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Abstract

The rotational capacity of steel columns in braced frames is the subject of this paper.
The behaviour of a braced portal frame up to collapse is examined. Requirements for
rotational capacity of the columns according to some existing standards are scrutinized
with the aid of calculated relations between bending moment, normal force and angular
rotation of columns. An alternative approach is also presented, enabling a simple check
of rotational capacity to be performed with the aid of a table giving values to the rota-
tional capacity of a column, depending on slenderness, axial load and ratio of end
moments. The application of this new method of analysis is illustrated with two
examples.



Plastic design of braced frames
allowing plastic hinges in the columns

1 Introduction

According to the current ECCS Recommendations [1], braced frames may be designed
on the basis of elastic or plastic theory. Plastic design is advantageous in two respects.
First, plastic theory provides better insight into the structural behaviour up to failure.
Secondly, the design will in general turn out to be more economical thanks to the free
choise of the distribution of forces. This latter consideration is especially relevant when
beams or columns have to fulfil additional requirements, such as resticted availability
of various rolled steel sections, headroom or construction depth restrictions, or the need
to maintain column dimensions unchanged through a number of storeys. Particularly
when having to cope with requirements of this kind, elastic design is liable to resultin a
less economic design of structural components.

The plastic design of braced frames can most simply be carried out with the aid of the
lower bound theorem. This theorem states that a lower bound for the collapse load is
obtained if that load is determined from an equilibrium analysis in which the yield
moment or the yield force is not exceeded anywhere in the structure. However, it is only
permissible to apply plastic theory if a number of conditions are satisfied. These condi-
tions are necessary to ensure a plastic behaviour of the structure. This is indeed impor-
tant because the theoretical ultimate load will be attained only if the structure fails as a
“mechanism” in accordance with the envisaged collapse mode. Some of these condi-
tions are:
adequate thoughness of the material;
adequate ductility of the structural connections;
premature local buckling is ruled out;
premature overall instability is ruled out (buckling of columns, lateral-torsional
buckling).

This paper investigates the requirements that columns in braced frames have to satisfy,
in order to ensure the valid application of plastic design. Local buckling or overall in-
stability of the columns may prevent attainment of the calculated ultimate load in such
structures. This will be particularly important when plastic hinge formation in the
columns occur [2] and, in view of the above mentioned instability phenomenae, this is
often ruled out as not permissible.

2 Statement of the problem

To elucidate the nature of the problem, the following case will be considered. Suppose
that a portal frame as shown in Fig. 1 is to be designed. It has a height 4 and a span /.
Point loads F,act on the columns and a distributed load Aq on the beam. The point loads



oo

T

L l
[

>
=1

Fig. 1. Braced portal frame.

can be conceived as transmitted from the superstructure.

For design based on the lower bound theorem the first step consists in choosing an
equilibrium system. More particularly, three possibilities as shown in Fig. 2 will be con-
sidered. All three alternatives satisfy the equilibrium conditions. For the beams the
requirement is that their plastic moment must be at least equal to the assumed maxi-
mum bending moment. Hence it follows that in case (a) the plastic moment of the beam
has to be not less than Aq12/16, while in case (c) it has to be not less than /Iqlz/8. In the
intermediate case (b) the plastic moment of the beam will depend on the moment that
the columns can develop. A design according to case (c) gives the heaviest beam sec-
tion, while a design according to case (a) will result in the lightest beam section.

In case (a) the column must be capable of resisting a moment g/ 2/ 16 at its top end,
while in case (c) the column is mere axially loaded. Hence the columns in case (c) can be
dimensioned more economically than in case (a). Case (b) is an intermediate solution in
which the full plastic moment of the beam can be adjusted to suit the moment-resist-
ing capacity of the columns, or vice versa. By “shifting” the bending moment distribu-
tion the designer acquires the freedom to choose lighter columns and a heavier beam or
a lighter beam with heavier coumns.

If, in case (c), the beam-to-column connections are not actual pin joints, plastic
hinges will be formed in the columns. It will then be necessary to ensure that these
plastic hinges possess sufficient rotational capacity to enable the plastic moment in the
beam to be attained and to prevent premature failure of the portal frame.
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Fig. 2. Possible equilibrium systems of a portal frame, loaded as indicated in Fig. 1.



