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Abstract

This report is concerned with the integration of various disciplines of engineering
science in their approach to the safety and service life (or lifetime) of structures. A
general “basic philosophy” is formulated and attention is focused on the mathematical
models that can be applied in connection with it. The computational techniques for the
probabilistic approach presented here are discussed, as are also economic aspects and
the interpretation of technical uncertainties. A “check-list” is given in order to enable
potentially hazardous factors to be detected at an early stage in a safety/service life
analysis. Finally, problems associated with the simultaneous occurrence of several
failure mechanisms are considered, and methods of dealing with them are described.



SAFETY, RELIABILITY AND SERVICE LIFE OF STRUCTURES

Preface

This report describes the results of a study conducted under the responsibility of the
Working Group “Mechanics” of the TNO Division for Building and Metal Research
(TNO = Netherlands Organization for Applied Scientific Research).

At the time of compilation of the report this Working Group was constituted as
follows*:

Ir. F. K. Ligtenberg (IBBC), Chairman
Drs. H. C. van Elst (MI)

Ir. C. F. Etienne (MI)

Dr. ir. A. de Kraker IWECO)

Ir. J. W. B. Stark IBBC)

Ir. A. C. W. M. Vrouwenvelder (IBBC)
Ir. J. W. Tichler (MI), Secretary

This study was financed mainly from a subsidy made available by TNO. Ir. J. W. Tichler
was the project leader.

The present report has been compiled from the results of the activities of a Sub-Work-
ing Group consisting of the Authors, supplemented at a number of points by contribu-
tions resulting from discussions within the Working Group as a whole.

*IBBC: Institute for Building Materials and Building Structures
MI: Metal Research Institute
IWECO: Institute for Mechanical Constructions






Safety, reliability and service life of structures

1 Introduction

Some time after the TNO Division for Building and Metal Research had been formed,
the Working Group “Mechanics” was set up for co-ordinating the activities comprised
in the “Mechanics” discipline within this Division. It became apparent to this Working
Group that in the Division there existed widespread iaterest in such subjects as service
life, service life prediction and structural safety. Combination and comprehensive treat-
ment of the various approaches to these matters was therefore very desirable.*
While research relating to service life, service life prediction and “safety” or reliability
of structures was being conducted under various projects, it emerged that these con-
cepts were being approached in different ways by the various disciplines and specialized
technical fields concerned. On the one hand, emphasis is often laid on the considerable
scatter in the results of measurements and on the high degree of unpredictability of all
kinds of external influences. This state of affairs prompts investigators to seek stochastic
relationships, while less attention is devoted to achieving greater accuracy of the data.
Quite often, on the other hand, attention is focused on materials testing and investiga-
tion, while statistical analysis of the scatter in the results and of the uncertainty of exter-
nal influences is not carried out. Harmonization of the various approaches to problems
will enable the various disciplines to influence one another to their mutual benefit.
In general, three aspects call for mention in motivation of carrying out research on
service life and reliability of structures, namely, the safety aspect, the economic aspect
and the social aspect.
1. Safety aspect.
The safety aspect relates to the damage that occurs in the event of uncontrolled and
premature failure of the structure. In the case of many structures such failure, or col-
lapse, may result in a major disaster involving possibly fatal injuries and/or environ-
mental harm and material damage.
2. Economic aspect.
From considerations of accident prevention there is of course a tendency to aim at
providing as much structural safety as possible. Safety and reliability cost money,
however, and therefore limits have to be imposed from the point of view of economy.
Besides, this problem exists even if structural failure does not result in a disaster, but
merely causes interruption of a production process, for example. In both cases an
economic advantage can be gained if the behaviour of the structure, and more partic-
ularly the stochastic behaviour of its life or its residual life, can be predicted.
3. Social aspect.
The safety aspect and the economic aspect are, of course, also social aspects. In addi-

* In this report the term “life” or “service life” is used in the normal sense of the length of time for
which a structure or device functions or performs in a satisfactory manner. Synonymous terms
are “working life”, “lifetime”, etc.



tion to this, however, the following considerations call for mention:

— when a structure reaches the end of its service life, the environment is burdened
with the structural remains;

- the existing raw material reserves are put under strain in building a new structure;

- building a new structure offers employment opportunities; on the other hand,
conservation of existing structures can also provide employment.

