1-2 the line “a” represents the linearly elastic behaviour
of a straight pipe with the same diameter and wall thickness as the bend. The line “b”
is the tangent at the origin to the M-Aa diagram of the bend.

c. Because of the phenomenon described in point b, the plastic moment M, of the
bend is dependent also on the direction in which bending occurs (see Fig. 7.1-2).

d. A displacement of the M-Aa diagram occurs in consequence of the earth pressure
(see Fig. 7.1-3).

e. The flexural deformation capacity with regard to buckling is considerably greater in
bends than in straight pipes of the same diameter and wall thickness.

Sign conventions
The positive directions of the forces and deformations are indicated in Figs. 7.1-4 to
7.1-6.

M
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, // IIRINS!
7 et
i da
/
/ /
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Fig. 7.1-3. Effect of earth pressure on the moment-angular rotation diagram.
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Fig. 7.1-4. Angular rotation Ae and change of the bend radius R to R’ in the case of positive .
bending.

T

Fig. 7.1-5. Displacements u and w and other quantities in the cross-section.

i, H 19

(&)

e, fiftftta, e

Fig. 7.1-6. Earth pressures and loading and bearing angles. The force AD provides an indication
of the shear force contribution due to Q; per unit length of the pipe. Q; can be
conceived as replaced by Q., according to (6.1-7) and (7.2-7).

7.2 Elastic range

Von Karman and other investigators have derived formulae for describing the behav-

iour of bends loaded in bending and pressure P. Their derivation makes use of the prin-

ciple of minimum strain energy [3.12], [3.13].

In the theory elaborated in [3.12], [3.13] and other publications the following

assumptions and simplifications have in general been adopted:

a. The derivations are valid for an “infinitely” long bend. The effect of the straight pipes
to which it is connected is not taken into account.

b. The ratio of the radius of the pipe cross-section to the radius of the bend is treated as
negligible in relation to unity (r/R+1=1).

c. The circumferential strain at mid-thickness of the pipe wall is taken to be zero.

d. Plane sections are assumed to remain plane and perpendicular to the axis of the pipe
after it has been subjected to bending (Bernoulli’s assumption).
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e. The derivations are valid for a bending moment which is constant along the bend.

f. The effect of the change in geometry such as ovalization and the change in the radius
of the bend is not taken into account.

g. The derivations are only valid for the elastic range and the load combination of
bending and pressure P.

Within the context of investigations reported here the assumptions and simplifications

stated in points b, ¢, d, and e were adopted. The effects associated with points a, fand g

have been given due consideration, however.

7.2.1 Potential energy equation

In [2.3] the following potential energy equation has been derived for a long bend loaded
inbending, pressure P and earth pressure Q= Q, + Qeq. The derivation in this section is
based on linearly elastic material behaviour and on the assumptions and simplifications
listed in points a to f:

nE 2r 2
E

. du .
bt =57 g (ny sin go—@sm p+ucosp| do+

Ef 25” d3u+du 2d
+24r3 o \de? " de ¢

lpzfz ) du+ud2u N d’u q
l ey [T —
+2 0 de dp?  \dep? 4

7[/2 du
—2qir | (? sin® ¢ — u sin ¢ cos ¢> dp —

n[2—af2 \ Q@
nf2 du
. 2 .
—2qyr (— sin® ¢ — u sin @ cos ¢> de (7.2-1)
a2 =g \de
where:
du
w=-_— (7.2-2)
de
Aa . .
=— (a is the central angle, Fig. 7.1-4) (7.2-3)
q =—Q— (a is the loading angle, Fig. 7.1-6) (7.2-4)
2rsin a2
G=—2 (s the bearing angle, Fig. 7.1-6) (7.2:5)
2rsin B2
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Q=04+ 0cq (7.2-6)

2 —sin p/2
—sin a/2 —sin B2

Oeq=0; 2 (for a, B, y see Fig. 7.1-6) (7.2-7)

Formula (7.2-7) for the equivalent earth pressure has been derived in Section 6.1.2.1.

7.2.2 Furiher development of the potential energy equation

For developing and further working out equation (7.2-1) a suitable displacement
function for u should be chosen:

u= ) asinng+ Y. by cos ng (7.2-8)
n=1 n=1

For reasons of symmetry the displacement u must be zero for ¢ = z/2 and ¢ =37/2.
This is also the case for ¢ =0 and ¢ = n if the loading angle a is equal to the reaction
angle 3. If a is not equal to § the values of ¢ for which u = 0 will be slightly different from
¢ =0 and ¢ = n. For the sake of simplicity this difference will be left out of account
in the further derivation of the moment-curvature diagram. On the basis of these con-
siderations equation (7.2-8) becomes:

U=a,sin2¢ + a, sin 4¢ + ag sin 69 + ... (7.2-9)

According as more terms are included in this series a more accurate solution is
obtained. The so-called bend parameter A is a criterion for the number of terms required
for obtaining a particular accuracy:

A== (7.2-10)

Rodabaugh and George [3.13] give the following guidance for attaining 10 per cent
accuracy:

A>0.50 - one term
0.40>1>0.16 — two terms
0.12>A>0.08 — three terms
0.06 > A>0.04 — four terms

In practice the radius of the bend in a buried pipeline is always at least 3D, while the
diameter/wall thickness ratio (DJ¢) for these (sharply curved) bends is in general not
more than 50-70.

For D[t=70 and R = 3D the bend parameter is A= (¢/r) - (R[r) = (1/35) - (6r/r) = 0.171.
This means that for practical purposes it will in general suffice to work with two terms.
In [2.3] the limit value for using two terms is given as A = 0.15. As a result of restricting
the number of terms to two, tolerably convenient formulae are obtained with which a
“manual calculation” is possible.
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In the BOCHT* computer program developed on the basis of this research a general
solution has been employed, the number of terms being a function of A. This general
solution is fully presented in an appendix to [2.3].

With two terms (7.2-9) becomes:

U=a,sin 2¢ + a4 sin 4¢ (7.2-11)

When this expression for u is substituted into the potential energy equation (7.2-1), the
total potential energy is obtained as a function of the unknowns 7, a, and a,:

5 2 5 2
~dy — - dyay+ — a4

E b
2 2 2

R +

(m)?* + 3aym +

Et?
+ -2~3”~ (3a? +300a3) —
F

U
M
&t
+ 6P (a} +20af) —
_2qir S;;n a2 {az (si; 272 —8 cos af2 —2 cos a2 cos a) +32ay cos® af2} —
i 2 -3
_ 2qyr 5;“ B2 {az (sin ,872 —8 cos /2 —2 cos /2 cos ﬂ) +32a4 cos® 6/2](7.2—12)

The system is in equilibrium if the potential energy is a minimum. Solutions for 7, a,
and a4 are obtained by differentiating the potential energy equation with respect to the
unknowns #, a, and a4 and equating these partial differentials to zero. Next, the
deformations, strains and stresses can be determined with the aid of these solutions:

O, rEm M_
oy —ar? @n3an - p= (7.2-13)
8Ep0t _ f’tEn

5

da, 2‘1%7 <3f77 +5a, —5 (14) +
3

+Et_§z_ (6ay) +12Pray +
2r

2gyrsin a2

3
( © 18 cos /2 +2 cos a[2 cos a>+

8 sin a/2
2qprsin f[2 [ 3B B
+ 8 (sin B2 +8 cos /2 +2 cos 3/2 cos ,6') =0 (7.2-14)

* BOCHT is the Dutch word for a BEND.
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aEpot rnEr 5
9a, = IR? (—2 a + 17614) +
Ef
+ 37” (600a,) + 240Pra —
—Z%Lénalg (32 cos® af2) —
2¢,r sin f[2
- %ﬂﬁ/ (32 cos® [2) =0 (7.2-15)
Putting:
R
A =2 (7.2-16)
_R (7.2-17
V= "En 217
_OR* [ 3a 3p
= 1n (sin a2 + ﬁ/2+8 cos a2 +8 cos /2 +
+2 cos a/2 cos a +2 cos B2 cos ﬁ) (7.2-18)
B=— S (32 cos’ a2 + 32 cos® f[2) (7.2-19)
4ntEr
the equations (7.2-13), (7.2-14) and (7.2-15) become:
2MR
2r’n + 3ayr— = 0 (7.2-20)
5
3m + (5 +6/12+241//)a2-—§a4+A=0 (7.2221)
5 2
-3 ay+ (17 + 6004 + 480y )ay + B=0 (7.2-22)

Whence, with some simplifications, the following expressions are obtained for 7, a, and
ay .

