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The bearing capacity of
prestressed hollow core slabs

1 Introduction

Prestressed hollow core slabs are often used in prefabricated buildings. The units can
quickly be assembled to form extensive floor slabs, by simply filling the joints between
them and, eventually, laying a topping. The system of slabs with a topping has been
common practice for a number of years, whereas the applicability of slab assemblies
without topping is a recent subject of research, predominantly within the scope of the
development of demountable structures [4, 15, 17, 18].

The slab units can be manufactured by various methods, but the technique of extru-
sion on a long casting line is coming more and more into widespread use. The units, saw-
cut to length from long continuous strips, usually consist of plain concrete with several
pretensioned strands.

The special method of production (extrusion) of the slab makes the incorporation
of anchorage reinforcement and shear reinforcement difficult, if not impossible. Fur-
thermore the concrete is necessarily of high strength (generally above 60 N/mm2).

Despite the widespread use of these products it was not clear to what extent existing
code provisions, which of course give only general specifications for the design and
analysis of structural components, apply to specific units such as prestressed hollow
core slabs. Therefore it was decided to carry out an experimental program which would
supply the necessary basis for design rules.

Two series of tests were carried out. In 1979 twelve tests were performed on single slabs
subjected to line loads with variable load-span to depth ratios, and on double slabs,
coupled by filling the longitudinal joint, subjected to eccentric line loads and concen-
trated loads.

All these slabs failed in bending. In order to observe the various shear failure modes
that might occur, a second series of tests was carried out in 1981: thirty tests were per-
formed on slabs with varying cross-section, depth and prestressing steel, which were
subjected to line loads with varying load-span to depth ratios. These experiments
yielded valuable information on the behaviour of prestressed hollow core slabs in
various respects. In this report detailed data of all the tests are given, and the theoretical
background necessary to understand the behaviour is also dealt with.

2 Failure modes

With regard to the way in which prestressed hollow core slabs fail when overloaded, four
principal modes are distinguished.
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Fig. 2.1. Ductility after flexural cracking.

Fig. 2.2. Flexural failure.



2.1 Behaviour in bending
2.1.1 Pure flexural failure

Due to the relatively small cross-section of the steel the ductility of a slab after flexural
cracking is considerable (Fig. 2.1).

Fork-shaped cracks develop, which reduce the compression area, but failure never-
theless generally occurs in consequence of rupture of the prestressing steel (Fig. 2.2).

2.1.2 Anchorage failure

If the cracking pattern extends too far towards the support a situation may occur in
which the length of the anchored strand is too small to develop sufficient anchorage
capacity; the strands slip through the concrete causing considerable widening of the
cracks and large rotations (Fig. 2.3).

2.2  Behaviour in shear

2.2.1 Shear tension failure

If the tensile strength in the webs of the slab becomes too high in the region not cracked
in bending, an inclined crack occurs, which propagates both in the upward and the
downward direction, resulting in immediate failure. The crack is generally formed in
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Fig. 2.3. Anchorage failure.



Fig. 2.4. Shear tension failure.
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Fig. 2.5. Shear compression.



the region where the favourable influence of the vertical support stresses is exhausted
and the prestressing force, which needs some length to develop, is not yet fully intro-
duced (Fig. 2.4).

2.2.2 Shear compression failure

Flexural cracks can develop into shear cracks (Fig. 2.5). An increase of the load can sub-
sequently result in failure of the compression zone, by crushing, or by splitting.

3 Theoretical background
3.1 Pure flexural failure

In the traditional approach to calculate the flexural moment capacity of a cross-
section, it is assumed that in the compression zone the ultimate strain of the concrete is
reached.

Using the o-¢ diagram for the concrete (Fig. 3.1) the ultimate moment can easily be
calculated (Fig. 3.1b).

If it is assumed that the flexural crack reaches the upper flange of the slab, then the
depth of the compression zone is calculated by:

Ay fy=bx-A-f, 3.1)

where A is the shape factor of the stress-strain diagram of the concrete. The ultimate
moment is then calculated from:

My = (d—Bx)-4p-fy (3.2)

where d is the effective depth and Bx is the distance from the centroid of the concrete
compressive stresses to the top of the cross-section.

As mentioned in Section 2, prestressed hollow core slabs generally fail by rupture of
the steel: this implies that actually the inner lever arm is somewhat smaller than found
by the previous equations. For an accurate analysis the depth of the compression area x
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should be determined. This procedure is more complicated since the concrete in the
compression zone may be in the non-linear state and the value of x may be large enough
to reach the cavities of the cross-section. The differences between the accurate and the
simple procedure for the hollow core cross-sections in practice are so small, however,
(generally < 2%) that the simple procedure can be used.

3.2 Anchorage failure

If a flexural crack is formed in the vicinity of a support, the force in the steel must be
transmitted to the uncracked part of the member. If this part is too short the strands may
start slipping and be pulled out under a nearly constant load.

To determine the anchorage capacity of strands it is useful to first consider how the
prestressing force is introduced into the concrete at the end of the element. When a
strand is released it will tend to shorten. As a result of the configuration of the wires, laid
up around a central wire, the strand will develop frictional stresses while being drawn
in. If these frictional stresses are sufficiently large, a limit state of equilibrium is reached
and the strand stops slipping. The length necessary to develop the full prestressing force
is called the transfer length /,. Over this length the prestressing force builds up approxi-
mately according to a parabolic curve (Fig. 3.2).

If somewhere over the transfer length a flexural crack occurs it will hardly be possible
to increase the stress in the steel, because of the limit state of equilibrium which exists
in this area.

If a crack occurs just outside the transfer length an increase in the stress in the steel is
possible. On both sides of the crack the stresses in the steel are raised over a certain
length wich is sufficient to transmit the additional force in the strands, due to cracking,
by bond stresses to the concrete. However, if the steel stress increase in the crack is so
large that the flexural bond wave ((b), Fig. 3.2) invades the anchorage bond wave (a),
the equilibrium over the transfer area is disturbed and the strands will start slipping. For
any arbitrary cross-section a critical stress increment exists. If the distance to the end of
the element is large enough the ultimate stress of the strands can be reached. This




distance is denoted by the term “development length” (/;). Experiments have shown
that the curve representing the critical stress increase between the transfer length and
the development length is approximately a straight line.

The length between the development length and the transfer length is called the
flexural-bond length.

Limit curves for the stress in the strands are proposed by several authors.
The current ACI Code (318-71) [1], specifies that the transfer length be equal to:

[ = w (N, mm) (3.3)

and the development length:
_Opo - ®

=22 +(f”-f7”°°)’¢ (N, mm) (3.4)

Zia and Mostafa [21] propose the values:

=15 (‘}—”)qs— 117 (N, mm) 3.5)
li=1,+0.179(f,— 0yc0)-¢ (N, mm) (3.6)

Martin and Scott [12] propose a transfer length of 80 diameters for strands of all sizes,
and a flexural bond length of 160, 187 and 200 diameters for 3, 3 and i-inch diameter
strands, respectively.

The critical stress envelope is defined as a bilinear curve. The stress at the break point
(at /, from the end of the element) is g, for [1, 21] and g, for [12].

Fig. 3.3 shows a comparison of the envelopes for a specific case [21]. The bilinear
envelope reflects the differences in bond properties between the subsequent areas.
Over the transfer length the bond resistance is relatively large since the strands are in
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Fig. 3.3. Critical stress envelopes according to different proposals [21].



active frictional contact with the surrounding concrete. Over the flexural bond length
the strands do not undergo a change in cross-section after release, so that only adhesion
exists between the strands and the concrete; where the strands are stressed due to
flexural cracking, the diameter diminishes, so that the adhesion is disrupted and the
frictional forces which subsequently build up during sliding are relatively small. This
explains the differences in slope of the lines defining the limit envelope.

