Abstract. Yield surface for bending moment, shear force and normal force

Upper bound limit analysis requires the relationship between interacting forces,
termed the yield surface, to be derived on a kinematical basis. A yield surface for
bending moment and shear force, which interact in a plastic hinge of a beam, is derived
on the basis of the strain rate distribution corresponding to the cross-sectional deforma-
tion rates. Beams with a wide and with a square cross-section are treated with the in-
corporation of Von Mises’ distortion energy yield criterion or Tresca’s maximum shear
stress yield criterion. The kinematically induced yield surface forms a more fundamen-
tal alternative to the so-called stress-field induced yield surfaces, as is demonstrated.
The theory is extended to include a normal force interacting with bending moment and
shear force, for use in generalised yield line theory. This yield surface is applied in an
approximate method for predicting the post-buckling collapse load of an in-plane
loaded plate.

Keywords: plasticity, limit analysis, upper bound theory, yield line theory, generalised
yield line, yield surface.
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Yield surface for bending moment,
shear force and normal force

1 Introduction

The derivation of a yield surface for bending moment, normal force and in-plane shear
force acting along a yield line in a thin plate is part of an investigation into the post-
buckling behaviour of such plates (Out, 1982). The post-buckling behaviour was
approximated by assuming the material to be rigid plastic and utilising yield line
analysis methods.

Classical yield line theory is a limit analysis technique and produces an upper bound
for the limit load. Yield line theory is widely used in the analysis of concrete slabs,
loaded by forces perpendicular to the plate, since it provides a convenient way of
obtaining an insight into the magnitude of the limit load. Upper bound analysis
involves choosing a collapse mechanism and calculating the limit load by equating the
energy dissipated with the external work performed (Save, 1972).

The buckling behaviour of a plate, however, is a geometrically non-linear pheno-
menon and therefore limit analysis theorems do not apply. The analysis cannot be
proven to produce an upper bound for the collapse load as a function of the displace-
ment of the loaded edge, but it does serve as a tool in an engineering environment. The
analysis is “in the spirit” of upper bound limit analysis, i.e., it is based on kinematical
considerations.

The collapse mechanism chosen is a yield line mechanism. The plate is thought to
consist of rigid sections joined by yield lines where all deformation takes place and the
energy is dissipated. The degrees of freedom describing the motions of the mechanism
are few, making this concept simple to apply. Yield lines are simplifications of yield
zones as they occur in reality. Full modelling of a yield zone could be done by using slip

line theory, which implies that the geometry of the zone has to be modelled in detail. A
yield line is two- rather than three-dimensional. In other words, it is a local criterion. An
error results from this reduction; for example energy dissipated at the boundary of
deformed and undeformed sections is neglected (Drucker, 1956). The yield line method
is practical because of its simplicity and the error decreases with the plate thickness.

Classical yield line theory incorporates yield lines in which only bending moments
are active. The application referred to above, however, requires that the effects of
normal and shear forces on the state of yield are also taken into account. The yield lines
may be referred to as generalised yield lines.

The derivation of a yield surface for the combination of bending moment, shear and
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normal force acting in the generalised yield lines, which gives the constitutive equa-
tions, is in itself analogous to the total upper bound analysis and starts with chosing the
collapse mechanism; the strain rates forming the basis of the deformation in the yield
line. Because the yield surface itself is an “upper bound” yield surface, it cannot be
expected that the collapse load, which resuits from the upper bound analysis, will
approach the real collapse load by refining the yield line pattern (Braestrup, 1970).

This paper first discusses some relevant references. In chapter 3, a yield surface is
derived for the interaction of bending moment and shear force in the plastic hinge of a
beam. This example, simpler than that of the plate problem, is treated for instructive
purposes and also because this combination of forces raises the most difficult analytical
problems. The yield surface is derived with the incorporation of Von Mises’ distortion
energy yield criterion, first for a wide beam and then for a beam with a square cross-
section. Next, the latter exercise is repeated with Tresca’s yield criterion. The chapter is
concluded with examples of yield surfaces based upon an assumed stress distribution. It
is noted that such a yield surface may have no theoretical basis, i.e., no corresponding
strain-rate distribution is possible.

The example of bending moment, normal force and in-plane shear force, active in a
thin plate, is dealt with in chapter 4. It is an extension of the earlier work.

Before the concluding remarks, the application of the yield surface in the approxima-
tion of the post-buckling behaviour of a plate is briefly outlined.

2 Review of relevant references

An early reference in which a kinematically induced yield surface was derived, is by
Drucker (1956), who investigated the influence of a shear force on the plastic moment
in a plastic hinge of a beam. Drucker describes why a local yield surface is not a strict
upper bound yield surface; the present paper refers to these reasons in section 3.1.
Drucker used Tresca’s maximum shear stress yield criterion. The strain (rate) distribu-
tion corresponds to the example of a relatively wide beam. Section 3.3 shows that this
assumption is not necessary.