MR 15G, (A 5B

" =% 5 * D,G,—625 (7+2Gpr) (72:23)

a___?.’GP_ M_M+é+£ (7.2-24)

7 D,G,—625\ EI " 3 G, '
75 [MRr A B\ 25

=G| H 1T a) 6" (71229
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where:

C,=5%+612+24y  (C, is used in (7.2-29) only) (7.2-26)
D,=0.5+61+24y (7.2-27)
G, =17 + 60042 + 480y (7.2-28)
C,G,—6.2
k, =W—222 (7.2-29)
EI = Enr’t (7.2-30)
while:

Co=5+6A2 (7.2-31)
Dy=0.5+64° (7.2-32)
Gy =17 +600A> (7.2-33)

_ % (7.2-34)

The expressions Cy, Dy and G play a part in the derivation of the maximum moment in
the plastic range in Section 7.3. By elimination of M from (7.2-24) and (7.2-25) it is
possible also to express a, and a, as functions of 7 :

-3G, (m 1.5G, 5 B) A B
= —— A+-—=\+s++ 7.2-35
“=D,G,—6.25 |k, CpGp—é.zs( 26,] 7376, (7.:2-35)
2.5
ay =E; a, (72'36)
7.2.3 Moment-curvature diagram
From (7.2-23) follows for the linearly elastic solution:
_Hn__ 156, (A4 5B (7.2-37
"Rk, GG,—625\r 2G,r 23D

where k, is called the flexural stiffness factor. It indicates the ratio between the stiffness
of a straight pipe (with the same r and ¢) and that of the bend under consideration.
Comparative calculations have shown that k, as expressed by (7.2-29) is in good agree-
ment with the factor k;, according to ANSI [1.7] (provided that 1> 0.15). It further
appears that the moment-curvature diagram for a smooth bend subjected also to earth
pressure is parallel to the moment-curvature diagram for that bend not subjected to
earth pressure. This is already shown in Fig. 7.1-3.

Formulae (7.2-37) and (7.2-29) do not take account of:

- the influence of the change in curvature due to bending and earth pressure;

- the influence of the straight pipes to which the bend is connected;

- the influence of ovalization.
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On introducing these influences, (7.2-37) and (7.2-29) become:

=Ll __ 136 (A+5 B)]~f3, (7.2-38)

Rk CG,—625\r 2G,r
where:
1
R'=——R (7.2-
1+7 (7.2-39)
Aa
=" (7.2-40)
k
[ 7.2-41
k=t % ( )
C,G,—6.25
" D,G,—6.25 (7:2:42)
CyGy— 6.25
=T 7.2-
DyGy— 625 (7.2:43)
—\2
B=1+o-1 | 1-(15%) (7.2-44)
_ 100 () |2 (7.245)
r= ty D, -
4.5
h= ( ’+rw“) (7.2-46)

The values of G, Dy, Gy, C,, D,, G, can be taken from (7.2-26) et seq., substituting
instead of R the value R’ as expressed by (7.2-39).
The following explanatory comments are offered:

Influence of change in curvature on M
In consequence of bending and earth pressure, R becomes R’. This is indicated in
Fig. 7.1-4. Formula (7.2-39) follows directly from the geometry.

Influence of connected straight pipes on M

According as the angle of the bend is smaller, the influence of the connected straight
pipesis greater. Differences in wall thickness, if any, between the bend and the straights
likewise affect the behaviour of the bend. Finally, the length over which the influence of
the straight pipe manifests itself in the bend plays a part. This length is approximately
proportional to /t,/D,.

The formulae (7.2-41), (7.2-44) and (7.2-45) for k;, k; and y have been established on
the basis of these considerations and in the light of the test results.
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Fig. 7.2-1. Comparison between the measured flexural stiffness factors k; and the calculated
values.

In Fig. 7.2-1 the measured flexural stiffnesses of the pipe bends tested in the research
are compared with the calculated results obtained with the aid of the formulae given
above. The formulae have deliberately been so established that in virtually all cases
higher values are obtained for the factors ky and &, than those measured experimental-
ly. For practical purposes this constitutes a situation which is on the safe side, because
the higher flexural resistance which is actually available ensures that the deformations
and strains will be less than the calculated ones.

Table 7.2-1. Data relating to the pipe bends that were tested

(a), [2.8] (b), [2.8] (c), [2.8]
D, in mm 261 160 322
t, in mm 2.9 29 6.4
D[ty 90 55 51
t; in mm 3.0 3.0 6.4
R in mm 772 480 3040
A 0.134 0.226 0.779
k 12.75 7.67 2.09
y in degrees 135 173 169

In recent years, theoretical and experimental research on the influence of the con-
nected straight pipes has been carried out in various other places as well. An overview of
those investigations is given by Thomson and Spence in [3.14]. The theoretical work
relates to calculations in which the variation of u along the bend has been included in
the derivations. Finite element analyses have also been performed.

Comparison of these theoretical results and the test results reported in this research and
elsewhere with the approximate formulae given above reveals reasonably good agree-
ment. In the range of values which is of interest with reference to buried steel pipelines
the differences are not more than about + 10 per cent and are of the same order of
magnitude as the scatter in the test results.
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Influence of ovalization on M

When pipe bends are subjected to bending, ovalization will occur, as is proven theoret-
ically and can be demonstrated with the aid of the equilibrium model with ovalization
forces f presented in Section 6.1.2.1 The forces dgacting in the wall have components
df which have an effect similar to that of external earth pressure Q (see Fig. 7.2-2).
With straight pipes the ovalization due to earth pressure is proportional to r3. If the
horizontal diameter increases by an amount 2wy, the resistance to ovalization will
change by

(7.2-47)

r+wy 3
r

i

For bends there is a linear relation between ovalization and the additional curvature.
Hence it is most appropriate to take account of the effect of ovalization on the flexural
stiffness of the bend by means of the factor f; as expressed by (7.2-47).
Furthermore, ovalization affects the moment of inertia of the bend. A factor f, applies
to straight pipes:

r__wv)Ls

r

f= ( (7.2-48)

40”7 " df

Fig. 7.2-2. Ovalization forces and stress distribution in theibngitudinal direction.

This factor is assumed to be applicable also to bends, while w, in (7.2-48) is replaced by
— wy, for sake of simplicity, so that the overall effect of ovalization on flexural stiffness is
given by:

(7.2-49)

r+wy 45
r

EIbo(:)f3=(

7.2.4 Ovalization-curvature diagram
The relationship between u and w is:

w—gﬁ '
=

so that with (7.2-11) it follows that:

w=2a, cos 2¢ + 4a, cos 4¢ (7.2-50)
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Taking account of the influence of the change in curvature and the change in the angle
of the bend (see Section 7.2.3), it follows with (7.2-35) and (7.2-36) that:

6Gpcos2(p+3000s4(o{g 1.5G, (A SB) A B

D,G,—6.25 k,  C,G,—6.25 +§gp +§+@;} S | (71.2-51)

The values adopted for f,, are:
- for the middle of the bend:

kp)O‘ZS
fw =fwm = (‘7 (72-52)
K,
- and for the edges:
fwz wr="0.75 % with fwrZ 1.0 (72-53)

The influences mentioned in Section 7.2.3 which are of importance here have been
taken into account in (7.2-51) as follows:

Influence of the change in curvature on w

This influence is taken into account in the same way as in Section 7.2.3, namely, by
replacing the radius R of the bend by R’ from (7.2-39) in the formulae for G, D,, G,, 4
and B.

Influence of the connected straight pipes on w

The connected straight pipes are virtually without effect on the relationship between
the deformation parameters w and #, except that the ovalization in the middle of the
bend will be greater than at the edges. This is shown in Fig. 7.2-3.

@

straight,, bend |« Straight

Fig. 7.2-3. Distribution of the ovalization along the bend and the connected straight pipes.
a =if no connected straight pipes were present
b =with connected straight pipes
W, =ovalization in situation “a” according to (7.2-51), with £, =1.0
wn = max. ovalization in situation “b”, with f,, = fym
w, = ovalization at the edge of the bend in situation “b”, with £, =f£,..
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7.2.5 Strain in longitudinal direction &

In [2.3] the strain due to bending and earth pressure was found to be:

1 .
Exb =i {m sin @ + (2a, + 20ay) sin® ¢ — 244, sin’ ¢} (7.2-54)

In addition there is the strain due to the pressure P. Ifit is assumed that the pipe is longi-
tudinally unrestrained, then with v =0.3 we get:

1/Pr Pr Pr
co=g(5-v ) =027 (12:55)
so that:
&y = Exp + Exp (7.2-56)

The values of ¢ for which ¢, attains a maximum can be found by differentiation of
(7.2-54) with respect to ¢ or, more simply, by the application of a numerical procedure
whereby e,y is calculated for any value between 0 and 7/2.