In this report the formulae (3.3) and (3.4) will be used, in spite of the fact that these
equations seem to be the least conservative (Fig. 3.3).

Anderson and Anderson [3] concluded on the basis of 36 tests on pretensioned
hollow core units that these relations are adequate provided that the initial slip of the
strands, upon the transfer of prestress, does not exceed an empirical value which is
roughly 0.2 times the strand diameter.

The critical envelope being known, a lower bound value for the flexural, or pull-out,
capacity of any cross-section can be calculated. In the following considerations two
characteristic lengths will be used.

a. The development length /,, beyond which the full flexural capacity can be reached:
this length can directly be read in Fig. 3.4 or calculated from eq. (3.4).

b. The length /., between the end of the element and the cross-section where the in-
crease of the stress in the steel upon cracking is just large enough to immediately
reach the anchorage capacity. In order to simplify the calculation it will be assumed
that the internal lever arm, when slip of the strands occurs, is equal to the distance
from the strands to the mid-depth of the compression flange, at the lower side bound-
ed by the top of the cavities.

With the values /; and /., the general flexural behaviour can be represented quite
simply.

For x> I, (Fig. 3.5) the full flexural capacity can be reached.

For 1., < x < I, the capacity is larger than the flexural cracking moment but smaller
than the full flexural capacity and is limited by slip of the strands.

For x < I, the anchorage capacity is smaller than the flexural cracking moment, so
that failure immediately occurs upon flexural cracking.

For x < /, it must be borne in mind that also the cracking moment is reduced due to
the incomplete development of the prestressing force in that area.
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Fig. 3.4 Calculation of critical length /..
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Fig. 3.5. Flexural and anchorage capacity along the length of an element.

If the load on an element is uniformly distributed the moment diagram is parabolic,
so that the point /.., M, may limit the bearing capacity (dotted line in Fig. 3.5). Whether
this occurs or not depends upon the geometrical properties of the cross-section and the
length of span between the supports.

If the element is subjected to a concentrated load, the bearing capacity depends al-
ways upon the ultimate moment which can be reached by the cross-section under the
load.

3.3 Shear tension failure
3.3.1 General aspects of behaviour

Shear tension failure occurs if somewhere in the concrete the tensile stress reaches a
critical value. This can be expected to occur outside the region where the vertical sup-
port pressure is active, but inside the region where the prestressing force is not yet fully
developed.

Calculations of the stresses at the ends of beams with rectangular webs are found in
the literature. In [7] the stress distribution is established by a FEM-calculation, in [16]
using Airy’s stress functions. However, in a hollow core slab the existence of circular
cavities complicates the calculation. In order to obtain some insight into the behaviour
at the end of the slab therefore a simplified approach has been choosen. A number of
assumptions have been made.

a. Stresses due to prestressing

- The prestressing force in the transfer area is uniformly distributed over the width of
the slab.

- The prestressing force is introduced into the concrete in increments 4,- Ag,. Each
increment of the force is transmitted by bond between steel and concrete over a
length Ax, and spreads at 45 degrees.

11
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Fig. 3.6. Stresses in the concrete in the longitudinal direction for a rectangular cross-section.

- The prestressing force causes only stresses .., parallel to the longitudinal axis. The
stresses g, and g.y, can be neglected.

- The stresses in the strands along the transfer length develop according to a parabolic
curve.

Fig. 3.6 shows an example of the development of the stresses in the concrete, calculated

in this way, for a rectangular cross-section.

b. Stresses due to load

The load on the member, including the dead weight, causes stresses oy, and a,,. The
support pressure causes stresses g,,. Using the coordinate axes shown in Fig. 3.6, it is
found that:

My
Ocexx = —7')’1 (37)
and
V-S(»)
Oer =50y 1 (3.8)

A complication arises from the fact that the expression (3.8) comprises the shear stress
acting perpendicularly to the plane of the slab. Along the edges of the holes this shear
stress cannot act in that direction, because in that case a component perpendicular to
the free edge would develop. In reality the direction of the shear stresses is approxi-
mately according to Fig. 3.7a. The value is such that the vertical component satisfies
eq. (3.8). The maximum shear stresses occur along the edge; the direction of these
stresses has been assumed to be as indicated in Fig. 3.7b. Only the maximum shear
stresses, along the edge of the cavities, have been used in the analysis.

12



a b
Fig. 3.7. Real and simplified shear stress distribution.

Further it is assumed that the support pressure spreads at an angle of 45 degrees. The
vertical force to be transmitted by a horizontal section is assumed to be (Fig. 3.8):

Vv
Fy)=—5+7 (3.9)

The section on which this force acts is then:

d,
A(y)=b, S+5+Y (3.10)
so that the vertical stress at the level y is:

Ty (¥) =% (3.11)

The stresses as calculated at a number of points over the length of the element are super-
imposed, and the combined stresses are compared with the biaxial envelope according
to [11] (Fig. 3.9).

In this way it is possible to determine the maximum capacity of any cross-section and
the point where the critical combination of stresses is reached. Fig. 3.10 shows an exam-
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Fig. 3.8. Vertical stresses due to support reaction.
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Fig. 3.9.

ple of such a calculation for a slab with a depth of 265 mm, and eight 3" strands with /, =
500 mm (for other cross-sectional properties see Fig. 4.6¢). At a number of sections two
critical points are found, which merely means that due to the size of the load increment
the critical stress envelope is exceeded in two points at the same time. The minimum
capacity of a section is nearly always reached at mid-depth, where the web width is a
minimum.

The smallest capacity over the length of the member is reached where this plane is
intersected by the plane inclined at 45 degrees from the inner edge of the support.

Since the critical stress combination in the centroidal plane does not depend upon
the flexural moment, the capacity line between the support and the load is independent
of the distance between them. So, theoretically, if the dead load is neglected so that the
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Fig. 3.10. Calculated shear tension capacity and critical point at a number of cross-sections.
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shear force between support and load is constant, the shear tension capacity of the slab
isindependent of the shear span and is always reached at the section located at d/2 from
the inner edge of the support.

In Fig. 3.10 it is shown that on the other side of the load the critical point is always
reached at the bottom of the cross-section. This simply means that a flexural crack
occurs, with no consequences to the failure capacity.

Fig. 3.10 shows that the shear tension capacity of the subsequent cross-sections does
not differ very much. The differences may even be smaller if the transfer length is smal-
ler and the support length is larger. Taking account of the scatter in concrete quality
along the axis, it can be concluded that the shear tension crack will preferably occur at
d,f2 from the inner edge of the support, but may well occur elsewhere.

33.2 Simple formulation of shear tension capacity

It is assumed that the centroidal axis of the cross-section at d,/2 from the inner edge of
the support is the most probable location for a shear tension crack. It is further assumed
that the prestressing force at the inner edge of the support determines the prestress in
the concrete at the critical point (Fig. 3.11).

