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Abstract

A number of instability problems are encountered in the design of stiffened plate
panels loaded within their own plane. Two such problems specifically associated with
the stiffeners are treated here:

a. The instability of transverse stiffeners. In consequence of imperfections these stif-
feners are subjected to a load which increases with the deformations and is produced
by the primary load acting within the plane of the plate.

b. The torsional buckling instability of longitudinal stiffener of open cross-sectional
shape which are primarily subjected to compressive load.

Rules for the analysis of both forms of instability are derived.



The design of transverse and longitudinal
stiffeners for stiffened plate panels

1 Introduction

In connection with the revision of the Dutch Code VOSB ’63 (Code of Practice for the
Design of Steel Bridges) [9] it emerged that, till then, little attention had been paid to
some particular forms of instability which may occur in the stiffeners of plate girders.
There was a design rule only for transverse stiffeners by means of which the required
flexural stiffness could be calculated. The background to the rule was, however, based
on the development of instability in an initially perfect structure.

For the revised version of VOSB ’63 some rules for analysing stiffened and unstif-
fened plate panels, loaded in their own plane, were established [8]. Two specific instab-
ility problems for stiffeners are dealt with in the present article. The necessary analysis
rules are also derived.

a. Instability of transverse stiffeners [1, 4]

If a plate panel stiffened with transverse stiffeners is loaded in two directions within its

plane and is moreover loaded perpendicularly to its plane, such stiffeners will be sub-

jected to the following loads:

1. A directly-acting transverse load of constant magnitude.

2. A deflection-dependent transverse load arising from the loading within the plane of
the plate and attributable to geometric imperfections of the transverse stiffeners.

3. The normal force and moment acting at the ends of the transverse stiffeners and

caused by various possible circumstances, e.g., loading in the plane of the plate in a

direction parallel to these stiffeners, cantilevering of the stiffeners, etc.

The stability of a transverse stiffener loaded in this way can be assessed with reference
to the non-linear load-deformation behaviour, which can be described by means of a
fourth-order differential equation with non-constant coefficients. Alternatively, this
behaviour can be described by the repeated solving of a series of fourth-order differen-
tial equations with constant coefficients.

From the solution obtained by either of these methods, which is in fact a representa-
tion of the state of deformation of the transverse stiffener, it is possible to calculate the
maximum moment, or the maximum stresses, acting in the stiffener. It can then be
stipulated as a condition that the maximum moment must not exceed a particular
value.

b. Torsional buckling of longitudinal stiffeners of open cross-section [3]

Longitudinal stiffeners of open cross-section which are loaded in compression may
undergo torsional buckling as an instability mode. A check for the possible occurrence



in this instability mode can be performed in analogy with that for flexural buckling. The
procedure is as follows.

The specific slenderness ration of the longitudinal stiffener is first determined. It
depends on the stress at which Euler torsional buckling occurs. Formulae for determin-
ing the critical elastic torsional buckling stress have been derived for flat bar-on-edge,
T-section and L-section stiffeners in accordance with [5].

On the basis of the calculated specific slenderness ratio the stress is determined at
which the longitudinal stiffener becomes unstable, taking account of initial imperfec-
tions, residual stresses and plastic behaviour [6].

2 Transverse stiffeners
2.1 General

Asaresult of geometric imperfections of the transverse stiffeners, measured perpendic-
ularly to the plane of the plate, a load will act upon the stiffeners when the plate is load-
ed in its own plane.

On the assumption that the pre-existing deflection varies in sign from one transverse
stiffener to the next, loading of the plane panel in its own plane will produce a so-called
“concertina” action, as shown in Fig. 1.

With this schematization a requirement for the stiffness of the transverse stiffeners can
be derived, based on geometrically non-linear and physically linear elastic behaviour.

l‘u

section A-A

——— reference line of panel
—.—.— panel in the unloaded condition
-_—— " » o loaded condition

with: @ = spacing of transverse stiffeners
| = length of transverse stiffeners

Fig. 1. Schematization of a plate panel stiffened with transverse stiffeners.



2.2 Plate panel, subjected to linear stress distribution,
supported by transverse stiffeners with an initial imperfection

Starting points:
a. The panel is loaded with stresses acting in its plane in accordance with the following
distribution (see Fig. 2):

a(x):027a]-x+al (1)

Putting o, = wo, this may alternatively be written as:

a(x)=al'(y/—l--x+1) 2
where:

o = largest compressive stress in the panel
0, = smallest compressive or largest tensile stress in the panel
! =length of the transverse stiffener

Note: compression = positive
tension = negative

b. The transverse stiffeners have an imperfection which is affine with respect to the de-
flected shape which occurs if the loading o (x)d acting in the plane of the plate would
act perpendicularly to the transverse stiffeners. This deflected shape is a good
approximation for the buckled shape for the transverse stiffener without imperfec-
tion.
The deflected shape obtained in this way is so scaled that the maximum displace-
ment of the transverse stiffener is equal to a chosen initial imperfection e, for
example: e= IIUOI.

c¢. The plate panels are connected by hinged joints to the transverse stiffeners (so-called
piano hinges).

d. The transverse stiffener is conceived as a beam on two hinged supports.

%2

o

Fig. 2. Stress distribution in the plane of the plate; all edges freely supported.



2.3 Analysis with the aid of a fourth-order differential equation
with non-constant coefficients

2.3.1 Transverse loading on the transverse stiffener
If the transverse stiffeners deflect alternately, the transverse loading on these stiffeners
is:

Jy = 2006 () (3)

a

where:

a = centre-to-centre spacing of the transverse stiffeners

p@=a-fw-1 31l @)

where ¢’ is the average plate thickness:

01+ 2 A
' =——=
/

and:

| = width of plate panel
A, = cross-sectional area of longitudinal stiffener
0 =plate thickness

Substitute (4) into (3):

_45,0'1
= .

q(x) (2 () +:(x)) )

‘(y/_l)-lfﬂ

2.3.2 Determination of the initial deflected shape y;(x)
of the transverse stiffeners

The initial imperfection of the transverse stiffeners scaled to a chosen imperfection e
can be written as:

e

e 6
yp(x)max ( )

Yi(x) =y (x)

The following fourth-order differential equation can be established for the deflection
¥, (x) of the transverse stiffener under a load p (x):

Eb,)" (x) =p(x) (7
Substitute (4) in (7):

-0’ (3)

X
ELVA"'(X):Gl'l(‘//"l)'1'+1



Equation (8) can be written as:

»'(x)=Mx+N )
where
0 ,0'1 (l// it 1)
M="Fr "1
_ 5’0'1
= EI

General solution of the homogeneous differential equation:

" (x)=0 (10)
Put

¥, (x)=Ax> + Bx’ + Cx+ D 1)

y"=0 (12)

Conclusion (11) satisfies the homogeneous differential equation.
A particular solution of the non-reduced differential equation (9) of the following
form is sought:

¥y (x) = Px’ + Qx* (13)
Hence the following requirement applies:

120Px +24Q= Mx+ N
This relation is satisfied if:

P=M
Q=N
The general solution of the non-reduced differential equation is:
Yy =1 Mx® + % Nx* + Ax> + Bx* + Cx+ D (14)

Boundary conditions:

x=0:y,(x=0=0 - D=0 (15)

x=0:y/(x=0=0 - B=0 (16)

x=1:y,(x=10)=0 a7

x=1:y/(x=1)=0 (18)
From (17) and (18):

M+ NI+ AP + Cl=0 (19)

M+ INI? + 641=0 (20)



From (19) and (20):
A= —LMI* — LNI @D
C=LMI* + NP (22)
The general solution of the non-reduced differential equation:
¥y (%) = 3Mx® + 5Nx* — (M1 + 5NN + (M1 + 5:NP)x (23)

The location and magnitude of the maximum displacement in the interval 0 < x < /can
be determined from:

V= aMx* 4 INx® — (5MI% 4+ (NI)x? + 55MI* + NP =0 (24)
Since

_ Ny -1) : .

M—f=(24) can be written to:

L=l o s D+l lox?4 {2 D+V.Pe0 @

W X X =l (W=D + X+ g (v =) 4o 1= (25)

Put ¢ = x|l and /=0 and equation (25) can be written in a dimensionless form:
wew—1)-at+i@ —{n-(w -+’ + (G- (w—1)+5} =0 (26)

w can be solved for certain values of a :

v= 1.00 a=.50 w=-—1.00 a=.76
w= 0.00 a=.48 w=—125 a=.63
w=-—0.50 a=.44 v=-—150 a=.59
w=-—0.75 a=.39 v =—2.00 a=.56
v =—1.00 a=.24 v =-3.00 a=.54
v=—~ a=.52
These results are represented graphically in Fig. 3.

L7

6

5

4

3

L2

Al

-300 -2.00 -1.00 0.00 100 ¥

Fig. 3. Determination of the maximum deflection in the transverse stiffener.



NoOW y, max €an be determined substituting

v—1 _5’01
M=N-——, N= i

X
and a = 7 in (23)

L

= 1) et = v = D e+ s (v = 1)+ e

In the following table for several values of y and corresponding a the maximum deflec-
tion is given.

W a Z=y;\]";ix % a Z=)ﬁj—x
1,00 0,50 0,01302 —1,00 0,76 —0,00041
0,00 0,48 0,00651 —1,25 0,63 —0,00182

—0,50 0,44 0,00331 —1,50 0,59 —0,00339

—0,75 0,39 0,00175 —2,00 0,56 —0,00661

—1,00 0,24 0,00041 —3,00 0,54 —0,01311

For further arithmetrical treatment equation (27) is linearized:

0,00<y < 1,00-Z=0,00651-y +0,00651
—050 <y < 0,00 Z=0,00640 -y +0,00651
075 <y < —0,50 > Z=0,00624 -y +0,00643
—1,00 <y < —0,75 > Z=0,00536 - y +0,00577
125 <y < — 1,00 Z=0,00564 - +0,00523
—1,50 <y < — 1,25 Z=0,00628 -y +0,00603
—2,00 <y < — 1,50 > Z=0,00664 - y +0,00667
—3,00 <y < — 2,00 Z=0,00650 -y +0,00639

P 4
ymax/Nl =z

.016

.012
.00)

+.004

-3 -2. -1.5 -1.25 ]
[_—1 -75 -5

0.00 100 ¢
-.004

1-.008

+-.012

JL 016

Fig. 4. Magnitude of the maximum deflection.



The initial deflected shape of the transverse stiffener will now be described with the

following expression:

By — Da’ +15a* — {10(y — 1) + 30}a’ + {7(w — 1) + 15} |NI*
360-Z- NI

yi(a) = e (28)
where e= /¢ a fraction of the stiffener length as the chosen initial imperfection. y; (x)
can be derived from (28) by putting a = x//. Note y;(a) has the dimension of length.

233 Determination of the deflected shape of a transverse
stiffener with initial deflected shape y, and subjected to a
transverse load ¢

The differential equation for the behaviour of the imperfect transverse stiffener is a
fourth-order linear differential equation with non-constant coefficients.

ED"™ (x) =q(x) (29)

A power series can be adopted as the solution for y. In that case it is preferable to make
the solution non-dimensional.
Put
x dy(a) dy(a) da dy(a)

1
“TI7 7 dx T da dx o dx T

d"y(a) d"y(a) 1

dx" dx" 1"

Substitute (5) into (29):

ED™ (x) _4d'a (v — 1).;+1 Ay (x) + 3 (x)} 0)
The non-dimensional form is:

DA 40l ). y<a>+y’@l GD)

fi,%Z(J’-Ot+/l)-y(oz)+(y-06+/1)'y,-(0‘) 32)

This is a fourth-order linear differential equation with no-constant coefficients, where

46’0’114

“45,01/4
= Ela

10



3(y — Da® +15a* — {10(y — 1) +30}a’ + {7(y — 1) + 15}a
yi(a)= 360-Z-¢

(33)

Note: y(a) =y,;(x) and y’(a) have the dimension of length. y(a) and y;(a) are non-
dimensional.

General solution of the homogeneous differential equation

d4
dya(ff) —ya-y(@)—i-y(a)=0 (34)
Put
ya)= L A’ (35)

then (33) becomes:

n!

18

n—4 n+1 X n_
”=4(n_4)!A,,a ygoAna AngoAna 0 (36)

This equation is satisfied for all powers of a separately:

. 0!
al: ()T'A4 —A4y=0-> A4, = AAy )
s 1
@'t TioAs— Ao —Adi =0 As= (A +24) -5
6 21
a: fT‘As—VAl—/1A2=0“’A6:(7A1+AA2)'5
) 31
a’: §‘|‘A7—yA2—,1A3=O—+A7=()’A2+’1A3)'ﬁ
. 41
a ZE'AB—)’A3~/1A4=0—’A8:(VA3+'IA4)'§T
, ol !
a’: ﬁ'A9—7A4——/1A5=0“’A9:(yA4+AA5)'§—'
etc.
. n! n— 4!
n>5:a 4:(7:4—)!'1411"')}14/1—4_/114"44:0_'14”:(yA”_5+/1A"_4).(—n!—)

Ay, Ay, A, and A; are the four independent constants of integration. All the other con-
stants A, (n >4) can be expressed in these independent ones:

(n—4)!

