Investigation of the stresses in rails

Secondary effects associated with the bending of a
centrically loaded rail

PREFACE

Research on the stress distribution in a flexurally loaded rail was undertaken in connec-
tion with a graduation project, under the auspices of the Traffic Engineering and the
Structural Mechanics Section, at the Delft University of technology. The investigations

comprised strain gauge measurements and a computer analysis based on the finite ele-
ment method.

Co-operation in a participatory or a monitoring capacity was given by:

Prof. Ir. B. van Bilderbeek
Prof. Ir. M. van Witsen
Ir. J. van ’t Zand (Traffic Engineering Section)

Ir. A. W. M. Kok
Ir. C. F. Vrijman (Structural Mechanics Section)

Ir. F. P. M. Sopers (Applications and Systems Section, Computer Centre
of the Delft University of Technology)

and the technical staff of the Laboratory for Highway
and Railway Engineering, Delft University of Technology.

The object of the research was to test the existing theories describing this flexural be-
haviour and to obtain some idea of the degree of agreement between the two methods of
investigation employed.
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INVESTIGATION OF THE STRESSES IN RAILS
Secondary effects associated with the bending of a centrically loaded rail

Abstract

The flexural behaviour of a rail under purely vertical load acting in the plane of symme-
try is investigated in this paper.

For this purpose a rail of NP 46 standard section was subjected to experimental re-
search with the aid of electrical resistance strain gauges in the Laboratory for Highway
and Railway Engineering (Stevin IV), Delft University of Technology. After some ini-
tial problems in maintaining the constancy of the conditions under which the measure-
ments were performed, good results were obtained by this method.

Furthermore, the flexural stresses in the rail due to the above-mentioned load were

analysed with the ICES/STRUDL application package, version 2, available at the Uni-
versity, by means of the IBM 360 computer of the University’s Computer Centre. The
two methods of determining the flexural stresses were found to be satisfactorily ser-
viceable for the purpose and to yield comparable results.
It also emerged that the existing theories for calculating more particularly the maxi-
mum stresses occurring in the rail do not always yield satisfactory results. The system of
mechanical relationships with which Prof. Dr. Ing. J. Eisenmann, Technological Uni-
versity of Munich, and other investigators describe the flexural behaviour of a rail under
centric loading does not represent the actual behaviour of the rail under such loading. A
better, qualitative, description of the flexural stress distribution in the rail cross-section
under the applied load can be obtained by formulating the equilibrium conditions more
satisfactorily and by introducing horizontal compatibility into the model.
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Investigation of the stresses in rails

Secondary effects associated with the bending of a
centrically loaded rail

1 Introduction

The rail performs a dual function in railway engineering. On the one hand, it is the sup-
porting and load-distributing element of the permanent way; on the other, it is needed
for vehicle guidance. The requirements imposed upon the rail by this dual function
have led to the present cross-sectional shape: a relatively heavy upper part, the “head”, a
fairly narrow intermediate part, the “web”, and a wide bottom flange, the “foot”.

This shape has been found satisfactory in practice. Yet it has hitherto not been pos-
sible to obtain a detailed insight into the stress distribution in the rail cross-section
when the rail is loaded in bending by the passage of a wheel orin general by a point load.
The question is considered in this paper.

It has already long been known that the stress distribution in a rail loaded by a vertical
force acting downwards at the axis of symmetry of the rail cross-section differs from the
stress distribution that could be expected on the basis of prismatic beam theory, which
assumes plane sections to remain plane. Besides a maximum tensile stress at the under-
side of the foot and a maximum compressive stress at the top of the head of the section,
there also occur large tensile stresses directly below the head in consequence of the par-
ticular cross-sectional shape. Fig. 1 shows this shape and also indicates the stress distri-
bution found to occur.

