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Abstract. Steel column and frame stability analysis using finite element techniques

The facilities for analysing steel columns and frames at room temperature and under
fire conditions of the general purpose finite element program DIANA, are described in
this paper. These facilities include among other elements a beam-column element,
means to describe geometrical and material non-linear behaviour and several iteration
procedures to solve non-linear beam-column problems. Use of these facilities is illus-
trated by several examples of beam-columns and frames. These examples clearly show
that finite element techniques are of great help in steel column and frame stability
research. Use of finite element techniques leads to a better understanding of structural

behaviour and helps to attain better design rules.

Keywords: Steel, column, frame, stability, fire, design rules, beam-column, finite

element method.



Steel column and frame stability analysis
using finite element techniques

1 Introduction

To achieve a better understanding of structural behaviour the finite element method
has been used more and more in the last twenty years. In a research and development
environment advanced non-linear finite element techniques can be successfully
applied to verify design rules presented by different codes. Also, complicated structures
can be analysed with the finite element method, which cannot be checked using design
rules or which cannot be experimentally investigated because of their sizes or boundary
conditions. Very often structural behaviour is highly non-linear. Therefore, an appro-
priate constitutive relation has to be used when analysing structures with the finite
element method.

At the research institute IBBC-TNO the general purpose finite element program
DIANA has been developed. In this paper, only the beam-column element is exten-
sively discussed. In DIANA, it is possible to take material and geometrical non-linear
behaviour into account. The constitutive relation described in this paper is based on the
classical plasticity theory in which the material properties can vary with temperature.
This constitutive relation can be used together with geometrical non-linearity. In the
next sections, the constitutive relation and geometrical non-linearity are described for
the beam-column element. Some finite element aspects and some iteration procedures
which are very effective for load controlled buckling problems, are briefly discussed.
The presented theory is used to analyse beam-columns and frames at room temperature
and under fire conditions.

2 Beam-column element, describing geometrical and material non-linear behaviour
2.1 Theoretical formulation of the beam-column element

To determine the deformation behaviour of steel frames, a beam-column element is
defined based on the displacement finite element method.

In finite element analyses the structure is idealized as an assemblage of discrete finite
elements with the elements being interconnected at nodal points on the element
boundaries. The displacements within each element are assumed to be a function of the
nodal displacements. The two-dimensional beam-column element has two nodes at the
ends of the element with three degrees of freedom at each node: two translations and
one rotation. For the in-plane displacement field within the element a cubic interpola-
tion function is used. The axial displacement field is based on a parabolic interpolation
function. For the parabolic function three nodal displacements are necessary. There-



fore, an additional internal node in the middle of the element with a degree of freedom,
uy, in the axial direction is assumed. This extra degree of freedom is condensed out of
the element stiffness matrix and load vector at the element level. So externally only 6
degrees of freedom are present, see Fig. 1. The displacement function can be split into

ABL=Bu, By,
Ap; = Bg; - (Aw-Aw) /1
A, =09 -(Aw ;- Aw ) /1

Fig. 1. Displacements and member end-forces for the beam-column element [4].

rigid displacements which do not change the stresses and displacements which lead to
deformation of the element. These latter displacements are called the generalized dis-
placements. The displacements along the element axis are described by equations (1)
and (2) for the displacement perpendicular to the axis w(x) and the displacement in the
direction of the axis u(x) respectively:

x(1—x)? B x*(1—x)

w(x) = 2 Vi 2 Vi 1)
u() =% a1 B, @)

with x the local coordinate along the element axis. In the beam-column element shear
deformation is not taken into account and the normal to the neutral axis remains
straight during deformation. Therefore, using beam-column elements requires con-
tinuity of dw/dx on the element boundaries at the nodes.

Along the axis of the beam-column element an average strain &, = du/dx and a
curvature x = — d*w|dx” are considered. The strain distribution over the section is
determined by the relation:

du d*w
=V 3)
When the element axis coincides with the centroidal axis, the average strain at the ele-
ment axis, &g, is equal to the strain at the centroidal axis, ¢,. The centroidal axis is deter-
mined by the distribution of the stiffness over the cross-section; see Fig. 2. When these
axes do not coincide, such as in non-linear problems, a shift of the centroidal axis
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Fig. 2. Definition of average strain, curvature and centroidal axis.

from the element axis has to be taken into account. By using a parabolic interpolation
function for the axial displacement field, this shift can be described. It follows from
Fig. 2 that g, = ¢, +y,x.

To determine the relation between the external loads and the deformation field of the
beam-column element, the principle of virtual work which describes equilibrium
between internal and external forces is used within a total Lagrangian description [1,4].
This relation leads to a stiffness matrix which is derived in Appendix A.

In order to make numerical integration over the element possible, the element is
divided in sections and each section in several layers. At the top and bottom of each
layer an integration point is present. At each integration point a uni-axial strain is calcu-
lated from the displacement field. From this strain stresses and stiffnesses can be calcu-
lated using the constitutive relation, given in section 2.3. Integration of the layers leads
to an internal moment and normal force and the stiffnesses for each section.