With regard to these considerations, too, it is possible to achieve an optimum only if

a proper stochastic description of the service life is available.

Obviously, optimalizations as envisaged above are far from simple. Even if sufficient
technical and statistical data for that purpose are available, the set of norms on which
the optimalization is to be based will depend very much on who is more particularly in-
terested in such an optimalization. Furthermore, the result may depend on the assump-
tions, omissions, schematizations and appfoximations that inevitably have to be made,
i.e., it will depend on who is responsible for applying the procedure.

To promote a wider measure of agreement in the views of various persons responsible
for such procedures was, accordingly, an important aspect in the objectives of this
report, which can be defined as follows:

Objectives

To establish a general “philosophy” by harmonization of the various relevant ap-
proaches specific to the respective disciplines, and to derive therefrom a procedure (or
procedures) for estimating the (residual) service life of structures and/or the reliability
of structures during a certain future period.

First among these objectives is to establish a general philosophy; this is developed in
Chapter 2. Inview of the many hazards to which structures are exposed, there was found
to be a need for a review of general aspects within the context of service life and safety
considerations, called a “check-list” for convenience, it is presented in Chapter 3. Next,
Chapter 4 deals with the problems associated with the fact that structures are in general
subject to several causes of failure acting simultaneously. Chapter 5, finally, gives a sum-
mary, conclusions and suggestions for further investigations.

2 Philosophy relating to service life and to reliability
2.1 Introduction

Designing a mechanical or civil engineering structure in the expectation that it will con-
tinue to function safely, economically and efficiently over a certain anticipated period of
time - often a considerable number of years - is based mainly on assumptions as to
loads, material behaviour, stress concentrations, etc., which in turn are based on know-
ledge and experience previously gained with more or less similar structures.

The design methods derived from such expectation, knowledge and experience func-
tioned very well for a long time. The magnitude of the uncertainties in the load and
strength quantities was often too imperfectly reflected in the design procedure, how-



ever. The existence of these uncertainties was indeed recognized, and they were intro-

duced into the procedure by the application of a set of safety factors and load factors in

order to obtain what was considered to be a justified margin between “strength” and

“load”. The great drawback of this method is the unavailability of accurate information

concerning the actual service life or the reliability of structures, while there is moreover

only little insight into the constitution of the overall safety of life, i.e., insight into those
factors that are of dominant importance with regard to these quantities.

Factors that tell strongly in favour of developing a more sophisticated approach to the
questions of safety and service life are:

- The increasing cost of development and construction of modern structures; further-
more this very high cost which makes it essential to achieve an optimal economic
service life.

- The increasing complexity of structures, so that the latitude to compensate for errors
or uncertainties of design becomes less.

- The increasing number and range of new demands that are being made upon struc-
tures. This often necessitates, for example, the use of new materials concerning with
there is as yet relatively little knowledge available.

- The increasingly far-reaching interests associated with the failure of a structure or
with its inability to go on performing its function - more particularly from the
economic and safety points of view (e.g., economic consequences of interruptions of
production, accident prevention legislation, etc.).