If the steel stress conforms to a parabolic curve, the stress at the inner edge of the
support is:

I/ —s\?
oy(x=5)=0,11— ) (=29 (3.12)
t
and the compressive stress in the concrete at the critical point is:
AP
Ocxx = _a‘op'z (313)
The shear stress is:
V.S
Ocxy = b1 (3.14)

Fig. 3.11. Basis for simplified shear tension formulation.
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Ifin the ultimate stress state the principal tensile stress is equal to the tensile strength of
the concrete, then (Fig. 3.11b):

2
acxx GCXX
fa=""+ (2) +0%, (3.15)

From eq. (3.13-3.15) it follows that:

b,-1 A
S ‘ff,.*.a.A-—j.gp.f;’ (3.16)

VM=

There are a number of reasons why eq. (3.16) can be expected slightly to overestimate

the actual capacity:

- there is scatter in concrete quality along the axis of the member. Especially if the dif-
ferences in shear tension capacity at the subsequent sections are small, the shear ten-
sion crack may search for the location with the smallest tensile strength; this would
imply a dependence on the shear span a;

- the biaxial tension-compression stress combination may result in a reduced tensile
strength;

- the value of g, (eq. (3.13)) may be slightly overestimated by using the prestressing
force at the inner edge of the support;

- the period between the start of a test and failure is some hours. It is known that the
tensile strength decreases under sustained load [2], which could even after a short
time result in lower strength.

3.4 Shear compression failure

Shear compression failure occurs if a flexural crack develops into a shear crack which
propagates through the member.

Factors affecting this mechanism are:

- the prestressing force, which delays the formation of a flexural crack;

- the reinforcement ratio, which influences the crack width and crack propagation;

- the concrete strength;

- the span-to-depth ratio (a/d): small span-to-depth ratios enable arch action to devel-
op, provided that there is a well anchored reinforcing tie. In the case of preten-
sioned steel, however, the anchoring capacity of the strands will limit this influence,
so that in this case arch action should not be taken into account;

- the depth of the section; from fracture mechanics it is known that unstable crack
propagation occurs at a lower load if the crack is longer. Therefore the shear compres-
sion capacity is not proportional to the depth of the section but less.

On the basis of many experiments on reinforced and prestressed concrete Hedman

and Losberg [8] derived a general empirical formula which takes account of these in-

fluences. They found that a 5% lower limit for the shear compression strength of mem-
bers subjected to a concentrated load at a distance a from the support (Fig. 3.12) is

16
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T Fig. 3.12.
expressed by:
M,

Vie=10.068b,,-d-£(1 + 0.50¢) fc+7 3.17)
where:

E=1.6—d<« 1, where d is expressed in meters
and

_ 1004,
Q0= bw .d

It should be kept in mind that eq. (3.17) has been derived for beams with predominantly
rectangular cross-sections.

In order to generalize eq. (3.17) so that it is applicable to any arbitrary loading con-
figuration, the term Mp/a is replaced by (M,/V;)M,, so that:

M,
Vite= 0.068b, - d-£(1+0.500)Fe+ 57 My (3.18)

If the member is subjected to a concentrated load, shear compression failure will pre-
ferably occur in the vicinity of the load (Fig. 3.13a). If the load is uniformly distributed,
failure occurs where the shear force at a section reaches the shear compression capacity
(Fig. 3.13b). However, in the latter case there is a high probability that shear compres-
sion failure will not occur, because normally the shear tension capacity in the vicinity of
the support is reached (Fig. 3.13c).

Shear tension capacity
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a, b. Shear compression failure in the case of c. Shear tension capacity
concentrated (a) and distributed (b) loading governing the behaviour

Fig. 3.13.
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4 Experiments on prestressed hollow core slabs
4.1 Series I (1979)

4.1.1 Experimental set-up

Twelve tests were carried out on hollow core slabs with cross-sections as shown in Fig.
4.1. All slabs, except one, contained seven 3" strands (52 mm?) according to Fig. 4.1a.
The remaining one contained eleven ;" strands according tot Fig. 4.1b.

The slabs were of the Spiroll type and had been manufactured by Schokbeton at
Alphen aan de Rijn.

Nine slabs were subjected to line loads over the full width of the unit, according to
Fig. 4.2.

In all the tests the loading configuration was symmetrical with respect to the middle
of the slab. The support length s was always 150 mm, the shear span a varied from 375
tot 3000 mm (Table 4.1).

Two slabs were subjected to a concentrated load applied over a circular area 200 mm in
diameter (Fig. 4.3): in slab 10 this load was applied centrically (Fig. 4.3a), in slab 11
eccentrically (Fig. 4.3b).

e

1_
5 e
1®D.DO DD

kI

126, 188 . 188 . 188 188 188 128
1 7 7 7 7 #
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a SP 200 /1200 - 7 strands

23,100 188 188 188 188 188 100 23
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_35L
5@% an
Tezsm. s\l o\l

T T

1196

b SP 200 7/ 120- 11 strands

Fig. 4.1a, b. Cross-sections of extruded hollow core slabs loaded to failure.
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Table 4.1. Tests of series 1.

test span / (m) shear span a (m) ald
1 5.40 1.80 11.2
2 7.20 2.50 15.6
3 9.00 3.00 18.7
4 6.00 1.50 9.4
5 5.00 1.00 6.2
6 4.50 0.75 4.7
7 4.00 0.50 3.1
8* 4.00 0.50 3.1
9 3.75 0.375 2.3

* 11 strands 3"

One test was carried out on two coupled slabs: in this test the slab ends were provided
with recesses. On assembly, reinforcement was installed, and the two slabs were inter-
connected by small end beams. The longitudinal joint was filled with mortar.

One of the beams was loaded according to Fig. 4.3c.

4.1.2 Properties of the specimens

Prestressing strands of steel grade FeP 1860 with a tensile strength of 1937-2010 N/
mm? and a 0.02 per cent proof stress of 1810-1825 N/mm? were used.

The concrete compressive stress was measured on cubes made of the same mix as the
slabs and treated in such a way that the same density was obtained. The average
crushing strength of nine 150 mm cubes was 65.1 N/mm? with a standard deviation of
s=0.38 N/mm?. The average splitting tensile strength was 5.1 N/mm? after 28 days, but
decreased to 4.3 N/mm? after 56 and 90 days (s = 0.15), probably-due to drying shrink-
age. The flexural tensile strength of the concrete was measured on short slab sections
(I=2200 mm), without prestressing strands.

The flexural tensile strength was 5.75 N/mm?, with a standard deviation of s=0.16
N/mm?. The average stress in the strands just before transfer, measured by a “Vogt
Drahtspannungsmesser” (wire stress gauge), was 1240 N/mm? (s=24.5 N/mmz).

The maximum value of the draw-in of the strands at the end face of the unit, just be-
fore testing, had a maximum value of 0.5 mm for the inner strands and 1 mm for the
strands at the edges of the cross-section.

The cross-sectional properties of the specimens are listed in Table 4.2.

Table 4.2. Cross-sectional properties, series I

710.5 x 10° mm*
4.72 x 10 mm®
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4.1.3 Results

All the specimens 1-9 failed in flexure.

The slabs 1-6 failed as a result of the maximum flexural resistance being exceeded.
In all these cases there was fracture of all the prestressing strands. In slab 7 the five inner
strands fractured at failure of the slab, while the two outer ones developed slip.

In the case of slab 8 (11 strands) slip of six strands was detected at one end of the slab
(distance to nearest crack was 660 mm) when about 90 per cent of the ultimate failure
load was reached, while two of the strands showed slip at the other end. Failure occurred
as a result of nine of the strands fracturing at the first-mentioned end, while the two
outer ones were pulled out of the concrete.