Between the integration points of each layer a linear interpolation for stresses and
stiffnesses is adopted; see Fig. 3. The contribution of the stress and stiffhess at the top of
the layer to the moment, the normal force and the stiffnesses of a section is determined,
assuming a triangle with the stress and stiffness at the bottom of the layer being zero.
For the bottom of the layer the same procedure is used, see also Fig. 3. Integration of the
section forces and stiffnesses using the Simpson rule leads to a stiffness matrix and
internal forces at nodes of the element.

h = height of layer
b = width of layer

Fig. 3. Element divided in sections and layers.



2.2  Geometrical non-linearity

In the previous paragraph it has been implicitly assumed that both displacements and
strains in the structure are small. In practical terms this means that the geometry of the
elements remains basically unchanged during the loading process and that first order
infinitesimally small linear strain approximations can be used.

When the displacements are large, the previous assumptions fail even when the
strains remain small and the material behaviour remains elastic. Now an accurate des-
cription of the deformations is needed and geometrical non-linearity has to be taken
into account. This is the case when dealing with stability problems.

For the description of the deformation behaviour of the structure a total Lagrangian
formulation is used, assuming large displacements but small strains. The strain distri-
bution over the section as a function of the displacements is of the form:

d*w | [dw)\’
8—€+77————ya;§+§ (a)

™ “4)

The non-linear contribution to the strain, 7 =3 (dw/dx)? leads to an extra term in the
incremental virtual work equation; compare equation (B.1) of Appendix B with
equation (A.2) of Appendix A. The extra term in equation (B.1) leads to an initial stress
matrix and an initial displacement matrix. The initial stress matrix accounts for the
second order generalized deformations caused by the normal force and the initial
displacement matrix is a correction for additional reactions caused by the normal force
due to an inclination of the member. The element length, /, in equations (B.4) and (B.5)
has to be updated at every load increment and during the loadstep at every iteration. In
fact, a correction should also be applied to account for the change in length, AA/ of the
member. When the member is subjected to bending moments the resulting deflection
of the member causes its ends to move towards eachother. However, for most common
structures this effect can be neglected, even in second order calculations [4].

2.3 Non-linear material behaviour

When the stresses are large, material non-linearity has to be taken into account for steel.
For the beam-column element an elasto-plastic-creep material model is adopted, which
is characterized by an initial yield criterion, a normality condition and a hardening rule.
For steel the Von Mises yield function can be used as a criterion for yielding. Further-
more, the yield stress, Young’s modulus and the thermal expansion can be modelled as
a function of temperature. The material model used in the beam-column element can
also be used with other element types which are available, such as plane-stress elements
and shell elements, because the material model is a general three dimensional
formulation [10] based on the classical plasticity theory.

In non-linear problems the loading is applied incrementally. At the end of each load
increment an equilibrium state is reached by performing a number of iterations. There-
fore, the constitutive relation has to be of an incremental form. See the next section for
the iteration procedures.



Here, the case of a uni-axial stress state with the Von Mises yield criterion is con-
sidered. Let 0 and 1 refer to the beginning and end, respectively, of the loadstep. The
total incremental strain can be expressed as the sum of the incremental elastic, plastic,
creep and thermal strains:

Ae=Ae.+Ae, +Aec+ Acp &)

The incremental thermal strain Aep depends on the temperature increment and
thermal expansion only. The incremental creep strain Ae. can be specified by a creep
law. For steel, creep is only relevant at high temperatures. The incremental elastic
strain Ae¢, is reversible and is related to the incremental stress by Hooke’s law:

Ao =E'Ae.+AEe! (6)

In equation (6) the second term on the right hand side is due to a change of Young’s
modulus with temperature. Young’s modulus is evaluated for the temperature at the
end of the increment. To determine whether the status of an integration point is elastic
or plastic the Von Mises yield criterion is used. For a uni-axial stress state the Von Mises
yield function including strain hardening can be formulated as follows:

f(a,ep,@)=|o|—ay(ap,@l) 7

The yield function f depends on the plastic strain, the temperature at the end of the in-
crement and the stress. When f< 0 the status of the integration point is elastic and for
S>>0 this status is plastic.

The incremental elasto-plastic-creep relation for the uni-axial stress state is of the
form:

f(o%e), ONE'

E'+H ®)

Ao =E'(Ae — Aec— Aeg) + AEe! —
This relation is graphically explained in Fig. 4. The first two terms are due to the elastic
behaviour and the third term is a correction for the plastic behaviour. The first term is
represented by line AB in Fig. 4 and the second term in equation (8) is represented by

P BT I LI

Fig. 4. Temperature dependent stress-strain relation with elastic unloading.



line AC in Fig. 4. Summation of AB and AC gives AD. The stress o is the test stress to
determine if an integration point is plastic or elastic. The test stress is determined by the
relationship:

ae=00+E1(Ae-—Aec—Ae@)+AE£§ ©)

The yield function value f (ae,eg, 01) is represented by line DE. The third term in
equation (8) is equal to the line DF. The hardening diagram can be constructed from a
uni-axial stress-strain relation as shown in Fig. 5. Now the value of H can be deter-
mined.