An=/I(QA,,_5+A,,_4)- nl

@37

11



where
Q= 7
and
1= 46 ,0'114
~ Ela

Farticular solution of the non-reduced differential equation
Equation (32) can be written as

d*y(a
da(4 )—ya-y(a)—/l-y(a)=(ya +4)-yi(a) (38)
with
yi(a)=Bo+pra + Br0% + B30’ + By’ + Bsa’ (39)
Comparing (39) with (33) leads to:
Bo=0 (39a)
Ty —1)+15
br="360.7¢ (39b)
B,=0 (39¢)
—10(y —1) =30
Ps=""360-7.¢ (39)
15
bi=360.7¢ (39)
3y—-1) . (-1
Fs=360.z.c =P+ 5 (399
Equation (38) now becomes:
d*y(a
dya(4 )—ya y(@)—A-y(a)=2ABa +yB1a’ + B0 + (B3 +A8)at +
+ (7Bs+ABs)a’ +yBsa’ (40)
Put
5
y(@)= ) B,a"
n=0
then (40) becomes
5 nl 5 5
Z —‘—,Bna”““—y Z B,,a"+1~—/l Z B,a" =
n=4 (n_4) n=0 n=0
ABra +yBia’ +ABsa’ + (yBs +ABs)a’ + (B4 + ABs)a’ + yBsa’ 41)

12



This equation is satisfied if the coefficients of ¢ ", with n =0, 1,2,3,4, 5 and 6 on the left
are equal to those on the right.

a®: —yBs=yps - Bs=—fs (41a)
a’: —yBy—ABs=yfs+ABs— Bi=— P, (41b)
a': —yB;—ABy=yBs+ By~ By = —f; (41c)
a’: —yB,—AB; =18; —B,=0 (41d)
a’: —yBi—AB, =P, - By =— (41e)
51 51
al: 1185 —vBo—ABi=4F1 — 17 Bs—yBy=0 (416
. 4!
[0 mB;;—/{B():O (41g)
From (41g):
41 1
Bo=—ml5'4‘1 (41h)

Substitute (41a) into (41f):
5!
—1185—rB=0 (41i)

Substitute (39f) and y =1-(y — 1) into (41i):

St1 St y—1 1
By = ﬁﬁs')“):—ﬂ'ﬁr—s Tw=D

41 _
By= “1“!'34'1 (41j)

As 0!=1 and also 1! =1 (41h) is identical to (41j).

General solution of the non-reduced differential equation
Adding together the general and the particular solution gives:

y(@)=Ao+ Aja + Ao’ + A’ + ) A,a’+ ...

n=4

4! 1 3 4 5
...—()—![347*,31(1*&(1 — B’ — fsa (42)

The constants of integration can be determined by using the boundary conditions.
Boundary conditions:

4! 1
1°: a=0—-»y(a =0)=0—>A0=m,34z

13



d2
2 a=0-><—y2) =0 4,=0
da a=0

Applying these two boundary conditions lead to:

y(@)=Aa+ 40+ ) A,a"—fra —fia’ — fiat —Bsa’ 43)

n+4

¥ra=1-y(a=1)=0

d2
£ra=1-("2) =0
da a=1

Applying the third and fourth boundary conditions lead to

A+A+ Y A —Bi—B3—Pfs—Bs=0 (44)
n=4
645+ ) A,-n-(n—1)—683—128,—2085=0 (45)
n=4
with
(n—4)!
An=}- (QAn~5+Ar1~—4)' nl (463-)
where
’ 4
:45 ayl (46b)
Ela
o=y —1 (46¢)
The terms

Y 4, and ) 4,-n-(n—1)
n=4 n=4

from (44) and (45) can be expressed in the constants of integration Ay, 4; and 4; as
follows

© )

Y A=A Y Yo" G+
n=4

m=0n=4

©

+4 ) Y Qm'Crgrlr)"'
m=0n=4
+45 ) Yo" Gl “47)

Y A=Ay Y 0"ESO+ 4 Y o"EM + 4y Y @mES (48)
= - m=0

14



where

g,ff‘f)= Z C,,(f},;) (48a)
n=4
Y Ayn-(n=1)=4 Y Y o"-CiWen-(n—1)+
n=4 m=0n=4
+Al Z ZQm nm' (n_l)+
m=0n=4
+ A Z Yo" G n-(n—1) (49)
m=0n=4
Y An-(n—1)=4 Z 0"n i + 4, Z 0"
n=4 m=0 m=0
+45 ) 0" (50)
m=0
where
ni =3 cilon-(n—1) (50a)
n=4
Put:
£ (4;) — (fO(Ar')f1<Ai>432(/4i)§3(’4i)f4(’4i) ____ ) matrix 1 x oo (51)
7 (i) — (’70(/11‘)’7I(Ai)”z(Ai>’73<Ai)’74(Af) ..... ) matrix 1 x oo (52)
0’
Ql
0?
PE
f=|- vector (53)
QG)
The components of the & “) and 7 “) in themselves form series for which it can be

shown that they are convergent. This can be done by majorating the series and then

comparing them with the convergent series

>
Sﬂ_—ngl;’l—'
lim 6,=e¢*—1 with e=2718281828

n— oo

15



The equations (44) and (45) can now be written in terms of Ay, 41, 43 and 81, B3, B4, Bs.

From (44):

A+ Ay + Ao O+ 4E Vg + 4,6 Pg — B — 3 — fs— fs=0

From (45):

645 + A Vg + Ain Vg + Ay -7 Plg — 685 — 128, — 2085 =0

From the first boundary condition followed

4! 1
Ad=g1hs 7

So (54) and (55) become:

—_— 41 —
(1+é(”g)-A1+(1+€(3>Q)'A3=ﬁ1+l)’3+<l—7~f(°)g) Ba+Bs

(1V0) -4+ (6+1%2) 4 =6p:+

Put:

K=¢Up  K=¢&Pp K=&

E=n" E=1%% E=n"%
and:

Ch =(1+K1)

Co=(1+K)

G =1E

C22=(6+E3)

2
B 251+ﬁ3+<1—71§)>'ﬁ4+ﬁ5
2%
Bz =6ﬁ3+<12_TE0)ﬁ4+20ﬁ5

The equations (56) and (57) become:
Ch- A4+ Cy-A3=B
G- A4+ Cy-A3=5,

Put:

D =C,-Cy—GCy-G
D =B-Cy—Cy;-B
Dy=Cy-By— B - Cy

4~
12—77] Q ﬁ4+20[35

(54

(55)

(56)

(7

(58)
(59)

Now from (58) and (59) the constants of integration 4; and A4; can be calculated from

16



A =D (60)
D;
A= D (61)

The complete expression for the non-dimensional deflection of the transverse stiffener
is known.

y(a)=A4a + Asa’ + Ay Z Z Q'"‘C,ﬁff,?)a”+

m=0 n=4
m A n U A
+ A] N Z Z o - Crg‘nlv)a + A3 : Z Z 0 . Cr1(,n31>a " +
m=0n=4 m=4 n=4

—ﬁla—ﬂ3a3-ﬁ4a4—ﬁsa5 (62)

2.3.4 Location and magnitude of the largest moment in the
transverse stiffener

— Eb" (x) = M(x) (63)

The location of this largest moment can be ascertained by solving from the equation
(62) the third derivative

d’y(a)
da?

=0

the root a for particular values of ¢ and A.

—2<0=wy—1<0 since -1yl (64)
460,01
0<A="gr—<A (65)

From equation (62) the third derivative is:

d3 o o
dy(?) =645+A) ) Y 0"C . n(n—1)(n—2)-a"+
a m=0n=4

+A4 )Y Y o"CA n(n—=1)(n—=2)-a" "+

m=0n=4
+4; ) Y o"C n(n—1)(n—2)-a" "+
m=0 n=4

— 68— 2400 — 60850’ =0 (66)

The root « (0,4) of this equation is substituted into (63) to calculate the extreme
moment.

17



Note: y(x)=y(a)-!

dy(x) dy(@) ,_dy(@) 1
dx? * dx? da? 7

Substitute (67) into (63):

_Eld 2y (a)
1 da? = M)

From equation (63) the second derivative is:

(@) 64sa + Ay Z Z 0"CY) n(n—1)-a" "%+

7=
da m=0n=4

+4 ) Y Q”’C,fﬁ,‘,)-n(n—l)-a"_2+

m=0n=4

+A3Z ZQ’"C(’“' (n—1)-a" "+

m=0 n=4
— 6830 — 1240 — 208 5a°

The extreme moment is:

dzy(a)} EI
Q= o 1

Mmax(a.—_oc):——[ da’ i

< Mimil transverse stiffener

(67)

(68)

(69)

(70)

The limit moment for the transverse stiffener may correspond to the attainment of a
particular limit stress in the extreme fibre, e.g., the yield stress of lateral torsional

buckling stress

Miimic = Giimic- W

_ 1
= d
d*y(a) EI 1
- A H g L
da’(a= o) I wH

dzy(a) E  Olimit

— <
daz(a= OC) l\ﬂl,LQ]

For the transverse stiffener the following equation must hold:

(71)

(72)

(73)

(74)

[
s
|

Fig. 5. Transverse stiffener.
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d*(a)

- CE-u - .
daz{a =« (y, 7)) Uy 2 < Olimi (75)
or
DPEu 1y < Gimit (76)
with
v =e=y-—1
46 0,1
A = "Fla
H
=y
h
ﬂ2=7

being the parameters which describe the loading condition of the plate panel and the
geometry of the transverse stiffener.

If the transverse stiffener is also subjected to a directly acting transverse load and/or to
end moments, the following requirement will have to be satisfied:

& M)
1 +‘-1- Q)E,u M2 + — < Olimit (77)
e w

where:

Mp =maximum moment in the transverse stiffener due to the transverse load
and/or end moments

W =section modulus of the transverse stiffener

¢ =Ilength of the transverse stiffener divided by the maximum deflection
due to the initial imperfection

¢' =length of the transverse stiffener divided by the first-order deflection
due to the transverse load and/or end moments

In this case the imperfection must be taken as the sum of the geometric imperfection

1/E of the length of the transverse stiffener and the first-order deflection due to the
transverse load. In the formula this is taken into account by the factor (1 + ¢/e’).

In order to make the checking criterion for the transverse stiffeners, described by the
expression (76), convenient to handle, a parameter analysis will be performed with
respect to the term:

d?
D =— ( y(za))
da la= o (v,4)}

@ is a non-dimensional quantity depending on w and 1 and can be determined for
various values of ¢, i.e., in principle for e=/fe.

(78)
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2.4 Iterative method of calculation with the aid of a fourth-order differential
equation with constant coefficients

It is possible to avoid using a fourth-order differential equation with non-constant co-
efficients by solving a series of successive fourth-order differential equations with con-
stant coefficients.

A finite series will be used for describing the initial deflected shape:

n

yi(a)= Y B,a" (79)

This initial shape satisfies the boundary conditions:

a=0:y(a=0=0-B,=0 (80a)
d%y,

a=0:<JgO‘J> —0-B,=0 (80b)
da a=0

Equation (79) becomes
(@)=Y Bna" (81)
The deflected shape is represented by a finite series

y(a)= EOApa” (82)

where g=n+35.
The following fourth-order differential equation with constant coefficients can be
established:

d'y(a)
i’ =@ -a+i)-y(a) (83)
where
45’0’114
= Ela -1
48’0yl
= Ela

General solution of the homogeneous differential equation

=0 (84)

20



Put

q

y(a)= Zocpap

p=
Substitute (85) into (84):
9 |
p: —4
— Cr =0
,,§4 (p - 4)' g

The series satisfies this if

C,=0 with 4<p<yq
Particular solution of the non-reduced differential equation

D ar2) )

Put

q
y(a): Z Dpap
0

p=

Substitute (88) into (87):

q | n
p: _4
D,a" "=(y-a+i)- B,a”
/;§4 (p—4)' ! (y ) /ngl

(85)

(86)

@87)

(88)

(89)

This condition can be satisfied by equating the coefficients of the same powers of «a.

Dy, D\, D, and D; are zero.