The influences mentioned in Section 7.2.3 which are of importance in the present
context are the change in curvature and the influence of the connected straight pipes.
These influences can be taken into account by replacing in the relevant formulae for
C,, D,, etc. the radius R by R’ according to (7.2-39) and the factor k, by k;, according
to (7.2-40).

7.2.6 Strain in circumferential direction ¢,

In [2.3] the strain due to bending and earth pressure was found to be:

Eyp = *

t
3— —ay co8 2¢ — 10a, cos 4¢ (71.2-57)
2

In addition there is the strain due to the pressure P. With the same assumption as in
Section 7.2.5, we get for the inside of the bend:

1/Pr P\ R—1f3 Pr R—13
ayp_E(T_vz). o5 ok (7.2-58)
and for the outside of the bend:
1/Pr  Pr\ R+1[3 Pr R+1[3
HYD—E(T—VZ)' R-Q—r_OSSE R+r (72"59)
so that:
&y =&y + Eyp (7.2-60)

The values of ¢ for which ¢, attains a maximum can be found by differentiation of
(7.2-57) with respect to ¢:
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de yb

T(p‘ =0=2a, sin 2¢ + 20a, sin 4¢ (7.2-61)
The following solutions are obtained:

¢1=0 and = (7.2-62)

T 3r

== and — 7.2-63)

¢y=75 and = (

0.5 arccos —2 =0.5 arccos — Gy (7.2-64)
P =" 20a, 100 ‘

The solution ¢; is possible only if G, < 100. Otherwise the maxima occur only for ¢,
and ¢,.

With (7.2-35) and (7.2-36), and taking account of the influences mentioned in Section
7.2.3, the following expression for ¢y, is obtained:

3 fife |(m 156, 5B\ A4 B
s m_ A2 2 424 20 (0465
W= DG 625 |k GG —625\" 126, 3t 726
where:
Js=—3G, cos 2¢ — 75 cos 4¢ (7.2-66)

The factor f, can be obtained from (7.2-52) and (7.2-53).
The various maxima of ey, (namely, ¢y,,,) are determined by substitution of the correct
value of f; into (7.2-65):

- forp;=0 and 7 - fy=—-3G,—75 (7.2-67)

T 3n
- for ¢2=5 and 7 - fs=+3G,—75 (7.2-68)

-G _3Gp2+15000

- for ¢3=0.5 arccos 100" s 200 (7.2-69)

Here again R’ according to (7.2-39) is introduced into the expressions for G, Dy, etc.
The influence of the variation of the ovalization along the bend due to the connected
straights is taken into account by means of f;,.

7.3  Maximum moment in the plastic range
7.3.1 Mechanisms

According to plastic theory, it is permissible to choose the most favourable possible
stress distribution for determining the maximum plastic moment, provided that:

- the conditions of equilibrium are satisfied;

- the conditions of yielding are satisfied, e.g., the Von Mises criterion;
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Y
dyg
il ny %ny n,=G, t
Fig. 7.3-1. Plate forces due to Q, Pand M.

- the chosen stress distribution is in reasonably good agreement with the strains and
deformations that occur.

Fig. 7.3-1 shows a possible distribution of the longitudinal stresses, the “ovalization

forces” f already dealt with, the earth pressure Q and the bending moment distribution

in the circumferential direction.

In Chapter 6 the maximum plate force in the longitudinal direction in the presence of

a bending moment m, and a normal force n, has been calculated:

2
1 =0.5 (nyinp\/4—3(g¥) ~23

P

) (7.3-1

my
my,

The ovalization forces f are dependent on the radius of curvature of the bend and on

n,, while my in turn is dependent on f and thus also on #. This interdependence is the

reason why it is no simple matter to find an optimum stress distribution. To overcome

the difficulty, an approximate method has been established. The results obtained in this
way are found to be in good agreement with the test results.

The starting point of the approximate method is that there exist two mechanisms which

determine the magnitude of the maximum moment in the bend. These mechanisms

are:

a. The occurrence of plastic hinges in the circumferential direction: This will be the
governing mechanism if the bend is sharply curved (low value of 1), the internal
pressure has a low value and the earth pressure is large and causes ovalization in the
same direction to the bending moment.

b. The occurrence of yielding in the longitudinal direction: This will be the governing
mechanism if the bend is less sharply curved (high value of 1), the internal pressure
has a high value and the earth pressure is large and causes ovalization in the opposite
direction to the bending moment. It ties up with the design rules for straight pipes
given in Chapter 6.

Design rules for both these mechanisms are derived and presented in Sections 7.3.2

and 7.3.3.

7.3.2 Maximum moment M,,, determined by plastic hinges in the
circumferential direction

7.3.2.1 Fundamental points

In Section 7.2 the formulae have been derived with which the longitudinal stresses oy
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and the bending moments m, in the pipe wall can be calculated. With increasing load

the moments m, will increase until m, is attained at the maxima. With further load

increase the value m, will finally be attained, resulting in the formation of a plastic

hinge. If a sufficient number of plastic hinges in the circumferential direction have been

formed, a mechanism develops. The bending moment and the earth pressure acting

on the pipe bend can then undergo no further increase. The following fundamental

points are adopted in developing the procedure; explanatory comments are given after

point e:

a. For calculating the maximum bending moments m, in the wall of the pipe in the
circumferential direction the formulae given in Section 7.2 may be used.

b. The places where the moments m, have their maxima in the plastic range are the
same as those in the elastic range.

c. The maximum load on the bend is attained when the plastic moment has developed
in at least four places around the circumference of the pipe wall.

d. The longitudinal stresses o, will so adjust themselves that they are zero at the plastic
hinges.

e. Asinthe preceding section, formulae in which two terms of the expansion in a series
are used will be derived here. The BOCHT computer program makes use of the
general solution [2.3].

The fundamental points mentioned in a. and b. mean that in the case of this mechanism
the distribution of the stresses in the longitudinal direction in the plastic range is not
significantly different from those in the elastic range. In the elastic range the stresses
oy at those points where m, has its maximum values are relatively small, so that the
redistribution of the stresses envisaged in point d. is not very considerabie. In fact point
d. states the criterion relating to the two mechanisms mentioned in Section 7.3.1,
because if the longitudinal stresses are of such magnitude that this redistribution
cannot take place, it means that the second mechanism (mechanism b) will be the
governing one. This can be checked by also calculating My, in accordance with this
mechanism b (Section 7.3.3). The lower of the two values should be taken into account.

7.3.2.2 Location of the plastic hinges

The plastic hinges will occur where the strain in the circumferential direction has its
maximum values. In Section 7.2.6 it was shown that the maxima occur at:

p1=0and n (7.3-2)
3
0, =§ and 7” (1.3-3)

If G, < 100, a maximum also occurs at:

-G
@3 =0.5 arccos 1—00_p (7.3-4)
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(a) (b)
Fig. 7.3-2. Plastic hinges: (a) for G, > 100; (b) for G, <100.

In this last-mentioned case the maximum strain &y, for ¢, is smaller than &y, for g;.
The foregoing means that if a4 <a,/40 or G,> 100, the pattern of plastic hinges
develops as shown in Fig. 7.3-2a; otherwise it develops as shown in Fig. 7.3-2b.

7.3.2.3 Maximum moment My, for P=P, — P, =0

The maximum bending moment M,,, occurs when a sufficient number of plastic hinges
have been formed. This means that the sum of the absolute values of m, for ¢, =0 and
@, or @3 must be equal to twice the plastic moment =2 x 1.15m, =2.3m,.