The constitutive relation can also be combined with a tension stiffening relation for
concrete under tension [12].

G
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Fig. 5. The construction of the hardening diagram.

2.4 Finite element aspects

In general, a structure can undergo large displacements and the constitutive relation is
non-linear, so that equation (B.1) cannot be solved directly by relating all variables to a
previously calculated equilibrium state and by linearizing the equation. The solution of
a non-linear problem can be achieved by iteration.

Substitution of the previously derived relations for the stiffness matrix, equation
(A.8), the initial stress matrix, equation (B.4), the initial displacement matrix, equation
(B.5) and the constitutive relation, equation (8) in equation (B.1) gives:

e o0 1 1
O)E
(K+ KN+ KTMAv = AP+ | El(AgC+AgO)_AE63+£_(£:’Ep—’)__

dv 10
Vo E1+H ( )

The variation of strains is related to the initial configuration, so the integration is carried
out on the undeformed structure. The creep strain, the thermal strain, the change of the
material properties with temperature and the plasticity part have been placed in the
load vector, and the right side of equation (10) is now called the effective load vector.
The effective load vector is only formed at the beginning of the load step. During the
iteration process the differences between internal and external loads are determined
which are applied as loads in the next iteration.

Several iteration procedures are available in DIANA [5], e.g. the Modified Newton-
Raphson scheme in which the stiffness matrix is updated at the beginning of the load
step and held constant during the iteration process, the Newton-Raphson scheme, in



which the stiffness matrix is updated at every iteration or the Quasi-Newton scheme as

proposed by Crisfield or the scheme as proposed by Riks [17] and Wempner [28].
The method proposed by Riks and Wempner is very effective for load controlled

snap-through and buckling problems, see Fig. 6. Limit points can be passed by help of

Fig. 6. Riks-Wempner iteration procedure.

an arc-length procedure. This method is used for the example of a sway frame as shown

in the next chapter. However, for most examples the Newton-Raphson scheme is used.
The beam-column element described can also be used within DIANA in combina-

tion with other element types, e.g. solid-, plane-stress-, spring- and shell elements.

3 Applications at room temperature

The theory presented in the previous sections has been used to analyse columns,
beams, beam-columns, non-sway frames and sway frames. A selection of examples is
presented here. In this section attention is focussed on structures at room temperature.

3.1 Centrally loaded pin-ended column

The maximum strength of centrally loaded pin-ended steel columns is determined by
two major different influences: residual stresses and geometrical imperfections. These
influences have been examined thoroughly in the past. Research has lead to the intro-
duction of multiple column curves. In Europe five different buckling curves (Fig. 7) are
used by the ECCS [3,18]. These curves have been adopted in Eurocode No. 3 [8]. The
maximum strength of the column of Fig. 8 can be calculated using curve b of Fig. 7.
With 1 = 1.28 as slenderness parameter, the buckling stress oy = 0.44¢0, is found. For
Fe 360 with o, =240 N/mm?’ we find F=269 kN for the maximum strength.

T T B

— X

Fig. 7. European buckling curves [3, 18].
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Fig. 8. Centrally loaded pin-ended steel column.

When analysing the in-plane behaviour of this centrally loaded pin-ended column
using a finite element program taking account of geometrical and material non-linear-
ity, geometrical imperfections and residual stresses have to be chosen. In [7,8] the
imperfections of Fig. 9 are prescribed.

The computer analysis has been carried out using ten elements. Each element has
been divided in five sections. For each section, 17 integration points have been chosen:
7 for the web and 5 for each flange. The total number of integration points is 85 per
element.

The influence of the residual stresses in the web is small since the web does not
contribute significantly to the flexural resistance [2] and this influence is neglected. The
influence of the residual stresses in the flanges is taken into account by a modification of
the stress-strain relation as given in Fig. 10. The modified stress-strain relation for the
flanges can be determined by a calculation which simulates a stub-column test on a
single flange, containing the residual stress pattern of Fig. 10. With the geometrical
imperfection of Fig. 9 and the residual stresses of Fig. 10, line 1 in Fig. 11 is found as
load-deflection curve. The computed maximum strength F; =292 kN overestimates
the maximum strength resulting from the ECCS buckling curves F= 269 kN by 8.5%.

rolled I-sections

with h/b<1,2
-055c
S
parabola
h i St |
Vo 000
B
residual stress pattern geometrical imperfection

Fig. 9. Imperfections [7, 8].

