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PROGRESS IN RESEARCH ON REINFORCED CONCRETE PLANE FRAMES

Preface

The analysis of the non-linear behaviour of reinforced concrete framed structures has
long been the subject of investigation in various countries, including the Netherlands.
Over the years, articles on the subject by A. K. de Groot and A. C. van Riel (1967, Nos.
3/4), Th. Monnier (1970, No. 1) and J. Blaauwendraad (1972, No. 4) have been pub-
lished in this journal.

De Groot and Van Riel studied the behaviour of plain (unreinforced) columns and
used finite-difference analysis in their investigations. Monnier analysed the behaviour
of continuous beams using experimentally determined moment-curvature diagrams.
Blaauwendraad, finally, proposed a general method for plane frames, adopting an ap-
proach which tied up with the finite element method. He determined the non-linear
stiffness matrix of a bar-type member on the basis of an assumed displacement field and
of the constitutive properties of the materials concrete and steel. The computer pro-
gram designated as STANIL, which was developed in the context of those investiga-
tions, is still used in the Netherlands, more particularly in research projects.

After the publication which appeared in 1972, this program, i.e., STANIL, underwent
continuous further development. In 1974 C. Gouwens, in his graduation assignment in
the Department of Civil Engineering of the Delft University of Technology, cast the
program in a different mould. He rewrote it in such a way that the loading could be
increased incrementally in order thus to keep closer track of any particular loading pro-
cedure. The option of tensioning stiffening was also included in the program. Later on, a
special version of this program was produced within the context of the Concrete
Mechanics project of CUR-VB Committee A26 and was the subject of an article pub-
lished in Heron, 1981, No. 1c. Called STANIL/1, that special version is characterized
by, among other features, the fact that shear deformation is taken into account, so that
the forces developed in stirrups or binders can also be calculated.

The two subjects dealt with in this latest issue of Heron are again concerned with the
STANIL program. The first subject relates to an application thereof, and the second toa
new modified version called STADIF.

The application has reference to research which is being performed, in the Nether-
lands, on beam-to-column connections by CUR-VB Committee C28 “Structural
details”.

Experimental research has shown that such connections may possess less strength
and rigidity than is normally assumed in structural calculations. By making use of the
STANIL program it becomes possible to obtain insight into the residual strength of a
framed structure as a whole in the case of possible imperfections of its beam-to-column
connections. The authors, J. Blaauwendraad and A. K. de Groot, wish to record their



indebtedness to S. F. C. H. Leyten for the assistance they received from him in this
work.

The special version of the program, the second subject dealt with in this issue, has
been developed by A. K. de Groot. To this end, he replaced the calculation of the stiff-
ness matrix on the basis of an assumed displacement field by an approach based on
finite-difference analysis. Thus the earlier experience gained in the investigation of
columns has, though in modified form, been incorporated, as it were, in the generally
applicable STANIL program. The new version developed in this way is known as
STADIF. The two programs STANIL and STADIF can be used side by side, the actual
choice between them being dependent on the nature of the problem and on the future
users’ preference. STANIL ties up more closely with general non-linear finite-element
method programs, and STADIF offers greater accuracy in cases where plastic hinges
occur.



Application of the non-linear program STANIL
to the overall safety of frames with imperfect
connections

1 Statement of the problem

CUR-VB Committee C28 “Structural details” tested a number of beam-to-column con-
nections in order to obtain some idea of the strength of such connections in framed
structures. Fig. 1.1 shows the test set-up and an experimentally determined load-deflec-
tion curve. If the connection were perfect and if the beam and column behaved in a
linearly elastic manner, the diagram would comprise a straight ascending portion up to
the point where plastic behaviour occurs. Then the diagram would become horizontal.
These two portions of the diagram together characterize what is sometimes called the
elasto-plastic behaviour of the beam-to-column connection.

In the analysis of framed structures it is generally assumed that elasto-plastic behav-
iour can indeed be taken into account. As Fig. 1.1 shows, however, the experimental
results may be unsatisfactory in that the experimentally obtained strength values are
liable to fall rather far short of the calculated ones. Since the connections which were
tested has been analysed and designed fully in accordance with the Netherlands code of
practice VB74, it may well be asked whether there may not be existing structures, or
structures yet to be built, which, though conforming to the code, do not attain the
desired level of safety. The test results indeed raise the question why then no problems
have arisen in practice. The Committee accordingly studied the question as to what the
practical consequences are of somewhat deficient strength and stiffness of the connec-
tion, with particular reference to the extent of the decrease in the expected overall safe-
ty of a framed structure. The present authors were associated with that research.

This part of the publication presented here reports on a study which was carried out
with a view to obtaining information on the sensitivity of framed structures to imperfec-
tions in the connections. Such information is required also because of the considerable
scatter displayed by the test results. The investigations comprised two parts. The first of
these is concerned with braced frames (sidesway prevented), subjected to vertical load-
ing only. The second part deals with unbraced frames (sidesway permitted), which are

| Y elasto - plastic

experimental

Fig. 1.1. Test set-up for beam-to-column connection.



subjected not only to vertical but also to horizontal loading, so that they present a more
difficult problem.

Both these types of frame, i.e. braced and unbraced, are conceived as comprising
several storeys. The stiffness ratios of the columns and beams are assumed to be so
chosen that the columns have points of zero bending moment at mid-height within each
storey. Investigation can then be confined to a portion comprised between two succes-
sive points of zero moment, as shown in Fig. 1.2. It is furthermore assumed that a single-
bay and a two-bay frame will consitute the most unfavourable cases. Frames with more
than two bays contain a larger number of internal nodes, for which the expectations are
less pessimistic.