For civil engineering and for mechanical engineering structures these matters are at
present rather in a state of development. In recent years there has been a growing real-
ization in an ever wider circle that a purely deterministic approach to the safety or the
service life problem does not offer sufficient backing for soundly based design or
management, of structures. This implies, much more than used to be the case, that it is
necessary to aim at quantification of the uncertainties playing a part in the process. In
consequence of this, probability theory will have an increasingly important part to play
in service life or safety analysis. However, it still involves quite a number of difficulties,
so that this approach is only slowly gaining ground. The fact that statistical information
for the formulation of probability density functions for load and strength quantities is
often lacking is also a deciding factor in this context. Most structures are still designed
in accordance with well-tried deterministic concepts. It is to be noted, however, that
sophisticated probabilistic procedures are increasingly being used for establishing a
better basis for existing design rules or codes or for carrying out parameter studies for
analysing the influence of quantities playing a part in the process.

Actually, there is no fundamental difference between a service life prediction (life ex-
pectancy estimate) and a reliability analysis for a structure. This is the reason why these
two aspects are treated together in this report. These matters will be further examined
and explained in the subsequent sections of this chapter. It is, of course, true that in the
design philosophies hitherto commonly applied to mechanical and/or civil engineering
structures the emphasis in some cases was indeed definitely on the reliability and the



safety aspect, whereas in other cases the service life was more in the focus of attention.
The similarity between the two concepts is that both the service life and the reliability

of structure are closely bound up with a (sudden) transition of a structure from function-
ing to not (properly) functioning, this being due to a great variety of factors such as frac-
ture, wear, inadequate efficiency, unsightliness, buckling, etc. (Figs. 1 to 4).

For many mechanical and electrical engineering structures the service life will play
an important part already in the design stage, more particularly, the need to predict this
life as accurately as possible. In this context the many structures destined for produc-
tion processes, power supply, household appliances, etc. come to mind. With raw mate-
rials becoming steadily scarcer and the cost of energy increasing, prediction of service
life as accurately possible - both its upper and its lower limit - will be central to the
present treatment of the subject and constitute an important factor in introducing prob-
abilistic considerations into this prediction, as illustrated in [1], for example.

In civil engineering, however, the emphasis until recently was on reliability, while
the service life aspect received less attention, one reason for this attitude being that a
civil engineering structure is normally intended to have a long life - 60 to 100 years, say.
But this does not mean that the service life aspect plays no partatall. The civil engineer-
ing designer does indeed have a conception of his structure’s life expectancy (or at least
the order of magnitude thereof) at the back of his mind and adapts his design to that con-
ception. In general, however, this is hardly something he does by calculation.

Furthermore, it quite often happens that the part requiring most calculation effort in
the design of a building structure - namely, the loadbearing sytem - is least decisive

i

Fig. 1. Ship, broken in the harbour (Boston).



Fig. 3. Failure of reinforced concrete beam due to bending moment and shear force.



Fig. 4. Failure of lattice girder in roof framework due to buckling.

with regard to service life. Much more important in this context are factors such as the
condition of the finishings and fittings or a functional deficiency in comfort, capacity or
suitability. In most cases, however, the service life is governed by external factors, but
without being precisely specified or determined. In fact, this resolves itself into apply-
ing a technical life and an economic life more or less independent of that. It was up to
the designer to keep the risk of failure (associated with the technical life) sufficiently
low throughout that given economic life. However, in these matters, too, there is emer-
ging an increasing need to arrive at a more quantitative approach to the reliability and
service life of structures, making use of probabilistic principles as set forth, for example,
in [2].

In analysing methods of determining the service life and/or reliability on a probabi-
listic basis the technological knowledge of the materials employed plays a special part.
As has already been noted, both a service life prediction and a reliability analysis are
based on the description of a “change of state” of the structure. With regard to this a
knowledge of the laws governing the time-dependent behaviour of the relevant mate-
rial properties under the influence of the load is important because in many cases the
reliability and/or service life of technical structures will be closely associated with phys-
ical processes such as (fatigue) fracture, excessive deformation, wear, damage due to
creep, etc. Laboratory experiments play an important part in connection with the devel-
opment of mathematical models for these physical processes. An example of this
approach is given in Appendix A, where a model for the growth of defects on the basis of
a damage model for an austenitic steel under creep conditions is described. The param-
eters on which this model is based are conceived as stochastic quantities.
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The fundamentals of this philosophy will be elaborated in the following sections of
this chapter. Section 2.2 goes more thoroughly into the basic philosophy for the above-
mentioned reliability/service life considerations, while mathematical models with con-
nect to structures and structural materials are dealt with in Section 2.3. Section 2.4 gives
some more background information on the use of statistical calculation methods and
Section 2.5, finally, is devoted to the interpretation of calculated probabilities and the
associated economic consequences.