If the portal frame, designed in this way, is subjected to a distributed load Ag, as
shown in Fig. 1, with A increasing from zero to failure, the behaviour of the frame can be
studied step by step. There are several possibilities, depending on the stiffness ratio of
the column and the beam, on the span, on the normal force, etc.

Case 1: M;;> M,

First, a design will be considered in which the bending moment that the column can
develop (M) is greater than the plastic moment of the beam (M,,;).

The increasing load Ag will cause failure of the frame by a beam mechanism in which
all three plastic hinges develop in the beam. The distribution of the bending moments
just before collapse and the maximum load Ag = 16M,,,,/12 is shown in Fig. 2a, while Fig.
3 shows the mechanism.

Fig. 3. Collapse mechanism when M, > M,,.

In this case the sequence in which the plastic hinges are formed is unimportant. The
first hinge to form will have sufficient rotational capacity to provide the angular rotation
needed to enable the last hinge to develop. This is so because the rotational capacity of a
plastic hinge in a beam (without - or with only a small - normal force acting in it) is
always sufficient if the steel sections employed have width to thickness ratios conform-
ing to the requirements stated in the ECCS Recommendations.

Case 2: M, < My,

In this case the maximum bending moment that the column can develop (M) is smaller
than, or equal to, the plastic moment of the beam (M,,).

Two subcases have to be distinguished now, namely:

Case 2a: the mid-span plastic hinge will be formed first.

Case 2b: the plastic hinges at the ends of the beam will be formed first (or, rather, the
maximum column moment is attained first).

In case 2a the angular rotations at the ends of the beam are, when the plastic hinge at
mid-span is formed, not yet large enough that the columns can develop their maximum
resisting moment. In that case, for a certain value of A (0 < 4 < 1) the bending moment
distribution may have the appearance shown in Fig. 4a. The moments at the ends of the
beam have not yet attained the design moment (1¢/%/8 — M,,;). With further load in-
crease a plastic angular rotation will occur at mid-span, while the mid-span moment
(plastic moment) remains constant. As a result, the angular rotations at the ends of the
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Fig. 4. Bending moment distribution when the plastic hinge at mid-span is formed, but the
maximum resisting moment of the columns is not yet attained (a), and just before
collapse (b).

beam will increase, and so can the resisting moments developed by the columns. Even-
tually these moments attain the value M, = lq12/8 — M,;,, and the portal frame then
collapses. Just before collapse the equilibrium system shown in Fig. 4b will have
developed.

In case 2b the sequence in which the plastic hinges are formed is just the reverse: the
maximum moment is attained first in the columns. The plastic hinge at mid-spanin the
beam has then not yet been formed. This situation is shown in Fig. 5a and will occur
when a certain value of A has been reached.

Further increase of the load will cause increasing angular rotation of the column top
ends, so that the mid-span moment can likewise increase. The moments at the top ends
of the columns will not become any greater, having already reached their maximum. It
is sufficient if the column top end moments do not decrease due to the increasing
angular rotation. The mid-span moment can then become M,,;, so that finally the design
bending moment distribution is attained as shown in Fig. 5b with the associated design
load.

In all cases 1, 2a and 2b the ¢ollapse load for which the structure has been designed
will be attained, provided that the plastic angular rotations can increase without the
associated bending moment decreasing. In case 1 the plastic hinges formed in the beam
must be able to develop a certain rotation, on conditions that the plastic moment is
maintained. In case 2a it is necessary only that the plastic hinge at mid-spanin the beam
has enough rotational capacity, since the collapse load is attained when the columns
attain the maximum moment that they can resist.
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Fig. 5. Bending moment distribution when the maximum resisting moment of the columns is
attained, but the plastic hinge at mid-span is not yet formed (a), and just before collapse

(b).
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M, Isolated column.

In case 2b the column top end should develop a certain rotation while the column top
end moment remains constant. The rotational capacity of the beam is normally always
sufficient, whereas the columns do not always possess sufficient rotational capacity. As
aresult of the instability phenomena mentioned in the Introduction the column top end
moment may undergo a considerable decrease with increasing rotation. Therefore it is
necessary to check that the column does indeed have the necessary rotational capacity.

It should be noted that in this case there is no question of the rotational capacity of a
plastic hinge conceived as concentrated at a particular cross-section, or deformation
capacity as a material property. Instead, the rotational capacity of the column end as
part of the whole column is considered here.