A tensile shear crack developed on the lateral face of slab 9. Closer inspection showed
this crack to be present only in the outer wall of the cavity and to have been caused by in-
complete filling between the slab and the load application beam, so that the load was
transmitted mainly to the edge region of the slab. This defect was put right and the slab
loaded again.

It finally failed in bending (flexural), with fracture of the five inner strands. The two
outer strands had, as a result of the tensile cracking, ceased to be fully effective. The
failure moment was about 10 per cent lower than the average moment of the com-
parable other slabs.

The tests 10 and 11 could be compared with 2, having the same span. The cracking
moment was respectively 87 per cent and 84 per cent of the value obtained in test 2. The

Fig. 4.4. Test on double slab.
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respective values for the failure moment were 96 per cent and 101 per cent.

In the test on the double slab (12) it was found that initially the unloaded slab carried
a 46-48 per cent share of the load, while the loaded slab carried 54-52 per cent. With the
approach of failure the deflection of the two slabs at the joint was identical, and each
slab was then carrying akzout 50 per cent of the load. Hence, in this case the failure load
attained with the interconnected slab was about twice the failure load attained with one
such slab with the same span. The joint remained undamaged. Fig. 4.4 shows the double
slab during the test.

A survey of the flexural cracking and ultimate moments (including dead weight) is
given in Table 4.3.

Table 4.3. Cracking and failure moments, observed in the tests

flexural cracking moment ultimate moment
specimen (kNm) (kNm)
1 84.6 111.1
2 90.6 110.0
3 93.0 108.0
4 90.4 117.1
5 93.2 113.2
6 92.0 113.3
7 91.5 110.5
8 114.5 157.0
9 94.3 103.7
10 82.3 106.8
11 83.6 111.1
12 158.4 213.6

4.2  Series IT (1982)
42.1 General

In series I only flexural failures had been observed, in spite of the large range of values
for a/d (2.3-11.2).

In order to gather experimental evidence to verify the formulas for the other failure
modes (shear tension, shear compression, anchorage failure) a fresh series of tests was
scheduled, with not only the a/d value as a variable, but also the depth, the cross-
sectional shape and the prestressing force. The slabs were of the types Dy-Core and
Spiroll.

With a view to obtaining information with regard to anchorage failure the producer
was requested to select a number of slabs with large initial drawn-in of the strands.

At a later stage similar slabs with regular, small, initial slip of the strands were sub-
jected to similar loading conditions. The members with large initial slip are found
in Table 4.8 under the numbers 1-3. The repeated series is found under the numbers
13-16.
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42.2 Testing arrangement and instrumentation

The tests were carried out according to Fig. 4.5. The specimens were loaded by a single
line load, which was asymmetrical with respect to midspan and was applied through a
rigid transverse steel beam. In order to obtain a uniform distribution of the load over the
width of the slab an intermediate layer of gypsum was applied between the loading
beam and the element.

A layer of felt was interposed between the element and the supports. At the end where
the roller bearing was situated the felt was applied over the full width of the slab; at the
other end it was applied only over a short length in the middle of the slab. With the latter
arrangement the element was able to rotate about the longitudinal axis, preventing un-
equal distribution of the support pressure at the loaded end.

The distance between the support and the load could be varied by shifting the support
over the basis of the substructure.

The force applied by the jack was measured by a load cell. The deflection was
measured at mid-span by three displacement gauges, distributed over the width of the
element, so that any eccentricity could be registrated. Further on, the sagging at the
supports due to compression of the supporting strips was measured in order to find the
actual load-deflection relation. Before each test the draw-in of the middle wire of all the
strands was measured. During testing, further slip was recorded by means of displace-
ment gauges.

In order to detect the stress in the strands and the flexural tensile strength of the con-

Fig. 4.5. Testing arrangement.
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crete the decompression moment was measured. This was done by unloading after the
first flexural crack had appeared and reloading: the value of the decompression moment
was then read from the load-deflection curve. The flexural tensile strength and the pre-
stressing force can be calculated from the flexural cracking moment and the decom-
pression moment.

4.2.3 Variables

The tests comprised 20 specimens, 16 of which were Dy-Core slabs and four were of the
Spiroll type. In the case of 10 of these slabs both ends were used, so that altogether 30
tests were carried out.

Slabs with three different cross-sections were tested; two of these contained two dif-
ferent numbers of strands. The cross-sections are shown in Fig. 4.6.

The geometrical properties are summarized in Table 4.4.

Table 4.4. Cross-sectional properties of specimens tested, series II

T260 H 300 SP 270

strands 6-3" 10-5" 5-3" 10-5" 13-3"

A, (mm?) 1.71 x 10° 1.71 x 10° 1.99 x 10° 1.99 x 10° 1.78 x 10°
b, (mm) 294 294 250 250 260

S (mm?) 6.61 x 10° 6.61x10° 9.72 x 108 9.27 x 10° 7.66 x 10°
I (mm*) 1.34 x 10° 1.36 x 10° 2.18 x 10° 2.23x10° 1.55 x 10°
A4, (mm?) 564 940 470 940 676

d (mm) 225 225 265 260 230

e H300.5
x H 300.10

strands 172"

x T260.6
« T260.10
37, 15 55, 115 55, 175 55, 175 55, 175 37,
+ + A A+ A
; i 1197 T
A A
T SP 270
13 strands

3/8"

40 185 40
265

¥

, 185 DLS* 185 ,.LSJ/ 185 45, 185 4’45,. 185 40,
1196 "

#*

Fig. 4.6. Cross-sectional dimensions of the slabs tested.
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A survey of all the tests, showing all combinations of parameters, is given in Table 4.8.

The slabs 1-3 displayed outward features, on the basis of which they should be with-
drawn from sale: the mix was too dry, which was confirmed by the large initial slip of
the strands in the slabs 2 and 3 (6 = 2.9 and 3.8 mm, see Table 4.8). Nevertheless the
quality of concrete, on visual inspection, was constant along the length of the specimens
and the initial slip values of the strands in the saw cut were approximately equal. As a
result of these properties the slabs were considered suitable for studying the relation
between the initial slip of the strands upon sawing and the anchorage capacity of the
strands. Slabs 13-16 had the same cross-sectional properties, but their quality was satis-
factory. Slab 10 exhibited tensile splitting cracks around the outer strand in the rib and
bottom and must also be rated as deficient in quality.

4.2.4 Material qualities

Concrete
It is normal practice that the producer of the slabs supplies cubes for quality control.
However, with regard to the manner of casting, vibrating and curing a number of dif-
ferences exist between the slabs and the cubes, which makes the quality control values
disputable. Therefore, additionally, a large number of tests with a rebound hammer
were performed.

The cube compression values for a number of slabs are represented in Table 4.5.

Table 4.5. Values of concrete crushing strength, measured on cubes, separately cast with con-
crete of the same batch

specimen foe N/mm?) S

1, 2, 3 64.2 62.2 63.2
7, 8, 9 66.1 67.9 69.2 67.7
10, 11, 12 545 546  46.1 51.7

The rebound values determined with a Schmidt Hammer were obtained at ten different
locations both on the sides and on the end faces of the elements. The values converted
to cube strength, for a number of specimens, including those from Table 4.5, are given
in Table 4.6.