—_— ~’» - G = actual stress
| Gp = primary stress
HEAD ‘ | AGI = secondary stress
: M = bending moment
- — — E = distance to N -axle
EI I = moment of inertia
WEB

FooT

—> 0,

Fig. 1. Stresses as a result of a flexural moment in the cross-section in which the point of
load-application occurs.
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So far as the present authors are aware, the above-mentioned phenomenon was first
investigated by Timoshenko and Langer [1], who explain it as follows: The rail as a
whole behaves primarily as a flexural beam. As a result of this a linear stress distribution
develops over the depth of the rail section, with pressure in the head and tension on the
foot.

In addition, a secondary effect occurs. Since the web possesses relatively low stiffness
with regard to vertical deformation, the head can behave in the manner of a beam elas-
tically supported by the web. Under the influence of the vertical wheel load the head
sinks (very locally) into the web, as it were. This results in extra compression at the top
of the head and extra tension at the underside of the head. The overall stress configura-
tion is obtained when the primary and the secondary flexural behaviour are super-
imposed upon each other.

Timoshenko and Langer have attempted to establish an analysis for this behaviour.
They conceive the primary and the secondary flexural behaviour as two mutually in-
dependent phenomena, so that the resultant stress distributions are superimposable.
The stress distribution due to the primary flexural behaviour is analysed in accordance
with conventional prismatic beam theory:

o=M-¢&|[I
where:

o = flexural stress in N/mm?

M = bending moment in Nmm

Z = distance from point under consideration to neutral axis in mm
I =moment of inertia in mm*

The secondary flexural behaviour is analysed with the theory of Winkler and Zimmer-
mann for elastically supported prismatic beams [2]. In this approach a cut is assumed to
be applied between the head and the web. Other basic assumptions of this theory are:
- linear-elastic material behaviour;

plane sections remain plane (Bernoulli’s hypothesis);

the deflections are very small in relation to the length of beam under consideration;
the base (supporting medium) is schematized as an assembly of linear-elastic springs;
there are no shear stresses at the beam/base interface and in the base.

With these initial assumptions and adopting a stiffness against vertical deformation of
the base defined as follows:

modulus of elasticity x web thickness
k =
web depth

Timoshenko and Langer arrive at a formula for determining the secondary stress:

4 2
Ao= 1,5F 3335
3b’aid
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where:

Ao = secondary or additional stress (N/m?)
F =force constituting the load (N)

a, = depth of the head (m)

a3 = depth of the web (m)

b = width of the head (m)

d = thickness of the web (m)

In 1965, Eisenmann of the Technological University of Munich published an article on
the same subject [3]. He also tries to develop an analysis for the stress distribution. His
approach is similar to that of Timoshenko and Langer, except that the stiffness of the
web against vertical deformation is determined in a different way. For this purpose
Eisenmann uses the theory for a plate bounded on one side [3]. The resulting formula is
as follows:

4
I
Ao=15F M
3b a d

where:

Ao = secondary or additional stress (N/m?)

F =force constituting the load (N)

a; = depth of the head (m) (see also Fig. 2)

a, = distance between top of head and top of foot (m)
b = width of the head (m)

d = thickness of the web (m)

The head of the rail section is schematized to a rectangle with dimensions @; and b as in-
dicated in Fig. 2. Just how these dimensions should be chosen is not explained. From
the table accompanying Fig. 2 it emerges that more particularly the magnitude of a; has
a considerable effect on the magnitude of the calculated additional stress.

Table 1.

Illustration of the impact of the value of q, (i.e. the
average depth of the head) on the value of the second-
ary stress, when calculated with the aid of Eisen-
mann’s formula:

\ in which: a; =117 mm
3 \/In ay)ay b = 74 mm
AU] =3 4
2"\ 3p3ald d = 14 mm
F =100 kN
a, (mm) secondary stress (N/mm?)
33.0 75.1
' i 35.0 69.9
‘ 37.75 63.8
Fig. 2. 40.0 59.4
The fixation of the average 42.5 55.1

depth of the head (a,).
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Eisenmann’s formula is found sometimes to give too high values (up to 10% too high)
in practice. This is not very surprising when it is considered that Eisenmann, like Timo-
shenko and Langer, neglects the horizontal compatibility between the head and the
web and thus schematizes the rail to a more flexible structure than it actually is. Be-
sides, as has emerged from the research reported below, Eisenmann’s theory does not
satisfy the conditions of equilibrium.