A sound upper bound analysis for the same situation of interacting bending moment
and shear force was made by Green (1954). His analysis clearly shows the intricacy of
determining this interaction, which he demonstrates by the example of a cantilever
beam subjected to a perpendicular force at its end. The precise end condition and the
geometry of the beam’s cross-section have a profound influence on the yield surface.
The yield surface that Green derives, although a sound upper bound, is not convex,
which is required of the real yield surface and which would pose computational prob-
lems, if applied in a practical case. It is also clear that an exercise such as this is far
removed from the application in problems such as the one outlined in the first para-
graph of the Introduction.

Possibly, the concept of generalised yield lines first appeared in a paper by Janas and
Sawczuk (1966). They investigated the influence of membrane action that developsina
concrete plate when subjected to transverse loading as a result of the restraint offered by
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the plate boundaries. The derivation is based on kinematical grounds, but the yield
criterion used, termed the maximum normal stress condition of failure, is characterised
by a sharp edge at the intersection of the two constituting cones. From kinematical
considerations the stress state has to lie on that sharp edge. The energy dissipation rate
in the yield line is calculated but no explicit formulation of the yield surface is made.

A kinematical yield surface for use in problems similar to the present one is given by
Dean (1975). To the authors opinion, his derivation falls short on some fundamental
points. The constitutive relationship used is the Prandtl-Reuss flow rule, which im-
plicitly means that the Von Mises yield criterion is used. Furthermore, he states that a
yield surface based on an assumed stress distribution across the cross-section of a yield
line is a lower bound yield surface. This is generally false; a point that will be addressed
in section 3.4,

The classical work on plasticity by Ilyushin (1956) is unfortunately relatively inacces-
sible, because there is no English translation and the French edition has long been out
of print. The work contains a very general derivation of a yield surface for all six in-plane
stress resultants, which act in a thin shell under plane stress conditions. Plane sections
are assumed to remain plane, which means that six deformations parameters are suffi-
cient to fully describe the shell’s deformation. The yield criterion of Von Mises has been
incorporated with its associated flow law. It is a kinematical yield surface and - after
some lengthy rearrangements - it can be verified that is does contain the yield surface
presented in this paper, if the applicable cross-section deformation parameters are
incorporated and the rest eliminated. The approximate Ilyushin yield surface, which is
often used because of its simplicity, does differ substantially from the exact one for this
specific purpose, and is non-smooth in addition. Furthermore, it does not correspond to
any possible strain-rate distribution across the cross-section.

In conclusion, the novelty of the present work lies not in the final result in the first
place, but in the clarity of the derivation, in the fact that it has been put into the context
of generalised yield line theory and because, in principle, any yield criterion can be
implemented.

3 Derivation of yield surface for interaction of bending moment
and shear force for beam

3.0 General

As Drucker pointed out, it is impossible to find a unique yield surface for the forces
acting in the cross-section of a beam, if it is taken as a two-dimensional entity (Drucker,
1956). The precise kinematical conditions are of influence, such as the type of support
and the geometry of the entire beam, and yield depends upon how the load is statically
represented. A limitation of the local yield surface is that the compatibility between
hinge and environment is violated, while the energy dissipated because of slip between
hinge and environment is neglected.

In the present chapter a yield surface for bending moment and shear force acting in
the cross-section of a beam will be derived for a number of conditions, following the
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kinematical approach of upper bound theory, but with the above limitations. First, in
section 3.1, a yield surface is derived under the assumption that the strain rate in the
width direction is zero. This example corresponds to a relatively wide beam. If there is
no reason to assume that the strain rate in the width direction follows a different pattern
than that in the depth direction, as is the case for a beam with a square cross-section, a
different yield surface follows as is shown in section 3.2.

The following section 3.3 also considers a square beam but assumes Tresca’s yield
criterion. Drucker (1956) already treated the example of a wide beam with the same
yield criterion. He considered it necessary, however, to assume the strain rate distribu-
tion corresponding to this example of a wide beam, but it is shown that the alternative is
possible and a square beam can be dealt with.

Often a yield surface is derived by assuming a certain stress distribution over the
beam depth, rather than a strain rate distribution. This leads to a mathematically
simpler result, but that final yield surface is obviously not an upper bound yield surface.
One might argue that if neither approach is strict, one should take the easier way. It
is stated in section 3.4, however, that such an assumed stress distribution does not
necessarily correspond to a conceivable strain rate distribution and should be rejected
on this ground, in favour of the kinematical approach.

3.1 VYield surface for wide beam using Von Mises’ yield criterion
3.1.1 Basic assumptions

Consider a plastic hinge in a beam (Fig. 1). The hinge can be represented by a block
of material of width w, depth # and length dn. Length dn approaches zero such that
the cross-sectional deformations and forces can be considered to be constant along
the length. The forces acting in this block are the bending moment M, and the shear
force Nys.