Table 4.6. Rebound values by Schmidt Hammer, converted to cube crushing values

foe (N/mm?) Soey side foe N/mm?) Joey face

specimen side average face average
1, 2, 3 60.7 58.7 48.6 56.0 62.1 62.2 63.0 62.6
7, 8, 9 57.1 65.5 59.2 60.6 61.8 66.1 62.5 63.5
10, 11, 12 53.2 589 554 55.8 63.1 66.7 66.7 65.5
14, 17 49.4 59.0 54.2 61.8 62.6 62.2

It appears that the values obtained on the sides are slightly lower than those obtained on
the sawn end faces, which is explained by the larger area of particles encountered by the
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Fig. 4.7. Cylindrical cores were obtained for determining the splitting tensile strength

of the concrete.

hammer. Except for the specimens 10-12, the values are in good agreement with those

obtained in the direct cube tests.

From a number of specimens cylindrical cores 75 mm in diameter were taken in order
to determine the tensile splitting strength. Vertical and horizontal cylinders were sawn,

as indicated in Fig. 4.7.

According to [14] the cylinder diameter has no significant effect on the splitting ten-
sile strength. The cylinder splitting tensile strength was calculated from the well known

relation

_or
f”sﬁndl

Table 4.7. Splitting tensile strength, determined on cylindrical cores

specimen cylinder fr (N/mm?)
1b vertical 2.8
horizontal 1.9
3 vertical 4.3
horizontal 3.3
7b vertical 4.8
horizontal 3.6
8 vertical 4.2
horizontal 4.3
9 vertical 3.9
horizontal 4.3

The values for the specimens 1 and 3, from the casting bed on which occasionally large
initial slip of the strands was observed (Table 4.8), are considerably lower than those for
the other, regular specimens. The average splitting tensile strength of the cores taken
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from the specimens 7, 8 and 9 was 4.2 N/mm? with a standard deviation of s=0.4
N/mm?.

A direct relation between the tensile splitting strength and the cube crushing
strength is [5]:

Sfu=1+0.5f. 4.1)

A splitting tensile strength of 4.2 N/mm? corresponds to a cube crushing strength of 64
N/mm?. Apparently there is good agreement between the splitting tensile strengh
determined on cores and the crushing strength determined in cube tests and rebound
tests.

Steel

In the specimens }” strands with 4, = 94 mm? and a diameter of 12.5 mm as well as }"
strands with 4, = 52 mm® and a diameter of 9.5 mm were used. The steel grade was FeP
1860: the 0.02% proof stress was 1800 N/mm?, the characteristic (5% lower bound) ten-
sile strength 1860 N/mm?, and the average tensile strength 2000 N/mm?. The modulus
of elasticity was between 200000 and 206000 N/mm?.

4.2.5 Experimental results

Prestress in the strands and flexural tensile strength of the concrete

After the first flexural crack had occurred the specimen was unloaded and reloaded, so
that the decompression moment could be measured. From the flexural cracking
moment M, and the decompression moment M, the flexural tensile strength of the con-
crete can be calculated from the relation:

M, — M,
Jer= % (4.2)

The prestress in the steel g, is obtained from:

M,
w
Ap (Z + 6)
Considering the load deflection diagrams (Fig. 4.8) it was not always possible to find an
exact value of the decompression load. Therefore for each case a lower and an upper
value was estimated: the lower value of P, gives an upper limit value for f,,,and a lower
limit value for g,. In the same way the upper value of P, gives a lower limit value for f,,s
and an upper limit value for g,,. These limit values are represented in Fig. 4.9 where the
fur0, relations have been plotted.
The slabs 1b and 2, coming from the low-quality casting bed, show f.,~a, relations
which significantly deviate from the regular ones. Indeed specimen 2 had an average

initial slip of the strands equal to 6 = 2.9 mm. However, specimen 1b had the smallest
initial slip of all specimens of the whole series II (6 = 0.0 mm). The small value of ¢,

g,=

(4.3)
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could be explained by the fact that slip over a large length had occurred due to bad com-

paction of the concrete in the adjacent slab already before the slab itself was sawn.
No explanation for the deviating behaviour of the specimens 8 and 13 was found: in

both cases the slabs came from a regular casting bed and were apparently good.

Transmission of forces in the anchorage zone
In two slabs the transmission length was established by measuring the strain in the
concrete. This was done in a special test. A 6 m long slab (T 260-6 strands ;") was turned
upside down: on the surface six lines of reference points for strain measurement were
stuck on the surface, covering a range of 1 m on both sides of the sawing cut. Sub-
sequently the slab was sawn into two pieces (Fig. 4.10).

For this procedure the steel must be anchored, so that the concrete is partially de-

stressed and elongates. The strain increments are represented in Fig. 4.11.
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Fig. 4.10. Reference points on slabs 15 and 16, used to measure the transmission length
of the strands.

Ae(%10°)
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0 200 00 600 goo ° 1000
Distance to sawn end face (mm)

Fig. 4.11.

It is shown that a distance of 450-550 mm from the saw cut the influence of the
sawing has vanished. The slip of the strands at both sides of the cut was found to be dif-
ferent. In slab 15 the average slip was 0.79 mm, whereas in slab 16 it was only 0.18 mm.

Ultimate resistance and failure modes

All data regarding the failure of the slabs have been collected in Table 4.8. If both ends
of an element have been tested, this is indicated by an added letter e.g., the tests 1a and
1b were carried out at different ends of the same specimen. If the undamaged part of the
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specimen was too short for another test, the values of the initial slip of the strands are
given for both ends of the specimen. The first value applies to the loaded end. The
failure mode is indicated by an identifying letter:

A = Anchorage failure
St = Shear-tension failure
F = Flexural failure

In specimen 6 a longitudinal crack occurred first. Then eccentric shear tension failure
occurred, denoted by St/L. No shear compression failure was observed. In two speci-
mens (13 and 17) a shear compression crack developed but did not cause failure.

P, is the load at which failure occurred. V, is the ultimate support reaction (including
the dead weight of the specimen). Py, is the load at which at first slipping of one or more
strands was observed.

Nine failures were observed which displayed slip of one or more strands. In four cases
(1a, 1b, 2 and 3) the load at which the first flexural crack occurred was also the maxi-
mum capacity: in the specimens 1b and 3 the strands kept on slipping at a load which
was approximately equal to the cracking load; in specimen la and 2 the slipping load
was respectively 15% and 6% smaller than the flexural cracking load. In specimen 10b
there was a shrinkage crack in the outer rib before testing. Therefore the outer strand
should not be taken into account in the analysis of the results. All the strands slipped.

In four cases the ultimate load was higher than the flexural cracking load (8a, 9, 14

Fig. 4.12. Failure of specimen 6.
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and 20): in specimen 8a only one strand, with the smallest initial slip, did not slip during
the test. The specimen failed after rupture of this strand. In specimen 9 only one strand,
with the largest initial slip, slipped during the test: the other strands ruptured. In 14 and
20 a few strands slipped, the others ruptured.

In all, 19 shear tension failures were observed, 18 of which were straight according to
the definition given in Chapter 3.3. As mentioned earlier, specimen 6 displayed a com-
plicated type of failure: at a load of P= 250 kN a longitudinal crack occurred at the
bottom of the slab. This crack gave rise to a rather unusual type of failure (Fig. 4.12).

In the specimens 13 and 17 shear compression cracks occurred. The specimens failed,
however, by rupture of all the strands, without any slip, so that these failures were clas-
sified as straight flexural failures.

5 Analysis of results
5.1 Evaluation of theoretical lower bound expressions for series I

In Chapter 3 the theoretical background of the possible failure modes has been dealt
with. In this section the theoretical behaviour will be compared with the experimental
findings, starting with series II.