The procedure adopted in this research is as follows. The frame is designed with the
aid of linear elastic theory. The bending moments are calculated on the assumption that
the columns and beams are prismatic members and that the beam-to-column connec-
tions are completely rigid. The reinforcement is assumed to be adapted to the variation
in bending moment found to occur in the members. Plastic moments which develop
when the loading is increased are presumed theoretically all to occur simultaneously at
a load factor y = 1.7. Since the connection does not actually conform to the ideal con-
ception, however, failure of the structure may occur at a lower value of the load factor.
This lower value is determined on the basis of the actual behaviour of the part more par-
ticularly considered within the frame.

This behaviour could be derived from the behaviour of the column, the behaviour of
the beam and the behaviour of the connection. These three behaviour components will
presumably be non-linear. In the actual research conducted here, a somewhat different
procedure was adopted, however. For the analysis of the column and of the connection
the above-mentioned experimental results were used, and the behaviour of the beam
was analysed with the STANIL program. The residual safety of a framed structure is
determinable by combination of this experimental result and this computational result.

In order to explain the procedure, first a theoretical analysis of the problem will be
presented, in which the beam is still conceived as an elastic member in which a plastic
hinge suddenly achieves full development. Then follows a specific application with the
aid of the STANIL program, which gives a more realistic description of the behaviour of
the (cracked) beam.

part of
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Fig. 1.2. A representative portion of a single-bay and of a two-bay framed structure is investigated.




2 Theoretical analysis of a braced single-bay frame
2.1 Modeling the problem

The frame envisaged in Fig. 2.1 is, as already stated, assumed to be reinforced in accord-
ance with linear elastic theory. The four pin joints (hinges) cannot undergo horizontal
displacement. Under working load conditions the uniformly distributed load g acts on
the structure; the load factor y then has the value 1.0. If y is increased to 1.7, the full
plastic moment will be attained both at mid-span of the beam and at the beam-to-
column connections. Each column is of course provided with appropriate reinforce-
ment. The load factor y (or, stated somewhat differently, the overall structural safety)
can, however, increase to the value 1.7 only if the connection is able to resist the full
plastic moment of the beam.

We shall consider a load factor y which is greater than 1.0 but smaller than 1.7 and
shall investigate what happens if the connection is not perfect. The frame is shown again
in Fig. 2.2; the zones in which the full plastic moments occur are represented by the
hatched areas. The sections 1 and 2 divide the frame into three parts. The parts to the
left of section 1 and the part to the right of section 2 each comprise the column and the
connection. The part situated between these two sections will more particularly be
referred to as the “beam”. The state parameters at sections 1 and 2 will play an important
part in the calculations. For reasons of symmetry the bending moment M and the rota-
tion ¢ are equal at these two sections. This is indicated in Fig. 2.3.

L bbb

Fig. 2.1. Braced single-bay frame under vertical loding.

column and column and
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Fig. 2.2. What is meant by the designations “column and connection” and “beam”.
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Fig. 2.3. The quantities M and ¢ at the section between the “column and connection” and the
“beam” determine the analysis.

The structural part comprising “column and connection” will, in the case of an ideal
connection, behave as shown in Fig. 2.4a, representing the highly stylized M-¢ diagram;
in reality the rigidity will be somewhat less when cracking occurs in the column. The
strength of the connection is expressed by the factor y., the capacity of the connection.
For an ideal connection this factor will have the value y.= 1.7. In that case the full plastic
moment associated with the vertical loading on the frame as a whole with y = 1.7 will
just be able to develop.

What is meant by an imperfect connection is shown in Fig. 2.4b. The structural part
comprising “column and connection” is now less rigid, but also less strong. The value of
y is less than 1.7, which means that the vertical loading cannot be increased as much.
Therefore the maximum 7 that the structure can resist is likewise smaller than 1.7.

The analysis which will now be presented aims to determine the maximum value of
the overall safety y for a given capacity y. of the connection. This will be done in two
steps. First, the frame is analysed for a chosen loading level y and a chosen capacity y of
the connection. Then a method of determining the maximum y that can be resisted is
developed.

7. <17

—> ¢ —> 9

a) ideal connection b) imperfect connection

Fig. 2.4. Definition of an ideal and of an imperfect connection.



2.2 Analysis of the frame for one chosen loading level y and a chosen capacity y.
of the connection

An experimentally determined M-¢ diagram is available for the “column and connec-
tion”, and the M-¢ diagram applicable to the beam is calculated with STANIL. The two
diagrams are shown in Fig. 2.5; their point of intersection determines the values of M*
and ¢ * which will occur in this frame for the chosen values of y and y..

Fig. 2.5. Determination of M* and ¢* for one chosen loading level y and a given capacity y.of the
connection.

M-¢ diagram for the “column and connection”
The experimental results obtained for the “column and connection” mentioned in the
introduction, are not directly available in the form of an M-¢ diagram. The tests were
performed as shown in Fig. 1.1., yielding an F-¢ diagram as the result. In order to obtain
from this the M-p diagram for the “column and connection” it is necessary first to
correct the F-6 diagram for the deflection of the short horizontal portion of the beam.
With the aid of the STANIL program it was calculated what the F-6 diagram of this por-
tion would be if the “column and connection” were infinitely rigid. On subtracting this
from the overall F-é diagram the F-6 diagram for the “column and connection” compris-
ing an infinitely rigid beam portion is obtained. Then, by rescaling the axes from F to
Fe and from & to d/e, the required M-¢ diagram for the “column and connection” is
obtained, see Fig. 2.6.