4!
a’: o1 Di=0-Dy=0
, S
a FDSZ/IBI

, 6!
. 5D6=})Bl+/132

5 7!
a’: §—|D7=yBQ+/1B3

4 a1, q!
a? " t=q +1.(q4___4_)_!Dq=an
Hence

q
)’(a)ZC0+C1(1+C2a2+C3a3+ Z Dpa”
5

p=

(89a)

(89b)

(89¢)

(89d)

(89e)

(899

(90)
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Boundary conditions:

1°: a=0: y(a=0)=0 - G=0

d2
2 a=0: (—yz) —0 - G=0
da”/@=0)

g
F:a=1:y(a=1)=0 - C+G=—- ) D,

dzy q
0 q=1: (—5 =0 - 6G=— ) D,-p-(p—1)
da?
(a=1) =

From the 3° and 4° boundary condition it follows that:

q
G==- 2 Dyp-(p=1)
p=

Hence

q
y(@)=Ca+Ga’+ Y D,a’ 91)
5

p=

Now all the coefficients of (82) are known and can be written as

y(a)= z A,a’ 92)

Equation (92) is the deflected shape which is obtained in accordance with linear elastic
theory. By adjusting (“updating”) the initial shape as follows:

Vi (@) =yin (@) +yu(a) (93)

it is possible again to establish a fourth-order differential equation with constant coeffi-
cients and solve it. This process can be repeated as many times as necessary for deter-
mining the final deflected shape y(a).

If the initial deflected shape is described with, for example, five terms, then the first-
order deflected shape is described with a series

10
y(@)= ) 4,a’ (94)

p=1
Each time the process is repedted, five more terms are added. Therefore

10+17-5
yin(a) = Z 4,0’
p=1

where [ is the number of iterations.
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In this way an iterative process has been developed which can be stopped when
equilibrium is satisfied within a predetermined accuracy.

On completion of this process for determining the deflected shape the location and
magnitude of the maximum moment can be determined in the same way as has been
described in Section 2.3 .4.

2.5 Parameter analysis

The theory described in Section 2.4 was used for setting up a FORTRAN computer
program for carrying out a parameter analysis with respect to the factor described by
equation (78).

dzy(d))
da® Jio= w iy

The largest value for A was estimated as follows.
According to formula (76):

(78): (Dz—(

DEu; Ur < Olimit

Ui 4y is not less than 0,5

“h
h
Hr=7] put 4y =0,1

E =2,1-10° N/mm?> and ojimi =360 N/mm’
The largest value for @ is found to be:

360

dg— =003 5
<21:10°-05-01 ©3)

The parameter A was increased until @ attained the value 0.03. The results have been
represented in graph form.

Note: In graphs 6 and 7 the curves for the values of y in the range — 3.00 < w < —1.25
have been plotted only to a limited extent. Because of the numerical instability of the
computational process only a limited number of values could be computed. Since the
tensile stresses in the plate panel predominate for these values of y, the transverse stif-
feners are, as it were, “pulled straight”. The maximum curvature that then occurs has
therefore a limit value.
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a. Graph1
@ as a function of A for — 1.00 < v < 1.00. The initial deflected shape is dependent

on . The maximum initial deflection is: e= /.
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ARy, / "
0.004 / /// ) 1oe
¢ / y /
I / ]
0.003 [ / / /
/
/ //
y
0.002 / /
/ P
/ aw
0.001 / //
/ N graph 2
/ Pl L L
0 10 20 30 40 50
e A

b. Graph 2
Larger-scale representation of graph 1 for the ranges 0450 and

0.000 < @ <0.005.
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An approximation for this limit may be calculated as follows:
Suppose that the deflected shape is:

y=q5-sin (ar)

|®| = 157’ =0.0247

The maximum magnitude of the pre-deflection has a relatively great effect on the asso-
ciated values of @ if it is varied between e= 53,/ and e = 5l.

As a basis for establishing design rules a value e= 53/ may be adopted, which corre-
sponds to the tolerance in the straightness of the transverse stiffeners as envisaged in
the German code DASt Richtlinie 12 “Plattenbeulen”.

The shape of the initial deflection is of considerable effect on the valuesof @ if y = —
0.50 and w = — 1.00 respectively. For the other values of @ the effect is greatly reduced.
The adoption of an initial deflected shape dependent on y will in all cases yield a higher
value of |@| than when a constant initial deflected shape is adopted. Therefore an initial
deflected shape which is dependent on y can most suitably be chosen as a basis for
design rules.

2.6 Transverse stiffeners under general loading state
2.6.1 General

If a plate panel provided with transverse stiffeners is loaded in two directions within its

plane and moreover perpendicularly to its plane, these stiffeners will thus be loaded as

follows:

1. A directly-acting transverse load of constant magnitude.

2. A deflection-dependent transverse load arising from the loading within the plane of
the plate, attributable to geometric imperfections of the transverse stiffeners.

3. The normal force and moment acting at the ends of the transverse stiffeners and
caused by various possible circumstances, e.g., loading in the plane of the plate in a
direction parallel to these stiffeners, cantilevering of the stiffeners, etc.

{ V7 7 ¥ 1 3 P (constant)
m q (dependent on w and
on deflection )
F

» ( F (constant)

AN
77 "M (constant)

Y W

o

Fig. 6. Load acting on the transverse stiffener.
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In the final state of the loaded transverse stiffener (i.e., for equilibrium in the deflected
state) the magnitude of the maximum curvature then occurring has to be determined.
Suppose that this curvature is @, in analogy with the approach adopted in Section
2.3.4.
The requisite stiffness of the transverse stiffener is determined as follows.
Section 2.3.4 deals with the loading case p=0, F=0, M =0, g = 0. The checking rule
in this latter case is

(76): DEu 1 < Giimit

In the general case P=+0, F=0, M= 0 and g =0 the following condition must apply:

F
DEu ) + 1 < Olimit 96)

The factor @ is in this case dependent on the type of loading.

2.6.2 Constitution of the deflected shape

a. Initial deflection in the unloaded state. This deflected shape is dependent on w and
has a maximum value of e= .

b. A first-order deflection due to the direct transverse load P.

c. A first-order deflection due to the end moments M; for the purpose of this analysis
the two end moments are assumed to produce a constant bending moment in the
transverse stiffener.

d. A geometrically non-linear deflection due to the - in itself constant - normal force F.

c. A geometrically non-linear deflection due to the - in itself deflection-dependent -
transverse load gq.

2.6.3 Further treatment in non-dimensional form

a. The initial deflection is to be determined according to Section 2.3.2.

On the basis of equation (33) and the linearization of equation (27), the initial deflec-
tion can be written as:

o

y,»(a)= z Ana” (97)

n=0
with

Ay=0

LTy =D+15

1T 360420 ¢

A, =0
—{10(w — 1) +30

=100 =1 +30)

360-Z-¢
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15

=360 7%
3(w-1)
A =3600.7 ¢

b. A first-order deflection due to the direct transverse load P,

P (uniformly distributed load)

¥ PR T
A5 X 2
v

e ‘ .

Fig. 7. Transverse stiffener with transverse load.

The first order deflection can be written as:

y(x) =bi0 byx"=by+ bix+ byx? + byx> + .. 98)
The differential equation is:

Eb™ (x) = P(x) = P(constant) 99)
Boundary conditions:

1°: x=0-y(x=0)=0-b=0
2°: x=0-p"(x=0)=0-5,=0

This means that all the coefficients in the series y (x) = ... associated with x” for n> 5
must be zero, while:

b P
* T 24EI
Therefore P (98) becomes:

4

P
— 3, -
y(x)=bix+byx’ + S5 (100)

Boundary conditions:

P
°. = [ - = =U—- 3 Al rT—
3% x=l-y(x=1)=0- b, + bl + 5457

2

0

P
4°: x=1-y"(x=1)=0-6b; +

5=
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Pl

b=-1m

5 1/ Pt P 3 PP
VT I \12EI 24EI) ~ 24EI

Pr P, P
YX) =32~ 2B T 2aE™

_ Pt X\ Pt (xV e (X
Y& =24g\1) " 12E1\7) *t22m1\7

Put

o\ P /A A
YO =2 12E " tuE®
yo(a)=y(a)-!

Pr PP, PP,
Y(@) =54~ 2E* * 24"

4

(@)=Y B,a" (101)
with

By=0

P

B =34Er

B,=0

PP?

B=—nm

_r
T 24EI
c. A first-order deflection due to a constant bending moment along the stiffener

B,

M (,?;_,x %)M
v
y !
- .

Fig. 8. Transverse stiffener with end moments.
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yx)= Y Cx"=GC+ Cx+ Gx’ + Gx... (102)
n=0
The differential equation is:
ER" (x)=0 (103)
all coefficients C, with n >4 are zero
3
y(x)= Z Cnx”=C0+C1x+ C2x2+C3x3
n=0
Boundary conditions:
1°: x=0-y(x=0)=0-G=0
2°: x=l-y(x=10)=0-Cl+GI’+GI’=0
y'(x)=2G+6Cx
M M M
30: == " = = — —_ —_——— _—
x=0 y'(X=0) El 2C, i o) 2B
o, L _ M M
4°: X=)y (x_l)__EI_>2CZ+6C3IZ_EAVI_'C3:0
o _L(Mry_
' 1 \2EI| " 2EI
M M,
YO) =g %~ 2m ™
_MP () M (xY
Y)Y =5p\7) " 2E\7
Put
X_
=
4 2
yo(a) _A{I,a ﬂaZ
2EI 2EI
yia)=y(a)-1
MM
(@) =351 351
2
ym(@)= 2 Ga" (104)
n=0
with
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G=0

c M
VT OEr
oo M
27 T 2FEI

The deflected shape produced by the initial deflection plus the first-order deflections
due to P and M is described by:

y'(a)= ) E,a" (105)

with
Tw—-1)+15 p° Ml

Ei="350.7.c *24E" 2E
Mi
b= ~2E
P 10(w —1)+30 PP
3T 7T 360-Z-¢  12EI
5 15 PP
Y=360-Z-¢ T 24EI
3(w—1)
Es=3600-7Z¢

d. A geometrically non-linear deflection due to the - in itself constant - normal force F

F F
— ——>X -—
M

1

i
A

y 1

e ! »l
™~ M}

Fig. 9. Transverse stiffener with normal force.

The first-order moment distribution is obtained from:
M(x)=F-y'(x)

The first-order deflection due to this is obtained from:

d’y M(x) F
== —. 1
dx’ ET EI y ) (106)
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Equation (106) becomes:

d2)’(“) " I
da’ _Ei'y ()

Homogeneous differential equation:
d’y(a)
da?

This is satisfied by

=0

1
yr(a) = Zofna” =fy+fia

n=

Non-reduced differential equation:

d2y(a)_ A’

particular solution:

7

y(a)= ) ga"=ga’ +ga’ +ga’ +ga’ +ga’
n=3

d*y(a
"évg = 6gsa + 12gia’ + 20gsa’ + 30ga* + 42g7a°
a

2

Fl
'ﬁ-{E]a+Ez(12+E3(13+E4(Z4+E5a5}

This relation is satisfied if the coefficients of the same powers of @ are equal; hence:

HZ n2
6g3=—EE1 - g3=—6—E]E1

FI? FI?
1284=—EE2 - g4=_TEIE2

F? F?
20g3=—§E3 - g5=—mE3
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F? F?

g =—F7 &+~ &=—355 5
1’ 126
VRog=—FrE — &=—ph

General solution of the non-reduced differential equation:
yr(a) =fo+fia+ga’ + ga’ + g5a’ + ga’ + ga’

Boundary conditions:

1°: a=0-y(a=0)=0-/=0

2% a=1-yla=1)=0-fi=—(+&+8&+8+g)

yr(a) =fia+ga’ + ga’ +ga’ +ga’ + ga’

;
ye(@)= ) G,a" (107)
n=1

General formulation of the iterative process

n

y'i(a)= Y E,a" =y (a)+y,(a)+yu(a) (108)

m=1

A finite series

q
ye(@)= ) Ga’
p=0
where g =n+2, is adopted as the deflected shape.
The following second-order differential equation with constant coefficients can be
established:

d2
dya(f’) —&ry'(a) (109)
with
F72
fr— E

General solution of the homogeneous differential equation:

dzy(a)

da? =0

Put
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This is satisfied by the series if
G,=0 with 2<p<¢q

Particular solution of the non-reduced differential equation:

d? 2
V@) _ e y@)=¢r T Epa”

109):
( ) daz m=1

Put

4

(@)= ZOGE’a”

p=

Ech 21

GO r= 2——51-" Z Ema

(110)

This condition can be satisfied by equating the coefficients of the same powers of a.

GOO and G are zero

0. 2!
a ZO'GQ—O i
C 31
a :1| éFEI -
4!
azli'!szé:FEz hnd
5!
a3:§G5O=€FE3 d
- . 4!
af 2=(X 'mngéFEn -

Gy =0
T
GJ='37§f'E1
, 2
G4=;ﬁfFE2
Y
Gs=§fFE3
qg—2)!