First, m, will now be calculated:

With (7.2-57), (7.2-24) and (7.2-25) the following expression can be written for the
strains &y, (P=0):

. _+3_t 3Gy cos 2¢ +75 cos 4¢ M{{_r é+£
T2 DyG, — 6.25

i + 316G (7.3-5)

With due regard to the influences mentioned in Section 7.2.3, the maximum values
of m, are found to be:

Er® fi 1 MR'r A B
my'f‘*F'DOGo—azs(fsf; El +§+E};) (7.3-6)
where:
f; = factor according to (7.2-67) or (7.2-68) or (7.2-69)
fi=1-22 (1.3-7)
2w,
fi=1— 3 (7.3-8)
ky [ . ko)
=-2|with P=0 - fo=— 7.39)
Je X Jo X (

The following explanatory comments are offered to show how the influences envisaged
in Section 7.2.3 have been taken into account:

Influence of the change in curvature

As shown by the tests, the plastic zones occur chiefly on the compression side of the
bend. The greatest additional curvatures occur there. In connection with this, the
modified radius R” is employed in the plastic range (see Fig. 7.3-3).
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Fig. 7.3-3. Radius of the bend R” to be taken into account in the case of bending in the plastic
range.

For positive bending:

R"=R—r (7.3-10)
For negative bending:

R"=R"+r (7.3-11)
R" according to (7.3-10) or (7.3-11) should be used for calculating C,, Dy, G,, etc.

Influence of the connected straight pipes

Part of the ovalization forces will be transmitted by shell action via the connected
straights. This is similar to the situation in the elastic range, where a reduced flexural
stiffness factor k' was introduced. To take account of the strengthening effect of the
straight pipes, the plastic moment is increased by the factor f; according to (7.3-9).

Influence of ovalization

In consequence of ovalization, for equal bending moment and imposed load on the
bend, the moments in the pipe wall are increased by the factor f; according to (7.3-7).
Furthermore, ovalization will cause the section modulus of the cross-section to
decrease by the factor f; according to (7.3-8).

The maximum bending moment is attained when the sum of the absolute values of the
maxima of m, is equal to 2.3m,. Two situations are to be distinguished with regard to
this:
a. ay < ay[40 or Gy > 100, alternatively A > 0.37
In this case the plastic hinges occur at ¢; =0 and 7 and at ¢, = /2 and 37/2. With
the absolute values of (7.2-67) and (7.2-68) in (7.3-6) it follows that:

E 6G, (1 MR"r A B)

23my = fs 52 DoG— 625 315,

—_ 3-12
fife EI 30 Gy (7:3-12)

b. a, > a,/40 or Gy < 100, alternatively 4 <0.37
In this case the plastic hinges occur at ¢, =0 and 7 and at g3 = 0.5 arccos — G,/100.
With the absolute values of (7.2-67) and (7.2-69) in (7.3-6) it follows that:

)3 _fE_t3 3G6 +600G,+30000 | 1 MR'r 4 B
P = T 00(DGo— 625 \fifs EI 371G,

(7.3-13)
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On rewriting (7.3-12) and (7.3-13) the following formula is obtained for the maximum
moment My, for P=0:

EI (DyGy—6.25 [2.3m, r? A B
Mpbo '—J%fé R”r{ 3GO ( ﬁt ) Et3 ﬁ) - E - GO} (73-14)
where:
- for a, < a[40 or G, > 100, alternatively 1 > 0.37:
=10 (7.3-15)
- for a;> a,[40 or G, < 100, alternatively 1 <0.37:
400G,
fi= G¢ +200G, + 10000 (7.3-16)

7.3.2.4 Maximum moment My, for P==0

If the internal pressure is greater than the external pressure, the earth pressure and the
ovalization forces f due to M are also resisted by the internal pressure acting addition-
ally to bending of the pipe wall.

The average of the bending contributions for ¢ =0 and ¢ = z/2 will, on putting:

hy = Ry, = Pr (7.3-17)
be equal to:
+ Wy
My, :HM (7.3-18)

The maximum value of m, in the pipe wall (= m,,) is found by putting n, =0.5n, in
(7.3-1):

43 (% (7.3-19)

P

‘ Nyp *"w

Fig. 7.3-4. - In the case of an ovalized section the pressure makes a contribution to the load-
carrying capacity with respect to fand Q.
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so that:

2
My =1.15m, {1-0.75(%) } (7.3-20)
b
where:
n, =10, (7.3-21)
my=025%0, . (7.3-22)

The total “resistance” to ovalization is found to be:

[wnl +[wi]

> (7.3-23)

Pr\?
My =1.15m, {1 —0.75 | —| t + Pr
to,
The maximum bending moment acting on the bend can now be calculated by replacing
in the formulae of Section 7.3.2.3 the term 2.3m, by 2my, so that the following
expression is obtained for the maximum moment, inclusive of the effect of the
pressure:

Mpbo :fS.}%

El (DyGy— 625 [2my, 1> A B
‘0" 5("’“ ! ) } (7.3-24)

R'r| 3G, fi E7)T37 G

where M,;,, denotes the maximum moment acting on the bend when the plastic hinges
have fully developed. The transition from the elastic range to the fully plastic range will
be considered in Section 7.4.

It is to be noted that for the calculation of a,, a4, D, G, etc. it is necessary to substitute
P=0 into the relevant formulae, the reason being that the extra loadbearing capacity
due to P has here been incorporated in the formula for m,,. If P< 0, i.e., if the external
pressure exceeds the internal pressure, the second term of the formulae for m,
becomes negative. This means that the pressure P then increases the ovalization and
reduces the loadbearing capacity of the bend M,

The ovalization values w;, and w, are calculated in Section 7.3.2.6.

According as the internal pressure is greater, M, as expressed by (7.3-24) will likewise
be greater. For this reason, for high values of P the second mechanism will in general be
the governing one (i.e., yielding in the longitudinal direction: Section 7.3.3).

7.3.2.5 Influence of normal force, shear force and torsion

The part of the cross-section that is not utilized for bending, for earth pressure and for
pressure P is available for the normal force, shear force and torsion.

If the normal force, shear force or torsion exceeds the resistance capacity of the part of
the cross-section thus available, the bending moment will be reduced. In fact, the
second mechanism will then occur (yielding in the longitudinal direction). This will be
treated in Section 7.3.3, where the effect of the normal force, shear force and torsion are
also taken into account.
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In view of what has been said above, with respect to the mechanism “plastic hinges in
the circumferential direction” it is not necessary to carry out a check on the effect of
normal force, shear force and torsion.

Finally, it is to be noted that torsion is attended by bending outside the plane of the
pipe bend. For further information on this the reader is referred to [2.3].

7.3.2.6 Ovalization of the cross-section

If the mechanism characterized by circumferential plastic hinges constitutes the
governing condition, the stresses in the longitudinal direction will not yet, or not yet
everywhere, have attained the yield point. Having regard to the mechanism in ques-
tion, these longitudinal stresses cannot further increase, which means that, with
increasing curvature of the bend, the longitudinal strains will undergo no, or hardly any,
further change. The curvatures will then develop as a result of progressive further
increase in ovalization.

According to [2.3], the relationship between the longitudinal strain and the ovalization
is:

1 d
& =3 | 1" sin ¢ — a-g sin ¢ + u cos go) (7.3-25)

For # > 7. the strain &, will be constant for ¢ = 90°. It then follows from (7.3-25) with
»=90°:

du

a0 = —no)r (7.3-26)
where du/dg is the additional ovalization Jw, so that:
owy = (1 —1e)r (1.3-27)
Taking account of the second order, it follows that:
Owy = (1 — 1) (r — dwy) (7.3-28)
V= I—L7t—j—e’7—e r (7.3-29)

The additional horizontal ovalization follows from the consideration that, after the
plastic hinges have developed, the distribution of the moments in the pipe wall does not

e

C

B

Fig. 7.3-5. Ovalizations w, and wy, of the cross-section.
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change when further ovalization occurs. This means that the distance between the
plastic hinges remains unchanged. Besides being the case for AC, this will also very
nearly be the case for AB. Hence it follows that (with the appropriate signs for 6w, and
owy; in Fig. 7.3-5: w, is positive and wy, is negative):

(r— 6w)? + (r— 6wy)? = constant = 2r?

OWE —2rdwy, — 2rdw, + ow2 =0

Owp, = r— V12 +2réw, — 6wl (7.3-30)

7.3.2.7 Elastic-plastic range

Bending moment

The end of the elastic range is deemed to have been reached as soon as the bending
moments in the circumferential direction anywhere attain m,. The full plastic moment
My, is attained when a mechanism has developed.

In Fig. 7.3-6 the line m,, indicates the maximum moment when the mechanism des-
cribed in the preceding sections has been developed. In reality this mechanism is
formed gradually (the line M). This situation is analogous to that for straight pipes in
Section 6.3.1.