2.2 Basic philosophy

In principle, a reliability analysis is characterized by three integrated aspects, namely:

- The loads acting on a system; these are conceived as non-stationary stochastic func-
tions (input functions).

- The manner in which the structure responds to these loads, depending on geometry
and material behaviour (transfer functions).

- The stochastic response of the structure to one or more critical locations in the struc-
ture (output functions).

The last-mentioned data are used for evaluating the failure probability, the service life
or the reliability of a structure by the introduction of a suitable criterion such as the
exceeding of a yield point, attainment of maximum play, permissible stress, etc.
Obviously, because of the considerable freedom in the choice of this criterion, a large
number of failures modes, reason for termination of service life, causes of failure, etc.
may occur (see also Chapter 3). A simplification (often permissible) of the analysis
process is obtained it the “load acting on the structure” can be decoupled from the
“failure analysis”.

This leads to distinguishing between two independent general concepts, namely, the
so-called load function S and the strength function R, for a certain chosen failure cri-
terion. These two concepts in fact represent, firstly, all the causes that may give rise to
failure of the structure (S) and, secondly, all the factors that determine the resistance to
this failure (R).

The central criterion for these reliability and/or service life considerations can be
written as:

“FAILURE” =“R<S§” or “FAILURE”=“R-S5<0” 1)

A number of examples of this approach are given in the following table:

designation R S failure if:

conventional statics yield point actual stress oy<o

fracture mechanics critical flaw flaw existing a;in<a
length a;, at instant ¢

efficiency time-dependent critical efficiency 7 < Nerit
efficiency » Herit

etc.

11
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f5(s)

failure
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—— S

Fig. 5. Probability density function for strength and load, respectively, and the failure prob-
ability (represented by the shaded area). It is to be noted that the shaded area is merely a
visual aid for indicating the failure probability and has no physical .or mathematical
significance.

In general, both R and S are functions of a large number of stochastic variables. If the
probability density functions of all these variables are known, the probability density
functions f (r) for the strength and fs (s) for the load can be derived. Next, a probability
of failure P;can be calculated, defined as:

“FAILURE PROBABILITY” Pr=P(R<S) 2

as shown schematically in Fig. 5.

The strength R and load S will in general be functions of time. Therefore the failure
probability is also a function of time, and there is usually not much pointin applying the
concept of failure probability without also stating the period of time to which it refers.

In the main, there are two methods of incorporating the time aspect into the failure
probability analysis. These methods are bound up with the way in which R and S are
defined. For further treatment of this subject we shall confine ourselves to the time-
dependence in the load S. The two definitions to be distinguished are accordingly as
follows:

a. S(¢) is the instantaneous load at the point of time t;
b. S(t) is the governing load for the period (0,1).

s}t)w %
s(Tn F_A::__’_C %

sit) '% Fig. 6. Load on a structure.
T / a. instantaneous value
¢ b. extreme value
—t ¢. cumulative value
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By t= 0 is denoted the starting point of time of a period under consideration; in many
instances this will coincide with the point of time when the structure is put (orput back)
into service.