Since the objective is to derive a yield surface for M,, and NV, following upper bound
analysis, the derivation should commence with kinematical considerations. We define
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Fig. 1. Plastic hinge with bending moment and shear force.
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the deformation rates corresponding to the forces acting in the cross-section:
Nos = A=y = dn 3.1.1D
Muy > Ad=%xdn (3.1.2)

The outline of the derivation of a yield surface of the forces is as follows. Taking the
cross-sectional deformation rates, the next step is to propose a strain rate distribution
that is associated with the deformation rates. These kinematical equations are given in
section 3.1.2. The strain rates at each point of the cross-section are then translated into a
stress distribution by means of the constitutive relationship, as derived in section 3.1.3
for the wide beam. Finally, in section 3.1.4 these constitutive relationships are used to
derive the relationship between cross-sectional deformation rates and forces by integra-
tion of the stress distribution within the cross-section. Schematically, this means:

‘ A, All OF %, 7 }

(section 3.1.2)

él‘ln(sa Z)a él‘lS(S7 Z) ‘

(section 3.1.3)

‘ Onn(S, 2), Ons(S, 2) ‘

(section 3.1.4)

| M(%,5), Nas(,7) |

Again, it should be noted that the derivation broadly follows upper bound analysis. The
yield surface for M., and Ny, given x and y, cannot be proved to be an upper bound for
the real yield surface, which is specific for each precise statical and kinematical case.

3.1.2 Kinematical equations

A simple strain rate distribution, which forms the basis of the rotation and shear defor-

mation rates, is arrived at by assuming:

- shear strain rate and normal strain rate are constant across the width;

- the normal strain rate varies linearly across the depth of the beam, as in simple beam
theory;

- the shear strain rate is constant across the depth.

Then, the following strain rate distribution corresponds to the proposed cross-sectional
deformation rates:
Enn(s) =25 (3.1.3)
éns(8) =72 (3.1.4)

The proposed strain rate distribution is the simplest conceivable to produce the
required deformation rates; it is also easy to apply, as will be shown in the subsequent
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Fig. 2. Strain rate distribution across depth of beam.

sections. Itis possible to refine the proposed strain rate distribution in order to lower the
upper bound yield surface that will ultimately result from this exercise, for example, by
assuming the shear strain rate to vary across the depth. If simplicity is a goal, however, it
is useless to attempt to reach perfection by significantly increasing the complexity.

3.1.3 Constitutive equations

The constitutive equations, which relate the stress state to the state of the strain rates,
are derived in this section.
In general, the strain rate tensor consists of nine components - or six because of
symmetry.
énﬂ éns énz
Ei=|éns Ess €z (3.1.5)

Enz &z €z

For an isotropic material, this can be related to a general stress state by taking a yield
criterion and applying the normality rule to find the direction of the strain rate vector.
Von Mises’ distortion energy criterion is:

2y =(0,— 02)2 + (02— 03)2 + (03— 01)2 is constant (3.1.6)

After substituting stresses in the n — s — z coordinate system and taking account of the
symmetry of the stress tensor, the following holds:

2 2
Y= arzm + 0_525 + 0'222 — Onn0ss — Oss0zz — 07z0nn + 30’%5 + 30'522 +30m—om= 0 (3.1.7)
where
om = the uniaxial yield stress

The normality rule states that:

) )
(2—69)éy=2 50

30, ij=1,2,3;A>0 (3.1.8)
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The factor 2, which appears in this equation, stems merely from symmetry: &; = ¢;;; dj; is
Dirac’s function.

The application of this rule to Von Mises’ yield criterion gives the following relation-
ship between shear strains and the shear stresses:

2(‘:‘11‘:6/10'1)‘, i=i=j (319)

while the subsequent constitutive relationship between normal stresses and strain
rates is found:

Enn 2 —1 =1\ /om
i |=2[=1 2 —1||ox (3.1.10)
Err -1 -1 2/ \ox

The above matrix is singular and it can be verified that for each stress state the next
relationship between the strains holds:

3
Z éi=0 (3.1.11)
i=1
In other words, at yield, the material is incompressible. This result is directly associated
with the fact that according to Von Mises an added hydrostatic stress does not produce
or influence yield.
In the case under consideration, shear deformation is limited to the n— s plane.
Consequently, the shear strain rates &,, and &, must be zero:

Eny=¢6,;=0 and & =0 (3.1.12)
and thus from equation (3.1.9) it is seen that:
s, =00, =0 and 6Agns = 2 (3.1.13)

Now consider the normal strain rates & and ¢,,. In principle, these are not needed, i.e.
they do not correspond to any of the imposed actions. It is not possible, however, to
demand that both be zero, since this would violate the requirement of incompressibil-
ity, equation (3.1.11).

Thus, since:
Enn + Ess +E22=0 (3.1.14)
then:
€ss+ €22 = — &nn (3.1.15)

Strain rates & and &,, are thus restricted, but one degree of freedom remains. At the
same time ¢,, must be bounded by é,, and & to ensure that the principal strain rates in
the n— s plane are the extreme two and that deformation takes place in this plane.
Consider the case of a wide beam, i.e. the depth dimension (/) is significantly smaller
than the width (w). Then, it is reasonable to assume that the strain rate in the width
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direction &, is negligible:

£,=0 (3.1.16)
According to equation (3.1.15) it now follows for &g that:

Ess= — &nn 3.1.17)

From the set of equations in equation (3.1.10) it can be derived that, given the singular
matrix, for the stress state this state of strain rates requires that:

— 0ss + 202, = Onn (3.1.18)

The stress state is not a direct function of the strain rate state, but one degree of freedom
remains to be chosen on the basis of static considerations. For the wide beam, it is
reasonable to assume that the normal stress in the depth direction is negligible:

gss=0 (3.1.19)
From equation (3.1.18) it follows that:

022 = Onnf2 (3.1.20)
Substituting equations (3.1.13-19-20) into equation (3.1.7), the Von Mises’ yield

criterion reduces to:

v =30k 430k — =0 (3.1.21)
leaving o, and oy as the only free and independent stress tensor components. The
yield criterion is projected onto the o =0 plane, rather than intersected with that
plane.