InFig. 7.3-6 it is assumed that the load Qwas first applied and the bending moment then
increased. Because “plastification” occurs here chiefly through bending of the wall of
the pipe, it isan obvious choice to base the transition curve between M, and M, on that
for a rectangular section.

Bl
=

1
/ Met Me2
/

/

Fig. 7.3-6. Transition between the elastic range and the fully plastic situation on reaching M.

P
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I
|
1
1 P
ke k

Fig. 7.3-7.  Moment-curvature diagram for a rectangular section.

89



m =g, —Ld%a,

e 2

k =-—2.2
E d

m, =42,
me = it’a,
k=%
t

On eliminating ¢ we obtain:

m. [ k. \°
=m. — = 7.3-31
m=m, C(k) ( )
where:
_ e 7.3-32
= my—m, (7.3-32)

For the rectangular section: ¢=2.
In analogy with this, the following procedure is followed for the elastic-plastic branch
for the bending of the pipe bend:

My — M,
O = (7.3-33
! Mpbo_Mel )
My — My
Cy = —— 7.3-34
? Mpbo“‘ e2 ( )
My — My [ 761 \9 Moy — My [ 76\
M= Mypo—0.5 lc—"(%) —0.5 =2 (%) (7.3-35)
1

where:

M, = the moment which develops when, on applying Q, the angular rotation
is kept zero: see Fig. 7.3-6

M, =the moment at which the value m, is first attained anywhere in the
circumferential direction of the wall of the pipe; in general this occurs
at p =0

M., =the moment at which the value m, is attained in the circumferential
direction for the second time

ne1 = the # associated with M.,

ney = the 5 associated with M,,

n =the value of 7 for which M is calculated

If M, exceeds 0.9M,,, then, in order to avoid difficulties in the calculation process, M.,
is taken as equal to 0.9M,,,. The same applies to M,,.
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Ovalization

For the relation between the additional curvatures and ovalizations there will likewise
be an elastic-plastic branch. For the type of bend considered here (mechanism “a”) the
elastic and the fully plastic branch for the ovalizations do not differ much from each
other. This being so, it is proposed, with regard to the ovalizations after the attainment
of M, and ., according to Fig. 7.3-6, to pass directly to the fully plastic branch (Section
7.3.2.6).

7.3.3 Maximum moment M, determined by longitudinal yielding
7.3.3.1 Maximum moment

If the maximum moment is determined by yi elding in the longitudinal direction
(mechanism “b” in Section 7.3.1), the distribution of the ovalization forces /, the bend-
ing moments m, and the longitudinal stresses g, will be approximately as shown in Fig.
7.3-8. The distributions of m, and ¢, which occur in this case are substantially similar to
those which occur in straight pipes.

(I G
T Dy b

P o
R _,.4_’@ —

PRI SR
Ny

l\y

Fig. 7.3-8. Plate forces due to bending and due to pressure.

For this reason the method of analysis given in Chapter 6 will be used for determining
the moment-curvature diagram and the relation between the additional curvature and
the ovalization. The formulae presented in the preceding section can be used for the
determination of m,. Since the favourable effect of the initial curvature of the pipe on
the strength and rigidity of the pipe wall have been taken into account in these last-
mentioned formulae, they will give lower values for my than the formulae in Chapter 6.
The relation between m, and the maximum moment M, calculated with the formulae
of Chapter 6 is presented in Fig. 7.3-9, as is also the relation between my and My,
calculated with the formulae of Section 7.3.2.
For the value of m, to be introduced into the calculation of M., is adopted the average
©of the absolute values of my at the two extremes. In Fig. 7.3-8 these are the values of my
for 9 =0 and ¢ = /2.
The procedure for determining the correct moment M5 is as follows:
a. Calculate with the formulae of Section 7.3.2 the moment M, (mechanism “a”). In
Fig. 7.3-9 this is M.
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Fig. 7.3-9. Determination of the maximum moment if yielding in the longitudinal direction is
the governing condition.

b. Calculate with the formulae of Chapter 6 for my=maximum the moment My
(mechanism “b”). In Fig. 7.3-9 this is M.

c. If My, is greater than M,,,, then mechanism “a” (plastic hinges) is the governing
mechanism. The calculated value of M, is then the maximum moment that the
bend can resist.

d. If My, is smaller than M, then mechanism “b” (yielding in the longitudinal direc-

tion) is the governing mechanism.
If my is chosen as having a smaller value than that for which M;;,o; and M,,; have been
calculated, then My, decreases and M,, increases. The correct moment is located
at the intersection of the lines for My, and M. In Fig. 7.3-9 this moment is called
Mmax- v

If longitudinal yielding is the governing condition, the strengthening effect of the

connected straight pipes will be less than in the case where the occurrence of plastic

hinges in the circumferential direction is the governing condition. In connection with
this the factor fz applied in Section 7.3.2.3 for the calculation of M), will be replaced by
fs' as expressed by:

fi'=1+(f—1) % (7.3-36)

where:

Pr 2
iy = 1.15m, {1 ~0.75 (—-) ] (7.3-37)

R

7.3.3.2 Ovalization

If longitudinal yielding is the governing condition, the additional curvature will

comprise two portions:

a. Increase in ovalization causes an increase in curvature, for which the same formulae
as those in Section 7.3.2.6 are valid.

b. Longitudinal yielding produces longitudinal strains and therefore also causes a
change in curvature, which can be calculated with the aid of the formulae given for
straight pipes in Chapter 6.

The above considerations can be expressed as follows:

0Kio = 0Ky + 0K, (7.3-38)
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where:

0K, =total increase in curvature in the deformation step concerned
0K, =increase in curvature due to ovalization
0K, =increase in curvature due to longitudinal yielding

Longitudinal yielding produces a change in the curvature and also a change in the
ovalization of the pipe (see formula (6.2-30) in Section 6.2):

3
oW, = — ft- 2Wm- 0K, (7.3-39)
where:

ow, = change in ovalization due to longitudinal yielding
Wm = slope of the yield surface

The ovalization dw, at its turn produces an increase in the curvature of the pipe (see
point a above). With the formulae of Section 7.3.2.6 it follows that:

ow, =0n (r—w,) (7.3-40)
on=R".6K, (7.3-41)

From (7.3-39), (7.3-40) and (7.3-41):

3
%-mm 0K, + R" (r— w) 6K = 0 (7.3-42)

With (7.3-38) is obtained:

r3
2 N W 0K
0Ky = 3 (7.3-43)

2 % Ym—R"(r—w,)

ow, = 0Ky~ R"(r—w,) (7.3-44)

The increase in the horizontal ovalization can be calculated with (7.3-30) given in
Section 7.3.2.6.

If internal pressure is acting, with increasing ovalization more and more of the earth
pressure and ovalization forces will be supported by the internal pressure: cf. Section
6.4. This means that the contribution made by the pipe wall becomes smaller and
smaller, finally diminishing to zero. At that instant the bending moment acting on the
bend is equal to My, for m, =0 (Fig. 7.3-9). When m, =0 the equilibrium condition
(6.4-1) determines the magnitude of the ovalization (see Section 6.4). For the average of
absolute values of my due to bending (my) and earth pressure (m,,) we obtain with (7.3-
6), (7.2-67) and the governing formula (7.2-68):
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(7.3-45)

Myx + Myq =

Ef —3G, 1 MR'r A B
—5" x + -+ — f4
2rr DyGy—625\ fsfi El 3 G
The contribution due to the pressure P is:

my, = — Pwr (7.3-46)

With (6.4-1), (7.3-45) and (7.3-46) and because m, =0 the Valu_e of fi according to
(7.3-36) is equal to 1, we obtain for the average value of the ovalization:
Ef 3G, 1 MR'r A B
= 3 — 4+ — 4+ — ﬂ
2P DyGy—625\fs EIl 3 Gy

w (7.3-47)
In this situation w, and wy, will not differ much from each other; they will therefore be
taken as equal, except for the algebraic sign.

Since y, is dependent on my, it is necessary to perform the calculations step by step - up
to and including (7.3-44) - so long as my has not yet become zero. After each 6K, the
increase in ovalization should be calculated, then the new value of m, and the new value
of wo,.

The computational model described here has been incorporated in the BOCHT com-
puter program [2.3].