N
rolled I-sections G(mmz)

with h/b<1,2 —— web

0.5 T —---- flanges
/ 051 240
-0,5 h 168
-0.5

-0,5 +0,5 s
0 080 149 xi0'

1 —¢

Fig. 10. Modelling of residual stresses.
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Fig. 11. Load-deflection curves of a centrally loaded pin-ended column.

A different approach to the column of Fig. 8 is: determine the amplitude of the
parabolic imperfection wy so that the pin-ended centrally loaded column attains
collapse at the maximum strength resulting from the ECCS buckling curves. This
calibration of the imperfection amplitude of the pin-ended column leads to wg =11.5
mm with an element mesh as used in the previous calculation. The residual stress
pattern of Fig. 10 has been used with g, =0.30, [2] instead of a,=0.50, [7]. The
corresponding load-deflection behaviour, line 2 in Fig. 11, is weak when compared with
line 1.

An even weaker load-deflection behaviour, line 3 in Fig. 11, is found when the ampli-
tude of the parabolic geometrical imperfection is calibrated, neglecting the influence of
residual stresses. The equivalent geometrical imperfection so obtained, which includes
the influence of residual stresses, is wo = 14.3 mm. The equivalent geometrical imper-
fection according to Eurocode No. 3 [8] is wo = 12.7 mm which would lead to an over-
estimation of the maximum strength of the column of Fig. 8.

Use of the imperfections prescribed [7, 8] in a geometrical and material non-linear
analysis does not lead to an exact prediction of the maximum strength of centrally
loaded pin-ended columns resulting from the ECCS buckling curves. Generally, for a
numerical prediction of the maximum strength using a geometrical and material non-
linear analysis, the imperfections of [7,8] can be used. However, if interaction formulae
for beam-columns in non-sway frames are verified, imperfections of columns should be
calibrated to the maximum strength of pin-ended columns according to buckling
curves.

3.2 Centrally loaded restrained column

Besides residual stresses and geometrical imperfections, a third influence on the maxi-
mum strength of centrally loaded steel columns is also very important: end-restraints
[6]. In [22] two methods to take account of end-restraints have been compared:

- use of the elastic effective length;

- use of the effective length, based on buckling curves for end-restrained columns.
It has been concluded that the method, using the elastic effective length together with
multiple column curves for pin-ended columns, leads to safe estimations for the maxi-

11



mum strength of end-restrained, centrally loaded columns in non-sway frames if the
restraints are strong enough to provide sufficient stiffness up to column collapse. This
method, which is most suitable for use in building codes at the moment, has been
adopted in Eurocode No. 3 [8].

The example in Fig. 12 [22] supports this conclusion. The centrally loaded column of
Fig. 12a is an IPE80 column restrained at both ends by rotational springs with the same
moment-rotation characteristic. Residual stresses (o= 0.30,) have been taken into
account (Fig. 10) and the geometrical imperfection wy = 5.25 mm has been calibrated:
the pin-ended column (k= 0) attains collapse at the maximum strength resulting from
the ECCS buckling curves. The number of integration points and elements is the
same as previously mentioned. In Fig. 12b, three values for the maximum strength of
this restrained column are shown. The values F; and F, have been calculated taking geo-
metrical and material non-linearity into account. The value F; has been calculated
using the elastic effective length and the ECCS buckling curve a. The moment-rotation
characteristics 1 and 2 of Fig. 12¢ have been used to calculate F; and F; respectively.

F(kN) M(kNm)
/F@:77kN

Far 76kN
Fo:65kN |
0.6 @

0.4}
0,276 O]

0.2F /[y k=tana=33,642kNm

Fig. 12. Centrally loaded restrained steel column [22].

Moment-rotation characteristic 1 almost represents the strong axis connection
moment-rotation data given in [23,25]. Moment-rotation characteristic 2 represents a
linear spring. If the spring is strong enough up to column collapse (moment-rotation
characteristic 2), the maximum strength based on the elastic effective length and the
ECCS buckling curves is predicted very well.

3.3  Non-sway frames

Columns in non-sway frames can be checked using interaction formulae like for
example equation (11), which shows the interaction formula as given in [8].

N 1 BM
,%—N—p+1—_]\[—(ﬂ;ﬁp<l (11
XNp o



The reduction coefficient y is determined using the multiple column curves of Fig. 7
and the slenderness parameter 1 . However, this slenderness parameter depends on the
buckling length of the column considered. Although buckling curves have been derived
for pin-ended columns, where the buckling length is equal to the length of the column,
the elastic effective length which is smaller than the length of a column in a non-sway
frame, is generally used as buckling length in interaction formulae.

