Heron’s Fountain

Communications concerning novel concep-
tions and ideas in which the surprising ele-
ment has something in common with the play-
ful inventions of Heron of Alexandria, after
whom this journal is named.

Frames with fearful symmetry

by I. M. MORTELHAND

Symmetry considerations in structural mechanics usually refer to either mirror sym-
metry or axial symmetry. In geometry many other possibilities are mentioned [1], which
merit some attention of at least an exploratory nature. The present article deals by way
of example with a structure that exhibits translation symmetry. The north-light roof
with many bays, as shown in the figure, will coincide point for point with itself after
translation over a distance equal to the length of one bay. This is of course only true in a
strict sense if the structure extends to infinity on both sides. For practical applicability
of symmetry considerations to the bays that are centrally located it is sufficient that the
mechanical phenomena at the far edges are local effects, not noticeable beyond a few
bays. This is certainly true here, because the columns are firmly fixed to the foundation,
to which any loading can be transferred.

A matter of greater concern is whether all the properties and quantities that deter-
mine mechanical behaviour, share in the translation symmetry of the geometrical form
of the structure. One may reasonably assume that the dimensions of members, material
properties, and degrees of fixity in joints and supports are the same for all the bays. The
loading on the bays however, will be different in some of the cases that are relevant to
structural design. In a structure under variable loads the largest stress often occurs for
non-uniform loading, e.g. when alternating bays are loaded and load-free. In such a case
one will have to take recourse to subtle strategies in order to enjoy the benefits that fol-
low from the use of symmetry considerations. Prior to the treatment of this problem
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(and still more complicated cases) a simple example is considered, with a kind of
loading which does in fact exhibit the same symmetry as the structure. It consists of con-
centrated forces with the same magnitude and direction, whose lines of action pass
through the joint at the top of the roof. The load-diagram contains these lines; the
drawing of the structure is not repeated.

L

In order to demonstrate a possible use of symmetry considerations, let it be assumed
that extensional deformation of the members is taken into account; the analysis will
proceed according to the displacement method. The deformation pattern will exhibit
the same symmetry as the structure and the ioading. For each bay the joint displace-
ments must be the same. Since the number of unknowns for a plane frame is three times
the number of independent joints (for each joint two translational components and a
rotation have to be determined) the total number of unknowns is six. It is still conceiv-
able to solve the equations by hand, although of course in this day and age one may not
care to do so, given the availability of cheap computing power. Not many computer pro-
grammes deal directly with translation symmetry, so setting up the equations requires
human help.

\

The case shown in the load-diagram above becomes the opposite of itself when a
translation over the distance of one bay length is applied. This case is called contra-sym-
metric (and the preceding case co-symmetric), a comparison with the translation sym-
metry of the structure being implied. Explicitly stating that the calculation proceeds in
the domain of linear mechanics, where in particular the strains due to compressive
stress are exactly the opposite of strains due to tensile stress, one arrives at the conclu-
sion that the deformation pattern will be contra-symmetric. Displacements in consecu-
tive bays will be opposite to each other. The calculation according to the displacement
method can be restricted to one bay and needs to deal only with six unknowns.
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The case of alternating bays with and without load has been mentioned at an earlier
stage; now is the time to deal with it. Quite simply one can superimpose the results of
the previous co- and contra-symmetric cases, and a case according to the diagram above
will appear. Conversely, if such a case is given in the first place, one can split it up as fol-
lows: halve the loading on the bay that is loaded, put this on all bays, which yields the
co-symmetric part; then put plus and minus the halved loading on consecutive bays, in
order to obtain the contra-symmetric part.

 ——

A slightly different case occurs when alternating bays carry a large and small load.
Now the co-symmetric part is found by taking the average of the two loads, and the con-
tra-symmetric part as the remainder after the average is subtracted. Again the words co-
symmetric and contra-symmetric refer to the symmetry of the structure for translation
over a distance equal to the length of one bay.