The rotation ¢ cannot become infinitely large. At a certain value - the rotational
capacity - the connection will fail. The tests show this value to be ¢ = 0.0103 radians.
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Fig. 2.6. Translation of the recorded F-d relation into the required M-¢ relation.
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Fig. 2.7. Method of determining the M-¢ diagram of the beam.

M-¢@ diagram for the beam

The M-¢ diagram for the beam, for a particular chosen value of y, can be determined
entirely by calculation. In Fig. 2.7 the solid curve represents a possible bending moment
diagram for the beam. The sagitta (or “rise”) of the parabola is i7ql*. The bending
moment M acts at the end of the beam. It can be calculated what angular rotation ¢ cor-
responds to this moment. The dash line in Fig. 2.7 represents a second bending moment
diagram, which is valid for the same load g, but shifted vertically a distance AM. Now a
different moment M acts at the end of the beam, and a different (smaller) rotation ¢
occurs. The value of AM can increase until the full plastic moment M, at the end of the
beam is just attained. By so choosing AM that M decreases we cause the mid-span
moment to increase and therefore ¢ likewise to increase. If the beam behaves elastic-
ally, ¢ increases linearly and M decreases linearly until the full plastic moment in the
span is attained. A plastic hinge then develops in the span of the beam. The bending
moment diagram cannot undergo further displacement (M remains constant), but the
rotation ¢ can still increase. A mechanism is formed until the rotational capacity at the
plastic hinge is exceeded. This situation corresponds to a horizontal branch in the M-¢
diagram. In reality the beam does not behave in such an elastic/ideally plastic manner
as assumed here. In consequence of cracking and gradual extension of the plastic zone
the M-p diagram for the beam will be curved, as already shown in Fig. 2.5. The actual
shape of the diagram can be calculated with the aid of the STANIL computer program.

2.3 Determination of the maximum resistable loading level y for a given capacity y.
of the connection

From the foregoing it is now known how the M-¢ curve for the beam can be determined
fora chosen value of the loading level y. We can perform this calculation for a number of
values of y, so that a whole family of M-¢ curves for the beam is obtained. By inter-
secting this family with the M-¢ curve for the “column and connection” it can be deter-
mined what extreme value of y is possible. Fig. 2.8 illustrates this procedure for y. = 1.1.

10



Fig. 2.8. Determination of the largest y for a chosen y,=1.1.

In the example presented here the M-¢ curve for the “column and connection” will
intersect the M-¢ curves for the beam so long as y is smaller than, or equal to, 1.4. The
overall structural safety would, in this example, therefore have decreased from 1.7 to 1.4
if the safety of the connection were to undergo the considerable decline from 1.7 to 1.1.
Part of Fig. 2.8 has been reproduced in Fig. 2.9, which shows how, for the maximum
value of y, the values of M and ¢ have changed in relation to the expected values asso-
ciated with an ideal connection (y.= 1.7).

2.4 Sensitivity analysis

With one further step we obtain direct insight into the effect of y. upon y. For this
purpose we intersect all the M-¢ curves of the beam with all conceivable M-¢ curves for
a connection. This is shown schematically in Fig. 2.10. It can at once be seen what
maximum value y corresponds to a given y.. From this information a curve such as that
plotted in Fig. 2.11 can then be obtained quite simply. If this diagram represents the
behaviour of a braced frame, there still remains a residual safety (y > 1.0) for the overall
structure, even if the capacity of the connection is very poor (y. < 1.0). In Chapter 3 the
calculation will be performed for a specific case, which will confirm the validity of the
approach embodied in the theoretical analysis presented here.

Mideal
connection

Mimperfect
connection

uideal connection wimperfect connection

Fig. 2.9. At an imperfect connection the angular rotation increases considerably.
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Fig. 2.10. Overall representation of all M-¢ curves.

Fig. 2.11. Effect of the capacity y.of the connection upon the overall safety y of a braced frame.

3 Application to a braced single-bay frame
3.1 Structure

The structure to be analysed is shown in Fig. 3.1. Its dimensions correspond to those of
an actual framed structure as commonly encountered in practice, scaled downina1:2
ratio. It is to be designed in accordance with linear elastic theory, on the assumption of
completely rigid connections. The bending moment diagram for the beam is then as
shown in Fig. 3.2. The fixed-end reinforcement is taken as 1.04% of the full cross-section
(1.11% of the effective cross-section), while the span reinforcement is taken as 0.96% of
the full cross-section of the beam. In terms of elastic behaviour the span moment and
the fixed-end moment then simultaneously attain the yield moment at a load g, = 59.2
kN/m. The working load is q=159.2/1.7 = 34.8 kN/m, which therefore corresponds to a
load factor y = 1.0.

The material properties to be introduced into the STANIL -analysis are described
with reference to the ¢-¢ diagrams in Fig. 3.3.

12
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Fig. 3.1. Dimensions of a single-bay H-frame.

Fig. 3.2. Bending moment diagram for the beam, assuming clastic behaviour (A71= %qlz).

6 400 N/mm? G 24 N/mm?
T arctan Eq = T
0.21.108 N/mm? .
—> € -1.9%0 0.8%0 16 %o
— €
400 N/mm? -24 N/mm?
-0.08%%o0
steel concrete

Fig. 3.3. Stress-strain (o-¢) diagrams for concrete and steel.