The relationship between the independent deformation rates &,, and é&,s and the
corresponding independent stress tensor components can now be established, using
equations (3.1.10, 13, 19-20):

énn _ %Unn _3 Onn
<2éns>_i<6ans>—zi<4am)a A>0 (3.1.22)

Fig. 3. Reduced Von Mises’ yield criterion.
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or, the reciprocal relationship:

(o2)=ulima). o 6129
This relationship can also be derived directly from equation (3.1.21) by applying the
normality rule.

The stress state must be in a state of yield and must therefore satisfy equation (3.1.2 1)
and this allows, through substitution of equation (3.1.23), elimination of u and the
unique definition of the stress state as a function of the state of strain rates. Hence it
follows that:

nn 1 . . —_ 2.l”m
ml(” )=‘/~§[efn+e§s] ‘/2('? ) (3.1.24)

Ons Ens

3.1.4 Yield surface for bending moment and shear force

According to the upper bound theorem an upper bound for the limit load is found by
equating the virtual change of work performed by the external loads W to the virtual
change of the internally dissipated energy D. W and D are functions of the independent
displacements.

The structure being loaded is the plastic hinge in the beam (Fig. 1) and the acting
loads are the bending moment and shear force. The independent displacements corre-
sponding to the loads are rotation and shear deformation of the hinge. As stated above,
an upper bound for the yield surface of bending moment and shear force is found by
equating W to D. Thus:

W=D

MnS Ad+ Nosd Aus = [ ajde;; dV (3.1.25)
v

By substituting equation (3.1.24) into this expression, while observing that the other
stresses do not contribute to the internally dissipated energy, it is found that:

M6 A + Nugd Aty = [ [01050 A+ 0056 Auis] dA (3.1.26)
A
or
Mund A + Nug6 Aty = [ | 01os dA]S AP + [ § ons d4]6 Ausg (3.1.27)
A A

Displacements A¢ and Au, are independent and arbitrary. Therefore, the next
equalities hold:

M=) oans d4 (3.1.28)

]
A

Nos = [ ons dA (3.1.29)
A
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Substitution of equations (3.1.3-4) into equation (3.1.24) produces the stress distribu-
tion across the cross-section as a function of the deformation rates:

Om 2 %S 2 x s
s 2 x (3.1.30)
oM \F xs)2+(y/2 \/_|%| )2+a)S
ns 2 1
Gos_1 92 1z o (3.131)

on BAG G BT el

where 5" = 2s/h

_ S 7 1y
STOM YT h %
oM o the fully plastic shear f
== Wwn,. u astic snear 10or
p ‘/3‘ 5 € yp ce
20'M

M, = a w(h/2)*;  the fully plastic bending moment

Integrating equations (3.1.28-29) using the above stress distributions results in:

Mnn . 1+1/ 1+ wy)
- _I%l [J 1+0d)—olln le o (3.132)
S|
an 1 1 52
g _ % 1V 4 es) (3.1.33)
Sp x| |oo]

These expressions define a quasi-upper bound yield surface for the interaction of the
bending moment and the shear force. It is graphically represented by the curve k in
Fig. 4. The physical significance of the parameter w; is indicated.

Pm

Fig. 4. Yield surfaces for bending moment and shear force.
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3.2 Yield surface for square beam using Von Mises’ yield criterion

In this section the yield surface is derived for interacting bending moment and shear
force, if the cross-section of the beam is square rather than wide, as was assumed in the
previous section. The derivation is analogous to that of the previous section and there-
fore it is only outlined.

For a square cross-section, the normal shear strain rates in both perpendicular direc-
tions (Fig. 1) must be equal.

Ess =€z (3.2.1)
Incompressibility (equation 3.1.9) requires that:

éss=— &nn/2 (3.2.2)
According to equation (3.1.10) the stress state must observe the following:

Oss = 0y (3.2.3)

Onn — Oss = Ennf24, with >0 (3.2.4)

The latter expression means that, for &,, > 0, onn > 0. At this point, there is no obvious
choice of gg. Like in the previous section, statical considerations must lead to the right
choice, see equation (3.1.19), and o, = g, can be chosen zero, but in this example this
is not so evident, unless the cross-section is small. It will be shown that it is possible to
postpone the choice of og.