The example of Fig. 13 supports the use of the elastic effective length in interaction
formulae. The maximum strength of a column in the non-sway frame of Fig. 13 is esti-

F (kN)
400 F,=399 kN DIANA
L F,=396 kN EQN.(11)
U= Logs
300
o
L F,2236kN EQN.(11) S
200} l=h e
Mg
100
0 10 20 30 40

— 0 (mm)

Fig. 13. Non-sway frame.

mated using equation (11). The normal compressive force N and the bending moment
M are expressed in F using a linear elastic calculation. The maximum strength F, = 236
kN is solved from equation (11) using the length of the column as buckling length. Ifthe
elastic effective length is used as buckling length, F> =396 kN is found as an estimation
of the maximum column strength. If these values are compared with the maximum
strength resulting from a geometrical and material non-linear analysis, F3 = 399 kN, use
of the column length turns out to be conservative and use of the elastic effective length
in the interaction formula of equation (11) predicts the maximum strength very well.

The second non-sway frame to be considered is shown in Fig. 14a [21]. As explained
in [24,26], for ’strong beam, weak column designs’ a change of sign of the bending
moment at the top of the columns can be observed. Fig. 14b shows the bending
moments in the beam according to a linear elastic analysis compared with the bending
moments in the beam at collapse, according to a geometrical and material non-linear

linear
non-linear,

at collapse
M in kNm
&,p=5ooq_#
a. geometry b. Bending moments in the beam.

Fig. 14. Non-sway frame: change of sign of bending moment at the top of the column.



analysis. Indeed, the bending moment at the top of the column changes sign. The
columns are restrained by the beam. In [16,27] the problem of change of sign of the
bending moment at the top of the columns of a non-sway frame has been treated also. In
[16] it is stated that the effective length method for the stability check of non-sway
frames can be carried out without caring about the change of sign of the bending
moment at the top of the column. In [27] concern is expressed on the use of the effective
length concept together with a linear elastic static analysis and it is proposed to use a
non-linear analysis always, to overcome the problems concerning the change of sign of
the bending moment at the top of the column. However, according to [19,20,21] use of
the elastic effective length as buckling length in interaction formulae, leads to safe esti-
mations for the maximum strength of columns in non-sway frames, if the beams are
strong enough and column collapse characterizes the frame behaviour. Therefore, the
beam must be checked taking the change of sign of the bending moment into account.
In[19,20,21] a design method for beams in non-sway frames is suggested, taking change
of sign of the bending moment at the top of the columns into account. The connection
between column and beam also has to be designed for a positive bending moment.

The geometrical and material non-linear analyses have been carried out using ten ele-
ments for each column and beam. Again 85 integration points per element have been
used. Residual stresses (o =0.30,) have been taken into account (Fig. 10) and the geo-
metrical imperfection wy has been calibrated as described before. The previous two
examples of centrally loaded columns have been analysed in a displacement-controlled
way. This is impossible for the non-sway frames of Figs. 13 and 14 which have been
analysed in a load-controlled way. Of course it is possible to make use of symmetry for
the centrally loaded columns as well as for the non-sway frames discussed here.

3.4 Sway frame

If the sway frame of Fig. 15a is analysed taking geometrical and material non-linearity
into account, imperfections have to be assumed. Here, the equivalent nominal load
according to [8] has been used resulting in a total horizontal force 0.06 F at the top of the
left column, which consists of a real horizontal force 0.05F and an equivalent nominal
load 0.01F, accounting for geometrical imperfections and residual stresses. Again ten
elements for each column and beam have been used as well as 85 integration points per
element. The method proposed by Riks [17] and Wempner [28] has been used to study
post-critical behaviour of this sway frame. Now, a limit point can be passed under load-

1h=5000 ;

Fig. 15. Sway frame.



control way by help of the arc-length procedure. This sway frame cannot be analysed in
a displacement controlled way since the points of application of the loads change
relative to each other during loading. In Fig. 16, load-displacement curves are shown
for:

- the horizontal displacement at the top of the right column &;

- the horizontal displacement at mid-height of the centre column §5;

- the vertical displacement at the top of the centre column §;.

B0kN (DIANA, 1st. limit point) —— §,
F(kN) “ T9kN (EQN(11) 5

80 "~ 7T0kN (mechanism) e
. BBKN (DIANA,2nd. limit point) —---- 5,

60
4oL

20}

L . 1 . . . )
0 100 200 300 400 500 600 700

e § (mm)

Fig. 16. Load-displacement curves of the sway frame.

The centre column is weak when compared with the left and right column. At F= 80 kN
the centre column collapses: the first limit point is reached. With decreasing load, the
horizontal displacement at the top of the right column decreases: the frame sways back
elastically. However, the horizontal displacement at mid-height and the vertical dis-
placement at the top of the centre column still increase: the centre column has
collapsed. The load decreases until this vertical displacement is so large that the two
beams behave like one long beam which builds up resistance. At F=51 kN the load
begins to increase until at F= 68 kN a beam-mechanism is formed. At this moment the
second limit point is reached. In Fig. 17 several subsequent deformed situations of the
sway frame of Fig. 15a are shown.