2 Research
2.1 Laboratory work

The research, which was undertaken within the context of a graduation project, was of
limited scope. It was carried out in the Laboratory for Highway and Railway Engineering
(Stevin IV) of the Department of Civil Engineering in the Delft University of Technolo-
gy. Although the type of rail section (more particularly the moment of inertia and/or the
section modulus, and the dimensions a;, a; and b in Eisenmann’s formula) is an impor-
tant variable in the problem under investigation, only the NP 46 standard rail section
extensively used in the Netherlands was investigated.

The research work involved a so-called three-point bending test. The bearings chosen
for the purpose were triangular in section, rounded at the apex, which supported the rail
across the full width of the foot (“gable roof shape”). The loading was applied with the
aid of a hydraulic jack and transmitted through a contact piece likewise of triangular
shape, i.e., similar to the bearings, but with the rounded apex downwards. In this way a

Fig. 3. Cross-section with strain gauges.
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NP | 46

142

14, type of
strain gauge
used

R — = L= =1

n 120 L
T S
———— type TML FCA 2
—_— type TML FCA 6

Both types of strain gauges can be used for strain
measurement in two mutually perpendicular directions.

Fig. 4. The positions of the strain gauges.

narrow elongated contact face perpendicular to the longitudinal direction of the rail was
obtained (see Fig. 3).

The force acting on the specimen was always directed vertically downwards and could
be steplessly varied. The loads applied in practice were 40, 60, 80 and 100 kN. Later on,
only 60 and 100 kKN were applied.

The measurements were performed with two types of electrical resistance strain
gauges, both comprising two mutually perpendicular windings of constantan wire in a
flat supporting material. In this way it was possible to measure the strains in two
mutually perpendicular directions (see also Fig. 4). At those points where large stress
gradients were to be expected, strain gauges with 2 mm gauge length were affixed.
Elsewhere, gauges having a gauge length of 6 mm were considered adequate for the
purpose. 25 strain gauges were affixed along one cross-section. The positions of the
gauges is shown in Fig. 4.

For practical reasons the measurements were performed on a piece of NP 46 rail with
a length of 1 m, while three different span lengths (distances between bearings) were
employed, namely, 500, 700 and 900 mm. As the rail was able to slide in the axial direc-
tion on the bearings, the same strain gauges could be used for carrying out measure-
ments at varying distances from the load. This was possible because the dead weight of
the rail was negligible in relation to the applied load.
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Fig. 5. The test arrangement.
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The rail specimen and the hydraulic jack were mounted in a frame constructed of
heavy I-section members on a practically vibration-free foundation. This arrangement
is shown in Figs. 5 and 6.

In the strain gauge measurements the most commonly employed technique was
adopted, namely, the carrier wave system. For this purpose the so-called “half bridge
circuit” was used, which is compensated for temperature influences (see Figs. 7 and 8).
As only one strain gauge at a time could provide a reading on the meter, it was necessary
alternately to energize one of the gauge windings by means of a selector switch. Switch
boxes developed by the Laboratory for Highway and Railway Engineering were used for
this purpose. Further information is given in [4].

The actual measuring program had to give a clear insight into the stress pattern. The
stress distribution both along the edge of the rail section at one cross-section and in the
axial direction is important in connection with this. Also, the effect of the magnitude of

1 (g=§"’— rail

. Cg/cross—-section with straingauges
.
. O
San,
[0)
dummy-straingauge on
L o ) steel block in order to
compensate temperature
changes
r-4t+--------"-" - - - — - — - — — — — — — —
strain-gauge —I
R potentiometer instrument

generator

phase- d.ependent

:'[umplifier “:1["9'5““"—'

|

| F
| I
| I
| I
| Z |

R

: bridge circuit voltage :
| I
| [
| |
| |

Fig. 7. The electric circuit in principle.