The shear strain rate &, is related to the shear stress o, by equation (3.1.13) as before:

Ons = €ns[34 (3.2.5)
The yield criterion reduces, given equation (3.2.3), to:
w* = (0nn — 0s5)* + 305 — o =0 (3.2.6)

The stress state is at yield and parameter A can be eliminated by substituting equations
(3.2.4) and (3.2.5) into equation (3.2.6):

20’M
Vém +3éms
The bending moment and shear force as a function of the cross-sectional deformation
rates are derived directly from the notion that the variation of the energy dissipated in

the plastic hinge is equal to the variation of the work performed by the forces bending
moment and shear force, as was discussed in section 3.1.4:

A= (3.2.7)

The rate of energy dissipated is equal to:

D= 5 [annénn + Osséss + b + 2(7'nséns:| av (3.2.8)

Ge— <

D= ( [(Unn - Gss)énn + 20nséns] dS)W dn 3.2.9)
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Given equations (3.2.4, 5, 7) this is equal to:

§V[€nn+ 6ns dS (3.2.10)

If one then takes the strain rate distribution over the cross-section as before, equations
(3.1.3-4), this is equal to:

“D—zaM hfz V[(es)? +4(7/2)%] ds (3.2.11)

wdn 2

wdn

By integration, this is found to be equal to:

D 1+V1+ ws
o2 |1+ 0l + w0 n +“’] (3.2.12)

wdn ||

where

The work rate is equal to:
W= Mun Ad + Nos Alls = Mynx dn+ Nysy dn (3.2.13)

Taking the variations of D and W with % and y, we find the following expressions for the
bending moment and shear force as a function of the cross-sectional deformation rates:

M, , 1+V(1+wd)

m="5 =] V1 + 0d) - v In = (3.2.14)
Nos % 1+V(1 + 0l

g s E g LrV(Lrer) (3.2.15)
Sp ¢ |oog|

where

It is concluded that the expressions (3.2.14 and 15) are identical to equations (3.1.32,33)
for the wide beam, except that the fully plastic moment M, and thus the factor ;s are
different in both cases: M, is equal to the fully plastic moment under uniaxial stress, i.e.
05 = 0., = 0. The same result could have been arrived at by setting oy = 0 in equation
(3.2.4) and integrating stresses as in section 3.1. The condition &5 = 0 for a wide beam is
arestraint that raises the yield stress from o, the uniaxial yield stress, to (2/ﬁ)aM. The
fully plastic shear force is unaffected, as could be expected. In fact, the choice of g5 =0
has been made implicitly in equation (3.2.13) because any work performed by the stress
resultants M, M,, has been disregarded. This is allowed only if it agrees with statical
considerations for the cross-section.
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3.3 Yield surface for square beam using Tresca’s yield criterion
3.3.1 General

In this section a yield surface for shear force and bending moment will be derived as in
the previous section, but this time Tresca’s maximum shear stress yield criterion will be
incorporated. The strain rate distribution assumed represents the case of a beam with an
approximately square cross-section; the strain rates in both lateral directions are
assumed to be equal. It is not necessary, as Drucker (1956) stated, to assume that one
normal strain rate be zero, forcing the strain rate vector on one of the plane sections of
Tresca’s hexagonal cylinder. Drucker’s assumption implies a beam with a large width-
to-depth ratio.

The present assumption means that the strain rate vector is normal to one of the lines
of intersection of planes and lies between the two normals to the adjacent planes. It is
noted that normality has only limited meaning here.

3.3.2 Derivation

Following the reasoning of the previous section, the strain rate tensor is as follows:

énn éns O
Gi=éns —émf2 O (33.1)
0 0 — énn/2

The principal strain rates are:

f=201 IL V(3éun/4) + 62 (332)

énn'
&y = — énn/2 (3.33)
. énn énn . .
BE T e V(3énn/4)” + éns (33.4)

In the following, it is assumed that &,, > 0, for the tension side of the beam. An anal-
ogous conclusion is reached for the compression side, as can easily be demonstrated.
Then:

&3<6<é (3.3.5)
From Fig. 5, it is seen that:

Ens

tan 2¢=m=f (336)
Incompressibility implies that:
&1 &

6-—2+6-—2+1=0 3.3.7
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Fig. 5. Circle of Mohr for the state of strain rates.

If é,/é3 = A, with 0 <A < 1 according to equation (3.3.5), the principal strain rate vector
can be written as:

&1 1 1
e=|é&|=n 0)+4( -1 with >0 (3.3.8)
&3 -1 0

In the principal stress space (a1, 02, 03), the vector (1,0, — 1) is the outward normal to
the plane:

o—o3—ar=0 (3.3.9)
and vector (1, — 1, 0) to the plane:
0'1—-0'2—-0'T=0 (3310)

These two planes are intersecting planes and it is concluded that the vector e is normal

to the intersection line of the planes and is directed outwards from Tresca’s hexagonal

cylinder, lying in the fan formed by the normal vectors to the planes (3.3.9-10).
The intersection line is described by the following:

Gl/O'T 1 1
ot la=|amfor|={0]+ (|1 (3.3.11)
0'3/0’T 0 1

The latter part of this vector represents a hydrostatic stress, which can arbitrarily be
added without changing the yield condition. Since the material is incompressible (cf.
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Fig. 6. Circle of Mohr for the stress state.

equation (3.1.11)), it is apparent than this added stress state does not contribute to the
rate of dissipated energy and can be disregarded: i.e. {=0.