Shear tension failure

Eq. (3.16) gives a practical formula for predicting the shear tension capacity. For a com-
parison with the experiments a prestress of g,= 1150 N/mm? is used (see Fig. 4.9),
whereas a concrete splitting strength of £, = 4.0 N/mm? is used for the Dy-core and of
4.2 N/mm? for the Spiroll slabs. The dimensional properties of the specimens are given
in Table 4.4. The support length was always s= 100 mm. For the 3" strands a trans-
mission length of /,=700 mm is assumed, and for the " strands a value /, = 500 mm.
This results in values for a of 0.27 and 0.36, respectively.

The transmission lengths are slightly larger than might be expected on average (see,
for example Fig. 4.11); this difference has a negligible influence on the theoretical shear
tension capacity, whereas on the other hand uniformity with the anchorage failure
criteria is obtained, where the same values for /, and /; are used.

A survey of all the specimens which failed in shear tension and their theoretical aver-
age shear tension capacity is given in Table 5.1.

It is found that for these 18 specimens an average value V, exp/V,,:n 0f 0.91 is obtained,
with a standard deviation of s = 0.10. Arguments to explain why the value ¥, exp/Vim is
smaller than 1 have already been given in Chapter 3.3.2. Table 5.1 shows that the SP270
elements display higher values than the others. This could be due to the more favour-
able cross-sectional shape. A 5% lower bound for the shear tension capacity is found by
using a reduction factor of 0.75 (0.91 — 1.64 x 0.10). This is in good agreement with an
analysis of results of tests by other authors, published in [20], where also 0.75 was found.
Using this value in eq. (3.16) the full expression for the lower bound is:
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Table 5.1. Experimental shear tension capacities, compared with values according to eq. (3.16)

type of Viexp Viin
slab specimen (kN) (kN) Viexof Vin
H 300-5 Ta 216.0 254.3 0.85
7b 231.5 254.3 0.91
8b 181.6 254.3 0.71
H 300-10 10 208.5 280.8 0.74
11a 224.6 280.8 0.80
11b 239.3 280.8 0.85
12 226.2 280.8 0.81
T 260-10 4a 284.3 288.4 0.99
4b 268.3 288.4 0.93
Sa 286.3 288.4 0.99
5b 252.1 288.4 0.87
T 260-6 15a 234.2 266.7 0.88
15b 258.3 266.7 0.97
16a 245.9 266.7 0.92
16b 282.0 266.7 1.06
SP 270-13 18 240.6 260.4 0.93
19a 276.3 260.4 1.07
19b 263.9 260.4 1.02
1b, 3
V,,k=0.75TVfc,+a‘aN~fc, 5.1

Shear compression failure

For the shear compression capacity a theoretical 5% lower bound value is readily avail-
able, so there is no need to consider mean values. The shear compression capacity was
formulated in Section 3.4 as:

M
Vie=0.068b,,- d- & (1+0.500) V Fo+ (5.2)

where the decompression moment M, can be calculated from:
Wy
My=4, 0, e+A— (5.3)

where e=the eccentricity of the strands.

Table 5.2. Theoretical characteristic shear compression capacities

V. (shear compression)

type (kN)

T 260-6 61.1+104.5/a
T 260-10 73.3+174.3/a
H 300-5 55.8+101.2/a
H 300-10 71.7+199.5/a
SP 270-13 60.4 +126.9/a
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f.is the cylinder compressive strength of the concrete, which is taken here as equal to
f.=0.8 x 60 = 48 N/mm”.

The 5% values for the shear compression capacity of the specimens tested in the ex-
perimental program are represented in Table 5.2.

Anchorage failure
A lower limit for the anchorage capacity can be established by using the critical steel
stress envelope (eq. (3.3) and (3.4)).

According to Fig. 3.5 the flexural capacity should be reached ifa> I;. For I, <a <,
the anchorage capacity can be simply established by taking the internal lever arm as
equal to the effective depth minus half the depth of the area beyond the cavities and
reading the ultimate stress in the steel from the diagram in Fig. 3.4. For a < [, failure
occurs immediately upon flexural cracking. In this area a lower limit for the bearing
capacity of the slabs in the tests is obtained by taking the 5% lower limit for the cracking
moment. The cracking moment is equal to:

M,= M, + chzf (5.4)

where M, is obtained from eq. (5.3).

An average value for the cracking moment is obtained by taking f.,,=5.75 N/mm?
and substituting a steel stress of g, = 1150 N/mm? into the expression for M,.

For the 5% lower limit of the cracking moment an estimated value of 0.90M,, is used.

By way of illustration the anchorage capacity for the elements H 300 with five ;"
strands has been calculated as a function of the distance a between the load and the
support.

H 300-5: f,, =5.75 N/mm’
o, = 1150 N/mm?
A, =5x93 =465 mm’
A, =199 x10° mm?
Wy =14.5 x 10° mm’
Mj, =228 kNm

The average cracking moment is (eq. (5.3) and (5.4)):

14.5
M, = 465 x 1150 (115 + m) +14.5x5.75 x 10° = 183.8 x 10° Nmm
= 183.8 kNm
so that M,, = 0.9 x 183.8 = 165.4 kNm.
The steel stress after flexural cracking is o, + Ao,. This is large enough to cause
anchorage slip failure if:

2(0,+ Adp) - Ay = My
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Fig.5.1. Characteristic anchorage capacity for element H 300-5, as a function of the shear span a.

With z= 260 — ; x 30 = 245 it is found that o, + Ag, = 1450 N/mm?, so that (Fig. 5.4) I,
is found to be 1250 mm. This leads to the following conclusions:

for a> I, —3s, or a> 1950 mm M, = M

for I, —is<a<l,—1s, or 650 < a< 1200 mm M, = M, = 165.4 kNm
fora<l — %s, or a < 650 mm M, = My, ,where M, is the reduced cracking
moment, due to the smaller prestress for x < /,.

The characteristic bearing capacity with regard to anchorage failure is represented in
Fig. 5.1.

Flexural failure

The principle for calculating the flexural capacity has been dealt with in Section 3.1.
Adopting the values f, = 52 N/mm?, e,=0.1%and ¢, = 0.25% (Fig. 3.1a) it is found that
A =0.81 and § =0.41. The characteristic tensile strength of the strands is f, = 1860
N/m?. The maximum support reaction is then:

Muk

Vi = P (5.5)
The values calculated in this way are listed in Table 5.3.
Table 5.3. Flexural moment capacities
type M, (kNm)
T 260-6 224.9
T 260-10 362.4
H 300-5 228.3
H 300-10 432.4
SP 270-13 273.2

In Table 5.4 the failure loads of all specimens are compared with the calculated theoret-
ical lower bound values for the bearing capacities according to the criteria discussed
earlier on. The following points should be noted:

If the load is applied at a distance smaller than /, from the end face of the element,
anchorage failure is decisive for the flexural behaviour: in that case the full flexural
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capacity is not of practical importance, but is nevertheless mentioned as additional
information. The shear compression formula is in principle valid only for the region
cracked in bending. So if the shear compression capacity is found to be smaller than M,/
a, the region is uncracked, so that the value is unrealistic: in that case it is not
mentioned.

Fig. 5.2 shows the ratio ¥, cxp/Vukm for all tests, except the tests on the specimens
which might have been expected to be downgraded on the basis of quality control
criteria.

It is seen that the combination of criteria, as previously discussed, gives a good lower
bound for the bearing capacity. Besides, the ratio ¥, ¢xp/ V.« never exceeds the value
1.43, which shows that the margin of scatter is reasonably small.