Fig. 8. View on the electric arrangement; the "
strain-gauge instrument and the switch-boxes. &



the load and of the span had to be investigated, and these two last-mentioned quantities
- load and span - were adopted as variables.

Measurements were performed with varying positions of the measuring cross-section
in relation to the mid-span point. In this way a large number of measured data was ob-
tained, which were processed with the aid of ALGOL computer programs to yield utiliz-
able representations of the stress distribution.

2.2 Computer analysis

A rail of NP 46 standard section was numerically analysed for the case of the same three-
point bending test as that in the laboratory arrangement, but only for a load of 100 kN
and a span of 700 mm. The calculations were performed with the aid of the ICES/
STRUDL (Integrated Civil Engineering System/Structural Design Language) program
package which is available at the Computer Centre of the Delft University of Technol-
ogy and which is based on the finite element method [5]. In this method the structure
under consideration is split up into a number of parts, the so-called finite elements. The
elements adopted for the rail cross-section and for the longitudinal direction are shown
in Figs. 9 and 10.

In the computer analysis a set of equations has to be solved. Because of the compli-
cated geometric structure of the rail section and the large number of elements, the num-
ber of equations is considerable, requiring a great deal of computer time. In order to

1
2 F cross—section with main nodes
3 cross— section with interjacent nodes
1 [0 . [T T ! I
7 : | ! |
12 9 [ ; i i |
3 5 |
1715 T\ 6 Fod ’ | |
1 [ | |
D1 1 | L l
23 : 20 | i i — ]
i3 14|5 30 (30| 60 60 70 | 70
24, 4~21 T t
45 30| 60 120 140 in mm.
350
Fig. 10. The position of the elements in
longitudinal direction.
26
WOEKEL RAILPROBLEM
INCIDENCES
g 27
g 28429 .0
31 4
@32 p33 35
q 3
@7 R 0
38 . . . .
& Fig. 9. The position of the elements in the cross-section.
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keep the whole computing process properly under control, the program has been so
adapted that the set of equations can be solved in steps. If the computer time reserved
by the user has been used up before the analysis has been completed, the program can
be stopped and the intermediate results stored. These data are re-introduced in the next
run, enabling the analysis to be continued. For a review of the computer work see [4].

3 Results

The results obtained in the laboratory measurements and those analytically obtained
with the computer are shown, for the loading case with F= 100 kN and a span of
700 mm, in Fig. 11. There is good agreement between the two sets of results.
Since the maximum value found for the additional stress A ¢; in the measurements and
in the analysis was 63 N/mmz, it can be concluded that, if it is desired to retain the sche-
matization of the rail head as a rectangle, it is necessary to adopt for a; a value which is
approximately the arithmetical mean of cand d (see Fig. 2). With this value of a; good
results are obtained with Eisenmann’s formula, for the NP 46 rail section anyway.
The phenomenon of secondary bending is very local in character. At a distance of
about 60 mm in the axial direction from the point of load application an approximately
linear stress ditribution is already found (see Fig. 12).
As appears from Fig. 13, the total flexural stress at the underside of the head corre-
sponds to a curve oscillating about the primary stress with increasing distance from the
load application point, but not in accordance with the theory of elastically supported

NP 46

explanation

\
\

104 \\:\\

N
!

>->~—— — — —— —

Fig. 11.

o n L L
-80 -60 -40 -20

0 20 40 80 80
G, [N/mm?] ——»

Position of strain gauge

Position of element node

Stress according to strain - gauge measurements
Stress according to computer calculation
Primary stress

—— X [mm]

o 10 20 30 40 50 60
T T T T

Flexural stresses o, in the cross-section in which the point of load-application occurs.