Ll
SRR S A A

l

This last result has a rather weak claim to the name of generalization. As a prelimi-
nary to broader discussion, a simplified terminology is now introduced. The basic sym-
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metry operation of the structure will be called a one-bay shift. Of course also two-bay,
three-bay and n-bay shifts can be considered, where n is an integer. It will be immedia-
tely clear that the structure is symmetric for each of these operations, which consist of
the basic operation compounded with itself. A loading case that is co-symmetric inrela-
tion to the one-bay shift, is also co-symmetric for any n-bay shift. The following state-
ment is perhaps more revealing: a loading case that is contra-symmetric in relation to
the one bay-shift, is contra-symmetric for the n-bay shift with n odd, but co-symmetric if
n is an even number. Superposition of two loading cases, of which one is co-symmetric
and the other contra-symmetric in relation to the one-bay shift, results in a loading case
that is co-symmetric for any shift over an even number of bays, first of all for the two-bay
shift. Conversely, only a loading case that is (spatially) periodic with a smallest period of
two bays, can be separated into loading cases that are co-symmetric and contra-symme-
tric for the one-bay shift.

For any other loading, separation into simpler cases will be possible only (if at all)
when simple cases of a new kind are discovered.

Co- and contra-symmetry for the one bay-shift are particular instances of factor sym-
metry, a more general concept to be introduced now. The loading case shown in the dia-
gram below, consists of concentrated forces that increase by a factor A for each consecu-
tive bay. The loading as a whole can be transformed into itself by a one-bay shift to-
gether with a multiplication by the factor A, the order being immaterial. According to
the general definition of symmetry one can state that the loading case is symmetric for
the transformation as described, which is its symmetry operation. The loading case will
be called factor-symmetric.

When the factor is larger than 1 the forces have increasing magnitude as one con-
siders bays further to the right, and for a factor smaller than 1 the same happens towards
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the left. Doubts could be raised with regard to an earlier assumption, viz. that the
phenomena at the far edges have no effect on the results for centrally located bays; since
the forces will be quite large for one far edge, it is hard to say beforehand what their in-
fluence might be. This difficulty will be ignored for the moment, and in due course pos-
sibilities will appear to either circumvent or resolve the problem.

In linear mechanics a deformation pattern with the same factor symmetry as the
loading will satisfy the equations of the displacement method for the consecutive joints
of the structure. It is possible to consider the displacements of the joints in a single bay
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as the basic unknowns,since the displacements of adjoining bays can be expressed in
these unknowns. Again the equations for six unknowns are sufficient to find the results,
so the general case with factor symmetry is no more difficult than its special instances of
co- and contra-symmetry. These appear as such when the factor Ais takentobe 1 and —
1 respectively.

A factor-symmetric loading is also transformed into itself by a two-bay shift and mul-
tiplication by A squared, i.e. the basic symmetry operation applied twice. When A
squared happens to equal unity, the two-bay shift alone will do. By taking both the
square roots (1 and — 1) of unity, the earlier result is recovered, that loading cases which
are either co- or contra-symmetric for the one-bay shift, are both co-symmetric for a
two-bay shift. The result has been linked to the profitable use of symmetry considera-
tions, and the separation into simple cases of a slightly more complicated case that is
periodic with a smallest period of two bays.
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The result can be generalized by considering all factor-symmetric cases, where a
power of Aequals unity. Complex roots will not be avoided; they are in fact essential for
a widening of the possibilities. In the next example use is made of all the fourth-power
roots (1, — 1,iand — i) of unity, in order to obtain the full set of simple cases that trans-
form into themselves when a four-bay shift is applied. Any loading case that is periodic
with a period of four bays, can be viewed as the result of superposition, where the four
simple cases are combined in appropriate ratio. The loading case of the example con-
sists of concentrated forces on every fourth bay, the bays in between being free of
loading. In the diagram the separation into simple cases is also shown. A special kind of
arrow is used as the representation of loads that have an imaginairy value. When one
arrives at this result by easy stages, it does not look particularly difficult; when present-
ed as a puzzle to a few experts in structural analysis however, it turned out to be alto-
gether intractable. A first step of separation into parts exhibiting co- and contra-symme-
try for the two-bay shift is easy enough, but the further separation of the last part
presents an apparently insurmountable difficulty.