According to the first definition, S(¢) corresponds directly to the external physical
quantity, e.g., the wind pressure on a building or the temperature in a boiler. A load
defined in this way will in general display a time-related behaviour as shown in Fig. 6a.
An essential requirement in method (a) is that the time aspect - or, rather, the time
duration aspect - is absent in the definition of S (). Consequently, the probability
P{R(t) < S(z)} relates only to a particular point of time and not to a period of time. The
interval failure probability for the period (0, ) is therefore not given by P{R(t) < S (1)}
but should instead be written, for example, as:

Pf{failure in (0,¢)} = 1 — P{no failure in (0, )}
=1—P{R(t')>S(¢') for all ¢ in (0, 7)} (3)

Arithmetically the step from P{R(r) < S(t)} to the failure probability for a period is
often very difficult. For this reason it is advantageous to employ definition (b). As that
definition uses a governing load S for the whole period (0, 1), we have directly:

Pf{failure in (0,7)} = P{R(t) < S(¢)} C)]

Of course, in this way the problems are not entirely eliminated: the question of dealing
with the time aspect is, as it were, shifted to the determination of the probability density
function for S(r). Experience shows, however, that this does make things easier.
Against this there is the disadvantage that it means committing oneself in advance to a
particular mechanism. In the statical approach the governing load is the extreme load in
a particular period, whereas in the case of fatigue some cumulative measure is just what
matters. By way of illustration these two cases are shown in Figs. 6b and 6¢c, each based
on the instantaneous S-values represented in Fig. 6.

It may of course occur that, besides the load, also the strength or the resistance of a
system is subject to time-dependent variation. Some systems become “stronger” in
course of time (e.g., concrete as a result of continuing hardening) whereas others
become “weaker” (e.g., ageing of metals). If R and S are both time-dependent, it is
necessary to exercise caution in defining the governing load and strength: a minimum
value of R will not necessarily coincide with a maximum value of S; see Fig. 7, for
example. In principle, however, in all cases it is possible so to choose the definitions

Mo et

Fig. 7. After the period considered, the maximum of S is larger than the minimum of R; yet no
failure occurs.
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R,S

Fig. 8. a. Time dependent R and §
b. Possible corresponding failure probability (P;) as a function of time (t) (curve 1) and
failure probability according to a possible time-independent model (curve 2).

that the general configuration shown in Fig. 8a is obtained: a monotonically descending
line for the governing R, a monotonically rising (or a horizontal) line for the governing S,
and for both lines an average around which there occurs a scatter range due to un-
certainties and fluctuations.

Thus, for each point of time ¢, a failure probability for a particular period can be calcu-
lated. A possible result of this probability as a function of time is represented in Fig. 8b.
At t= 0 this function begins with a certain initial value, this being the probability that
failure will occur at the very outset, i.e., when the structure is put into service. Sub-
sequently, for 1> 0, the failure probability will gradually increase and will in principle
approach the limiting value of 1, because in the long run every structure has a finite life.
Mathematically, within a particular theoretical model, a different limiting value is alter-
natively conceivable, e.g., a time-independent model in which P,for all values of > 0 is
equal to the initial value P;(0).

In general, however, the failure probability is a monotonically rising function of time,
starting at 0 for ¢=0 and increasing to 1 for /= 0. The function Py(r) therefore has the
character of a distribution function. The stochastic variable associated with this is the
service life L of the structure, since the event “L < ¢” is identical with the event “failure
in (0,¢)”, or:

Fi(t)=P{L<t}=F/(1) ®)

If the distribution function for the service life is given, the probability density function
can readily be determined:

L) =S F(0) ®

On multiplying the probability density function by drwe obain the probability that the
service life will terminate between the times ¢ and ¢+ d¢:

f(t)dt=Plt<t<t+ dt}

14



Termination of the service life in (¢ £+ d) implies that R < S in (¢, ¢+ d¢), but also that
R> S in (0, 1), forif the load had exceeded the strength already earlier than at the time ¢,
termination of the service life would have occurred at that instant. Therefore:

f(t) dt=P{R<Sin (t,t+dr) and R> S in (0,7)} ™)

The formulation (7) is correct, irrespective of whether Rand S are defined as instanta-
neous or as governing values.