7.4 Variations in the pressure P

In an ovalized bend of a pipe there will occur variations in the bending moment, the
curvature and the ovalization when variations occur in the pressure. Two extreme
situations are to be distinguished in connection with this:
a. The pipe bend is subjected to bending into the plastic range while the internal
pressure P, =0. The pressure is then raised.
b. The pipe bend is subjected to bending into the plastic range while the internal
pressure is equal to the maximum working pressure. The pressure is then reduced.
In the first situation the ovalization at the commencement of the pressure variations
will in general be considerably greater than in the second situation. In fact, the first
situation implies that during a substantial part of the envisaged service period the
pressure is zero and subsequently alternates between zero and the working pressure,
while the settlements undergo no further increase. But if the settlements do increase
while the pressure is acting, the stresses and strains will, after some further settlements,
be so redistributed that the maximum resistance to the imposed flexural deformation is
developed. This means that then the second situation, as envisaged in point (b), is
reached.
In view of what has been said above, in fact only the second situation is of importance
with regard to the limit states “alternate yielding” and “fatigue”. For calculating the
effect of the pressure variations it is presupposed in the TGSL guidelines [2.1] that
throughout the envisaged service period the pressure is constantly equal to the average
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working pressure (=0.5 times the maximum working pressure). The forces and de-
formations to which the bend is subjected are calculated for this pressure, and on the
basis of this is then calculated the effect of varying the pressure.

Suppose that for a certain value of the angular rotation of the bend the pressure is
changed (by and amount AP). Then changes will also occur in the magnitude of the
moment (by AM), the angular rotation (by A7), the ovalization (by Aw) and the earth
pressure (by AQ). The extent to which these changes occur depends not only on the
properties of the pipe bend itself but also on, among other factors, the rigidity of the
surrounding soil and the rigidity of the connected straight pipes.

The relation between M, #, Pand wis indicated qualitatively in Figs. 7.4.-1 and 7.4-2.
It is to be noted that, at the first change in pressure for a certain angular rotation, in
general yielding will occur, in which case the stresses and strains will so adjust them-
selves that further pressure variations will, for the same differences in settlement, occur
in the elastic range (provided that the conditions as to alternate yielding and of course
also the equilibrium conditions are satisfied).

constant

P =

A Aa

Fig. 7.4-1. Moment-angular rotation diagram for variation of the pressure (qualitative).

P = constant B Pi

w

Fig. 7.4-2. Pressure-ovalization diagram for variation of the pressure (qualitative).

Because the relation between M, 7, P and wis also dependent on the rigidity of the soil

and of the connected straight pipes, the anaysis is rather complicated. For this reason it

is stated in the TGSL guidelines [2.1] that we may confine ourselves to analysing the

following two situations:

- The bending moment does not change during the variation of the pressure (load-
controlled situation).

- The curvature does not change during the variation of the pressure (deformation-
controlled situation).
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7.4.1 Calculation of AM, An, Aw due to AP

Elastic branches BC and BD in Figs. 7.4-1 and 7.4-2

For this calculation the load exerted by Pon an ovalized section is conceived as replaced
by a load due to an equivalent earth pressure Qj with a = =180°.

In Fig. 7.4-3a the load due to the pressure on an ovalized section is indicated. It
produces moments in the pipe wall which are equal to:

Myp = — AypW (7.4-1)

¢ Nyp (a) ¢nyp (b)

Fig. 7.4-3. Calculation of an equivalent earth pressure Q’, for an ovalized section loaded by
pressure P=P,— P,.

Because the ovalization w is substantially described by a cos 2¢ function, the distribu-
tion of the bending moment that occurs in consequence of ovalization is virtually
similar to that occurring in consequence of a uniformly distributed load Qg with loading
angle and bearing angle equal to 180° (Fig. 7.4-3b):

tyq = 0.125Q4r cos 2¢ (7.4-2)
By equating my, to my, it follows from (7.4-1) and (7.4-2) that:

Oi=—7e (1.4)
For ny, and w we can write:

nyp = Pr (7.4-4)

W = Wax COS 20 (7.4-5)
so that (7.4-3) becomes:

0= — 8PWax = — 8P(Wy — Wh)[2 (7.4-6)

In this equation the average of w, and wy, at the instant when the pressure is present is
adopted for wyay. In the further derivation, Wpayx is designated as w for the sake of
simplicity.
For o = f8 = 180° it follows for the constants A and B according to (7.2-18) and (7.2-19),
taking account of the change in the radius of the bend due to the additional curvature,
that: '

, 3QiR')’ —12Pw(R')

A = = K
2rE rtk (7.4-7)

B =0 (7.4-8)
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For the relationship between AM, Az and AP, taking account of the effect of the
changing radius of curvature and of ovalization, we now obtain with (7.2-38):
EI (A 1.5Gy  [12(R)? Ad 5AB

TRk Pwy——==2 )i 749
M=k 1k CGo—625\ e APMT zc;or)lfs (7.4-9)

The quantities C, G and &’ in this formula should be determined for P= 0 because the
effect of the pressure has been separately taken into account.
The ovalization w, in (7.4-9) is the ovalization associated with the eventual pressure P:

Wy — Wy

2

Wy = (7.4-10)
In the case of positive bending (reduction of the curvature radius) w, should be taken as
positive. APis positive when the pressure increases. If the earth pressure increases then
AA and AB are positive too.

The ovalization w, is composed of the ovalization in the initial situation plus the
additional ovalization Aw due to Ay and AP. Making use of (7.2-35), taking account of
the influences of Section 7.2.3 and of the fact that w,, is, according to (7.4-10), equal to
twice a,, it follows that:

Aw= ZAQQ =

6G, {rAn 1.5G, (12(1{')2A1Der
o p

DGy—625| ky CoGo— 625\ nE

5AB\ 4(R')? AA AB
w)+< ) apw, + 24

+ A4+ - P 3 +Eo

2 Gy

l S (7.4-11)

The signs follow the same rules as those for the formula for AM. If the earth pressure
remains unchanged, then A4 = AB = 0. For the sake of simplicity, the value adopted for
w, in (7.4-11) is the value associated with the higher of the two pressures considered. For
the same reason as in the case of the formula for AM, here Cyand G, have likewise been
adopted. Because it is the relation between the deformation parameters w and # with
which we are here concerned, the flexural stiffness factor is introduced as ko and not k;
as in the case of AM in (7.4-9).
For the change (Amy) of the average of m, for ¢ =0 and ¢ = /2 it follows with (7.2-57)
that:
Et? Er
Amy = Aayb = 5)’7

6
With (7.4-12) we obtain:

E 3
Amy = a2 Aw (7.4-13)

Aa, (7.4-12)

By adding Am, to the old m, we obtain the new m,. In the case of a rise in pressure the
algebraic sign of Am, is negative, so that the new m, is smaller than the old my. Accord-
ing to (7.3-37) the maximum m, is m,,:
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2
Pr } (7.4-14)

My =1.15m, ‘1 —0.75 (E)
If my > my,, then yielding will occur; in that case mm, should be introduced into the
further calculation.
With m, known, the maximum moment My, can be calculated as indicated in Sections
7.3.2 and 7.3.3.
If the original moment increased by AM according to (7.4-9) is greater than M, then
yielding will occur and the ovalization becomes less. AM according (7.4-9) will then be
reduced. This is possible by adopting in (7.4-9) a smaller value of w of such magnitude
that the original M increased by AM becomes just equal to My, This smaller value of w
is the ovalization after yielding.

7.5 Calculation of the strains - plastic
7.5.1 Longitudinal direction

For the plastic range a distinction can be drawn between the two yield mechanisms of

Section 7.3.1:

a. Occurrence of plastic hinges in the circumferential direction: With this mechanism
the additional curvatures are made possible by further increase in ovalization. The
strains in the longitudinal direction undergo no, or hardly any, change. For this
reason the longitudinal strains can be determined from the “elastic” formulae given
in Section 7.2.5.

b. Occurrence of yielding in the longitudinal direction: In this case the additional
curvatures develop as a result of longitudinal yield and of ovalization. The additional
curvature due to ovalization (6Kp) can be determined with (7.3-40) and (7.3-41):

owy

- oow) (7.5-1)

9Ky
The additional curvature 6K, due to longitudinal yielding is found by subtracting
5K, from the total additional curvature in the plastic range (0Kq):

0K, = 0K oy — 0Ky (7.5-2)
The plastic strains caused by K, are:

Expl =~ 0K, -y (7.5-3)

where y is the distance from the fibre under consideration to the neutral axis.
To the plastic strains the elastic strains according to Section 7.2.5 should be added.