3.2 Results

The M-¢ curves calculated for the beam with STANIL are shown as solid lines in Fig.
3.4, while the dash lines in the same diagram represent a number of M-¢ curves for the
“column and connection”, as might be obtained experimentally, after substraction of
the behaviour of the beam calculated with STANIL, as already noted with reference to
Fig. 2.6. For y.= 1.7 the diagram shows two curves, one based on elasto-plastic analysis
and the other which holds experimentally. The highest value attained by the diagrams
for y.= 1.7 is M= 49.9 kNm, since the connection has been designed for ¢ = 34.8 kN/m
or g,= 1.7 x 34.8 = 59.2 kN/m, while according to Fig. 3.2 a support moment occurs
with magnitude M= 0.78 M=0.78 x 5q1> = 49.9 kNm. The other y, curves terminate at
49.9

M=Yc><—17

From Fig. 3.4 it appears that the rotational capacity of the beam in the case under inves-
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Fig. 3.4. M-¢p curves for beam (—) and for column and connection (----) for a two-bay frame.
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Fig. 3.5. Relation between y and y, for single-bay frame.

tigation is often sufficiently large and that failure is mostly due to insufficient rotational
capacity of the connection. Only for values of y > 1.45, or for y.> 1.2, does the beam
become the governing criterion. In Fig. 3.5 a number of failure points are indicated by
small triangles. With reference to this diagram it can be noted that a decrease in the
value of y. from 1.7 to 0.6 results only in a decrease from 1.7 to 1.18 in the value of y.

If it had been presupposed that the rotational capacity was not of governing signifi-
cance, elementary limit analysis could have been applied. On the assumption that the
plastic moments at the ends of the beam and at mid-span are in the same proportion to
each other as the reinforcement percentages, the value of y associated with y.= 0.6 can
be calculated as follows:

14



0.6
17 %1.04 + 0.96
7="Toa+096 17=113

This result is, within 5%, of the same magnitude as that of the (accurate) analysis per-
formed. It can be stated that in fact the elementary collapse solution is valid. This is con-
firmed by Fig. 3.4, from which it is apparent that the capacity of the connection is prac-
tically always fully utilized. The reason why the (accurate) analysis yields a value for y
which is about 5%higher is that the STANIL program somewhat over-estimates the full

plastic moment in the beam.

3.3 Conclusion for braced single-bay frame

If the safety of the connection decreases from y.= 1.7 to y.= 0.6, the safety of the
braced structure decreases only from y =1.7 to y =1.18.

If the safety of the connection exceeds y,= 1.2, the beam constitutes the governing
criterion. For values y, smaller than 1.2 the rotational capacity of the connection
governs overall structural failure.

4 Theoretical analysis of a braced two-bay frame

The structure will again be divided into separate parts, as shown in Fig. 4.1, including
the plastic zones. For reasons of symmetry only one bay is represented here. To the left
of section 1 there is, as in the previous case, a structural part comprising a “column and
connection”, for which experimentally determined M-¢ curves are available. Between
section 1 and the axis of symmetry of the frame is the “beam”. A fully plastic hinge can
develop at two sections in this beam, namely, in the span and at the centre column (axis
of symmetry). Now, with the two quantities Mand ¢ at section 1, it is possible to control
the analysis. The model shown in Fig. 4.2 will be used for the purpose. As in the case of

Ky

I
|
|
l
|
1

Lcolumn .and
connection o

|
i Rk beam iJ

Fig. 4.1. Definition of “column and connection” and “beam” in a two-bay frame. Plastic hinges
may form in the hatched regions.
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the single-bay frame, the M-¢ curve of the “column and connection” is intersected with
the M-¢ curve of the beam. The M-¢ curve for the “column and connection” is the same
as has already been discussed; that for the beam is somewhat different, but is deter-
mined in principle by a similar procedure to that described previously. This is shown in
Fig. 4.3. If M decreases, ¢ will increase, and so will be bending moment at the axis of
symmetry. When the latter moment becomes the plastic moment, an end hinge is
formed. The beam then becomes less stiff. The rotation can still increase until the rota-
tional capacity of the hinge has been exhausted. It is also conceivable that a second
hinge develops in the span of the beam. The actual curves calculated with the STANIL
program will be curved because of gradually developing formation of cracks and plastifi-
cation.

The analysis procedure is similar to that for the single-bay frame. The family of M-¢
curves of the “column and connection” and the family of M-¢ curves of the “beam” are
again plotted in the same diagram. In this way the effect of the safety y. of the connec-
tion upon the overall safety y can be determined also for the two-bay frame.

VETITITIe|

Fig. 4.2. The quantities M and ¢ at the section between “column and connections” and “beam”
determine the analysis.

! plastic hinge in
/ l\ line of symmetry

Fig. 4.3. Determining the M-¢ curve for the beam.
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5 Application to a braced two-bay frame
5.1 Structure

The structure to be analysed is shown in Fig. 5.1. The two-bay H-frame considered here
is similarin respect of its geometry to the single-bay H-frame in Fig. 3.1. On the assump-
tion of a completely rigid beam-to-column connection and on the basis of linear elastic
theory we obtain the bending moment diagram represented in Fig. 5.2, which, for
reasons of symmetry, need be considered only for one bay. The structure is designed for
a working load ¢ = 35.2 kN/m. The failure load is ¢, = 1.7 x 35.2 = 60 kN/m. The rein-
forcement is accordingly as follows:

left: 0.86%
centre: 0.86%  of total cross-sectional area
right:  1.60%

The material properties are assumed to be as indicated in Fig. 3.3.