Comparing the V, exp/Vikn values for the various types of specimens it is seen that the
specimens of type SP 265 obviously have a higher safety than the T 260 slabs, which in
their turn display a higher safety that the H 300 slabs. This is probably due to the geo-
metrical differences between the various cross-sections (Fig. 4.6.). The SP slabs have
circular holes so that a shear tension crack will preferably occur at mid-depth, within a
limited area.

The T 260 slabs have ribs of more rectangular shape which enables the crack to occur
at the weakest place within a larger area, which results in a lower shear tension capacity.
The H 300 slabs display a sudden change in rib thickness just under the centroidal axis.
From fracture mechanics it is known that in a material like concrete with limited defor-
mation capacity the stress concentration occurring in a necked area results in a reduced
true tensile strength.

Vuexp /Vu,th

1.6
0 o] o
14 o) o
- o0 OA (] A w o
12 ° LJ
aV ® ®
- a 4
10 P =
0.8
0.6
- O T 260-6
0.4 ® T 260-10
A H 300 -5
I~ A H 300 -10
02 O SP 260-13 —
0 1 2 3 4 5 7
a/dt

Fig. 5.2. Comparison between test results and theoretical lower bound capacities for the
specimens of series II.
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5.2  The relation between the initial slip of the strands upon sawing and the
transmission length

Many precasting plants have a policy of downgrading (rejecting) slabs with large initial
slip of the strands and approving slabs with small slip values. Therefore special atten-
tion is given to this matter.

The initial slip of the strands is the cumulative relative displacement which occurs
between the steel and the concrete over the transmission area when the strands are
sawn. Hence the value of this slip is theoretically equal to the differential strain. If trans-
fer takes place linearly, the relative displacement should be equal to the product of the
transfer length /, and the average differential strain (Fig. 5.3a).

6=l (5.6)
For i strands, with /,= 700 mm and o,; = 1265 N/mm? (as measured in the factory), &
should be 2.2 N/mm?. This is significantly larger than was measured (Table 4.8) on the
test specimens. Even if it were assumed that the stress in the strands develops according
to a second-order parabola (Fig. 5.3b), and a value of /=500 mm were adopted, the
value of ¢ would be as much as 1.1 mm, which is still 2.5 times the average actually
measured value.

It is probable that the sawing process is responsible for this difference. Quite con-
ceivably the response of the concrete (unstressed, heterogeneous, brittle, relatively low
modulus of elasticity) is different from that of the strands (stressed, homogeneous,
ductile, relatively high modulus of elasticity). This could mean that the initial slip of the
strands is not merely the cumulative relative displacement between steel and concrete
but is actually smaller due to the comparatively thick layer of concrete lost during
sawing.

The assumption that the sawing process affects the magnitude of the initial slip is sup-
ported by the observations described in 4.2.5 (Fig. 4.10 and 4.11). Whereas the trans-
mission length was found to be about 500 mm on both sides of the saw cut the average
initial slip values of six strands were respectively d,,=0.79 mm, with a standard de-
viation of s = 0.16 mm, for specimen 15 and & ,, = 0.18 mm, with s = 0.14 mm, for spec-
imen 16.

Fig. 5.3. Calculation of initial slip of the strands, linear (a) and parabolic (b).
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It can be concluded that formulas relating the transmission length to the initial slip
obviously do not apply to specimens with end faces formed by sawing.

5.3 The behaviour of the downgraded elements

Of special interest is the behaviour of the elements 1-3, which all failed by pull-out of
the strands at relatively low loads.

In Section 3.2 envelopes of the limiting the stress in the steel at the ends of the units to
prevent pull-out failure have been indicated (Fig. 3.3). Eq. (3.3) and (3.4) were used for
the evaluation of the results. According to Anderson [3] this envelope is valid for strands
which have an initial slip not larger than

Gpi P

Olim = 6650 (N, mm) 5.7

For ;" strands, with an average initial prestress of 0pi=1265 N/mm’, it is found that
Oiim = 2.4 mm. For larger values of the initial slip reduction factors for the allowable
steel stress are proposed in [3]. These factors depend on the amount of slip, the nominal
diameter of the strand and the development length. The values are given in Table 5.5.

Table 5.5. Capacity reduction factors for prestressing strands [3]

5/5Iim
1,/100¢ 1.0-1.5 1.5-2.0 2.0-2.5 2.5+
1-2 0.60 0.40 0.20 0
2-2.5 0.80 0.60 0.40 0.20
2.5-3 1.00 0.80 0.60 0.40

2000 Gp (N/mm?)

1000 - 1/2" strand
2

Gpoo = 1150 N/mt

1 1 1 J
500 1000 1500 2000
x(mm)

Fig. 5.4 Pull-out stress envelope according to eq. (3.3) and (3.4).
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For specimens 2 and 3, with initial slip values of 2.9 and 3.8 mm, and /,= 1970 mm
(according to eq. (3.4)) reduction values of respectively 0.60 and 0.40 are obtained. In
specimen 2 the allowable stress under the load, at a distance of

100
1475 + -5 = 1525 mm

from the sawn end, is g, = 1610 N/mm? (see Fig. 5.4). Using the reduction factor 0.6, it
is found that ¢,, becomes 965 N/mm?. So the lower bound moment for pull-out of the
strands is:

M=A,-0,,(d—20)=6(93)965(225 —20) = 110.4 kNm,
which is associated with a support reaction

110.4

V=1475

=74.8 kKN
In the test it was observed that pull-out of the strands occurred at ¥, = 62.3 kN, after the

formation of a flexural crack at V= 66.3 kN (Table 4.8).
A survey of the values for all the tests 1-3 is given in Table 5.6.

Table 5.6. Comparison between experimental values and pull-out criteria

experimental values theoretical values

a O v, v, reduction g, Vs Vs.exp
test (mm) (mm) (kN) (kN) factor (N/mm?  (kN) Vith
la 460 0.1 139.3 118 1 840 209 0.56
1b 805 0.0 204 204 1 1235 175.5 1.16
2 1475 2.9 66.3 62.3 0.6 965 74.8 0.83
3 1150 3.8 75.3 75.3 0.4 572 56.9 1.32

It can be concluded that the use of a capacity reduction factor as given in Table 5.6 is not
sufficient to ensure a safe calculation of the pull-out capacity. This is specially evident
on comparing the results of the tests 1a and 1b, carried out on both sides of the same
element, which apparently had a high concrete quality (Table 4.5 and 4.6). Nevertheless
the results of the tests reveal a significant difference in anchorage capacity.

This shows that control of the initial slip of the strands may be considered as not more
than one aspect of quality control, which should further include accurate control of the
compaction (shrinkage cracking, etc.). Especially if somewhere on a casting bed large
initial slip of strands is observed, the other parts should be checked with utmost care. It
is moreover advisable regularly to carry out tests on the slabs in order to monitor the
manufacturing process.

5.4 Comparison of theoretical lower bound values for series I

For the sake of completeness the theoretical lower bound values have also been com-
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pared with the experimental results of the tests on specimens 1-9 of series I which pre-
dominantly failed in flexure (Table 4.3).

A comparison between the experimental and the theoretical lower bound values is
given in Table 5.7. The properties of the slabs are found in Section 4.1.