Mohr’s stress circle is shown in Fig. 6. It can be verified that, since ¢,, =g, =0:

2 ns
tan 2¢=U—-5'-— (3.3.12)

nn — Oss

Coaxiality of the strain rate tensor and stress tensor means that equation (3.3.12) and
equation (3.3.6) must agree. A combination of these equations gives:

Ons = T (nn — 05s) 2 (3.3.13)
Mohr’s stress circle (Fig. 6) shows that the following holds, since o3 =0,=0:
U"zf= (ann_gss)2+4ags (3.3.14)

where g1 =2k is the uniaxial yield stress and k is Tresca’s yield stress in shear.
From equations (3.3.6, 12-14) the stress state as a function of the strain rate state is:

a/k=[|—§~|+m] (3.3.15)
PR (3.3.16)
Véd + (2ns)
and also:
oulk = [ “n ——f——] (3.3.17)
[Ennl V2, + (16n)?
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‘We make the same assumption as before for the strain rate distribution:
Enn(8) =% s (3.3.18)
éns(s) =7/2 (3.3.19)

Substituting these expressions into equations (3.3.16-17) and integrating across the
cross-section results in the following expressions for M, and Ny:

My | % 1+V(1+ 0!
m:—:%i[1+\/(l+w3)~wfln~—ua—)—) (3.3.20)

Mp |%| |ws|

Nas 1+V 2

ns _ X O IHJM (3.3.21)

|eos

where

These expressions hold when &, is not equal to 0. When &,, is equal to 0, it can easily be
verified that:

O =0
Ons =Kk
Nos =Sp
My, =0

In conclusion, the yield surface for a beam with a square cross-section, is discontinuous
(Fig. 7). This is a consequence of the piecewise planar shape of Tresca’s yield criterion,

m

1

s 7 5 0.

Fig. 7. Yield surface for square beam with Tresca’s yield criterion.
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to which normality cannot be sensibly applied for all assumed strain rate states. The
similarity with yield surface (equations 3.1.32-33), using Von Mises’ criterion, is
obvious. The yield surface has been “compressed” into the space 0.5 <m< 1. It is
understood why Drucker (1956) considered it necessary to take one of the normal strain
rates to be zero, but then the beam with an approximately square cross-section is not
covered. This is an effect of the non-smoothness of Tresca’s hexagonal cylinder.

3.4 Stress-field induced yield surfaces

This section briefly touches upon yield surfaces, which are derived by proposing a stress
distribution - onn(s,z), ons(s, z) - rather than a strain rate distribution over the cross-
section of the beam (or analogously, the yield line thickness). For a more complete
treatment, the reader is referred to Out, 1981.

A stress-field induced yield surface, in the sense presented in this section, is not a
lower bound yield surface, as is sometimes stated. The statical admissibility is not
checked. Moreover, some of the yield surfaces derived in this way are not kinematically
admissible, which means that no possible strain rate distribution can be found to form

-
/
h
2
) n__. Ton__ Sos_ TYPET
h
2
R . L
h
2 -
. S Inp_. s TYPE2
h —
2
s s s
g e [T 1
2
A no_ S TYPE 3
h
2

N s s

Fig. 8. Assumed stress distributions type 1, 2, 3.
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the basis of the respective yield surface. In other cases, the strain rate distribution
violates the customary assumption that plane sections remain plane.

The derivation of such a yield surface starts with an assumed stress distribution with
some — n — free parameters, which is then integrated across the thickness and width of
the beam to produce the yield surface in terms of n + 1 stress resultants. The stress dis-
tribution satisfies the yield criterion, equation (3.1.19) or an alternative yield criterion,
since there is no clear basis for this decision. Application of the normality rule on the
level of stress resultants then produces the relationship between resultants and cross-
sectional deformation rates, rather than strain rates.

Fig. 8 shows three common stress distributions for interaction of shear force and
bending moment. Type 2 can easily be verified as having no possible strain rate distri-
bution. Types 1 and 3 violate the requirement of plane sections remain plane,
according to the reasoning given in section 3.2 (equation 3.1.22).

The resulting yield surface for bending moment and shear force interaction is shown
in Fig. 4. The kinematically induced yield surface, which was derived in section 3.1 is
identified by k. All three stress-field induced yield surfaces lie below the kinematically
induced yield surface, closer when the underlying strain rate distribution is more likely.
Both 1 and 2 are non-smooth at s= 1, considering symmetry about the s-axis.

4 Yield surface for bending moment, normal force and shear force acting in yield line
4.0 General

This chapter presents a yield surface for use in generalised yield line theory. The acting
forces are bending moment, in-plane shear force and normal force. It applies to plates
that are loaded in-plane as well as out-of-plane (cf. e.g. Groeneveld, 1981). The deriva-
tion follows upper bound theory, which means that a kinematical concept forms the
basis of the analysis, namely the strain rate distribution corresponding to the required
yield line deformation rates. This example is analogous to that of the wide beam, treated
in section 3.1. Again, the distortion energy yield criterion of Von Mises is assumed, but
any yield criterion can be implemented in the procedure.