200 g 200 q 200 (b= 150)
lH 309 (b=150) APE Hl 330(17:150)
é 1

*
“ dimensions

1800

in mm

3600 1 3600
e

T

»
2l

Fig. 5.1. Dimensions of two-bay H-frame.
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Fig. 5.2. Bending moment diagram for the beam, assuming elastic behaviour.

5.2 Results

The relation between M and ¢ of the left-hand support of the beam was again calculated
with the aid of STANIL for a number of values of y. The results are represented by solid
lines in Fig. 5.3, while the dash lines in this diagram are again the M-¢ curves for the
“column and connection” as might be obtained from tests. According to Fig. 5.2 the
maximum value for y.= 1.7 is:
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_ 1 0.64
0.64M=0.64 x 75 gl = T3 X 60 3.62=41.5 kNm

For any value of y. the capacity of the connection is therefore:

41.5

M=yox 37

There is found to be a characteristic difference between the results for a single-bay
frame (Fig. 3.4) and those for a two-bay frame (Fig. 5.3). Because of the high per-
centage of reinforcement at the centre column the beam now has much less deforma-
tion capacity. This being so, the rotational capacity of the connection is indeed nowhere
the governing criterion. In Fig. 5.3 the small triangles denote the points where failure of
the beam occurs. The corresponding combination of y and y. is indicated in Fig. 5.4. It
appears that, despite the fact that y. = 1.7, the overall safety of the structure is no higher
than 1.55, which is due to the elastic design approach adopted in which no account is
taken of the shape of the M-¢ curve of the connection. Against this, for values of y. lower
than 1.7 the values of y undergo only a small decrease. Thus, for y.= 0.7 it is found
that y is still relatively high at 1.3.

From Fig. 5.3 it can readily be seen when the (accurate) solution that has been
obtained will agree most closely to the result of elementary limit analysis. The capacity
of the connection is not fully utilized for any value of y.. However, the demand made
upon this capacity increases according as y.is smaller, i.e., the elementary limit analysis
offers a more closely valid approximation as y. decreases.

failure of failure of
beam A connection
. 50
e || [ [ | |
z 1
x F 7 =17 (elastic)
; 4 415 o e L pputi g Ry %
0 15 [ g
— lll. \\\ E_ b
ha \~~ L-—[ 16 —
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e O el
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0002 0004 0006  \0008 0010
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Fig. 5.3.  M-¢ curves for beam (—) and for column and connection (----) for a two-bay frame.
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Fig. 5.4. Relation between y and y, for two-bay frame.

5.3 Conclusion for braced two-bay frame

If the safety of the connection is y. = 1.7, the overall safety of the structure turns out to
be lower, namely, y = 1.55. If y decreases from 1.7 to 0.7, the corresponding decrease in
overall safety is merely from y = 1.55 to y = 1.3. The structure fails in the beam, the rota-
tional capacity of the connection being greater than that of the beam.

6 Theoretical analysis of an unbraced single-bay frame
6.1 Modeling the problem

Fig. 6.1 shows a representative portion of a framed structure which is subjected not only
to a vertical uniformly distributed load g, but also a transverse force (shear) S due to
wind and second-order effects due to sidesway. The frame under consideration is again
assumed to have been designed on the basis of linear elastic theory. The reinforcement
determined in this way is, on account of the reversibility of the transverse force,
arranged symmetrically in the structure. Under working load conditions the loads Sand
q are acting. If the load is increased 1.7-fold (ys= 1.7 and y,= 1.7), a collapse mecha-
nism develops because a fully plastic hinge is formed at the right-hand beam-to-column
connection and, simultaneously, in the span of the beam. This planned state of failure is
denoted by the hatched plastic zones in Fig. 6.2.

Fig. 6.1. Unbraced single-bay frame under vertical and horizontal loading.
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Fig. 6.2. Definition of “column and connection” and “beam”.

In order to determine how this frame behaves if the connection is imperfect, two sec-
tions 1 and 2 are again applied. The behaviour of the beam between these sections will
be determined analytically. In this part of the beam a full plastic moment can occur only
in the span. To the left of section 1 and to the right of section 2 a “column and connec-
tion” will be considered, for which experimentally determined results are available.

The quantities M) and ¢, at section 1 are not equal to the quantities M, and ¢, at sec-
tion 2 and will therefore have to be considered separately for these respective sections.
Their positive sign convention is shown in Fig. 6.3.

6.2 Analysis of the frame for chosen loading levels ys and y, and a given capacity y,
of the connection

“Column and connection” behaviour

The left-hand “column and connection” is subject to a deformation which is now not ¢,
but  minus ¢;. The angle 6 determines the sidesway, more particularly the tilt, of the
frame. This tilt is equal on the left and on the right, so that the two “column and connec-
tion” parts undergo different deformations if ¢, is not equal to ¢,. The experimentally
determined M-¢ diagrams should now be read as Mi-(8-¢;) and M,-(8-¢,) diagrams
respectively, as shown in Fig. 6.4.

“Beam” behaviour

The behaviour of the beam cannot now be described with an M-¢ diagram. There is an
M,;-¢, diagram for the end at section 1 and an M>-¢, diagram for the end at section 2.
These diagrams are moreover interlinked and can be established for a particular (fixed)
choice of ysand y,, as appears from Fig. 6.5. For a chosen value of ys the total bending
moment to be resisted due to the horizontal shear forces has the value ysSh. This must
be equal to M, minus M, so that the difference of the two moments is constant.
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Fig. 6.3. The quantities M|, ¢,, M, and ¢, at the sections, also the angle of tilt 4.

—> -y, —>0-v

3

Fig. 6.4. Moment-deformation diagrams for the “column and connection”.