The two limit points can be estimated analytically. The first limit point is determined

at first limit point F=80kN
————— at lowest point F=51kN
.. at second limit point F=68kN
———- at end of curves F=61kN

Fig. 17.  Four subsequent deformed situations of the sway frame.



by collapse of the weak centre column. Use of equation (11), together with the multiple
column curves for pin-ended columns and with the elastic effective length as buckling
length, results in F=79 kN as estimation for the maximum strength of the centre
column. The second limit point is determined by a beam-mechanism as shown in Fig.
15b. The plastic moment capacities of the columns are influenced by the axial forces.
When the reduced plastic moment capacities according to [8] are used, the collapse load
of the beam-mechanism is F= 70 kN. The estimations of the two limit points are shown
as horizontal lines in Fig. 16. These lines agree very well when compared with the
numerically determined limit points.

The results of the calculations for the sway frame of Fig. 15a support the idea that use
of the elastic effective length together with multiple column curves for pin-ended
columns, leads to safe estimations for the maximum strength of beam-columns in sway
frames.

Advanced solution procedures for non-linear structural behaviour enable the study
of post-critical behaviour of frames. Alternative load-carrying paths can be found and
post-critical strength can be determined.

4 Applications under fire conditions

The strength of steel structures at elevated temperatures is also influenced by the
change of Young’s modulus and the yield stress with increasing temperature. Therefore,
the constitutive relation has been extended with temperature dependent material
properties.

Usually for steel structures at elevated temperatures not the maximum strength of
the structure but the critical temperature is relevant. This temperature is defined as the
maximum steel temperature at failure. In fire tests structures are usually loaded up to
the characteristic load.

To simulate an experiment and to verify the constitutive relation, not only the critical
temperature but also the deformations at several points of the structure as function of
the temperature have to be measured in the experiment. Besides the material behav-
iour other factors which can influence the deformation behaviour and critical tempera-
ture are: temperature variation along the axis of the column, small degree of unintend-
ed rotational restraint or unavoidable eccentricity of the load [31]. In Germany several
experiments have been carried out where the deformations as function of temperature
are measured. Two experiments are discussed here: a pin-ended beam-column and a
non-sway frame [11].

In the calculations performed an elasto-(perfectly)plastic stress-strain relation is used
in which Young’s modulus and the yield stress change with increasing temperature, as
shown in Fig. 18. The stress-strain relation is modelled with the Von Mises yield func-
tion and Hooke’s law for the elastic stage. Unloading takes place elastically according to
Young’s modulus at the present temperature.

The difference between the stress-strain relations for the temperatures 200°C and
300°C in Fig. 18 is a result of the thermo-activated flow (transient strain) of steel under
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Fig. 18. Stress-strain relationships used for steel at elevated temperatures.

high stresses [11, 30]. The thermo-activated flow depends on the temperature incre-
ment and the stress level and has been incorporated in the constitutive relation as a
transient strain [11]. Residual stresses (o = 0.30;) have been taken into account accord-
ing to figure 10 and the geometrical imperfection has been calibrated at room tempera-
ture as previously described. In the material model the ratio between hardening and
initial yield stress for the stress-strain relation of the flange, when residual stresses are
taken into account, does not change. So the residual stresses are partly anealed at the
critical temperature.

4.1 Beam-column

Since the out of plane deflection of the column remains small, the column is idealized
with ten two-dimensional beam-column elements in which geometrical and material
non-linearity has been taken into account. Each element has been divided in 3 sections
and for each section 17 integration points have been used. In the computations the tem-
perature varies with time after the load has been applied but is constant over the cross-
section and along the axis. The experimental results [13] and the calculated results are
shown in Fig. 19. The calculated deformation behaviour shows good resemblance to the
experimental deformation behaviour. The differences in axial deformations between
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Fig. 19. Measured and calculated deformations of the column under fire conditions.



the computations and the experiment can be partly explained by the temperature varia-
tion along the column axis in the experiment which does not exist in the numerical
analysis.

The increasing deformation of the column around 300 °C can be described well with
the thermo-activated flow. Still, this phenomenon is point of discussion and will be the
subject of further study. The estimation of the critical temperature is good. Comparing
the temperatures at which the axial deformation is zero again, a 35 °Clower critical tem-
perature is calculated than experimentally observed.

Because of the high eccentricity of the load for this beam-column, the value of the
initial geometrical imperfection will not affect the critical temperature significantly.

Experiments carried out at other institutes [15] have also been analysed numerically
with comparable results for the deformation behaviour. The difference between the
constitutive relation given in [9,29] and the one of Fig. 18 is a subject for further
research.

4.2 Non-sway frame

In Germany full-sized steel frames have been tested under fire conditions [14]. During
the experiment deformations at several points have been measured. The out of plane
deformation of the column remains very small so the frame can be idealized with two-
dimensional beam-column elements. For the column and the beam in the non-sway
frame ten elements each and 3 sections per element with 17 integration points per
section have been used.