Load F is 100 kN. Distance between the supports is 700 mm.
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Fig. 12. Flexural stresses g, in a cross-section at a distance of 60 mm from the point of load-
application. Load F is 100 kN. Distance between the supports is 700 mm.

load F
0, [N /mm?2] load F = 100 kN.
301 P distance between supports L= 700 mm.
20
40 50 60 70 80 90 100 150 200 250 o___iﬂo!l/o R
distance to the point of application of the load [mm] ; 0’1’/ —
of . e

explanation

X stress at P according to the strain gauge measurements .
— . — 4 - stress at P according to the computer calculations.
——o0——o— stress at P as it should have been according to the
theory of prismatic beams on a elastic foundation,
combined with the formula of Eisenmann.

— .. e—— .. primary stress at P.

Fig. 13. Total stress as a function of the distance to the point of application of the force at a
position P at the underside of the rail-head (Y-coordinate = 105,4 mm).
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beams as supposed by Eisenmann. The stress distribution conforming to this latter
theory is also shown for comparison.

The magnitude of the flexural stresses in the longitudinal direction is, for each point
of the rail cross-section, directly proportional to the magnitude of the load. The magni-
tude of the additional stress Ao, is found to be independent of the span (distance be-
tween bearings).

The flexural tensile stress along the lower edge of the rail foot attains its maximum
value at the centre-line of the rail and decreases by about 15% across the width of the
foot towards the edges (see Fig. 11). The maximum can be calculated with the aid of the
primary theory.

If the strain gauges were affixed at a distance of, say, 1 cm from the centre of the rail foot
- as might occur in measurements performed in situ on the track, under conditions in
which it is not possible to achieve great accuracy - the resulting maximum error in the
stress measurement would be under 3%. This means that, when such a relation between
a stress determined with the aid of a strain gauge and the horizontal force is known, a rail
can in principle be utilized as a measuring transducer. In that case, taking account of the
subgrade and the type of fastenings, it is possible to calculate from the strain gauge
readings what magnitude the actual wheel load must have had.

Eisenmann has attempted to resolve the actual stress distribution, indicated sche-
matically in Fig. 14, into a “primary stress distribution” (a) and a “secondary stress
distribution” (b) in the head. He determines the magnitude of the “secondary stress”
with the theory of the elastically supported beam, the web of the rail being conceived as
the elastic support. The “primary” and the “secondary stress distribution” together, how-
ever, do not constitute a system in equilibrium with the external loading, inasmuch as
the “primary stress distribution” produces a “primary moment”which by definition is in
equilibrium with the external loading. The “secondary stress distribution” produces a
“secondary moment” which is not compensated in Eisenmann’s schematization. Hence
a “tertiary moment” will be needed in order to equilibrate the “secondary moment”.

This “tertiary moment” will in turn produce a “tertiary stress distribution” in the rail
section, with tension at the top and compression at the bottom. From the calculations
and measurements it emerges that this is indeed the case (see also line ¢ in Fig. 14).

If it is desired to calculate the magnitude of the tertiary stresses, two approaches are

|
/
.

+ +
I
: L
b) c)

Total stress a)

Fig. 14. Stress distribution in diagram.
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obvious. The tertiary moment can be conceived as being resisted by the whole rail sec-
tion or, alternatively, by only the web and foot acting as a kind of inverted T-beam, i.e.,
making use of the imaginary cut also adopted by Timoshenko and Langer and by Eisen-
mann. From the overal stress distribution determined from the measurements and from
the computer analysis it appears that a better approximation is found to lie in between
these two alternative conceptions.

Eisenmann only calculates the additional stress at the head-to-web junction, but the
calculated secondary moment of course acts on the entire head of the rail. As appears
from Fig. 14, the line corresponding to Eisenmann’s theory certainly does not describe
the actual behaviour of the rail in bending; the neutral axis for the secondary bending of
the head is in reality located higher than would be expected on the basis of the theory
(i.e., at mid-depth of the reactangular schematization of the head).