Table 5.7. Experimental results and theoretical lower bound values (series I)

a Viexp failure shear shear anchorage flexural Viexp
specimen (mm) (kN) mode tension compression failure failure Vean
1 1800 61.7 F 202 87.8 - 57.7 1.07
2 2500 440 F 202 80.1 - 41.6 1.06
3 3000 360 F 202 76.8 - 34.7 1.04
4 1500 78.1 F 202 93.4 - 69.4 1.13
5 1000 1132 F 202 109.8 87.5 104.1 1.09
6 750 1509 F 202 126.2 116.7 138.8 1.29
7 500 221.0 F/A 202 - 175 208.1 1.26
8 500 314 F/A 216 - 200.2 326.4 1.57
9 375 276.5 F 202 - 233 271.5 1.37

Only in the case of specimen 8, which has 11 strands instead of 7, does the ratio V, e/
Vikan seem to be conservative.

5.5 Consequences for the design

The expressions (5.1) and (5.2) are directly suited as a basis for design equations.

With regard to the anchorage capacity a number of regions were distinguished. For
cross-sections at distances > I; the full flexural capacity is reached. For the region
1., < x < I slip of the strands will occur at a bending moment which is larger than the
flexural cracking moment. However, for x < /., anchorage failure will occur directly
after flexural cracking. For normal loading configurations such as uniformly distributed
loading it will, to ensure safety, be sufficient to require that at a distance /. from the end
of the slab the flexural cracking moment will not be reached when the design moment is
applied. In the particular case where concentrated loads are applied at x < /., the con-
crete should be regarded as cracked in bending, and the moment at which the strands
actually slip should be regarded as the governing criterion.

6 Summary and conclusions

As regards the behaviour of prestressed hollow core slabs, four different failure modes
can be distinguished, two of the flexural and two of the shear type. With regard to the
behaviour in flexure a distinction can be made between pure flexural failure, where the
bearing capacity is limited by the strength of the prestressing steel, and anchorage
failure, where the strands are pulled out of the concrete before rupture of the strands
can occur. As far as the behaviour in shear is concerned two failure modes can occur. A
shear crack can develop from a flexural crack and reduce the compression area to such
an extent that it fails: this type of failure is called shear compression failure. Further-
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more, shear failure can occur in the region uncracked in flexure if the concrete tensile
strength, at about mid-depth of the ribs, is reached. This failure type is called shear ten-
sion failure.

In order to find safe lower bound expressions for the bearing capacity, two series of
tests were carried out. Variables were the geometry and depth of the cross-section
(200 < d, < 300 mm), the shear span to depth ratio (1.7 < (a/d,) < 18.7), the diameter of
the prestressing strands (¢ = 9.3 and 12.6 mm) and the total prestressing force (average
concrete compressive stress in the cross-section 2.7 < oy < 4.4 N/mmz). Altogether
there were 19 shear tension failures, seven anchorage failures and 10 pure flexural
failures; in five tests combined flexural/anchorage failures occurred. No shear com-
pression failures occurred in spite of the incidental formation of pronounced shear-
flexure cracks (Fig. 2.5). A 5% lower limit for the shear tension capacity was calculated
from:

k= < Vfi+a-onfa
where f,, is the average concrete splitting strength, oy is the average concrete compres-
sive stress in the region where the prestressing force is fully introduced into the concrete
(on=0,-(4,/A4.)) and a is the fraction of the prestress at the inner edge of the support in
relation to the full prestress in the strands.

As a lower limit for shear compression failure the expression

1004, ) M,

Vikx=0.068b, d(1+05 ﬁ+ MV,

can be used. This is the basic equation from which the shear formula in the actual CEB
Model Code was derived. In the authors’ opinion the basic equation is more suitable
than the official one. In tests by other authors [10] shear compression failures are report-
ed, so that this equation should in any case be taken into account. The equation is prin-
cipally valid for the area cracked in flexure.

With regard to pure flexural and anchorage “pull-out” behaviour it is sufficient to
limit the stress in the prestressing steel. The current approach as described in the ACI
Recommendations [1] appeared to give adequate results; here the transmission length /,
is formulated as:

Opoo - @

li==77

whereas the development length is equal to:

=1+ (Jp 7ap°°)_¢

For cross-sections at distances > I, from the sawn end-face the full characteristic tensile
strength of the steel f, is reached. For /, < x < I; the limit value is calculated by inter-
polating between the effective prestress in the strands ¢, and f,. For 0 < x < /;an inter-
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polation between 0 and ¢, should be carried out. This procedure is valid if the initial
slip of the strands, upon sawing, is not larger than an empirical value

_Opi- @
Olim = G650 *

which is roughly 0.2 times the strand diameter. Capacity reduction factors for slip values
larger than &y, as proposed in [3], did not give safe results.

Measurements of the concrete strain before and after sawing showed that there is no
distinct relation between the initial slip and the transmission length, which is obviously
due to the process of sawing. Besides, it was found that a high concrete strength does not
necessarily guarantee good anchorage capacity. This capacity depends mainly on the
compaction of the concrete around the strands.

These observations emphasise the need for well-defined quality control criteria and
procedures.

Comparing the theoretical lower bound values with the experimental results it was
found that, for nearly all the tests, values between 1.0 and 1.4 were found for V,, ¢xp/ Vi -

Two slabs were subjected to concentrated loads at midspan, one applied centrically
and one eccentrically. The object of these tests was to investigate to what extent a con-
centrated load produces a non-uniform distribution of the strains or deflections and
thus brings about a more specific type of failure. The results indicate that the slab pos-
sesses sufficient torsional stiffness, so that it cracks and fails almost as though it were
subject to a linear or a uniformly distributed load. One test was carried out on a double
slab, coupled by a transverse joint. One of the slabs was loaded, whereas the adjacent
slab remained unloaded. At their ends the slabs were interconnected by small beams
cast in situ. It was concluded that very good load spread is achieved as a result of the con-
siderable torsional stiffness of the slabs. Since the flexural stiffness of the slabs greatly
decreases after the cracking moment has been attained, the non-loaded slab will from
then onward carry an even larger share of the load.
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8 Notation

a shear span

b total width of element

by total width of all ribs at smallest section
d effective depth

d, full depth

e eccentricity of prestressing strands
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I concrete cylinder compressive strength

See concrete cube compressive strength

S average concrete cube compressive strength

Sei concrete strength at (initial) transfer

Ser concrete splitting tensile strength

Ser concrete flexural tensile strength

I rupture strength of prestressing steel

Jok characteristic rupture strength of prestressing steel

/ length

1, distance from end face to cross-section where flexural cracking load is
equal to anchorage (pull-out) capacity

L development length

L, transmission length

Ky width of bearing plate

X depth of compression zone

z internal lever arm

A, cross-sectional area of steel

Ay cross-sectional area of prestressing steel

1 moment of inertia

M flexural moment

M, decompression moment

M, flexural cracking moment

characteristic cracking moment

ultimate moment

characteristic flexural moment

flexural moment at distance x from bearing
load

ultimate load

static moment

shear force

maximum shear force developed at slip of strands
ultimate shear force

ultimate shear force in experiment

ultimate shear force according to theory

shear force at distance x from bearing

section modulus

fraction of prestress in cross-section considered
distance factor for concrete compression zone
initial slip of strands upon sawing

average value of ¢

limit value of ¢ for which eq. (3.3) and (3.4) apply
diameter of strand

o reinforcement ratio
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Qo

O'CXX
Oy
Ocxy
aN

Opi

Opoo

10.
11.
12.
13.
14.
15.
16.
17.
18.

19.

reinforcement percentage

shape factor for concrete compression diagram
stress in concrete parallel to x-axis

stress in concrete parallel to y-axis

shear stress in concrete parallel to x- or y-axis
average concrete compressive stress in cross-section
prestress in strands

initial prestress in strands

prestress in strands after all losses
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