The probability density function for the service life can alternatively be conceived as
the probability of failure per unit time or a failure rate. In this context the term un-
conditional failure rate is employed, as contrasted with the so-called conditional failure
rate or hazard function r(t). With the function () the value of r(¢) dralso indicates the
probability that failure will occur in (1, ¢+ dr), but then on condition that no failure has
occurred in (0, ):

r(t) dt=P{R<Sin (t,t+df)|R> S in (0,7)} (8)

Naturally, the functions F, fand rare linked by a direct relation, which can most simply
be derived by basing oneself on the meaning of the probability density function accord-
ing to (7):

f(t) dt=P{R>Sin (0,7) and R< S'in (t, 1+ dr)} =
=P{R>Sin (0,1)}- P{R< S in (t,t+ dt)|[R> S in (0,7)} =
={1=F(0)}-r(r) de

or

r(r)= 1 j_ﬂ(;:)(t) )

It clearly emerges that the conditional and unconditional failure rates for low values of
F are almost equal. Hence, for structures for which F is always low, the two functions
can quite justifiably be equated to each other.

For given F(t), the functions f (¢) and r(¢) can easily be derived via (6) and (9). Con-
versely, F(¢) can be determined from r(¢), as follows (the formula is given here without
its derivation):

t
F(fy=1—exp| —r(r) dr (10)

0
In Fig. 9 the functions F, fand r are shown for a number of cases. Fig. 9a represents a
constant r(¢). The given circumstance that a structure has functioned for some time
without having failed is evidently without effect on the failure probability for the period
ahead. A situation of this kind may occur, for example, when the cause of failure is a
disaster such as an outbreak fire in a building. A descending function r(r) is shown in
Fig. 9b. Here the failure probability for the period ahead is favourably affected by the
structure having functioned satisfactorily for a time. The fact that it has already been
serving its purpose without problems for some length of time and has withstood a num-

15
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Fig. 9. Three types of service life distributions.
a. with constant ~function
b. with descending r~function
c. with rising r-function

ber of loading situations justifies the supposition that there are no “weaks spots” in the
structure. On simultaneously considering a large number of structures it could be stated
that the bad ones are slowly but surely filtered out, so that the good ones are left. Finally,
Fig. 9¢ shows a rising function r(¢). A function of this type occurs when a structure is
subject to “ageing” or “wear out”. The fact that the structure has already been inservice
for some time leads to the conclusion that it has suffered “damage”, so that its proba-
bility of failure has increased.

In an actual structure, of course, combinations of these respective cases are possible,
giving a mixture whose proportions are liable to vary from one structure to another. In
general, however, the resulting r-function will be as shown in Fig. 10, sometimes called
the “bathtub curve”. Three regions can be distinguished: an initial phase in which
failure occurs as a result of faults of construction or error of design, a middle phase in
which disasters and particularly extreme conditions play a part, and a final phase with
failure due to ageing or wear out.

In the foregoing discussion, three functions for describing the service life have been
presented, all of which in principle contain the same information: the distribution
function of the service life, the probability density function of the service life or the un-
conditional failure rate, and the conditional failure rate. Which function is most suit-
able for use in a particular case will depend on what is required.

r(t)
T 1 i i /

— t
Fig. 10. General form of the conditional failure rate function (r-function; bathtub curve).
I failure due to low strength
II failure due to extreme conditions
III failure due to cumulative effects

16



First, consider a structure which must attain a certain specified effective service life
imposed by external factors. During that life period it must function without problems;
hence the probability of failure must be low, e.g., because the damage or loss resulting
from failure would be very serious. Quite often, in designing or assessing a structure in
this kind of situation, only the failure probability for the whole period (Pror F(t)) is con-
sidered, i.e., the question of how this probability is distributed over the period is then of
no interest and the probability density function f(¢) plays no part. Actually, of course, it
does make difference: thus, if the structure fails at the beginning, rebuilding may be
necessary, whereas if it fails at the end of the period, there will at most be some dis-
advantage due to reduced residual value. The effect of this kind of differences is often
neglected, however.