As mentioned before, the simple cases with factor symmetry can be solved by for in-
stance the displacement method, which leads to equations with six unknowns.
Although the preceding example requires the use of complex numbers, this makes the
calculation only a little more difficult. It is perhaps time to replace the earlier hand-
waving explanation of this work by a more formal treatment.

First one has to number the joints. The connections at the foundation do not require a
number, since their displacements are zero. Somewhere in the central part of the struc-
ture, one will arrive at high numbers like 81, 82 and so on for the joints whose displace-
ments are free. However, in order to make the equations more readable, one-digit num-
bers will be used exclusively (perhaps the preceding joints are numbered by zero and
negative numbers. .. no matter, they will not be looked at again). Next a partitioning of
the stiffness matrix into submatrices of order three is carried through, corresponding to
the degrees of freedom at each of the joints. The displacement vector and the force
vector are similarly subdivided and all partitions are labeled by subscripts that refer to
joint numbers. The letters S, vand kwill be used as kernels for the stiffness matrix, dis-
placement vector, and force vector respectively; also of course for their partitions. The
translational components and the rotation of joint 1 for instance, are contained in parti-
tion vy of the displacement vector.

The equations of the displacement method are derived
from the equations of equilibrium for the joints. As a basis for
further discussion, the equations for joints 2 and 3 will serve.
They take the following form in compact notation:

S +S$om + S =k

Siov + S53 s + S =k

Since the one-bay shift that transforms the structure into itself, also takes every joint toa
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similar joint, whose number differs by two from the original, the submatrices of the stiff-
ness matrix are identical to submatrices whose index and column number differ by plus
or minus two. The partitions of the displacement vector and the force vector exhibit fac-
tor symmetry; they increase by the factor A in consecutive pairs.

S33="S11; S5 =51
o= o =

ky =2k ks =2k

The equations are modified accordingly, and also interchanged.
ASy1vy + (S3p + ASpp) v, = Ak,
(S +AS)v + Sy, =k

In the equations, which are still expressed in compact matrix notation, each line re-
presents three equations when written in full, because the submatrices used are of order
three. They are routinely found according to the displacement method. For a given
value (possibly complex) of the factor A the calculation will proceed with one of the
known procedures for the solution of linear algebraic equations. Account must be taken
of the possibility that the coefficients may be complex. Furthermore, the matrix of the
equation system is asymmetric, except in the case A= 1, also known as the case of co-
symmetry for the one-bay shift.

There is one other question, that has not been addressed earlier, but is somewhat
thought-provoking. What can be said about deformation patterns, and the accom-
panying internal stress distributions, in cases where the structure carries no load except
at the far edges? The answer again uses the assumption of factor symmetry with a factor
unknown at present. The problem will be described by the equation system as derived
before, but in this case the right-hand sides are zero, and the factor A has to be chosen in
such a way that the equations have a non-trivial solution, one different from zero that is
to say. This belongs to a class of problems known as eigenvalue problems, in fact even to
one of the more difficult subclasses. Terms with the factor A occur throughout the
matrix; neither they nor the terms without A are symmetrically distributed. The re-
quired value of A (called the eigenvalue) will in general be complex.

The difficulties notwithstanding, one might profitably invest the effort required to
solve this problem. In analogy with differential equations, one tries to obtain the solu-
tion to the homogeneous system, in order to go beyond particular solutions to general
solutions, taking account of any boundary conditions that may occur. No longer does
one require the assumption that the extent of the structure is infinite or sufficiently
large to treat is as such. Any structure that repeats a basic form many times,can be dealt
with regardless of its length and the effects that phenomena at the far edge may have. In
fact the solutions now obtained represent how such phenomena are propagated through
the structure.

In continued analogy with differential equations, the simple cases with factor symme-
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try are related to substitutions of goniometric functions, or rather their complex form
derived from the Euler-de Moivre formula. The link with complex roots of 1 makes that
obvious.
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