We offer the following explanation to account for this:

As Fig. 15 shows, according to Eisenmann’s model, a discontinuity in the stress
distribution occurs at the head-to-web junction. This discontinuity is somewhat redu-
ced as a result of the introduction of the above-mentioned tertiary moment. Such a
stress discontinuity cannot, however, actually occur in a homogeneously elastic mate-
rial. The stresses at the “interface” must, as it were, be drawn together. This affects the
stress distribution both in the head and in the web, with diminishing effect according as
the distance to the interface is larger. It is reasonable to suppose that at the top of the
head the effect of this phenomenon will have diminished so as to be hardly noticeable.
Thus, at the top of the head there is no change in stress distribution as compared with
Eisenmann’s conception (with or without the tertiary moment), but nearer the interface
at the junction of head and web the difference in stress distribution will become greater.
The stress distribution indicated in the right-hand diagram of Fig. 15 is due to this.

From Fig. 16 it appears that the flexural behaviour in accordance with Eisenmann’s
theory, as so far described, does indeed occur, subject to some adjustments for the
points located along the edge of the rail section. This is not the case in the “interior” of
the section, however. At the axis of symmetry of the section a significantly different
stress distribution occurs, as the computer analysis indicates. For the web and foot the
differences are not very considerable, but they are very marked in the head. Because of
the fact that at the symmetry axis of the rail section the underside of the head is sup-
ported by the web, the secondary deflection of the head at this axis is smaller than the
secondary deflection of those parts of the head which are not directly supported by the
web. This explains why the secondary stress at the bottom of the head is greater along
the edge than at the axis of symmetry of the rail section.

! - - Stress distribution in the head as a result
J of the secondary moment
“ a) b) a) according to Eisenmann’s formula

when horizontal compatibility is

+ + b)

taken into account as well.
—_— e
Ty (U'b

Fig. 15. Stress-distribution in the head.
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explanation :

Stress—distribution along the edge of the profile
- in the cross- section immediately under the point
of load application of the force (cf. figure 11).

e .. Stress—distribution along the vertical axle of
symmetry (Y-axle) in the same cross-section.

== -~ Primary stress

-80 -60 -40 -20 0 20 40 60 80
g,[N/mm?] —

Fig. 16. Stress-distribution according to the computer calculations.

4 Conclusions

The secondary flexural stress can be calculated with reasonable accuracy by means of
Eisenmann’s formula, but the latter certainly does not adequately describe the flexural
behaviour of a centrally loaded rail. A quantitative description of this complex be-
haviour in all its aspects will require further research. From the investigations reported
here it emerges that both the computer analysis and the measurements obtained with
electrical resistance strain gauges are suitably serviceable methods for the purpose.

References

1. TimosHENKO, S. and B. F. LANGER, Stresses in railroad track. American Society of
mechanical Engineers ASME, 1931.

2. ZIMMERMAN, H., Die Berechnung des Eisenbahnoberbaues (Railway permanent way design),
3rd ed., Ernst & Sohn, Berlin, 1941.

3. BiseNMANN, J., Theoretische Betrachtungen iber die Beanspruchung des Schienenkopfes
am Lastangriffspunkt (Theoretical considerations on the stress conditions in the rail head
at the point of load application), Eisenbahntechnische Rundschau ETR 14 (1965). No. 1/2,
pp. 25-34.

4. KoLvooRrT, A.J. and T. WOESTENBURG, Sekundaire effekten bij buiging van een NP 46 spoor-
staaf bij centrische belasting (Secondary effects in the bending of an NP 46 rail under centric
loading), Graduation Project Report, Delft University of Technology, Department of Civil
Engineering, Traffic Engineering Construction, Delft, September 1979.

5. BLAAUWENDRAAD, J. and A. W. M. Kok, Elementenmethode voor konstrukteurs, I en II
(Finite element method for designers, I and II), Agon-Elsevier, Amsterdam, 1973.

35