The derivation is analogous to that given in section 3.1. The addition of the normal
force is simply a factor, which adds to the computational complexity. Hence, only an
outline of the derivation is given, with differences between the two derivations high-
lighted.

4.1 Derivation

The orientation of the yield line is shown in Fig. 9.
The acting forces and the corresponding yield line deformation rates are as follows:

Nan = Allg=£dn
Nos = Aig=7 dn
My > A =% dn
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Fig. 9. Orientation of yield line.

The subsequent strain rate distribution is assumed:
Enn(z) =&+ %z 4.1.1)
éns(z) =7/2 4.1.2)
The following strain rate tensor components are assumed to be zero:
- &n, and &g, since shear deformation is limited to the 5 — s plane;
- &ss, since the length versus width ratio of a yield line is large and the adjacent plate
elements rigid; incompressibility then implies that &= —Emn.
For the stress tensor this means:
On,=05,=0

The following choice for g,, is made:

0,=0
and thus:
Oss = Unn/2

This is a statical condition, chosen because the plate is assumed to be thin.
Von Mises’ yield criterion is reduced to:

y* =302 +30% — ¥ =0 (4.1.3)

The consequent stress distributions are then:

Om 2 % Wy + 2’

= e (4.1.4)
om V3 V(g +2) + w?

Ons 1 x Ws

ey Tt 415
om V3 1E V(g +2) + 2 (412
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with

p & S 7

= N =

0=y % and - s 2my, %
7' =2zt

Integration leads to the yield surface in a parametric representation, graphically
represented in Figs. 10-12:

. + +
m““:-’.c—%[aJ“b_—a”be—a)sz In (a_+b—)]’ x=0
my || a” +b
=V, x=0 (4.1.6)
Pan _ % g
np —lx!z[b b~], %=+0
=ﬁ IV + (5] @n)’, =0 4.1.7)
g
y + +
EE:i.ﬁ'%wslﬂ(g:Ll)_), x=+0
m o |x a” +b

:% 11 + (wnf@s)?, %x=0 (4.1.8)

where
at =w,+1
a~ =w,—1
bt =\/(a+)2+w52
b~ =1/(a_)2+(us2
and
2
my =—= am(f[2)’
3
2 t
Hy =—=0
P ‘/g M
1

== t
Sp ‘/gd'M

The intersections with the planes my, =0, #,, =0 and n,s =0 are shown in Fig. 10,
marked k. When my,, =0, it can be verified that:

2 2
o) -1
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Fig. 10. Intersection of yield surface with planes m=0, n=0 and s=0.

When n,s =0, the following holds:

2
(m—) + (h) —1=0 (4.1.10)
my Hp
When n,, =0, the yield surface is represented by equations (3.1.32-33).
Figs. 11 and 12 show contour lines of the kinematically induced yield surface as well
asthe type 1 stress-field induced yield surface (section 3.4.). The physical significance of
the w, and w, parameters is indicated. The kinematically induced yield surface lies

above or coincides with the type 1 yield surface. In addition, the kinematically induced
yield surface is smooth everywhere except for when n= 1.
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5 Application: post-buckling behaviour of square plate
5.0 General

The incentive to develop the yield surface for bending moment, shear force and normal
force arose during an investigation into the post-buckling behaviour of a square plate,
loaded at one edge by a constant displacement and restrained at the other (Fig. 13) (Out,
1982).

There are sophisticated computer programmes for determining this behaviour, based
on the finite element method and incorporating physical and geometrical non-linear-
ities. The purpose of the work was to investigate whether it was possible to approximate
the post-buckling behaviour in an analytical way. It was considered interesting to
attempt to create an alternative to the intricacy of the finite element programmes,
which do not necessarily produce results that can be accepted without question, partic-
ularly in the post-collapse domain. It was thought that analytical methods, with explicit
assumptions, might form a reasonable reference.

Analyses were made with the finite element programmes CASPA and DIANA
(Puthli 1980, 1981). The analytical alternative was formed by a combination of linear-
elastic post-buckling theory (Volmir, 1962) and the rigid plastic method, using general-
ised yield line theory. The latter method required the derivation of the yield surface,
which is the subject of this paper.

5.1 Validity

The results presented are obtained from the analysis of the square plate of Fig. 13, with
the width: thickness ratio of 60. This represents an intermediate case between a slender
and a stocky plate, for which the collapse load is appreciably higher than the buckling
load, and large displacements before the introduction of plasticity are not involved. The

Fig. 13. In-plane loaded square plate.
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Fig. 14. Cross-shaped yield line mechanism.

yield line mechanism proposed has the simple cross-shape, shown in Fig. 14, which
proved to produce the lowest “upper-bound” in the region of interest.

The kinematical equations used were second order polynominal approximations. For
this mechanism, the resulting expressions for the yield line deformation rates are:

. ) b - 4__'

g dn:Aunzﬁ[—%+x' %”] (5.1.1)
. . b

; dn=Au5=‘/—§% (5.1.2)
. . 242w

xdn:Aqs.—.#” (5.1.3)

where

x' = ﬁx/b and x= coordinate along the diagonal yield lines, starting at the
corner of the plate

The constitutive equations are given by equations (4.1.6-8). With the kinematical equa-
tions, they produce the force distributions along the length of the yield line.