— M,

Fig. 6.5. [Initial assumption for beam behaviour.

21



In the same way as has been done in the case where only vertical loading acts on the
structure, the bending moment diagram in Fig. 6.5 can as a whole be shifted upwards or
downwards parallel to its original position. Thus, different sets of (interlinked) values of
M, and M, are obtained, and also different values of ¢, and ¢, for each shifted position of
the diagram. If the beam behaves in a purely elastic manner, ¢, and ¢, will, when the
parallel shift is applied, increase by equal amounts, but of opposite sign. In a ¢,-¢, dia-
gram the pairs of values thus move along a line at 45°, as indicated in Fig. 6.6. This line
terminates at one end when the full plastic moment just develops at section 2, and at its
other end this line changes into a line sloping at a different angle when a plastic hinge
develops in the span of the beam (formation of a mechanism). This line continues until
the rotational capacity in the span has been exhausted.

We now have at our disposal four components for the final calculation, namely, two
M-¢ diagram for the “column and connection” parts in Fig. 6.4 and two M-¢ diagram for
the “beam” in Fig. 6.6. We must intersect these in pairs in order to determine the values
MF, o, M5 and @3 which fit in with the chosen loading level and the given safety of the
connection. The angle of tilt § must moreover be calculated. The problem can be
worked out quite simply by drawing all four diagrams in one composite graph, as has
been done in Fig. 6.7. On the lines relating to the two ends of the beam 1 and 2 the points
corresponding to each other have been marked by the same letter (a to f). The two lines
for the “column and connection” parts to the left of 1 and to the right of 2, respectively,
coincide to form a single line and have here been plotted in the reverse position in rela-

plastic hinge
~ ocurs at end 2

right hand end 2 ¥y ¥,

left hand end 1

Fig. 6.6. The M,-¢, and M»-p, diagrams for the ends of the beam are interlinked through the ¢;-
@, diagram.
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Fig. 6.7. Determination of M, ¢*, M5" and ¢;* for a chosen loading level ysand y, and a given
capacity y. of the connection.

tion to Fig. 6.4. This line is so shifted horizontally that the line for beam end 1 and the
line for beam end 2 are intersected at points corresponding to each other. In the
example presented in Fig. 6.7 this occurs between the points marked c and d. The angle
of tilt # can now be directly read as the horizontal distance between the origin of the M-
¢ diagrams of the beam end and the origin of the M-¢ diagram of the “column and
connection” parts. The ends of the beam have then passed through the deformations ¢+*
and @5, and the “column and connection” parts through the deformations 8 — ¢ and
6 — o5, respectively.

6.3 Determination of the maximum resistable loading level ys for a chosen loading
level y, and a given capacity y. of the connection

Ifitis desired to know the loading that can be resisted for a given capacity of the connec-
tion, there are several alternative loading procedures that can be applied. The first
possibility is to increase ys and y, equally. A second method consists in keeping y,
constant and increasing only ys. The first of these alternatives is a pessimistic assump-
tion because in actual practice more particularly the vertical loading will not increase
much. Partly because the present investigation aims to explain why no mishaps have
occurred in practice, the second alternative will now be worked out, y, being kept con-
stant and given the value 1.0 (in reality even this working load assumption will very
seldom occur). For a given capacity y. of the connection we can then determine the
maximum yg that can still just be resisted. The analysis explained in 6.2 must, for this
purpose, be repeated for a number of values of ys. In this way two families of M-¢ curves
are obtained, for the beam ends 1 and 2, respectively. These families must be inter-
sected with the curves of the “column and connection” parts, which will move farther
and farther to the right because the tilt 8 increases with increasing ys. The procedure is
similar in principle to that applied to braced frames in Fig. 2.8, but is only somewhat
more laborious. Fig. 6.8 shows an example where y, = 1.0 and y. = 1.4 has been chosen.
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Fig. 6.8. Determination of maximum ps for chosen y, and given y..

Two curves of each of the two families have been drawn. Two values for yshave been
introduced. For ys= 1.2 the strength of the connection is not fully utilized; but for yg=
1.5 the ultimate strength is utilized, so that this is the highest value of ysthat is still pos-
sible for this capacity y.= 1.4 of the connection.

6.4 Sensitivity analysis

Finally, the sensitivity of the overall unbraced framed structure to imperfections of the
connections will be summarized here. As has been done for braced frames in Fig. 2.11,
in the present case, too, the maximum yg can be plotted against the value of y... In order
to draw this diagram the calculation set forth in 6.3 must be repeated for various values
of the capacity y. of the connection. The result will be as shown in Fig. 6.9. In compari-
son with the corresponding diagram in Fig. 2.11 for braced frames an unbraced frame is
more sensitive to a decrease in y.. It should be borne in mind, however, that for a perfect
connection (y. = 1.7) the value of ys can become much higher, since the vertical loading
has been put at y,= 1.0, while the structure has in fact been designed for the loading
levels ys=1.7 and y,=1.7.

6.5 Second-order effect

So far, no attention has been paid to the second-order effect. With the results obtained it
is, however, possible to gain some insight into this. The schematic representation in Fig.
6.1 for unbraced frames must, for this purpose, be supplemented with a vertical normal
force N acting in the structure (Fig. 6.10). When sidesway occurs, this force will produce
an additional horizontal shear @ N. The total shear Syis therefore composed of a contri-
bution ysS due to wind and a contribution N due to the second-order effect:

Sy=ysS+ 6N (1)
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7q = 10

Fig. 6.10. Second-order effects give rise to an extra horizontal shear &N.