General solution of the non-reduced differential equation:

q
=G +G+ ) Gla’

yr(a)
p=3
Boundary conditions:
1°: a=0 y(@=0)=0-G =0

q
2:a=1  yla=1)=0-G=—) G

p=3

Equation (111) becomes:

G1+ZG°” ZGa"

p= p=1

yr(a)=
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This is the deflected shape which is obtained in accordance with linear elastic theory.

Now, by adjusting (“updating”) the initial deflected shape, in the same way as given in
equation (93) it is possible once more to establish a second-order differential equation
with constant coefficients and solve it. This process can be repeated as many times as
necessary for determining the final deflected shape y(«). Each time the process is re-
peated, two more terms are added.

e. A geometrically non-linear deflection due to the - in itself deflection-dependent -
transverse load g.

The first-order deflected shape is described by the differential equation

d'y(a)
1 =@y-a+d)-y'(a) (113)
where
46 g1
Y= Ela '(W_l)
46’1
A= "F

This is satisfied by:
3
v (@)= Y hya"=hy+ ha+ ha’+ ha®
n=0

Non-reduced differential equation

d*y(a)
~;1”0‘4—=()"Ot+/1)'y1(05)
d*y(a
(;;(4 )=(y‘a+/l)o{E1a+E2a2+E3a3+E4a4+E5a5}
d’y(a)

1t —ABa+t (AE +AB)a’ + (VB + AE)a’ + (VB + AE)a* +

+ (B — AEs)a’ +yEsa’®
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Particular solution:

4
a—f =120jsa + 360jsa” + 840j,a° + 1680jsa* + 3024jsa° + 5040j10a°
a
=AEa+ (YE +AE)a’ + (VB + AE)a’ + (VB + AE)a* + (YEs + AEs)a®
+ J)E'5(Z(J

This relation is satisfied if the coefficients of the same powers of a are equal; hence:

. . AR
120js = AE = J =130
) . (WE+AE)
360]6 = ())El -+ /{Ez) - Jg = %360
, OB +AE
840]7 = (Ez + E_';) - ;7 = (—zglﬁi)
_ . OB +AE
1680}8 == ())E3 + /1E4) - J§ = gﬁi)
) ) yE, + AE;
3024jy = (PE, +AEs) — Jjo = L%(WS)
, . vEs
5040j;0 = p Es J1=73040

General solution of the non-reduced differential equation
yo(@)=hy+ ha+ ha’+ ha’ +jsa’ +jsa’ +jra’ +jsa® +joa® +jipa
Boundary conditions:
1°: a=0-y(a=0)=0-hy=0
4y

2°: a=0 =0-h=0
(d(Zz)(a:o) ?

3¥ra=1-y(a=1)=0-h+h3=— (js +js +Jjr +Js +Jo + 1)

d2
4°: a=1- (d_);) =0-6h=— (20]5 + 30js + 42j7 + 56j5 + 72jo + 90_]10)
aQ (a=1)

-1 10
=g L iyp-(—1)
p=>5
10
==Y jyp-(p—1)
p=>5
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Equation (114) becomes

y(a)=h1 +h3a3+j5a5+j6a(’+j7a7+jga8+j9a9+j10aw

10
y(a)= Z Jya”

n=1

General formulation of the iterative process

y'(a)= i E,a" =y (a)+y,(a)+yu(a)

m=1

A finite series

q

yola)= L Jya’

p=0

where g =n+ 3, is adopted as the deflected shape.
The following fourth-order differential equation can be established:

d'y(a)
4o’ =(y-a+i) y(a) (115)
with
_46'a\ 0

A finite series

q
V()= Z Jya?
p=0

where ¢g=n+5, is adopted as the deflected shape.
General solution of the homogeneous differential equation:

d'y(a)
da*

=0

q
This is satisfied if:
J,=0 with 4<pgyq
Particular solution of the non-reduced differential equation:
d'y(a)

“qgt = ra+d)yi(a)
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Put

q p! B n .
n§4 (17—4)!"]/90‘/) 4=(y-a+l)-m2=:1Ema

These conditions can be satisfied by equating the coefficients of the same powers of a.

o, J]°, J) and J are zero

al: OwiJ4°=
5!
alt k= AE,
2 6! 0
a Zka =yE}+AE§

7!
a’: 37J7°=yE2+/IE3

!
qg—4 __ n+l_4£;_” —
a =a =4 J =yE,

General solution of the non-reduced differential equation:

q
y(@)=dh+Ja+ha’+ha’+ ) Ja? (116)
5

p=

Boundary conditions:

1°:a=0 y(a=0)=0-/4=0

d*y
2°:a=0 (- =0-4h=0
da (a=0)

q
3°:a=1 yla=1)=0-h+k=— 2 J

d’y il
4°: q=1 <d—2> =0-6h=— 3 J-p-(p—1)
A J@=1) p=5
q q
== L B+ L p(p—1)
p=>5 p=>5
Equation (116) becomes:
q q
y@)=ha+ha’+ Y Ja’= ) Ja’ (117)
p=>5 p=1
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This is the deflected shape which is obtained in accordance with linear elastic theory.

Now, by adjusting (“updating”) the initial deflected shape in the same way as given in
equation (93) it is possible once more to establish a second-order differential equation
with constant coefficients and solve it. This process can be repeated as many times as
necessary for determining the final deflected shape y(a). Each time the process is
repeated, five more terms are added.

2.6.4 Iterative process

The iterative process for determining the deflected shape of the transverse stiffener
under the general loading state proceeds as follows:

a. Determining the stressless initial deflected shape:

s
97):  yi(a)= ) A,a”

n=1

with

A_7(1,1/—1)+15

1=7360.Z-¢

A, =0

. 10(y — 1) +30

3T T 360-Z-¢

4o DB

4= 360-Z-¢
3(w—1)

A= 360.Z.¢

b. Determining the first-order deflected shape due to direct transverse load P

4
(101):  yp(a)= Y B,a"
n=1
with
$p
Bi=24
B,=0
$p
Bi=-1
9
Bi=14
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where

_r
Er="5

c. Determining the first-order deflected shape due to the end moments M

2
(104):  yy(a)= ) C,a"

n=1

with
o5
=ty
where

d. Establishing the initial deflected shape and the two first-order deflected shapes

5
(105):  y'(a)

I

g
&
S

with
E =4 +B +(C
E=A4,+B,+ G

Es=A4;+ B;
E,=A,+ By
Es=As

e. Determining the first-order deflected shape due to the normal force F

(112):  yp(a)= ) G,a”

p=1
f. Determining the first-order deflected shape due to the deflection-dependent trans-
verse load ¢

q

117):  y,(a)= ) J,a’
1

p=

g. Adjusting the initial deflected shape (“updating”)

V(@) =y (@) +yro(@) + v (@)

h. Inrepeating the steps e, fand g as many times as necessary for attaining equilibrium
within a predetermined accuracy, the final deflected shape of the transverse stiffener
under general loading is calculated.
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2.6.5 Determining the magnitude of the greatest curvature
in the transverse stiffener

The magnitude of the greatest curvature in the transverse stiffener due to the loading
must be determined only on the basis of the deflected shape that causes stresses.

y(a)=y,(a) +yu(a)+yr(a) +y,(a) (118)
Q

W)=Y Ya’ (119)
p=1

dy(a) & -

da p;p 1 (120)

dy(a § 1)-Y,- a2 12

da p-—lp (p— pré ( 1)

dya =Y =1 (=2 Fyar (122)
p=1

The location of the greatest curvature can be determined by solving the equation
d’y(a)
da’

for the root ¢ = .
Then this root ¢ = « is substituted into (121), which leads to:

clj=(d2y(0t)

2
da )[a =« (1,4, pE pé )}

(123)

The process for determining the greatest curvature in the transverse stiffener, as set
forth in Sections 2.6.4 and 2.6.5, has been embodied in a computer program by means of
which the calculations can be carried out. First, the program determines the maximum
curvature in the stiffener under the influence of the predetermined loading state and
geometry. Next, it is verified whether the relation (96) is satisfied.

2.6.6 Parameter analysis with the aid of the mathematical model

With the aid of the mathematical model described in the foregoing the value of @ for the
relation (96) is calculated for a number of variations of the parameters. For this purpose
the relation (96) can be rewritten in a somewhat different form:

F F* F’ 1 FI?

2=T=T-P and 5F=E (124)

Substitution of (124) into (96) leads to:

E 5
—~-(¢muz+;§)<1 (125)

cr
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where @ is dependent on the parameters

w =1,00; 0,50; 0,00; —0,25; —0,50; —1,00

46'a,1*

0<A="Fp <
PP . .

0gép = 7 < 1.10 (¢p =0,1 to 1,1 with step magnitude 0,2)
Mi . .

0geEy= B < .14 (¢x=0,0 to 0,15 with step magnitude 0,02)
HZ

0gér= ﬁ< nr=10 (¢F =0,0 to 10,0 with step magnitude 2,0)

in such a way that, for certain values of the other input variables, the value of @ < 0,14.
The final values of the various parameters have been so chosen that, if the corres-
ponding load occurs separately, the ultimate stress in the transverse stiffener is equal to
the yield stress for the values u; = 0.5 and u, = 0.025.
This parameter analysis results in a comprehensive set of tables for the determination

of @ (see [4]).

2.6.7 Solution via a fourth-order differential equation
with non-constant coefficients

M M
F E' ; F
U
total initial
Y(x) =Y(x) <y

/ﬁ\l
N
Q s, %’H
Ky lv

Fig. 10. Transverse stiffener with general loading.

H=Ncos ¢ —Qsin ¢
V =Nsin ¢ + Qcos ¢
M=M
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1—sing=@®; cosp=1; tanp=@ and dx=ds (126)

Fig. 11. Forces on an element of the transverse stiffener.

Horizontal equilibrium:

H de H=0 127
+a s—H= ( )

Vertical equilibrium:

dav
V+ 45 ds—V+gq(x)ds=0 (128)

Moment equilibrium about point C:

aM ds cos ¢

M ds— M ds sin ¢
tas T

2

dH

s ds+ H)=0 (129)

dv
V+—ds+V|+ H+

ds
Neglecting (d¥]ds) ds in relation to ¥ and (dH/ds) ds in relation to H.

dH
(127): XZH=0-

a:O (130)
dv

(128): EV=0—+a+q(x)=0 (131)
dM .

(129): 2M=0—>E?—Vcos @+ Hsin @=0 (132)

On the basis of (126) the equations (130), (131) and (132) can be rewritten as:

dH
a:O (133)
dv
d_x+ qg(x)=0 (134)
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dM d Y‘lolal

E—VJrH dx =0 (135)

Moment-curvature relation:

d 2y
M= —FEl — 136
e (136)
Equations (133) to (136) are four differential equations of the first and second order for
determining the unknowns H, ¥, M and y(x).
From (133) follows:

H=constant= — F (137)
where F'is the externally acting axial force. From (135) follows:

dM dy total

V=g +H i (138)

Substitution of (136) and (137) into (138) gives

Eld*y
d|— d 2 total
yo ) W (139)
dx dx
d3y dytota(
V= —EI@—F ax (140)

From (134) follows:

dv
=) (141)

Substitution of (140) into (141) gives

dV d4y dZytolal
— =gy gty
dx dx* dx? 7(x)

d4y(x) dz(y,(x) +y(x)
EI . =

dx4 +F de q(x)

d'y(x d*y(x d*y;(x

EI dx(4 ) F dx(z ) gx) = F- dx(2 ) (142)
where
46'c X

q(x)= P ]-{(y/—l)~7+1 Ay (x)+yi(x)}+p (143)
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The differential equation (142) must be written in non-dimensional form

y(x)=y"a)-1 with a=)7€

d”y(x)_ d"y(a) d"a_ d"y(a) 1 1 d"y(a)
dxn - da” dx"—— dan 111"1177] dan
diy(x) 1 d'y(a) dzy(x)_l d’y(a)

dx* P da* dx> [ da’

Substitution of (144) and (146) into (142) and (143) gives:

00,100y 05
where
0@ =7 = 1)+ 1) @)+ @)+ P

Equation (147) can be rewritten as:

d'y(a) P’ d’y(a) PP FI* d%(a)
. — A+ A)- ; +—_— 7
P P UL RO M ORSIC Rl S
dy(a) , d’y(a) d’y(a)
P +&r i =(y.a+,1)-{y(a)+y,-(a)}+§P_§FEZZ_
with

Hz
fr=z~7

_~
¢p= El

45,0'1/4
Yy = Ela '(U/_l)

4(5/0']14
4=

(144)

(145)

(146)

(147)

(148)

(149)

(150)

Equation (150) is a linear fourth-order differential equation with non-constant coeffi-

cients. The independent parameters are:

v, A" f[“: éP and €M

The independent parameter ¢y, is introduced through the boundary conditions.