The key to a check of this kind is provided by so-called M-N-¢ curves for the columns.
In these curves the column top end moment M is determined as a function of the
angular rotation ¢ of the column end for various values of the normal force N (Fig. 6).
This will be further considered in the next chapter.

3 M-N-¢ curves

An obvious approach to the determination of M-N-¢ curves is to use a finite element
method. A number of aspects that affect these curves can be fairly simply taken into
account with such a method. Imperfections of the column can be expressed in an initial
eccentricity, and the residual stresses in the column can be simulated by assigning dif-
ferent stress-strain relations to the various parts of the column section.

For local buckling, which may (as test results have shown, e.g. [3]) affect the M-N-¢
curves, more particularly of stocky columns, there is no satisfactory criterion available.
It is also known from tests that the column top end moment in columns consisting of
certain rolled steel sections undergoes very little or no decrease with increasing rotation
after the flange has buckled. Hence it is not enough to know just when plastic buckling
occurs; it is also necessary to be able to describe the post-buckling behaviour.

Lay [4] has developed a theory with which the occurrence of plastic buckling can be
predicted, depending on the (local) strain distribution. This strain distribution can be
established in a simple way with a finite element method. Lay’s theory is based on the



elastic buckling force of the flange of the I-section. His formula contains three material
constants, namely, two moduli of elasticity (in lateral and longitudinal direction) and a
shear modulus. By assuming a shear plane it is possible to estimate these constants
when the material undergoes strain-hardening. On substitution of these values the
buckling force is minimalized with respect to the wavelength of the buckled shape,
whence the following expression is obtained for the wavelength /, itself:

4
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where:
b =width of the flange
t; = thickness of the flange
t, = thickness of the web
A,, = cross-sectional area of the web
Ay = cross-sectional area of the flange

Because the wavelength has been determined on the assumption that the material
undergoes strain-hardening, the buckling criterion is as follows:

The flange of the structural section will buckle when the strain at which strain-hardening
occurs has been attained over a length I,.

Although a number of questionable assumptions have been made, this buckling cri-
terion is in reasonable good agreement with test results [4]. There are, however, indica-
tions that the rotation at which buckling occurs is underestimated in certain cases.
Some sections do not buckle at all, not even when very large curvatures and therefore
very large strains occur. Not taking account of post-buckling behaviour means that this
criterion remains on the safe side. It will be shown that the number of cases where the
rotational capacity is restricted by this criterion is not very large, however, and these
cases can readily be accommodated when in due course a more suitable criterion
becomes available.

Parameters to be varied

There are three parameters that have to be varied in establishing the M-N-¢ curves.
These are: the normal force, the slenderness and the end moment ratio. A practical
quantity for expressing the normal force is F|F, where F denotes the externally applied
load and F, the collapse load of the axially compressed column. This parameter varies
between 0 and 1. The ordinary slenderness ratio A, has been chosen as slenderness
parameter. Furthermore the symbol 8 denotes the end moment ratio in the elastic
range (f = M /M, in Fig. 6). If the bottom end moment is greater than the top end
moment, the reciprocal value of 8 is employed, in which case § varies from — 1to + 1.
As the angular rotation is controlled, § is accurately constant only in the elastic range
but the end moment ratio was found to undergo little change in the plastic range as well.

Strictly speaking, there is a fourth parameter, namely, the shape factor 7. However,
since 7 ranges from 1.11 to 1.24 for the rolled I-sections under consideration here, it was



assumed, as a preliminary approximation, that » could be taken as constant. This sub-
sequently turned out to be a sufficiently accurate assumption.
The steel grade adopted in the various calculations is Fe 360, with g, = 235 N/mm?,

Results

Calculations were carried out with the following numerical values of the parameters.
Parameter F|F; was given the values, 0, 1,1, 2 and 1, the parameter A, the values 40, 80,
120, 160 and 200, and the parameter § the values —1, 0 and + 1. Calculations with
intermediate values of these parameters were also carried out in order to check whether
linear interpolation is permissible.

One of these results is represented in Fig. 7. It relates to a pin-jointed column consist-
ing of an HE 200 A rolled steel section and subjected to a normal force characterized by
F|F;,=0.725.' Furthermore: 1,=100 and 8 =0. Using the finite difference method,
Ojalvo [5] performed a similar analysis for an American rolled steel section 8WF31. This
result is also shown in Fig. 7. Both calculations provide an accurate description of the
elastic branch of the curve. In the plastic range the results diverge, but the difference
can readily be explained by the fact that the two sections analysed were different, result-
ing in different plastic moments.