The equilibrium equations result from the notion that work rate by the external
forces is equal to the rate of energy dissipated in the yield lines. The resulting equations
of equilibrium are:

l -
j[m,m + Mo ﬁwa] dx' =0 (5.1.4)
0
1
F
(j)[—n,m+nns] dx'=75 (5.1.5)

The first equation represents the condition that the bending moment around the loaded
edge is zero. Equation (5.1.5) represents the balance of the external load with internal
forces. Required is force F as a function of w. The solution strategy involves iteratively
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finding the combination of wand i as a function of w, such that equation (5.1.4) is satis-
fied. Load F then results from equation (5.1.5).

Fig. 15 presents the post-buckling behaviour for this example, in terms of the nor-
malised edge load versus the deflection of the plate. The finite element results for
CASPA and DIANA agree very well and are therefore taken as the “real” behaviour.
The analytical approximation consists of two components: the linear-elastic curve
applies until it meets the rigid-plastic curve, while the point of intersection gives an
estimate for the collapse load. At first, the approximation agrees very well, but devia-
tion starts when the plate becomes partially plastic. The collapse load is overestimated
by 16% by the analytical method. Part of this can be attributed to the sudden change
from linear-elastic to rigid-plastic material behaviour. The “upper bound” rigid plastic
collapse behaviour, which incorporates the “upper bound” yield surface, falls above the
finite element solutions and follows the shape reasonably well. For increasing deflec-
tion, different mechanisms, with a refined yield line pattern, produce lower approxima-
tions for the collapse behaviour, though they remain upper bounds (Out, 1982). It is
concluded that the analytical method provides an alternative to the purely numerical
finite element method, but it must be noted that it cannot be used as a quick and easy
reference.

cA

% 1 15 3 75 ]

Fig. 15. Post-buckling behaviour of a square plate.
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6 Summary and conclusions

Local yield surfaces are derived for the interaction of the bending moment and the shear
force in a plastic hinge of a beam. The cross-section of the beam is either wide or square.
The yield criterion incorporated is either Von Mises’ distortion energy yield criterion or
Tresca’s maximum shear stress yield criterion. The derivation is performed in the con-
text of upper bound limit analysis and is therefore based on kinematical principles. It is
concluded that, when Von Mises’ yield criterion is applied, the yield surfaces for a wide
and for a square cross-section are identical, if normalised with respect to the fully plastic
forces. The fully plastic bending moment, however, is influenced by the stress condition
invoked by the edge restraint. For the square beam, the stress condition is uniaxial
yield; for the wide beam the material yields in plane strain. Both yield surfaces lie above
so-called stress-field induced yield surfaces. The incorporation of Tresca’s yield
criterion poses a problem for the square beam, because it has a piecewise planar shape.
The yield surface that is produced is discontinuous.

The yield surface for bending moment, normal force and shear force, which is derived
for use in generalised yield line theory, is analogous the yield surface discussed above
for a wide beam. Von Mises’ yield criterion is implemented. The yield surface is smooth
everywhere except at the point where the normal force is fully plastic and lends itself
well to the analysis of the post-buckling behaviour of an in-plane loaded plate, as
demonstrated in an example. The derivation is quite general and, in principle, any yield
criterion can be used instead of Von Mises’.
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8 Nomenclature

b width of plate

D energy dissipated in a plastically deformed volume

dn length-dimension of plastic hinge

e vector of principal strain rates

F externally applied in-plane load

h depth of beam

k Tresca’s yield stress in pure shear

m bending moment, normalised with respect to fully plastic moment
M, in-plane bending moment per unit length of yield line



fully plastic in-plane bending moment per unit length of yield line
bending moment around zaxis (beam)

fully plastic bending moment

- coordinate-axis normal to the plane of plastic hinge or yield line
- normal force, normalised with respect to fully plastic normal force
ny,  stress resultant per unit length of yield line in n-direction

in-plane shear stress resultant per unit of yield line

fully plastic normal force per unit length of yield line

stress resultant in n-direction

shear stress resultant in s-direction

fully plastic normal force

- coordinate-axis in depth direction (beam), along yield line (plate)
- shear force, normalised with respect to fully plastic shear force
fully plastic shear force per unit length of yield line

fully plastic shear force

plate thickness

in-plane displacement of plate edge with respect to plate centre
width of beam

deflection of plate centre

work performed by the external loads

coordinate along yield line starting at plate corner

coordinate-axis in width direction (beam), in depth direction (plate)
engineering shear strain

deformation in n-direction of plastic volume

us  shear deformation of plastic volume

¢  rotation within plastic volume

&jj strain tensor components (i, Jj=n,s, z)

& principal strains (i=1,2,3)

x bending curvature

gjj stress tensor components (i,j = n, s, z)

i principal stresses (i=1,2,3)

oM  Uuniaxial yield stress according to Von Mises

oT uniaxial yield stress according to Tresca

1) angle between direction of first principal stress and n-direction

7 plastic potential function

Wy normalised extension rate: curvature rate ratio

s normalised shear rate: curvature rate ratio
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