The solution of (150) can be found by using power series of a as done in previous

sections.
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3 Longitudinal stiffeners
3.1 General

Longitudinally stiffened plate panels loaded in compression may undergo so-called stif-
fener-induced failure in consequence of a critical state of stress being attained in the
stiffener before the panel itself becomes critical.

A possible critical state of stress for a stiffener may consist in the attainment of the
level of stress at which torsional buckling occurs. This phenomenon may more particu-
larly occur with “open”-section stiffeners consisting of flat bars, T-sections or L-sections
(Fig. 12).

N 7

Fig. 12. Various types of open-section stiffeners.

For checking the stability of the stiffeners it is therefore necessary to calculate the tor-
sional buckling stress g, . On the basis of linear elastic theory the so-called Euler tor-
sional buckling stress g, , can be determined, and then the initial imperfections and
the elasto-plastic behaviour of the material can be taken into account in accordance
with a chosen convention. In this way the Euler torsional buckling stress gep. is
reduced to the torsional buckling stress ..

The method presented here asumes a complete separated behaviour of the plate and
the longitudinal stiffeners leading to safe results. In the analysis of a stiffened plate the
stiffeners are designed as beam columns and have to remain straight so that the unstif-
fened panel can reach initial buckling.

3.2 Determining the Euler torsional buckling stress ...

If a stiffened plate panel is loaded in compression and the compressive stress is uni-
formly distributed over the cross-sectional area of the plate and of the stiffener, the line
of action of the resultant of the compressive stresses will be located between the cen-
troidal axis of the plate and the centroidal axis of the stiffener (Fig. 13).

p ———— ] i1
B = !
I =2 3
— L
od

1 centroidal axis of plate
2 " . . stiffened plate
3 " . . stiftener

Fig. 13. Stiffened plate under uniform compressive stress.
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In practical cases the resultant of the stress will always be located at a distance

. 2 Agiire- &
=
Ay + X Agiigy

2
N

from the plane of reference of the plate.

For determining the Euler torsional buckling stress it is therefore a safe assumption
to base oneself on an axially loaded stiffener which is connected at one longitudinal
edge to the plate.

The derivation of the Euler torsional buckling stress starts from an axially loaded bar
which is, along one axis parallel to the longitudinal axis of the bar, elastically supported
with respect to displacements and rotations in planes perpendicular to the axis of the
bar (Fig. 14).

vy

Fig. 14. Elastically supported bar.
C = centroid of the cross-section
N = point of application of the elastic support
O = shear centre

The displacements and the rotation of the centroid are designated by u, v and @
respectively. The displacements of the N-axis are then, assuming a non-deformable
section:

uy=1u+ (yo— h,)® (151)
ww=v— (% — h,) P (152)
Dy=D (153)

These displacements are associated with the following reactions per unit length:

ne=—ku+(y—h)P} (154)
n,=—k{v+ (xo— he) P} (155)
m,= — ko ® (156)
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The compressive stress acting in the longitudinal direction will, for a small deformation
of the axis of the bar, give rise to forces acting transversely to that axis:

d*u d*®
= — — —y) —td4 157
n £U<dzz+(y0 ¥) dzz} (157)
) d*v d*®
W=—{o [a?—(xg—x)—dzz}dA (158)
By definition the following holds:
fodd=P; [xdd=[yd4=0 (159)
A A A
Substitution of (159) into (157) and (158) gives:
, d*u d’®
m= =Pt g (oo
, dv  d’®
ﬂy=—P az'z“—X()d7 (161)

With respect to the shear centre the reactions n.and n,, as expressed by equations (154)
and (155), produce the following torsional moment load per unit length:

m = —kefu+ (0= 1)@} —h) + k= (0 — )P u—h)  (162)

The “internal” forces n, and ny, as expressed by equations (157) and (158), likewise
produce a torsional moment:

d’u d’o
mzlz —_ Sotds(yo—y) {a?'i- (yo—y) —7’ +

4 dz
d’v d’o
iUtdS()Co—X) @——(XQ—X) d?) (163)

By definition the following holds:
fy?dd= [y’tds=1I and [x’dd= [x’tds=],

A A A A

and put
L=I+1,+A(G +y3) (164)
Substitution of (159) and (164) into (163) gives:

_p dv  du IOPd2<D 165)
m=Pixg——yo—5t——P—5
Y4227 42 T 47 a2
The forces acting in the directions x, y and @ are now:
) v d’®
n;"znx+nx=—kx{u+(y0—hy)¢}—P(@+y0 ?) (166)
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d*v o
hy*=ny+ny=——ky{v—(xo-—hx)cD}——P((?—x()?) (167)
. L, dv  du| L, d*®
m; =m,+m,+m' =—ke @+ Pix @—yo Hdzz —3 ——dz2 +
— kx{u+ (y() — hy)Q}(yo — hy) + ky{V— (.X() — hy)q)}(X() — hx) (168)
For a beam the following deformation equation can be established:
*u

bending about the y-axis: EI, o nt (169)

z

. . dv
bending about the x-axis: EI, 327= n, (170)
) . d‘o ’o

torsion about the z-axis: ¢ —5—C - =m; 171)

dz dz

Substitution of (166) to (168) into (169) to (171) yields a set of three simultaneous
fourth-order differential equations for describing the combined torsional and flexural
buckling of an elastically supported bar.

d*u d*u d*®
dz?

EIyF+P RS —-)+kx{u+(y0—hy)¢}=0 172)

d*y d> d*o
P 2 2
dz dz

Elxd7+ —“—xoh'_)'*'ky{(v_(x()_hx)@}:o (173)

G

dz?

d*o L\ d*® d> d*u
@ \Ta) e T )t

klu+ (o—h) @] (yvo—hy) — ks [v— (%0 — h) @] (x0 — hy) + kD =0 174)
where:

E =modulus of elasticity
I, =moment of inertia about the x-axis
I, =moment of inertia about the y-axis
A =cross-sectional area
L =L+ +4 (xo2 +y02) = polar moment of inertia about the shear centre
C, = EC,, with C, = warping constant
C =GI,, with I, =torsional moment of inertia

G =shear modulus = —Eh
2(1+v)

v = Poisson’s ratio = 0,3

For stiffened plate panels it can be assumed that the support given to the stiffener per-
pendicularly to the plane of the plate is zero and the displacements of the stiffener at the
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connection with the panel within the plane of the latter are zero. Hence it follows that:
k,=0 and k,=o (175)

The general solution of the homogeneous differential equation is obtained by intro-
ducing:
hmz nmz hmz
(176)

5 u=A sin =3 v=A2s1n~—l—; ¢=A3SIHT

Substitution of (176) into (172) to (174) gives:

4_4 2_2 2,2
(gzy_”lf —P +kx)A1+OA2+K—Ryonl;1 +kx(yo—hy)}A3=o (177)
n'nt  n'n’ n’n?
0A1+(EIX7W—P'IT+ky>A2+{PXO 12 —"/@(Xo*hx)}Ag,:O (178)
n2n2 2.2
[ 0—72—+kx(y0—h},) Ay + {Pxy 12 -—ky(X()—hx)]A2+

A; =0 (179)

ntzt Iy nln? ) )
+C’1——1‘4—+ C—ZP —7—2——+kx(y0-—hy) +ky(X()—hx) + ko

A non-trivial solution can be obtained by equation the determinant of the matrix of
coefficients to zero; also, the condition k, =0 can be utilized:

a; ap an
ayn ap ap|=0 (180)
azy  as  ass
with
nint nin?
a11=(EL,—74——PT+kX>

ap=a,=0

n’n?
ap=am1=1{— M “72-+kx(yo—hy)

nrt n’n?
a2z=<EIx—~~P )

I &
n’n?
ay3 = a3 = Pxy 2
4 g 4 22
n'® I n°rm
a33=IC11—4+<C—20P)l—2+kx(y0-hy)2+k¢
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Worked out, (180) yields a third-degree equation in P, the smallest root of which gives
the critical force P.,. The Euler torsional buckling stress is

Oern. = PulA (181)

The condition k, = o can be utilized by first working out (180), then dividing the third-
degree equation in Pk, =0 and finally putting ky= ~.

3.3 Convention for reducing the Euler torsional buckling stress o
to the torsional buckling stress g,

The reduction of 6. ., to o, proceeds analogously to the approach adopted for flexural
buckling 171.

For flexural buckling holds A = \/%? (182)

Put for torsional buckling A = nj]f (183)
The limiting slenderness ratio is defined as:

Ag=T E (184)

Oy
This is the slenderness ratio where the squash load is equal to the linear Euler buckling

load.
The relative slenderness ratio is defined as:

9y

185
Ttk ( )

s A
e

The reduction proceeds as a function of the relative slenderness ratio.

o 1+0339(1—0,2) +4°
gy h 212

1 - - _
~ 27—2-\/{1 +0,339(1—0,2)+4%7 —41*  (186)

This is the reduction curve b for flexural buckling according to the Eurocode 3 for steel
structures 171, now used as reduction curve for torsional buckling.

3.4  Flat bar stiffener

The flat stiffener has a section which is symmetrical about two axes. Consequently, the
shear centre coincides with the centroid of the section.

Xo=y=0 (187)
The stiffener is connected along one edge to the plate, so that:

hy=0 and h,=0 (188)
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Fig. 15. Flat bar stiffener.

Substitution of (187) and (188) into (180) gives:

a ap ass
a  ap ap|=0 (189)
asy azy; as
with

ntrt nin?
an=\El, ———P——+k;

/ /
apn=ay=apn=a;»=0
a13=a31:—kxhy

ntn? n’r?
ax); = EIX [4 —P 12

4_4 2.2

n'r I n’m
a33:lCl74—+(c_,qop)727+k)(hy2+k¢

The decoupling between flexural buckling about the x-axis, on the one hand, and
coupled flexural buckling about the y-axis and torsional buckling about the z-axis, on
the other, is directly evident from (189).

Flexural buckling:

4_4 2.2
EL ’%?-—P%zo (190)
2.2
EI
Pr=" 732 (191)
The lowest value will be obtained if the bar buckles in one half-wave,
2
EI,
n=1: pfz”lz (192)
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In determining I, the effective width of the plate may be taken into account.

Coupled flexural-torsional buckling:

ntrt nr? ntnt Iy n’r? ) 35
E];,“—I‘F—PT-!-](X . C]‘[r-i- C—‘EP [2 +kxhy+kq) ——kxhy =0 (193)

nér?® Iy nr® 2n4n4 ntnt
El, G 1—8+EIy C—-ZP 7—+Elykxhy 174+E1yk¢ IT+

nnt L \n'n! ,n’n’ n’n’
—PC1~16——P C—ZP 7 —kahyl—z—qu)l—z+
n'n’ L\ n’n’ 2,2 2,2
+ k. C 1—4+kx C_ZP z +kihy +kiko —kihy =0 (194)
Dividing (194) by k, and putting k, = gives:
) ntrt ) n’n? ntrt Iy n’n?
E[yhy “14——P/’1y *—['2*—+C1[‘4+ C—ZP [‘2+k¢>=0 (195)
nlm? 2
. (EthV2+C1) 12 +C+k¢n—2n—2
cr = IO
2+%)
nin? /2
(ELh} + C) ot Ctko s
eLh = 196
Tetb. (Ahy2+10) ( )

It is possible to derive a condition subject to which the stiffener remains effective up to
the attainment of the yield point.
According to (186):

40):  I= a_”‘yk <02 (197)
ag
Teib >0—y—2=25ay (198)
Furthermore:
CW =0- C1 =0
C =Gl,=~— E,
2(1 +
(1+v) (199)
h, ='h
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I =L+ L+ A(G +y5)=L+]1,
A safe assumption is:
ke = 0, so-called piano hinge (200)

Substitution of (196), (199) and (200) into (198) gives:
2_2

EL? Ty —— E,
' ! 21 +v)

AGh)Y + L+ 1,

> 2090, (201)

For flat bar stiffeners I, << I, so that, neglecting /,, this expression becomes:
1

21+v)

AGh) + L

El
> 250, (202)

Suppose that Iy= I, + 4 (%h)2 is the moment of inertia of the section about the point N
where the stiffener is connected to the plate; then (202) becomes:
1,

gy

)}
Fe 360 — > 0,074
Iy

1
Fe 430 — > 0,087 (204)
Iy

I
Fe 510 +> 0,111
Iy

I, nd Iy are referred to the stiffener (i.e., excluding the effective width of the plate)..
Itis notin all cases necessary for the stiffener to remain effective up to the attainment

of the yield point. Hence it is useful to be able to determine oe ¢ , and thusag,,,inacon-

venient manner. There are two methods of achieving this, namely:

a. neglecting the same quantities as in the derivation of (203), or:

b. not neglecting any quantities.