Obviously, it is not possible to include all the curves in this publication, which will
therefore have to confine itself to present a few significant aspects. The complete set of
curves, together with a detailed treatment of the problem with which the present paper
is concerned, is given in [6].

The following emerges from the research that has been conducted:

- Columns with a high slenderness ratio remain elastic even when large angular rota-
tions occur at the column top end. They respond as an elastic spring, with low stiff-
ness caused by geometric non-linearity.

‘F
M Fe 360
M .8 A,=100
Mpc ¢ F/Fy =0,725
T T =0
6 el. solution
51 T
F HE 200 A (v. Manen)
A
3
2 8WF 31 (0Ojalvo)
A
Il 1 1 1 -
.0 .02 .03 .04 .05 rad.

Fig. 7. M-N-¢ curve.
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Fig. 8. Two different shapes of M-N-¢ curves.

- Stocky columns, on the other hand, respond in a very rigid manner and are hardly
sensitive to geometric non-linearity. Zones with highly concentrated plastic deforma-
tions soon develop and create the conditions under which plastic buckling occurs.
This type of buckling is then often the criterion for the rotational capacity.

- If the moment decreases with increasing rotation (the descending branch), the
moment decreases very rapidly in many cases. This phenomenon is shown schema-
tically in Fig. 8a as contrasted with Fig. 8b.

There are two practical consequences due to this last finding:
1. The rotational capacity ¢, of the column is in most cases fairly uniquely determined
while the column has attained the maximum resisting end moment M.

Table 1. Rotational capacity of a column consisting of a rolled steel I-section (steel grade Fe 360)
for various values of 1,, F/F, and § in 1072 rad. The cases marked by an asterisk denote
those where local flange buckling determines the rotational capacity. The values in
parentheses indicate the rotational capacity neglecting the local flange buckling

criterion
F|F, 2,=40 A,= 80 1,=120 A,=160 A,= 200
B=+1 1 0 1 2,5 4 3,5
v 1 1,5 3 45 7
Y 2 3 45 6,5 9
Ya 4 5 6,5 8 10
0 10 10 10 10 10
B=0 1 0 1 2 3 5
Y 1,5 2,5 3,5 5,5 7,5
Y 2,5% (6) 3,5 5 7 10
Vs 3,5% (8) 8 9 10 10
0 6* (10) 9 10 10 10
B=—1 1 0 1,5 3 4,5 6
Ya 2% (5) 3 5 6,5 9
1 3% (10) 5% (10) 8*  (10) 10 10
Vs 3% (10) 6* (10) 8,5* (10) 10 10
0 5,5% (10) 7% (10) 9% (10) 10 10
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2. It will not be possible to design the portal frame with a rotation larger than ¢, It is
not practicable to calculate the associated moment, which is smaller than M,, with
any accuracy. This means that the equilibrium of the beam (Myp+ M. > q12/8) can
not be verified then.

The rotations ¢, determined in this way are presented in Table 1. For practical purposes
the rotational capacity can be taken to vary linearly between the values given there.
How these data can be used for checking the availability of sufficient rotational capacity
will be explained in the next chapter.

4 Application of the M-N-¢ curves

A possible way to tackle the problem of whether or not there is sufficient rotational
capacity consists in introducing the required rotational capacity into the calculations.

For braced structures this capacity can be calculated quite simply. In the case of
braced portal frames the required rotation follows from the condition that the plastic
moment has to be attained at mid-span in the beam. The column develops the end
moment M, and, with a uniformly distributed load as shown in Fig. 9a the bending
moment distribution at the instant of collapse will be as shown in Fig. 9b. The angular
rotations that occur at the end of the beam and correspond to this bending moment dis-
tribution can be calculated as follows.

The distributed load and the end moments will cause the simply-supported beam to
undergo an angular rotation expressed by:

Agl® Ml
= 24(En), ~ 2(ED), @
while:
M,y + M= Aql*[8 A3)
hg— Mlzl_:flk) 4)
(2) and (3)

(Mpb+Mk)l Ml

~="3En, T 2ED,

1 Mk
Gk 20 I\

b
a b c

[ Py

Fig. 9. The angular rotation of a simply-supported beam, loaded by a distributed load and two
equal, opposite moments on both ends.
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or:
(M, — My)!
bo=""G(ED, ®)

where:

M,, = plastic moment of the beam
M, = column top end moment

/ = length of the beam

(EI, = flexural stiffness of the beam

The maximum rotation that the column can develop is then obtained from Table 1,
applying linear interpolation if necessary.