7.5.2 Circumferential direction

A reasonable estimate can be obtained by following the same procedure as that des-
cribed for straight pipes in Section 6.5.

98



7.6  Experimental verification

The design rules which had been established were incorporated in a computer program
designated as BOCHT*, with which the tests performed were analysed.

7.6.1 Overview of tests performed

a. Bends 2160-2.9 mm with R =480 mm, ¢, =380 N/mm?, loaded by combinations
of bending and internal pressure.

b. Bends 2261-2.9 mm with R =772 mm, g, =380 N/mm? loaded by combinations
of bending and internal pressure.

¢. A bend 2160-2.9 mm, R=480 mm, a = 90°, g, =380 N/mm?, loaded by out-of-
plane bending and internal pressure.

d. A bend @322-6.4 mm, R=3040 mm, o, =330 N/mm? a =90°, loaded by earth
pressure Oy and bending.

It would be outside the scope of the present publication to inciude all the test results.

Instead, only test 75 and the test referred to in point d, above, will be dealt with.

Table 7.6-1. Overview of the @160-2.9 mm pipe bends tested

a P Typ direction of bending (see sign
No. degrees (bar) o, conventions in Section 7.1)
70 30° 0 0 positive
71 30° 0 0 negative
72 60° 0 0 positive
73 60° 0 0 negative
74 30° 86 0.60 " positive
75 30° 86 0.60 negative

Table 7.6-2. Overview of the @261-2.9 mm pipe bends tested

a P Iyp
No. degrees (bar) O, direction of bending
81 30° 0 0 positive
82 30° 0 0 negative
83 60° 0 0 positive
84 60° 0 0 negative

* BOCHTﬁis the Dutch word for a BEND.
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7.6.2 Test 75

Photo 20 shows the test rig employed, with specimen 75, after the test had been
completed. The bending action was produced by means of the two hydraulic cylinders
seen on the left and right respectively (four-point bending). The change in curvature
was measured with the aid of the displacement transducers mounted in the steel frames
welded to the pipe bend. The change in the vertical diameter was measured with the
dial gauges in the stirrup-type measuring devices (AD, = 2w,). Because of the internal
pressure (86 bar ~ gy, = 0.60,) the maximum moment in the bend was so large that
plastic deformations occurred also in the connected straight pipes (Photo 20).

The measured moment-angular rotation diagram for the bend is presented in Fig. 7.6-1.
In the elastic range, bending tests were performed also for P=0, 29, 57, 86 and 115 bar.
The result calculated with the aid of the BOCHT computer program is also included in
this diagram.

Fig. 7.6-2 gives the measured relationship between AD, in the middle and the angular
rotation along the bend. The result of the computer calculation is likewise included.
To illustrate the effect of the pressure P, in Figs. 7.6-3 and 7.6-4 moment-angular

Photo 20. Testing arrangement with specimen No. 75 after the test.
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Fig. 7.6-1. Measured and calculated moment-angular rotation diagrams for test 75.
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Fig. 7.6-2. Measured and calculated ovalization-angular rotation diagrams for test 75. AD, is the

change (increase) in diameter in the plane of bending in the middle of the bend.

rotation diagrams and ovalization-angular rotation diagrams for specimen 75 are given
for P=0, 29, 57, 86 and 115 bar. These give the following values for Oyp[0e: 0,0.2,0.4,
0.6 and 0.8, respectively.

The symbols and abbreviations listed beside Figs. 7.6-3 and 7.6-4 have the following

meanings:
DU
T-BOCHT
T-RECHT
R-BOCHT
B.HOEK
SE
VERSTSP.

external diameter

wall thickness of the bend

wall thickness of the connected straight pipes

radius of the bend

angle of the bend «

yield point

stress at the maximum calculated angular rotation (Aa ); in the calcula-
tion of M., the maximum stress is taken between SE and VERSTSP.,
proportional to the angular rotation

pressure = P, — P,; the curve extending farthest relates to the input P
earth pressure = Q4 + Qeq
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Fig. 7.6-3. Calculated moment-angular rotation diagrams for several values of Oyl 0.
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Fig. 7.6-4 Calculated relations between the change (increase) in diameter in the plane of
bending in the middle of the bend (4D,) and the angular rotation (4a) for several
values of g,,/7..
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ALFA, BETA loading angle, bearing angle (a, B)

N.EFF. effective normal force (Section 6.1.3)
DW.KR. shear force
MT torsional moment

MPRECHT  plastic moment of straight pipe with the same r, t and o,
(MPRECHT = 4r%t0,)

BRI direction of bending: BRI =1 when the bend tends to become more
curved (DI); BRI = — 1 when the bend tends to become less curved
(“straightens out”) (DU); BRI =0 for out-of-plane bending (UV)

Further:
INVOERGEGEVENS input data
MOMENT moment

HOEKVERDRAAIING  angular rotation (Aa)
VERT. OVAL. MIDDEN  change in vertical diameter (AD, = |2w, )
HOR. OVAL. MIDDEN  change in horizontal diameter (AD;, = |2wn])

7.6.3 Test on bend 2322-6.4 mm

The test arrangement employed is shown in Photos 21 and 22. The “earth pressure” was
applied by means of inflated rubber cushions. The loading angle and the bearing angle
were 30°. The “earth pressure” Qy was 49 N/mm. Figs. 7.6-5 and 7.6-6 show the meas-
ured moment-angular rotation diagram and the ADy-angular rotation diagram. In
analogy with Figs. 7.6-3 and 7.6-4 the computer results for Oyploe=0,0.2,0.4, 0.6 and
0.8 have likewise been included.

M
[kNm]
100}

test |
I

80r Lt - ::7

test stopped
at Aa= 0.65 rad

601

¢ 322-6.4 min

R = 3040 mm
Qg = 49 N/mm
Gyp = 0

40+

20

0 0.05 0.‘10 0.15 0.20 0.25 0.30 0.35 0.65

Aa[rad]
220 H

4oL
Fig. 7.6-5. Measured and calculated moment-angular rotation diagrams.
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Fig. 7.6-6. Measured and calculated relations between the change (increase) in diameter
perpendicular to the plane of bending (ADy) and the angular rotation (Aa).
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The symbols and abbreviations listed beside Figs. 7.6-7 and 7.6-8 are explained in the
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Fig. 7.6-7. Calculated moment-angular rotation diagrams for several values of ay,/0e.

preceding Section.

104



O
OPL Y=  4oR.OVAL.MIDDEN - HOEKVEROR.
s-am-es 20:08| BBC
B INVOERGEGEVENS
T o513
u g3 DU = 322.0 MM
w g T-BOCHT = 6.40MM
XE 00 1oneenr -
< ¥ o -RECHT = 6.40MM
E e R-BOCHT = 3040.0 MM
E:; 3 B.HOEK =  90.0 GRADEN
0+
T 0] SE = 330.0 N/MM2
I 33 / P = 0.0 BAR
. e 0 = 43.0 N/HM
i P ALFA = 30.0 GRADEN
0] / BETA =  30.0 GRADEN
e pert0.2 s N.EFF. = 0.000E+00 N
LE ] 0L DW.KR. = 0.000E+00 N
-4 —’—‘_“ o —
o ] e T = 0.000E+00 NMM
-3 : /ﬂw 0.6 e MPRECHT = 0.210E+09 NMM
LE /’}/‘// L-BOCHT = 4775.2 MM
] BRI.(DI=1,0P=-1,UV=0) 1
0
0.’0(‘)' 0.05‘“0'.16 0'.15 0.20 0.2% 0.30 Flm

HOEKVERDRAAI ING [RAD.]

Fig. 7.6-8. Calculated relations between the change (increase) in diameter perpendicular to the
plane of bending (AD;) and the angular rotation (Aa) for several values of Typ/Te.

Photo 21. Test arrangement for “earth pressure” by means of inflated rubber cushions for the
bend @322-6.4 mm.
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Photo 22. Overview of the test arrangement for “earth pressure” and bending for the bend
@ 322-6.4 mm.

8 Practical application; conclusions
8.1 Practical application

The results of the research have provided the basis for the “Technical principles for the
design of buried steel pipelines” (TGSL-1986) [2.1].