Re a:
! EI
20 +v)

Oetb. = ]N (205)
Substituting (205) into (185):

T a g IN

b=\, o= ST 206

\/Ui.t.k_ \ﬂ).gl -10° I, (206)
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_ \[ 5
7=0,0035-\lo,-7  |o,|=|N/mm’| (207)
t

0,25(¢/h)* is small in relation to 1 for flat bar stiffeners with commonly employed dimen-

sions.
T=1195.\[2 1 219)
=1, . E [2 ) t 2 k¢p / 2 1
0.881 () -n”+0551 () +0434 Lo (o) -5

Eth \h| n

With the aid of (186) the reduction can be determined numerically, with the param-
eters:

%

t.t q fo
E° I° n 2" Em

Neglecting the restraint stiffness kp, we obtain:

_ 1
i=1,195.|2. (220)
E t\? t\?
0,881 7) +0,551 (E)

The reduction can be determined with the aid of (186). ¢, ,_can then be determined with
the aid of (186).

Also, it is possible to derive a condition subject to which the stiffener will not fail ear-
lier in torsional buckling than the adjacent panels will fail in plate buckling.

The requirement is then:

Otb. > aplate buckling (208)
From (208) it can be deduced that the following condition must then apply:

Oe.t.b. > ﬁae. plate buckling (209)

The factor 8 takes account of the difference in reduction from Euler torsional buckling
and Euler plate buckling to torsional buckling and plate buckling (see Fig. 16).
It appears from Fig. 5 that the greatest difference in reduction exists for

(23 _ O¢. plate buckling _ O 6
gy Ty

In that case:

reduction for plate buckling 1
= reduction for flexural buckling 0,72 ~ 1,39 (210)
Therefore it is safe to assume:
Oe.tb. > 1739043. plate buckling (21 l)
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) s plate buckling

|
% % |
1.6 Euler hyperbola y=/_1—2
|
\
\
1.4 "
\
\
\\
1.2 1
\
\
\
1.0 —
~ \ \
N N
N \\
038 S5 i
\ \ reduction plate buckling 1.00
- - = ——=1.39
N N reduction flexural buckling ~ 0
\ 3
0.6
\
INA L] ] ]
N | plate buckling curve
04 » 7N (DAST 012)
ECCS buckling curve b r\
R
0.21— i ~—
A S
0 0.4 0.8 12 16 20 2.4

- [
a - Y
plate buckling Ge. plate bucking
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Fig. 16. Reduction for plate buckling and for flexural buckling.

7I2E tp/ 2
Te. plate buckling = ksop=Ks - m E 212)
The factor for plate buckling for a plate panel subjected to constant compression in one
direction:
k, =4

Substitution of (212) and (205) into (211) leads to

1 ElL n’E i\

0 >1394. —— . [~ 213
2(1+v) IN> ’ 12(1-v?) (b) @13)
4 b\

IN>13‘<b>

(214)



Flat bar stiffener:

b st a) 15
Iy Hth+eh-(Ch)Y? \h )

Substitution of (69) into (68) gives:

t Ipi

'D.

(— >3,61 (-
h flat bar stiffener b adjacent plate panel of least width

Re b:
According to (196):

(EL W2+ C) ke
Yty 12 n27T2

Oetb. =

Ah} + I
Substitution of (199) into (196) gives:

2_2 2
n‘rm /
E’Iy(%h)2 72—+ GI,+k¢>m

e.t.b. = 21
Oc.t.b A(%h)2+lx+]y ( 6)
2.2 2
n°m /
_5Egm3h2 et Gt + kg 13
et = Shh® + Lt + thed
313 2
£h kol
020562 — 5= n’E+5ht’G +0.10132 ~ 5
n
e = 2
Oc.tb. %thB +%ht3 ( 17)
t
14025 (2)2
- g ag
zz\/ *=1,195 \/l-
Tk E ¥ ogar (1) 2 0551 (1) 40434 Ko (1) 1 e
) M > - +0, o\ T2
1)) " h Eth h) n’

3.5 T-section stiffener

The T-section stiffener has a section which is symmetrical about one axis. Consequent-
ly, the shear centre does not coincide with the centroid of the section.
Let the y-axis be the axis of symmetry; then:

Xo=0 y=0 (221)
The stiffener is connected along the edge of its web to the plate.

he=0 h,=%=0 (222)
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Fig. 17. T-section stiffener.

Substitution of (221) and (222) into (180) gives:

ap  app as
a1 ay apl=0 (223)
azy  az  as;
with
4_4 2.2
nmn n'rm
all:(E[‘)—F——PT+kX)

ap=ay=a3=a»=0
nlm?

n
a3 =az; = ‘—5’0 -“17“+kx(J’0—hy)]

I’l47'[4 n2n2
ay; = EIX —lr— 12

4_4 2.2
n'rm I n‘rm
ay = icl *——+(C—~OP)*72——+kx(yo-hy)2+k¢

From (223) it is apparent that, just as in the case of the flat bar stiffener, there is decoup-
ling between flexural buckling about the x-axis, on the one hand, and coupled flexural
buckling about the y-axis and torsional buckling about the z-axis, on the other.

Flexural buckling:

n27r4 I’I27T2
El,~g——P =0 (224)
n’n’EIL
Pr= 7 (225)
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The lowest value will be obtained if the bar buckles in one half-wave, i.e., n=1:

nEIl,
12

(226)

E =
In determining I, the co-operating width of the plate may be taken into account.
Coupled flexural-torsional buckling:

nint 2.2 it I n2n? ,
Ely——~—14 —P—l2 + k|-G it C—=P)—5+k(po—h) +koi+

A 1
n2 2 2
~l—1% I +kx(yo—hy)l =0 (227)
nén? I nr® ntrt ntrt
EIyCI—lg——+EIy<C-—1:P) 5 +Ekax(y0—hy)2vF—+Eka¢4l—4~+
66 4_4 2,2 2.2
n’m I; n'm nm nm
PC —P(C—::P)T—ka(yo—hy)zI‘Q—Pk¢—12—+
4_4 2.2
n I nm
+kxcl7”—+k,,<c-;1‘1p> Sk = h) + kKo
4_4 2.2
nrm T
— P’yg 7 +2Pyokx(yo—hy)—lz——kf(yo—hy)2=0 (228)
Put k=
4_4 2.2 4_4
nm nrm
EIy(YO*hy)Z /A _P(yO_hy)2 2 +G /A +
I n’n? n’n?
+(c_/—jp)7 4y + 2P (30— hy) =0 (229)
I12 2 2
{Ely(yO_hy)2+C1} 2 + C+ko i’
P,= 7 (230)
0

(o= )"+ =200 —hy)

G =0

231
L =L+1+ A5 231)
Substitution of (231) into (230) gives:
n’r? 1
EIy(yo —_ hy)2 —17—‘!- C+ ko ;5;—2
O = (232)

L+ 1+ A(¢ +y3 — 2nh,+ h) —29¢ +2nhy)
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C=Gl,

N—h=—h,

L+ 1+ Ah} = Iy (233)
polar moment of inertia of the stiffener

about its connection to the plate (point N)

Substitution of (233) into (232) gives:

o LA L
i’ r’ 21+v) T na?
Ger. = ; 234)
PN

As in the case of the flat bar stiffener it is possible to derive a condition subject to which
the stiffener remains effective up to attainment of the yield point.

a197): 1=

(198):  gerp. >

Assuming kg =0, so-called piano hinge, and neglecting I, in the numerator of the
expression for g (234), we obtain in analogy with (203):
1, gy

o365 (235)

)/
Fe 360 — > 0,074
Ipy

)/
Fe 430 — > 0,087 (236)
Ipy
I
Fe 510 —>0,111
Ipy

I, and Ipy are referred to the stiffener (i.e., excluding the effective width of the plate).
In analogy with (207) the following expression can be derived for the T-section
stiffener:

_ T
1=0,0035- \/ay 7 oy =[N/mm’) (237)
t

g.p. can then be determined with the aid of (186).
In analogy with (214) it can be shown that if

AL 238
= 2\ b (238)
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the stiffener will not fail earlier in torsional buckling than the adjacent panels will fail in
plate buckling.
Without neglecting any quantities, we obtain:

P TR R R
034y oun e 2(1 v) T nin?
1
I=1,195. \/' 2 v (239)
14,099 y- - +0551—+0145‘D_ =
Ipy Elpy n’

With the aid of (186) the reduction can be determined numerically, with the param-
eters:

o, 1, [\ 1 i ko 12
E Iw \1)° Ly ™% EL,

Neglecting the restraint stiffness k,, we obtain:

=1,195- \/— 7 (240)
14,099 - +0,551 —
IPN

Ipy

The reduction can be determined with the aid of (186).

3.6 L-section stiffener

The L-section stiffener has an asymmetrical cross-section. Consequently, the shear
centre does not coincide with the centroid of the section.

x =0 =0 (241)

The stiffener is connected along the edge of one (usually the longer) leg of its L-section
to the plate.

ke=0  hy=0 242)

> X

Fig. 18. L-section stiffener.
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For this case equation (180) is applicable in full.
Substituting C; =0 gives:

an a2 a3

@ axn axp|=0 (243)

azy  az  ass

with
ntrt 2,2
an = EIyT‘—P 2 +kx
/ /
ap=a,=0
n’r?
ap=az = -—5’0‘[2—+kx(yo—hy)
nirt n’n?
ax = E[X—IT—PT
o n2?
023—032—1;5(01—2
I n’r?
a33=| C—EP —2—-+kx(y0—hy)2+k¢
A /
4_4 2.2 4_4 2.2 2.2
n'nm b4 T n‘rw Iy n'rm
{EIy I —P—+k ~‘EIX‘1—f—P 2 }-{(C-—AP) 2 +
2.2 2 nta nim?
kx(yo—-hy) + ko —'—B/o 12 +kx(yo—hy) . EIXT_P-IT
4_4 2.2 222
n'm n°m n°m
—[Elle P—l?+kxi-{Pxo 5 =0 (244)
I 10,10 I n88
E2IXIy<C—;19P) - —PE(IX+Iy)<C—20P) [+ (P4 kL)
Iy nr® Iy ntn? ) ) nén®
CcC——P Pk, |C——P +E L Lk (yo—hy — PE-
( A ) 16 ( A ) 14 Y (yO ) 18
44 47_[4

6_6
nrm nrm n
(IX+Iy)kx(y0——hy)27—+P2kx(y0—hy)2 i +kx2EIX(y0—hy)2—F—+

2.2 8,8 66
h'7m h'7m
— PK(y0— hy)? 12 + Bl kg "5~ = PE(L+ L)ko —5—+ (P* + kL)
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l’l47[4 2.2 8 8 671,6

nmn T
ko —14-——kaqu> 1—2—1) Ve EL —¢— + 2Py, EL (yo — h,) et
4_4 6_6 4_4
nrm hm nrm
— EL.KX(yo — h,)’ L + Py¢ s —2P2y0kx(y0~hy)—7r+Pk3-
nlr? n8rt 6 6 ntrt
(30— hy)? 0 — PAxREL " + PPx — PPxghy —— =0 (245)

Dividing (245) by k, and putting k, =

I nr6 I nirt n'r
EIX(C—ﬁP)——P(C—ﬁP) /7 2x1y(yo—hy)2~*,g +

A ¢
_PE(IXJrIy)(yO_hy)Znj?6+P2(y°_hy)2%“L%Efxﬁ;i—l’kqb E%:
AL 0= ) %‘2” Yoo =) %“ P'x§ n;iﬂ =0 (246)
EIXCn—j&ﬁf_EIX%Pf;%ff_Pcn‘;Zz4+P2%n4n4 T n8?8+
_PE(IX+Iy)(y0_hy)2nj?6+P2(y°_hy)2#“‘%Efx%—ﬂw $+
+m°EI"(y°_hy)$_2P2y°(y0—hy)¢“”2 P o (247)
PQ-!%-H‘;?—i+(yo—hy)2 %‘b’o(}’o—%)% . n‘;zr }+
e B B ) 0 ke T

67_[6

n /4 nm
+20EL (30— hy) 5 + + B C B L B (0 hy)2T+k¢Elxﬁlf—}=0(248)

4

Dividing (248) by gives:

I
PZ'B+ (»— hy)2 —29(yo — hy) —xZt+

2.2 2

L n’n? , N
+ P- EIA N —GL—E(L+ 1) —h) T ko e ——5 + 20 EL -
n’n? n’n? ) 2n4n4
(yo——hy)l—2 +{EL.Gl, ——+ E°L.L,(yo — h,) l—4+k¢EIX =0 (249)
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P
(A) (Al + A*(yo— hy ) — 24%y(y0 — hy) — A°X5} +

n2n2 n271_2
) {IIO—7—-—0.386AI,—A(IX+Iy)(y0—hy)2—wa+
Ak 12 2_2 2_2
— 2”2+2/11xy0( —h)) ——t + E> 10,3861, 1, ot
n'n* kel
+IXIy(y0—hy)2T:t—+¢T}=0 (250)

P
Substituting 1=° into (250) and further working out:

o2 AL+ L+ A(XE + 3¢ + 38 — 2ok, + h) — 293 + 2v0h, — X)} +

2.2

+a E{ (= 12— I, — Alx¢ — ALy} — ALys + 2AL.yoh, — AL h) +

— ALy} + 245, yoh, — AL h? + 2ALy¢ — 2ALyoh,) +

0.386.41,— Lo v +
’ " E n’n?