If the rotation that can be developed is larger than, or equal to, the required rotation, it
means that the rotational capacity of the column is sufficient.

In other words, adequate rotational capacity is ensured if:

¢developablc by column > ¢required by beam

In the check for rotational capacity as outlined here it has been presupposed that the
normal force in the columns is constant, and the M-N-¢ curves have indeed been based
on this assumption. Actually, however, the rotational capacity is found always to
decrease with increasing normal force. Hence it follows that the method can be used
also in those cases where the load on the column increases, the check then being per-
formed in the ultimate state (i.e., at failure), when the column is under maximum load.
This method will be further explained with the aid of the following examples:

Example 1

Suppose that the portal frame shown in Fig. 1 is to be designed. The spanis /=8 m, the
height #= 8.12 m, the column load F, = 6 kN, and the distributed load ¢ = 10 kN/m. For
reasons of economy (or of availability) the columns consist of the HE 100 A rolled steel
section, steel grade Fe 360. In order to be able to use these slender columns, the load
transmission as shown in Fig. 2b is chosen.

The maximum mid-span moment under design load (y = 1.5) is:

M=yql*|8 =120 kNm

The section chosen for the beam of the portal frame is the IPE 300, with a plastic
moment M,, =150 kNm and a second moment of area /=8356x 10~ * m*.
With the chosen bending moment distribution the column is conceived as axially

(i.e., centrally) loaded with normal force F:
F=1y{F.+3ql} =69 kN

The slenderness ratio of the column is:

12



According to Table B1-36 of the European (ECCS) Recommendations [1] it appears
that 1, =200 is associated with a critical stress o, = 43.8 N/mm?.
The stress occurring in the column under design load is:

—F—325N/ 2
0'—-1—4— . mm

Being an axially loaded column this column therefore fulfils the requirements.
Finally the check for rotational capacity is carried out. The rotation that the beam
requires in order to attain M,, at mid-span is (see equation 5):

(M, — My)1

_ _ -2
op= 6(ED), =23x%x10" " rad.

The rotation that the column can develop is as follows (see Table 1 for § =0, 1, =200
and F[F,=0[o,=0.75):
$i=7.5x10"2 rad.

In this case therefore: @geveiopable > Prequired
This means that the rotational capacity of the column is sufficient.

Example 2

The portal frame shown in Fig. 1 will again be the subject of this example, but now with
stocky columns and large normal force. The span in this case is 5 m and the height
4.04 m. The column load is F, = 740 kN and the distributed load ¢ = 32.0 kKN/m. The
normal force under design load is:

F=y{F.+1ql} = 1230 kN

The section chosen for the column is the HE 240 A, steel grade Fe 360, with i= 101 mm
and 4= 76.8 x 10> mm>. The slenderness ratio is therefore A:=4040/101 = 40.
According tot the European Recommendations, Table B1-36:

or=231.5 N/mm?.
Hence it follows that:

F
7= 0.69

The rotation that can be developed is obtained from Table 1
(B=0,1,=40, F/F,= 0.69):
¢r=1.5x10"?%rad.
Since the column is not loaded to its utmost axial capacity, the column is additionally

able to resist a bending moment. The load transmission shown in Fig. 2b is chosen, and

13



the column top end moment is calculated in accordance with the European Recommen-
dations for columns loaded in compression and bending:

F7F0+ﬁ(ﬂ*Mk+Fe)/Mpk<l ; (8)

The maximum bending moment is found by equating the expression on the left-hand
side to 1. '
The factor u in (8) denotes:

F, ’EI
U= ;E, where Fp= nl—z, furthermore 8 = 0.6 + 0.45.