In order to promote acceptance thereof, the TGSL together with the associated reports
have been submitted for approval to the “Technical Advisory Committee for Dykes and
Flood Defences” (TAW), which was set up by the Netherlands Minister of Transport
and Civil Engineering Works. After approval, the TAW will advise the Minister to
publish the TGSL as an appendix to the Guidelines [1.1] and [1.2]*.

In anticipation thereof several existing pipeline crossings of the NV Nederlandse
Gasunie have been analysed on the basis of the new method. These are crossings which
do not satisfy the safety requirements of the present guidelines [1.1] and [1.2].

For performing the calculations, TNO-IBBC has added the required subroutines to
DIANA. DIANA (DIsplacement ANAlysis) is an in-house general purpose finite
element computer program.

Several of the pipeline crossings that have been re-analysed have turned out to be
sufficiently safe just as they are. In the case of some others it has proved possible to
attain the desired level of safety by making relatively minor adaptive changes such as
partial excavation or the replacement of a small portion of the pipeline crossing. In this
way the need for costly replacement schemes (costing between 1 and 2 million guilders
per crossing) has been avoided in most cases.

* The TGSL and associated reports have been approved in January 1987 and will be published iﬁ i
June 1987.
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8.2 Conclusions

To summarize, it can be stated that the research has resulted in a new method of design
and analysis which gives a better insight into the actual strength and deformation
properties than was possible with the old method. The principal consequences are:

a. With regard to the properties and safety

- In many situations the actual strength and the actual deformation capacity are
considerably greater than can be shown by an analysis based on elastic theory.

- Thanks to the better insight obtained into the actual properties it is possible to
attain a more uniform degree of safety. This has been made possible also because
the various failure modes (limit states) have been investigated separately, and
limit values have been established for them. For example, when the old method
was employed, the buckling safety of thick-walled pipes was greater than that of
thin-walled pipes. In the new method this is no longer the case.

b. With regard to economy

The application of a new design method can yield substantial economic advantages,

both in relation to existing pipeline crossings and to new ones yet to be built:

- In situations where, with existing crossings, the differential settlement turns out
to be greater than that on which the original design was based, or where in re-
sponse to changes in safety philosophy greater safety margins are required than
provided in the original design, in many cases the need for costly replacements can
be avoided by re-analysing the pipeline crossings with the new method.

- In the case of new crossings the better insight provided by the new method can
lead to simpler forms of construction. For example, it may be possible to adopt a
straight crossing instead of a “reclining arch”: in Fig. 1-2, solution “a” instead of
solution “b”.

9 Summary

Loads acting on buried steel pipelines consist of combinations of internal liquid or gas
pressure, earth pressure and temperature differences. Where differential settlements
occur along the alignment of a pipeline, the latter is moreover subject to imposed
deformations. This occurs more particularly at crossings with dykes, roads and railways.
It means that, besides the strength (internal pressure, resistance to earth pressure), the
deformation capacity is important.

Design methods based on elastic theory have long been used for pipelines. The actual
behaviour up to failure cannot properly be described by those methods, however.
Research has led to the development of a new method of design and analysis based on
plastic theory, which does provide a good insight into the actual strength and deforma-
tion properties and thus into the actual structural safety available. In many situations
the actual strength and actual deformation capacity are found to be considerably greater
than can be shown on the basis of an elastic analysis.
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Also, greater uniformity in the safety of the pipeline can be attained as a result of a
better understanding of the actual properties. This has been made possible partly also
because the various modes of failure (limit states) have been investigated separately,
and limit values have been established for them. For example, with the old method the
buckling safety of thick-walled pipes turned out to be greater than that of thin-walled
pipes. In the new method this is no longer the case.

This publication reports in detail on the research which has provided the basis for the
“Technical principles for the design of buried steel pipelines” (TGSL) [2.1]. On applying
the TGSL to some existing pipeline crossings which were no longer acceptable accord-
ing to the conventional methods of analysis it was found in several cases that the pipe-
line in question was in fact sufficiently safe just as it was. As for some of the other pipe-
lines that were re-analysed it emerged that the desired level of safety was attainable
by making relatively minor adaptive changes (e.g., partial excavation), so that in most
cases it proved unnecessary to have recourse to replacement.

For new pipeline crossings the better insight provided by the new method can lead to
different and simpler forms of construction: for example, a straight crossing instead of
a “reclining arch”.
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11 Notation*

A cross-sectional area mm?
a, b ovalization of straight pipes mm
ay, ay coefficients for in-plane bending of smooth bends -

Co, G, function of 4, and of 1 and y, respectively (Section 7.2.2) -
1, € coefficients (Sections 6.1.2.2 and 6.1.5) -

D, external diameter mm
D D,—1t mm
D, D, shear force (Section 6.1.5) N
Dy, D,  function of A, and of A and y, respectively (Section 7.2.2) -
AD, change in vertical diameter; the vertical diameter is the

diameter in the plane of bending mm
ADy, change in horizontal diameter; the horizontal diameter is

the diameter perpendicular to the plane of bending mm
E modulus of elasticity N/mm?
El,, flexural stiffness of a bend Nmm?
ElL, flexural stiffness of straight pipe connected to a bend Nmm?
F normal (or direct) force in pipeline N

fi, fa...fs coefficients in the analysis of bends -
fwms fwr ~ factor for the ovalization in the middle and at the edges

of a bend -
G shear modulus N/mm?
Gy, G,  function of 4 and y respectively (Section 7.2.2) -
g function of ¢; and ¢, (Section 6.1.5) -
h function of @ and r (Section 6.1.5) -
I moment of inertia mm*
K curvature due to bending 1/mm

ko, k, flexural stiffness factor for P=0 and for P respectively -
ko, ks reduced value of k; and k, respectively, due to the effect of

the connected straight pipes, the additional curvature and

the ovalization -

* Symbols not listed here are explained in the next where they first appear.
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bending moment in the pipeline conceived as a beam
maximum moment in a straight pipe (Section 6.1.5),
or in a bend if longitudinal yielding is the governing
mechanism (Section 7.3.3)

plastic moment M, = 4r%ta.

maximum moment in a bend if the occurrence of plastic

hinges in circumferential direction is the governing
mechanism (Section 7.3.2)

torsional moment

plate moment per unit width

effective normal force in pipeline

plate normal force per unit width

difference in pressure between inside and outside of
pipeline P=P, — P,

external pressure (liquid)

internal pressure (liquid of gas)

earth pressure

directly transmitted earth pressure

indirectly transmitted earth pressure

equivalent earth pressure

earth pressure per unit area

radius of a non-loaded bend

radius of a bend including additional curvature due to
bending

radius of a bend including additional curvature and
increased by r for negative bending or reduced by r for
positive bending (Section 7.3.2.3)

average (or mean) radius r= D2

plate curvature of an ovalized pipeline (Section 4.4.2)
pipe wall thickness

wall thickness of straight pipe connected to bend

wall thickness of bend

displacement of an element of the pipe circumference
along the circumference

section modulus

displacement of an element of the pipe circumference
perpendicular to the circumference; ovalization in bends
(0.5AD)

ovalization in the middle of a bend

ovalization at transition from bend to straight pipe
horizontal and vertical ovalization respectively
(perpendicular to the plane of bending and in the
plane of bending)

Nmm

Nmm

‘Nmm

Nmm/mm
N
N/mm

N/mm?
N/mm?
N/mm?
N/mm
N/mm
N/mm
N/mm
N/mm?
mm

mm

mm



loading angle, bearing angle for 04 and for Q; and Q.
respectively (Sections 6.1.2.1 and 7.1)

angle of a smooth bend not flexurally loaded (Section 7.1)
change of a due to bending

relative change of a—#n = Aa/a

displacement; small part of the quantity concerned
strain

angular rotation due to torsion per unit length of pipe
bend characteristic A = tR/r?

Poisson’s ratio

radius of curvature due to bending of a straight pipe
stress

yield stress

tensile stress

shear stress

yield shear stress

angle; angular rotation

bend characteristic y = PR?[Ert

slope of yield surface ‘

change of the quantity concerned

Subscripts in so far as they are not already indicated above

e
p

pr, pdtr
pl

cr

m, max
X

y

Xxm, Xp,
xk, xq
ym, yp,
vk, yq

end of elastic range

yield force of the quantity concerned
reduced value of yield force (Section 6.1)
plastic part of the quantity concerned
critical value associated with buckling
maximum value

in longitudinal direction

in circumferential direction

in longitudinal direction due to M, P, K, Q

, in circumferential direction due to M, P, K, Q
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