For Sy we may write ysyS. Actually, Fig. 6.9 represents the relation between ysyand y..
In order to obtain from this the relation between ys and y. we can write for (1):

)ISNSZ )’5S+ ON
whence we obtain:

ON
Ys=VYsN— S (2)

The magnitude of N will depend approximately on the number of storeys (n) in the
framed structure. Then the following approximation will hold for the bottom storey:

N=n-ql

so that (2) becomes:
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/
ys=ysv—nf & 3)

We have thus obtained a formula for correcting the results, as shown in Fig. 6.9, for the
second-order effect. The factor ¢//Sis a constant in the formula. The tilt 6 can be read
from the diagrams for any value of ysy. In principle, the adjusted diagram will be as
shown in Fig. 6.11. According as n increases the value of yg decreases.

7s [ without
| 2€ order~<

|
|
—|‘~with 2 order

I
|
|
L |
|
|

10 20

Fig. 6.11. Effect of the capacity y.of the connection on the overall safety ysofan unbraced frame,
with and without second-order effect.

7 Application to an unbraced single-bay frame
7.1  Structure

The frame to be analysed is shown in Fig. 3.1 and also in Fig. 7.1. Besides a uniformly
distributed load g = 34.82 kN/m there is a transverse force (shear) S = 16.34 kN acting
on the structure, which is designed for y,=ys=1.7, i.e., for ¢,= 1.7 x 34.82 = 59.2
kN/m and S, = 1.7 x 16.34 = 27.8 kN. The bending moment diagram, for elastic behav-
iour, is given for y, = ys= 1.0 in Fig. 7.2. The support reinforcement is determined for
section 2, where M, = 74.8 kNm, requiring a steel percentage of 1.65%, while the span
reinforcement for M, = 46.2 is 1.05% (percentages referred to gross cross-section). In
the STANIL analysis both the span reinforcement and the support reinforcement are
assumed to be present over the whole length of the beam. As in the two preceding
worked examples, the o-¢ diagrams given in Fig. 3.3 have been adopted. The M-¢ rela-
tions for the connections will have to be shifted about, as explained with reference to
Fig. 6.8, in.order to find the highest possible value of ys. Accordingly, the M- relations
for the connections are presented separately in Fig. 7.3. This diagram includes these re-
lations also for negative values of ¢, since (as will appear in due course) the support
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Fig. 7.1. Dimensions of single-bay H-frame mat in mm = dimensions in mm.
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Fig. 7.2. Bending moment diagram of beam, assuming elastic behaviour.

My =146 kNm

moment at M is liable to change its sign. The M-¢ curve designated by y.= 1.7 does of
course again attain the failure moment (in this case M, = 74.8). For the other values of y,
the maxima are situated at 74.8 x y./1.7. The diagram based on elastic behaviour is like-
wise indicated for y., while the rotational capacity of the connection again corresponds
to the limit 0.0103.

7.2 Results

Figs. 7.4 and 7.5 show M;-¢, and M,-¢, curves calculated with STANIL for two values of
ys,namely, ys= 1.0 (low) and ys = 3.0 (high). For the vertical load ¢ the value y, = 1.0 is
adopted. These diagrams also include some M-¢ curves (shown as dash lines) from Fig.
7.3. These curves have been shifted in the manner described in 6.3. The value of y, for
which the structure fails can be accurately determined by interpolation. For a low value
of the shear (ys=1.0) a low capacity of the connection (y.= 0.81) will suffice, and the
moments in the beam are of limited magnitude (see Fig. 7.4). In the case of a high value
of the shear (ys= 3.0) the situation changes (see Fig. 7.5): a high capacity of the connec-
tion is then required, and much larger moments occur at the end of the beam.
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Fig. 7.3. M-¢ relation for beam-to-column connection rotational capacity of beam-to-column
connection elasto-plastic.

In all cases failure is caused by the rotational capacity of the beam-to-column connec-
tion being exceeded. Only if intersection points were to occur on the horizontal branch
of the Mi-p, and Ms-¢, curves, respectively, could the rotational capacity of the beam be
the determining criterion. With the large shear (ys = 3.0) the plastic hinge in the span
develops; but there is then as yet no question of the rotational capacity being exhausted.
Besides y., the associated tilt  (sidesway) is also indicated in Figs. 7.4 and 7.5. The
values obtained for y are assembled in Fig. 7.6 and plotted as a function of ys in the
manner presented in Fig. 6.11. In order to determine the result taking in due account
the second-order effect, it is necessary to know the number of storeys in the structure.
The magnitude of the shear for which this frame has been designed corresponds to
approximately four storeys. This is the assumption adopted in Fig. 7.6 for the purpose of
the design calculation.

Itis to be noted that in this diagram the upper part of the relation between ysand y.is
shown as a dash line and that an upper limiting value of ys = 2.84 has been imposed. The
reason for this is as follows. So far, it has been assumed that the top reinforcement is
present over the whole length of the beam. In reality, however, the top reinforcement
will extend to the point of zero bending moment. The most unfavourable combination
of loads for which this zero moment point has to be determined in the design is represent-
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Fig. 7.6. Effect of the capacity y. of the connection on the overall safety ysof an unbraced frame
with y,=1.

ed by y,=1.0 and ys= 1.7, from which, on the basis of an elastic analysis, a length of
900 mm is found. The STANIL calculations showed, however, that in the region repres-
ented by the dash lines in Fig. 7.6 the negative support moment extended beyond the
above-mentioned 900 mm, with the result that the structure would fail prematurely.