The initial eccentricity eis calculated as follows (again in accordance with the European
Recommendations):

(%) (1-%)2 9

€= ar T o, A ®)

where g, is the yield stress and o, = Fz/4 while Z is the plastic section modulus of the
column. On substitution of the data, the following values are obtained:

F|F,=0.667
u  =8.02
B* =06

g, =235 N/mm’
o, =1284 N/mm?
e =81mm

and finally the maximum moment which can be developed is:
M, =755 kNm

The moment that the beam must be able to resist is calculated from equation (3):
M= Aql*[8 — M,

On evaluation this becomes: M,;="74.5 kNm

The IPE 270 rolled steel section can be chosen for the beam, for which we thus have:
My, =123 kNm

Finally, the required rotational capacity is calculated (equation 5):

M, — M)
¢b=%=1.2x10_2 rad.
b

In this case, too, the required rotation is less than the rotation that can be developed.
The rotational capacity of the column is therefore adequate.

14



5 Conclusions with regard to current codes of practice

If the largest bending moment that the columns can resist is smaller than the plastic
moment of the beam - or, stated differently, if the plastic hinges will occur in the
columns - it is necessary to check that the columns possess sufficient rotational
capacity.

As indicated in the preceding chapter, the question whether or not a column fulfils
the rotational capacity requirement will depend not only on the column itself, but also
onthe beam or, in a more general way, on the rest of the structure to which the column is
connected. It is in fact the structural members connected to the column that determine
the amount of rotation required, and this will vary from one case to another. If the
required rotation is small, the column need not have a large rotational capacity. Conver-
sely, if the required rotation is large, the rotational capacity of the column will likewise
have to be large.

Yet the codes of practice relating to this subject which have come to the present
author’s notice consider only the column. Thus, both the Netherlands code [7] and the
Australian code [8] are based on the conception that, if the column can develop a certain
rotation, “all will be well”, on the assumption that any larger rotational capacity is not
necessary in practice.

Deciding whether or not a column has sufficient rotational capacity by applying the
criterion of an arbitrarily determined rotation limit admittedly has the merit of simplic-
ity for practical use, but suffers from the disadvantage of being rather inflexible. Thus,
in a majority of cases this criterion will be too conservative in that it will rule out the use
of columns which could easily have developed the desired rotation. And, conceivably,
in a small number of cases the rotational capacity of a column not ruled out on the basis
of this criterion, may yet prove to be inadequate.

The two codes do indeed take account of the situation - commonly encountered in
design practice - that a stocky column requires only little rotational capacity. This is
done by reducing the rotational capacity required of such columns according as the
slenderness ratio is less. The implicit embodiment of this principle in the design rules

_F
Acr
A
T1,o 10 p=1 R
8 8h
.6 6 \
. Ny . \ #=002
: 9-006 N g
N =008 4-008
2 N 2 i
- :
N ! L N
0 40 80 120 160 200 O 0 160 200 0 40 80 120 160 200
— A — 2 2

Fig. 10. Permissible combinations of normal force and slenderness with respect to the rotational

capacity according to the Australian code (- —-— —- ), the Netherlands code
(== ) and the results of the present analysis (—————) for = — 1, 8 =0 and
f=+1
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makes a direct comparison with the results obtained impossible. For this reason the
designrules are indicated in Fig. 10, together with the various values of the total rotatio-
nal capacity arrived at in the analysis. The curves give the limits of permissible combi-
nations of slenderness and normal force for various values of . The (arbitrary) limiting
rotations with which the results of the analysis are presented are 0.02, 0.04 and 0.06 rad.
0.02, 0.04 and 0.06 rad.

In the case of braced frames the Netherlands code gives the following rule:

F i

where o, is the yield stress and 4 the cross-sectional area. This rule is valid for steel
grade Fe 360, and independent of the parameter 8, whereas in the Australian code the
effect of 8 is very important. Some notable differences are immediately evident:

1. The parameter f is found actually to have not much effect on the results. The Aus-
tralian code (in which the relevant rules have been derived by a semi-analytical
method) considerably overestimates this effect.

2. In contrast with what the codes envisage, the rotational capacity of columns in the
“slender” range is very large, and the application of such columns is unnecessarily
restricted in that range.

3. On the other hand, columns which are to be rated as “stocky” have less rotational
capacity than indicated in the codes. As already stated, in this case the codes im-
plicitly take account of the fact that such a column does not need to develop much
rotation. In actual practice these columns are often so strong that the plastic hinge
will always be formed in the beam, so that this part of the code is of merely secondary
importance.