2.2

4_ 4
n n'n" kel
E2~l0,386lxl,7~+1xly(y0—hy)2 2

7"+ E =0 (251)

02 A-(L+ 1+ 4h)) +

22
+a-E~[ (=12 = I1,— AL (x¢ + h}) — AL (¥ — 2yoh, + h)))} +
Ak I’
—0,38641I,— 7 ninl +
2.2 4_4
n‘rm n'n" kel
Ezo{O,386IXI,—F—+IXIy(y0—hy)2—l—;—+ “’E =0 (252)
hX=X0 and yo—hy=——h
L+1, +A(h§ + hyz) = Jpy polar moment of inertia about point N (253)

L+1,+ Ahy2 = Ip, polar moment of inertia about the point of
intersection of the y-axis with the plate

Substitution of (253) into (252) gives:

n’n’ Aky 17
o7 Alpy +0 - E {(— Loy — L, AR%) =5~ 0,386 41, — E“” ——5{ +
nrm
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2_2 4_4
n°r n'n" Lk
+E? 038611, — o+ TLh* ——+ E“’ =

0 (254)

Neglecting the terms with I, I, and k,, we obtain from (254):

o2Alp, — 6 GAL,=0 (255)
o =0 and dividing (255) by o - 4 (256)
O'IPy - G]t =0
Gl,
Oeth. =7 (257)
Ip,

Asinthe case of the flat bar stiffener it is possible to derive a condition subject to which
the stiffener remains effective up to attainment of the yield point.

gy

(197): A=

>0,2
Oe.tb. z

(198): e > 250,
Then, in analogy with (203):

I, ay
> 65 % (235)

I
Fe 360 — > 0,074
Ipy

)/
Fe 430 — > 0,087 (259)
IS

I

)/
Fe 510 —> 0,111
Py

I, and Ipy are referred to the stiffener (i.e., excluding the effective width of the plate).
In analogy with (207) the following expression can be derived for the L-section
stiffener:

_ 1
1=0,0035- Vay 2 oyl =IN/mm’] (260)
13

0.y can then be determined with the aid of (186).
In analogy with (213) it can be shown that if

I 1\
—’>13-(2’) (261)

Tn,

the stiffener will not fail earlier in torsional buckling than the adjacent panels will fail in
plate buckling.
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Without neglecting any quantities, we obtain:

LIy Lh*\ n’n? ko I
254): ’_6-E D 0386—+ +
( ) 7 7 1( Alfy Ipy 12 Ipy Elpy 7’1277.'2

LI n’z? LLh?n*z* Lke
+ E* 10,386 ! el i i
Alp, I Alp, 1 EAlp,
0> —cEB+E*C=0 (262)
with
LIy Lh*\ n’n’ ke I’
B= e +0,386 —+ 263
(A1py+1,,y 2 Elpy n'z? (263)
LI n*z® LLh*n'n* Lke
+ + 264
Alp, 1> Alp, 1'  EAlp, (264)
EB+VE2B> —4E*C
Oitk. = — B (265)
B
gie=E 7+ ;‘/32—40) (266)

Equation (266) yields two values for the Euler torsional buckling stress, the lower of
which is relevant:

(267)

Te.tb. =E.

g, 1,4
v =1,195- \[ V (268)
Titk. 4C

With the aid of (186) the reduction can be determined numerically, with the param-
eters:

‘B \/—_C)

Ll L <h)2, L kel’

ag
E> Alpl* Ip I, Elp,

[xll . ]xly ﬁ 2‘ Ix ktl’
Alp, P Alp, I’ " EAlp,

Neglecting the restraint stiffness ky, we obtain:

Ly ILh*\ 7’
B= + +0, 386 269
(Alpy Iy | > Ipy (269)

c=0386 2™ R (270)
Alp, P Al 1P

The reduction can be determined with the aid of (268) and (186).
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3.7 Summary of the formulae
3.7.1 Stiffener effective up to attainment of yield point

The formula which has been derived is valid on the assumption of the so-called piano
hinge between the stiffener and the plate to be stiffened.
g, = a, if the following conditions are satisfied:

I/
—>0,074 for Fe 360
Ipy
3

In,

> 0,087 for Fe 430 271)

I/
—->0.111 for Fe 510
Ip,

Ip, is the polar moment of inertia of the stiffener about the intersection of y-axis of the
stiffener with the plate.
For a flat bar stiffener:

Iny=1Iy=1I.+ A(h)’
where Iyis the moment of inertia of the flat bar stiffener about a line through the point

N, parallel to the plate.
For a T-section stiffener:

Ipy=Ipy= I+ I, + Ah}

where Ipy is the polar moment of inertia of the T-section stiffener about the point N.
For a L-section stiffener:

Iny= L.+ 1,+ Ah}

where Ip, is the polar moment of inertia of the L-section stiffener about the point of
intersection between the y-axis and the plate.

3.7.2 Stiffener does not fail earlier in torsional buckling
than the adjacent panels in plate buckling

This derivation has also been based on the assumption of the so-called piano hinge be-
tween the stiffener and the plate to be stiffened.
The requirement oy k. > Gpate buckiing 1S fulfilled if the following condition is satisfied:

I 1\
[—’>13-<%’> adjacent panel with least width (272)
Py

The same further particulars as those relating to (271) in Section 3.7.1 apply here.
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3.7.3 Explicit determination of the relative slenderness ratio 2
of a stiffener, based on the piano hinge between the stiffener
and the plate

Flat bar stiffener

_ 1
(220): A=1,195-\/‘§- P _E
0,881 (7) +0,551 (,—1)

where:

t = thickness of flat bar stiffener
h = depth of stiffener cross-section
| = length of stiffener

T-section stiffener

_ g 1
240): 1=1,195-\/-=2.
SO Y Y m—

14 099 (7

)2 +0,551 ”I'
0 Ipy
where:

h = depth of stiffener cross-section

| = length of stiffener

I, =moment of inertia of the Tsection about of the y —y axis

I, =torsional moment of inertia of the 7-section

Ipy = polar moment of inertia of the T-section about the point N, i.e., the point
at which the stiffener cross-section is connected to the plate

L-section stiffener:

7|2 s\
(268): A= a“.k~1,195 \/;

with:
Ly Lk’
269): B= ( PNy ) 0386—
AIpy In,
Il =n* LILh* 7'
270): A LA
Alp, P Alp, 1
where:

A = cross-sectional area of L-section stiffener
h = depth of stiffener cross-section
| =length of stiffener
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I, =moment of inertia of the L-section about the x — x axis

I, =moment of inertia of the L-section about the y — y axis

1, =torsional moment of inertia of the L-section

Ipy =polar moment of inertia of the L-section about the point N, i.e., the point
at which the stiffener cross-section is connected to the plate
Iy=TL+ 1+ A(h? +h})

Ip, =polar moment of inertia of the L-section about the intersection of the
y-axis of the stiffener cross-section with the plate
Ipy= I+ I, + Ah}

3.74 Explicit determination of the relative slenderness ratio A4
without neglecting the restraint stiffness ky

For all three types of stiffener considered here the relative slenderness ratio X can be
determined with the formula:

_ GV
A=1,195 \/;47 (273)

where 7 is a numerical value depending on the geometry of the stiffener and on the
restraint stiffness kg .

Flat bar stiffener

1
N = 2 ) \2 ko [1\2 1 274)
0,881 (-] -n2+0,551 (-] +0,434 =2 (- =
/ I Eth\h| n
T-section stiffener
- 1 275
" L (hV kol? 1 275)
14,099 ——-(~) -n*+0,551 —+0,145 — —
Ipy \ 1 ]PN Elpy n
L-section stiffener
= 276)
}7 ] -
" VB_VBT_4cC
with:
LIy Lh*\ n’n’ k 12
Q63 B (BN IV sge ey e T
ALy, 1, ] 1 I, EIL, n’
(264): Ll n’z® LLh* n'm +1xk¢

AL, I* AL, I' " EAl,
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7 is a function of the parameters

—m 1! ko 277
n=n 7 E E[h N ( )
B (h) I kel” ) (278)
nr=nr [PN / PN > EIPN s n
LIy I, (h\* I kol
nL=n N e 5
t ‘ AIP_V12 [Ry <l> IPy EIPy

LI LILh* Lk
(. LLhT o Lke ’ 279)

Al 1* Alp 1" EAlp,)’

The factor n is the number of half sine wave into which the stiffener buckles over the
length /; n=1,2,3, etc. The value of nmust be so chosen that the stiffener buckles at the
lowest possible load. From the formulae (274), (275), (263) and (264) it emerges that
n=1ifkp = 0.If ky = 0, then n must be determined numerically so that the values 7, 777
and 7, can likewise most simply be determined numerically. In the case were ky == 0 it is
necessary to take care that the number of waves into which the stiffener buckles (tor-
sional buckling) and the number of buckling waves of the unstiffened plate panel are
not equal. If they are equal, it will not be possible to take advantage of the spring stiff-
ness that the panel must provide. There should be a substantial difference between
these two numbers of waves.

3775 Numerical determination of the factors 7, #r and 7,

A FORTRAN computer program has been produced for the calculation of ,, nrand 7, .

The results obtained with the program are presented in graph form.

Flat bar stiffeners

Some results for flat bar stiffeners are presented in Graphs 9 to 14. It appears from these
graphs that for values of ’log (//t) > 3 the value of #; is constant. This has been utilized
in Graph 15 by eliminating the parameter //t.

T-section stiffeners
Graphs 16 to 19 contain some results for the 7-section stiffener. It appears from these
graphs that with increasing magnitude of the parameter

I 1\?
10 PN
log 7 (h)

the value of 77 does not become constant, but approaches the corresponding curve for

ko 12

Ely = 0.
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quantities relating to flat bar stiffeners,

excluding effective plate width Kk
70 Eth
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if kg#0, then at least a<n” or azn’
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tor values of n see Table 1 / /
4o /
0.0005
/ /
— 0.0010
30
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Graph 19: T-section stiffeners

In order nevertheless to present a graph in which the parameter

v (1Y
L \k

no longer occurs on the horizontal axis, the condition has been introduced that the
graph is valid if the parameter

I (1Y
1 \n
does not exceed a certain value. See Graph 20.

L-section stiffeners
In order to establish a few simple graphs for L-section stiffeners, the following basic
approach has been adopted:
from (263):
Ix IPN

B 9.8696 - n° + 19,8696 Lo(hY 2+0386['+
_—— e — . . o« —_ —_ -n —_—
AP 1, SR AV > I

kol> 1 1'
+

Elp, 98696 n’
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quantities relating to T-section stiffeners
excluding effective plate width
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50 n~ is the smallest value of n-2 and 0.75n
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Graph 20: T-section stiffeners
from (264):
I, I, [h\? I
C=-5-9,8696-n-19,8696--* (-] -n?+0,386 — +
Al Ip, \ 1 Ip,
N kel 1 1
Elp, 9,8696 n’
B=pP+0Q (280)
C=P-Q (281)
with /
PN
5=
I,
P= —2-9,8696 n?
Al
I [h\* L kel” 1 1
= —1=) -n°+0386 —+ . =5
0=98696-, - (/) e T EL, 9.8696 n?
(276):
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Ifit is assumed that steel angle sections (L-sections) are to be used as stiffeners only with
the longer leg connected to the plate to be stiffened, it emerges that 8 = Ipy/Ip,is within
the range 1,10 < 8 < 1,15. A safe assumption is § = 1,15. This means that a condition
B = Ipy|Ip, < 1,15 is introduced, so that 8 has thus been eliminated as a parameter.
The results are represented in Graphs 21 and 22.
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Table 1. Flat bar stiffeners
hft
values of n 10 20 30 40 50
o (1 1. ko 0.0000 1 1 1 1 1
log(z) (/Jt=10) Eth 0.0001 1 1 11 1
0.0005 1 1 1 1 1
0.001 1 1 1 1 1
0.002 1 1 1 1 1
0,01 1 1 1 1 1
0.05 1 1 1 1 1
0,2 2 1 1 1 1
1.3 ks 0.0000 1 1 1 1 1
(I]t=20) Eth  0.0001 1 1 1 1 1
0.0005 1 1 1 1 1
0.001 1 1 1 1 1
0.002 1 1 1 1 1
0.01 2 1 1 1 1
0.05 3 2 2 1 1
0.2 4 3 2 2 2
2. ko 0.0000 1 1 1 1 1
(I]t=100) Eth  0.0001 3 2 2 1 1
0.0005 4 3 22 2
0.001 5 3 32 2
0.002 6 4 3 3 3
0.01 8 6 5 4 4
0.05 13 9 76 6
0.2 18 13 10 9 8
2.3 ko 0.0000 1 1 1 1 1
(] =200) Eth 0.0001 5 4 303 2
0.0005 8 6 5 4 4
0.001 9 7 5 5 4
0.002 11 8 6 6 5
0.01 17 12 10 8 8
0.05 25 18 14 13 11
0.2 35 25 20 18 16
3. ko  0.0000 1 1 1 1 1
(/= 1000) Eth  0.0001 26 19 15 13 12
0.0005 40 28 23 20 18
0.001 47 33 27 24 21
0.002 56 40 32 28 25
0.01 84 59 48 42 37
0.05 125 89 72 63 56
0.2 177 125 102 89 79
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Table 2. T-section stiffeners

values of n
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Lh’+C,

ko l?
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100.
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100000.
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10.
100.