It turns out that the load factor yg can in fact increase far above the value 1.7. This is
because the structure has been designed for loading in which both the shear and the ver-
tical load are increased by a factor of 1.7. In the research envisaged in this report the fac-
tor adopted for the vertical load is 1.0, in which case the factor for the horizontal load can
be expected to go above 1.7. If the capacity y. of the connection becomes low, the load
factor ys'nevertheless decreases to below 1.7. The capacity y. must, however, become
manifestly less than 1.0 before the situation is reached where even the horizontal work-
ing load can no longer be resisted.

A closer inspection of Figs. 7.4 and 7.5 leads to the following conclusion. For a high
value of y. (associated with Fig. 7.5) a full plastic moment develops both at the connec-
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tion and in the span of the beam. In that case the solution provided by elementary limit
analysis is therefore valid. For a low value of y. (Fig. 7.4) a fully plastic hinge does not
develop in the span because the rotational capacity of the connection is not sufficiently
high for that to occur. The structural safety is then less than would follow from elemen-
tary collapse analysis. For y.= 0.8 the elementary analysis would indicate ys=1.55,
whereas in reality a value of no more than ys=0.96 is found, as is seen from Fig. 7.6.

7.3 Conclusions for an unbraced frame

In order to obtain overall structural safety greater than corresponding to ys = 1 the value
of y. must be not less than 0.88. This is apparent from Fig. 7.6, from which the influence
due to the second-order effect is immediately ascertainable. Exceeding the rotational
capacity of the beam-to-column connection is always the cause of failure.

8 Conclusions

The investigation reported here was carried out with a view to finding out what con-
sequences an imperfect beam-to-column connection has upon the overall safety of a
structure. In order to provide a general answer, the results of the analysis are sum-
marized for the range 0.7 <y.< 1.7 in Fig. 8.1.
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Fig. 8.1. Summary of all combinations of highest possible load factors and connection
capacities.
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In the braced frames investigated the maximum possible load factor (or in other
words: the overall safety of the structure) does indeed decrease, but remains above the
value 1.0. This would still be the case even if the connection were so poor as not to be
able to resist even the working load (y. < 1). There is found to be little difference be-
tween single-bay and two-bay frames. However great the variation in the strength of the
beam-to-column connection, it still always remains possible to resist the working load.

The unbraced frame investigated is found to be more sensitive to variation in the
strength of the beam-to-column connection. In the range for y, under consideration the
safety of such a frame decreases from 2.6 to 0.5, whereas the corresponding decrease
for a braced frame is merely from 1.7 to 1.2. Yet this does not cause difficulties in prac-
tice, since the working load (ys= 1.0) can be resisted so long as the capacity of the con-
nection is not less than y.= 0.9. In unbraced frames, too, considerable variation in the
strength of the beam-to-column connections can occur without this having any notice-
able effects on existing buildings.

It was also investigated whether it would have been permissible to apply elementary
limit load analysis. For the single-bay braced frame this is indeed do. However, for the
two-bay braced frame such analysis is permissible only for small values of y.. For large
values of y. there is not sufficient rotational capacity in the beam span. In the case of an
unbraced single-bay frame the elementary limit analysis may be used only for large
values of y... If the value of y. is low, the rotational capacity of the beam-to-column con-
nection is seriously deficient, so that the safety falls short of what elementary limit
analysis suggests.

Notation

b width of beam or column
e eccentricity of load in experiment
F load in experiment
/ span of beam
M  bending moment acting on beam-to-column connection
AM increment of M
M reference value of bending moment (f5q/°)
M, bending moment at left-hand end of beam
M, bending moment at right-hand end of beam
M*  final moment at beam-to-column connection
M, ultimate (plastic) bending moment

normal force in the frame

number of storeys

q vertical distributed load on beam
q., ultimate value of ¢

S total horizontal shear force in frame
S, ultimate value of S

0 displacement in experiment



Ysn

stress

strain

load factor (safety)

load factor (safety)

local quantity

load factor (safety)

capacity of the connection (safety)
rotation of beam-to-column connection
rotation of left-hand end of beam
rotation of right-hand end of beam
final value of rotation

angle indicating the tilt of the frame (due to sidesway)
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Development of STADIF, a special version of
the program, on the basis of finite differences

9 Introduction

It has already been stated in the Preface that the new program called STADIF for the
non-linear analysis of reinforced concrete plane framed structures is a modification of
the STANIL program, as elaborated by Gouwens [4] in 1974. In that program an
assumed displacement field is considered in which the displacements perpendicular to
the axis of the member conform to a third-degree curve, while those in the direction of
the axis are described by a second-degree curve chosen for the purpose. The essential
feature of STADIF is that it does not use an assumed displacement field, but that always
the actual displacement field is calculated by the application of finite-difference analy-
sis for each member. The great advantage of this procedure is that along the entire axis
of the member equilibrium between the external and the internal forces is obtained. In
the method with the assumed displacement field this equilibrium exists only between
the external and the internal nodal forces, which often gives rise to difficulties in cor-
rectly interpreting the results of the calculations. This is explained in Fig. 9.1. The
member shown in Fig. 9.1a, made of reinforced concrete with the cross-section shown
in Fig. 9.1b and ¢-¢ diagrams as presented in Fig. 9.1c, undergoes deformation in con-
sequence of loading which acts at the ends.

In an analysis with STANIL a state of equilibrium is attained as shown in Fig. 9.1d.
The solid line indicates the so-called internal bending moment curve which is obtained
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Fig. 9.1. In the method with the assumed displacement field no equilibrium exists between the
external and internal forces along the axis of the member.
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