Despite the drawbacks of the Netherlands code with regard to the overall structural
behaviour, the rule laid down in it has the advantages of simplicity and of serviceability
in practice. In the “slender” range, however, the application of the lower bound theorem
is unnecessarily restricted. If simplicity is nevertheless considered to be prime con-
sideration, the existing rule could be modified as follows:

it el for Lsous 11

40, T120 <1 for 5 2>0. an
if

M, < My,

What it amounts to is that the check can be omitted if the normal force is less than 15%
of the force causing yield of the total cross-section. In the “slender” range the normal
force is usually less than this value, so that the check for rotational capacity is then un-
necessary.

16



6 Summary and conclusions

This paper gives a description of the various collapse modes of a braced portal frame. It
appears that the angular rotation of the column ends play an important part in deter-
mining the collapse behaviour if the plastic hinges are formed in the columns. This
situation arises when the maximum moment that the column end can resist is less than
the plastic moment of the beam. A distinction is drawn between the case where a plastic
hinge is formed first at mid-span of the beam, and the case where plastic hinges are
formed first in the columns. In the latter case the moment developed by the column
should remain constant until the plastic hinge at mid-span has also been formed and the
collapse load reached. Actually, however, the column end moment may be drastically
reduced due to local or overall instability effects. For this reason the Netherlands code
of practice lays down requirements with regard to the columns of braced portal frames
which have been designed on the basis of elementary plastic theory (lower bound theo-
rem) and in which the plastic hinges are allowed in the columns. In this paper these
requirements are compared with the results of calculations in which these instability
effects have been taken into account, and it is explained why there are grounds for
widening the scope of the present code.

The question whether or not sufficient angular rotation can be developed is, however,
not decided as a property of the column alone, but follows from the geometry of the
whole structure. The angular rotation that is needed to obtain the desired collapse
mechanism is likewise important. This is demonstrated with two examples. According-
ly, an approach is proposed in which the required angular rotation is calculated. This
procedure also deals with those cases where plastic hinges are indeed formed in the
columns, but where the mid-span hinge is formed first and the columns need therefore
not possess rotational capacity. It is shown that the normal force in the columns need
not be constant and that the analysis can be based on the maximum normal force that
occurs. The proposed method of analysis can be applied quite simply to braced frames
of greater complexity.
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8 Notation

area of a cross-section
cross-sectional area of a web
cross-sectional area of a flange
width of a flange

eccentricity

modulus of elasticity

force

constant axial force on a column
Euler buckling force

yield force (g, A)

maximum column load (oy- A)
height of a portal frame

radius of gyration

second moment of area

span

Iy length of a buckling wave

M bending moment

M, end moment with smallest absolute value
M, end moment with largest absolute value
M,, plastic moment of a beam

M,, plastic moment of a column

M, maximum column end moment
N normal force at a cross-section

Se T EmmmmTES Taaa

q uniformly distributed load

t thickness of a flange

t, thickness of a web

Z plastic section modulus

B ratio of minimum to maximum end moment of a column
B factor to calculate equivalent moment when end moments are unequal
y factor of safety

A load factor

Az slenderness ratio

)] angular rotation

o angular rotation of a beam end

or rotation capacity of a column

n shape factor

g stress

O maximum column stress (European Recommendations)
o, yield stress

o,  elastic critical stress (Fg/A)

18



9

References

. European Convention for Constructional Steelwork, European Recommendations for Steel

Construction, 1978.

. WITTEVEEN, J., Frame analysis including column hinges. Stability of steel structures, Final

Report, Second International Colloquium, Liége, April 1977, pp. 309-310.

. AugusTl, G., Experimental rotation capacity of steel beam-columns. ASCE Proceedings, ST6,

December 1964.

. Lay, M. G., Flange local buckling in wide-flange shapes. ASCE Proceedings, ST6, December

1965.

. OJaLvo, M., Y. FukomoTo, Nomographs for the solution of beam-column problems. WRC

Bulletin 78, June 1962.

. MaNEN, S. E. vaN, J. WITTEVEEN and A. A. vaN DouweN, De rotatiecapaciteit van stalen ko-

lommen (The rotational capacity of steel beam-columns). TNO/Stevin Report no. BI-79-61,
May 1979.

. Netherlands Standards Institution, Technische grondslagen voor de berekening van bouw-

constructies (Technical principles for the design of building structures). TGB 1972 - Staal,
December 1973.

. Lay, M. G., The basis for the plastic design rules of AS CA1. Melbourne Research Laborato-

ries, Broken Hill Proprietary Co. Ltd.

19