00 D O\ W=

4 Summary

Rules for analysing the instability of transverse stiffeners and the torsional buckling in-
stability of longitudinal stiffeners are derived in this report. As the chapters concerned
deal in some detail with the theoretical background to the analysis, the rules will here be
repeated in the form in which they have been presented in the draft guidelines for the
design of stiffened and unstiffened plate panels loaded within the plane of the panel [8].
That publication also explains how the loading state on which the analysisis to be based

must be determined.
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4.1 Transverse stiffeners

Requirements applicable to transverse stiffeners in plates loaded in plane in one direction.
It must be shown that transverse stiffeners satisfy the condition:

D-E- 1ty < Glimit

where (see Fig. 1):

where:

E = modulus of elasticity of the material

w1 = H[h,in which H= greatest distance from the centroid of the transverse
stiffener to the extreme fibre
h = cross-sectional depth of the transverse stiffener

U = h/b,in which b= width of the plate panel between the edges, or length
of the transverse stiffener

giimit = limit stress in the extreme fibre of the transverse stiffener, e.g., corres-
ponding to the attainment of the yield stress, the lateral (twist-bend)
buckling stress or the local (plate) buckling stress for parts of the trans-
verse stiffener

@ =factor taking account of the maximum curvature in the transverse
stiffener due to the load acting within the plane of the plate; the magni-
tude of @ is dependent on w and A ; w is dependent on the loading state

B 46 a1
= Ela

I =moment of inertia of the transverse stiffener

E = modulus of elasticity of the material

a = spacing of the transverse stiffeners

| = width of the plate panel, or length of the transverse stiffener

0'= 6 = plate thickness if there are no longitudinal stiffeners

0’ = Agross//=total cross-sectional area of the plate including longitudinal
stiffeners, divided by the length of the transverse stiffener

o) = greatest compressive design stress acting in the longitudinal direction of
the plate

Fig. 19. Transverse stiffener.
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The value of @ can be read with the aid of  and A from Graphs 1 and 2 presented in
Chapter 3.

If the analysis for the longitudinal stiffeners shows them not to be loaded to their
limiting load, the analysis for the transverse stiffeners may be based on the assumption
that their spacing a is equal to the length that the longitudinal stiffeners would need to
have so that they were loaded in the limiting load.

Explanatory note: These values of @ are based on the assumed presence of a geometric
imperfection equal to 1/400 of the length of the transverse stiffener. As a more general
principle, the value of @ is proportional to the magnitude of the imperfection. For a
detailed treatment of this method of analysis see [1].

Requirements applicable to transverse under general loading condition
It must be shown that the transverse stiffener satisfies the condition:

F
D-E-u u +2< Tlimit

where:

@ = factor taking account of the maximum curvature in transverse stiffener
due to a general loading state; the magnitude of @ is dependent on:

7
P’
¢p =%
Mi
fM=“E7
_a
fF_ E]

| = width of the plate panel between the edges, or length of the transverse
stiffener

I =moment of inertia of the transverse stiffener

p = uniformly distributed load acting on a transverse stiffener

M =end moments acting on a transverse stiffener (constant bending
moment)

F = normal force (compression) in the transverse stiffener (F as compressive
force has positive sign; if F is tensile, substitute F=0)

A =cross-sectional area of the transverse stiffener

The value of @ can be determined from the tables present in [4].
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4.2  Longitudinal stiffeners

Requirements applicable to longitudinal stiffeners
Buckling out of the plane of the plate
It must be shown that longitudinal stiffeners satisfy the condition:

Ts < Oflexural buckling

where:
a5 = stress at the longitudinal stiffener
Ofiexural buckling = buckling stress of the longitudinal stiffener conceived as a bar
with pin-jointed ends; it depends on the slenderness ratio 4,
a
A I
A/s
with:

I. =moment of inertia of the longitudinal stiffener, including the co-
operating parts of the plate

A,, = cross-sectional area of the longitudinal stiffener, including the co-
operating parts of the plate

a =length of the longitudinal stiffener

Explanatory note: If the longitudinal stiffener is subjected to a transverse load, the stif-
fener should be analysed in accordance with rules for bars loaded in compression and
bending. The separate analysis of the unstiffened panel for plate buckling and of the
longitudinal stiffeners for bar buckling may prove unfavourable, more particularly for
long panels provided with longitudinal stiffeners. In such case the buckled shape of
these stiffeners is increasingly compelled to conform to the buckled shape of the plate
panel. The buckle waves of the plate then pass through the longitudinal stiffeners, and it
is advisable to investigate the buckling of the longitudinally stiffened panel in greater
detail.

Torsional buckling of longitudinal stiffeners
Longitudinal stiffeners of open cross-sectional shape must be shown to satisfy the con-
dition:

15 < Otb.

where:
o,, = stress at the longitudinal stiffener
g, = torsional buckling stress of the longitudinal stiffener, excluding the
effective width of the plate
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Determining the torsional buckling stress for stiffeners of open cross-sectional shape
a. The torsional buckling stress o, ofan open-section longitudinal stiffener is equal to
the yield stress o, if the following condition is satisfied:

*

I
+—> 0,074 for Fe 360

I,

*
At 0,087 for Fe 430
Py
&

I
—> 0,111 for Fe 510

Ip,
For a flat bar stiffener

I =1
Iny=Iy= L.+ Ah}

Because of the assumption of a “piano hinge”, for a flat bar stiffener this assumption
leads to rather unrealistic values for /¢, namely: 4/t <4 for Fe 360 and h/r< 3.3 for
Fe 510. Also, it must be pointed out that flat bar stiffeners are highly sensitive to local
imperfections.

For a T-section stiffener:

. h\' C,
I"=2566-{L (-] +—=t+1
Y\ [2

Ipy=Ipy={I.+1,+ Ahhz}
For an L-section stiffener:

I oy (h)2
+5 -] +

I*=25,66-{—"
Al !

+1,

[0

Ip,= 1.+ I, + Ah}
Iy=1L+1,+ A(h? +h})
All the section properties are to be calculated for the stiffener cross-section, ex-
cluding the effective width of the plate to be stiffened.
b. The torsional buckling stress g, of an open-section longitudinal stiffener is not less

than the plate buckling stress for the adjacent panel with the least width, provided
that the following condition is satisfied:

I* o\
ool
where:

I = as defined under a
Ip, = as defined under a
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C.

t =thickness of the adjacent plate panel
b =width of the adjacent panel with least width

Explicit determination of the torsional buckling stress o, of an open-section stif-
fener in relation to the relative slenderness ratio A

oo 140339(T—02)+1% 1 T ) i
Tik _ 402 — 50 1+0339(1~02) + 27 — 427

gy 217
with
T Ip, /oy
a5\
where:

I'* =as defined under b
Ip, =as defined under a

Explanatory note: For determining the torsional buckling stress for open-section stif-
feners the following basic assumptions were made:

1.

2.
3.

The stiffener is pivotably connected to the plate that it stiffens (so-called piano
hinge).

The stiffener is of infinite length.

The reduction of the Euler torsional buckling stress o, to the torsional buckling
stress g, proceeds analogously to the reduction of the Euler flexural buckling stress
to the buckling stress in accordance with Eurocode 3 Steelstructures [7].

The basic assumption of the so-called piano hinge between the stiffener and the
plate can be dispensed with if, instead, a rotational stiffness k¢ representing the re-
straint (fixity) of the connection of the stiffener to the plate is taken into account:

2E]plale

1))
bplate
where:

EL .1 = reckoned per unit width, while b, denotes the width of the adjacent
panel with the greatest width

In this case the relative slenderness ratio 4 will have to be determined numerically:

T=1195.|2
=1, . E’?

where # is a numerical value dependent on the geometry of the stiffener and on its
restraint kg .

The values of 7 are obtainable from Graphs 15, 20,21 and 22 with the aid of Tables 1 and
2, presented in Chapter 4.
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Explanatory note: The factor 1,195 in the formulae of A is a correction factor between the
relative slenderness ratio 4 and the specific slenderness ratio A, used in the Nether-
lands Standard NEN 3851 [2].

The formulae were firstly derived with respect to that standard.

For this paper the Eurocode formulation is used and a correction factor introduced.

A= M. A= 9y
S O.E b O,E

A=1,1954,
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6 List of symbols

Notation employed in Chapter 2 “Transverse stiffeners”

a spacing of the transverse stiffeners

A cross-sectional area of the transverse stiffener

Ay cross-sectional area of the longitudinal stiffener

e initial imperfection

E modulus of elasticity

F compressive force acting on the transverse stiffener

h cross-sectional depth of the transverse stiffener

H maximum distance to extreme fibre of the transverse stiffener, measured
from the neutral axis

i radius of gyration

1 moment of inertia of the transverse stiffener with regard to bending out of
the plane of the stiffened plate

/ length of the transverse stiffeners

m scalar

M moment acting at the ends of the transverse stiffener

M (x) bending moment acting in the transverse stiffener

n scalar

38



~ TS
=
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=
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4

D
1231
2%
Q

v
g
a3

Tlimit

scalar

load acting within the plane of the plate

uniformly distributed transverse load on the transverse stiffener
scalar

transverse load on the transverse stiffener

deflected shape of the transverse stiffener

deflected shape of the transverse stiffener

non-dimensional deflected shape of the transverse stiffener

initial deflected shape of the transverse stiffener
initial deflected shape of the transverse stiffener

non-dimensional deflected shape of the transverse stiffener

— FI’|EI

PP|EI

MIET

non-dimensional parameter of location on the transverse stiffener
non-dimensional parameter

plate thickness

average plate thickness

non-dimensional parameter: & = //e

non-dimensional parameter

slenderness ratio of the transverse stiffener with respect to flexural
buckling out of the plane of the plate

angle

factor taking account of the maximum curvature in the transverse stiffener
Hlh

hfl

non-dimensional parameter: g =y — 1

proportionality factor: g, = ya,

greatest compressive stress in the plate panel

smallest compressive or greatest tensile stress in the plate panel
limit stress for the transverse stiffener

Notation employed in Chapter 3 “Longitudinal stiffeners”

A
C
C
G
E

G

h
h.and h,

cross-sectional area of the longitudinal stiffeners
centroid of the cross-section
GI,, where I, = torsional moment of inertia
EI,, where I, = warping resistance constant
modulus of elasticity
1
2(T+v)
depth of stiffener cross-section
location of point N in the co-ordinate system

shear modulus: G=E-
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I;
I
1,

Iy
Iy
Ipy

ke,
n
N

0
P

torsional moment of inertia

moment of inertia of the stiffener about the x — x axis

moment of inertia of the stiffener about the y — y axis

polar moment of inertia of the stiffener about the shear centre
moment of inertia of the section about point N

polar moment of inertia of the section about point N

polar moment of inertia of the section about the intersection of the y-axis
with the face of the plate to which the stiffener is connected

K, ko spring stiffnesses

number of half waves

point of application of the elastic support of the stiffener
(= where stiffener is connected to plate)

shear centre

normal force in the stiffener

u,vand @ displacements in the X, y, z co-ordinate system

(@ is rotation about the z-axis)

xand y co-ordinate system with its origin at the centroid of the cross-section of

the stiffener
co-ordinate for the third dimension; extends along the centroidal axis of
the cross-section

Xo and y, location of point 0 in the co-ordinate system

A relative slenderness ratio

As specific slenderness ratio

v Poisson ratio

g, yield stress

Oeth. Euler torsional buckling stress for the stiffener

b torsional buckling stress for the stiffener (i.e., the reduced Euler torsional

buckling stress)
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