The frame consists of HE240B sections with a measured yield stress of318.7 N/mm?.
The column is loaded by a central normal force of 686 kN and the beam is loaded with 25
kN/m (Fig. 20). The beam is covered on three sides and the column on all four sides

800 6000
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o

25 kN/m’ .
ooy P88 KN

o Ligoo T

4500

A

Fig. 20. Geometry of the non-sway frame under fire conditions.

with Vermitecta-plates which are 20 mm thick. In the computations, a linear tempera-
ture distribution over the cross-section of the beam is used [11] and in the column the
temperature at the sections is uniformly distributed in conformity with the measured
temperatures.

During the experiment, the axial deformation of beam and column, the deflection of
the beam at mid-height, the in-plane deformation of the column at mid-span and the
horizontal support reaction have been measured and are shown in the right half of Fig.
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21 as a function of temperature. After the first computations, the experimental results
were in doubt, because the measured temperatures were much too low when compared
with the calculated ones. Indeed, it was ascertained that the temperatures had not been
measured correctly. Since other information is not available, the calculated deforma-
tions are presented but cannot be compared quantitatively with the experimental
results.

The critical temperature according to the European recommendations [9] for the fire
safety of steel structures is 550°C for the non-sway frame. This value is, as can be
expected when comparing codes with experiments, on the safe side when compared to
the calculated value 600 °C.

The computed deformations as a function of the temperature are shown in the left
half of Fig. 21. It can be clearly seen that the global deformation behaviour is the same
as registered in the experiment, e.g. the change of the horizontal force from compres-
sion to tension at the end of the experiment. Strain reversal in the column occurs and it

100 wenm)
c E 80
£ =60 80
2 E 40
R 40
©a 20 L
T(°C)
0 200 400 600(°C) O
—=temp.
= 100 Wimm
€ 120
< E 80
T c 60 80
S S 20
T(°C)
0 200 400 600(°C) 0
. temp. U(mm)
E_
o E L
SE 30
g E
T 55
X @
L=}
T(°C)
S 0 200 400 600(°C) 0 200 400
EE 25 lpr_lu_»temp. U(mm)_]pl_lu
‘55 20} - L
w15
- €
T 7,_5 10
£3 5|
T(°C)
0
9
o 40- H
sz [
= 20
ST
S 0 .
@ 600(°c) _OK=7555 7a00 — 10
v 220 —m=temp. ‘Zot
-40
-40 -60
calculated measured

Fig. 21. Measured and calculated deformations of the non-sway frame under fire conditions.
The highest temperatures occurring in the beam and the column have been plotted.
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is assumed that unloading takes place according to the elastic stiffness at the present
temperature.

5 Summary and conclusions

It has been shown in several examples that steel column and frame stability analyses

using finite element techniques contribute to better understanding of the behaviour of

these structures. Finite element techniques are powerful means to provide background
information for developing design codes. The examples presented in this paper support
the following conclusions.

- Ifinteraction formulae for beam-columns in non-sway frames are verified, imperfec-
tions should be calibrated when non-sway frames are analysed, taking geometrical
and material non-linearity into account. The amplitude of the parabolic imperfection
has to be determined so that a pin-ended centrally loaded column with the same
length as the column in the braced frame attains collapse at the maximum strength
resulting from buckling curves.

- Use of the elastic effective length in interaction formulae together with multiple
column curves for pin-ended columns, leads to safe estimations for the maximum
strength of beam-columns in sway and non-sway frames.

However, the restraining beams and the connections between beams and columns
must be strong enough to provide sufficient stiffness up to column collapse.

It is necessary to know the bending moment distribution at column collapse of the
restraining beams in order to design the beams and the connections between beams
and columns safely.

- Alternative load-carrying paths can be found and post-critical strength can be deter-
mined when advanced solution procedures for non-linear structural behaviour are
used.

- The finite element calculations of the column and non-sway frame under fire condi-
tions show good agreement with the experimental findings. The behaviour of steel
structures at elevated temperatures can be simulated and also the critical tempera-
ture is well estimated. To verify constitutive relationships, it is necessary to measure
the deformations of structures under fire conditions. Calibrated constitutive rela-
tions make it possible to analyse structures which cannot be experimentally investi-
gated in the existing furnaces.

With the elements and constitutive relationships employed, which are verified by
experiments, it is possible to analyse the deformation behaviour and the maximum
strength of steel columns and frames at room temperatures and elavated temperatures.
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7 Notation

Snn

displacement field

cross-sectional area

width

combination matrix

matrix coefficients

linear contribution to strain
eccentricity

Young’s modulus

load

height

hardening parameter

moment of inertia

rotational spring stiffness

stiffness matrix

initial displacement matrix

initial stress matrix

length

moment

plastic moment capacity

normal force

Euler buckling load

squash load

external nodal force vector

external generalized nodal force vector
uniformly distributed load

generalized stiffness matrix

non-linear generalized stiffness matrix
matrix coefficients

displacement field in the direction of the element axis
axial degree of freedom at the middle of the element axis
nodal displacements

generalized nodal displacements

shear force

volume

displacement field perpendicular to the element axis
imperfection amplitude

coordinate along the element axis
distance from layer to element axis
shift of centroidal axis from element axis
equivalent moment factor
displacement
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=

Q Q I > R

increment

generalized elongation of an element
strain

creep strain

elastic strain

average strain at element axis
average strain at centroidal axis
plastic strain

thermal strain

non-linear contribution to strain
temperature

curvature

slenderness

slenderness parameter

stress

test stress

buckling stress

residual stress

yield stress

nodal rotation

buckling coefficient

Wi, i generalized nodal rotations at nodes i and j respectively
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APPENDIX A
Derivation of the linear stiffness matrix

To determine the relation between the external loads and the deformation field of the
beam-column element the principle of virtual work which describes equilibrium
between internal and external forces is used within a total Lagrangian description [1]:

{0eo dV=Pda (A1)
Vo
where a is the displacement field, ¢ the stress field, ¢ the strain field and P is the exter-
nal force vector.

In non-linear analysis the load is applied in small increments. Therefore, equation
(A.1) must be incrementally formulated. Let 0 refer to the beginning of the increment.
Substituting ¢ = ¢’ + Ac and P= P+ AP in equation (A.1) leads to:
{0c"Ag dV=Pda— | 9c"a" = APda (A2)
Vo Vo
The right hand side of equation (A.2) corresponds to the incremental external load.
Integration of equation (A.2) over the cross-section of the element and expressed in

average strain and curvature gives the following formulation for the beam-column
element:

1
D“ D12 Aé‘g
ga[Asg Ax] [D21 Dzz] [Ax}dl--APaa (A3)
where:
Dy = | Ed4
A
Dy = [ yEdA
A
D, =Dy
Dy = | y’Ed4
A

For stable equilibrium, equation (A.2) must hold for any virtual displacement. Equa-
tion (A.2) expressed in generalized incremental displacements for a load step, results in
equation (A.4) by substituting equations (1), (2) and (3):

S Sz Sz Su || Auk 0

S21 Szz Sz3 524 AAl _ AN
S;1 Sn S Su || Awi | | AM;
S Su Sa3 Sa ]| | Ay, AM;

(A.4)
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The terms Sy, with ¥ = x// are integrals of the form [4]:

11
Sllz7g(4-—8¥/)2D11 dy

11
S21=S12:7(§) (4—8¥)Dy; d¥
11
S31=S13=7(§) (4—8¥)4—6¥)D, d¥
11
Su=S8u=7](4—8¥)2~6¥)Dd¥
0

11
S32=S23_7(§](4 6¥)Di, d¥
11
So=Su=7]@2-6¥)Dd¥
0
1: )
Su=71(4—6¥)Dnd¥
0
11
Siy=Su=7](2—6¥)(4—6¥)Dnd¥
0
11
Su=71Q2—6¥)Dnd¥
0

Equation (A.4) can be written in a more compact way:
Suu Sue Auk 0
s el =[] 9
Since the external load on the node in the middle of the element is zero, equation (A.5)
can be reduced to:
[Sse -8 uSuAulSue] Av, =S, Av; = AP, (A.6)

The relationships between the generalized displacements and forces and the nodal dis-
placements and forces are given by:

vo=Cv P=C'P, (A7)

with:
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Equations (A.6) and (A.7) can be combined to find the final incremental relationship
between the external loads and the deformation field for the beam-column element:

C'Sc Av=K Av=AP (A.8)
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APPENDIX B
Derivation of the geometrical non-linear stiffness matrices

In case of large displacements but small strains (equation (4)) a non-linear contribution
to the strain, 7 =3 (dw/dx)?, has to be taken into account. This leads to an extra term in
the incremental virtual work equation (A.2):

§0e"Ac dV+ | 05" dV=Pda— | de'¢’ = APda (B.1)
Vo Vo VO

The non-linear term

fonTa® dv

Vo
consists of an initial stress matrix, KN and an initial displacement matrix, KN The
final incremental relationship between the external loads and the deformation field,
including large displacements, is an extension of equation (A.8)

(CTS, C+ CTSNC+ KTY) Av= (K + K" + KY'Y) Av= AP (B.2)
with:
[0 0 o |
2 —1
N_ < - B.3
Si=|0 N 55N (B.3)
—1 2
0 S0 M 1M _
[0 0 o0 0 0 0
N - 1
0 <7 oy 0 = @V
N N 0 '1N 1Nl
0 1N 13 T0 N 30
K=o 0 0 0 0 0 (B.4)
—-N -1 N —1
O =5 N0 5 1N
-1 -1 2
L0 oV o MO N M
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The initial stress matrix accounts for the second order generalized deformations caused
by the normal force and the initial displacement matrix is a correction for additional
reactions caused by the normal force due to an inclination of the member.
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