A different situation exists where the effective service life of a given structure has to
be ascertained. In other words: to determine the length of time for which it can function
before its further utilization becomes undesirable for economic or safety reasons. In
that case the conditional failure rate is the appropriate function to apply, because the
problem consists in deciding to terminate the service life of the structure at the time ¢if
is estimated that it will no longer be profitable or safe in the time interval (& t+de).
Obviously, the decision to terminate will have to be made only if the structure is in fact
still in existence at the time t.

A conditional failure rate function is shown also in Fig. 11, which moreover indicates
the limiting value which, on being exceeded,signifies that the structure has reached its
effective service life. As represented in this diagram, it is apparent that at = 0 the con-
ditional failure rate is above the limit. This need not, however, be regarded as a reason
for immediately terminating the life of the structure. In fact, the ~function descends
fairly rapidly and thus soon goes below the limiting value, where it then remains for a
considerable time. The term “invested risk” could be employed in this connection. A
risk of that kind may be acceptable if its total extent remains within tolerable limits, if
its duration is not too long, and if it is followed by a period of diminished risk.

Basing oneself on the above line of reasoning, it might be considered that the curve
could be allowed to rise above the limiting value also at the end of the service life. That
would be incorrect, however. It is never justifiably possible to say: “let us accept a bit
more risk next year, seeing that it was so low in the past year”. Decisions are always
aimed at the future. As soon as a period has ended without the occurrence of damage or
loss, it does not matter whether the risk was high or low.

invested risk

limiting value

|

|

|
| utilizable life ;| —»t
| S >

Fig. 11. The utilizable service life is determined by the intersection of the conditional failure
rate with the limiting value r,.
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Summary of basic philosophy

For assessing a structure it is often convenient to introduce two parameters R and S. The
parameter R (the strength) comprises those quantities which have a favourable effect
on the behaviour of the structure, while the parameter S (the load) comprises those
which have an unfavourable effect. The conception is that the structure will function as
long as R > S, but will fail as soon as R < S.

In general, the functions R and S are also functions of time. This means that a distinc-
tion must be made between instantaneous values of R and S (at a certain point of time)
and governing values (in a certain interval of time). Depending on the case considered,
it is simpler to use one or the other of these two.

If the probability of failure for a period (0, ¢) is plotted as a function of ¢, a monotonic-
ally rising function is obtained, increasing from 0 to 1 for zincreasing from 0 to . This
function is found to be identical with the distribution function of the service life Fy (¢).
If this distribution function is differentiated once, the probability density function of
the service life f; (¢) is obtained. This latter function is known as the unconditional
failure rate, as contrasted with the conditional failure rate r(z), which gives the probab-
ility of failure in the interval (¢, ¢+ dr) on condition that no failure has occurred up to the
time ¢ In principle, these three functions contain the same information and can be
derived from one another. Which function is most suitable for application in any partic-
ular case will depend on circumstances. The distribution function F(¢) and the proba-
bility density function f(¢) are often considered important for structures whose effective
service life is determined by factors other than those inherent in the structure itself. But
if the effective service life has to be determined partly on the basis of the risk of failure, it
will be necessary to apply the conditional failure rate r(¢), except for the assessment of
the initial risk for a descending course of this function r. Incidentally, it is to be noted
that f; (¢) and r(¢) quite often do not exhibit any substantial differences from the
numerical point of view.

2.3 Mathematical models
2.3.1 Schematic set-up of structural analysis

The response of a structure is determined by the external conditions in which it is
placed and by its own properties. For assessing the response and the reliability of a
structure it is necessary to have formulae and equations which describe the properties
of the structure and its environment, a so-called mathematical model. In this respect
there is no difference between a deterministic and a probabilistic approach: in prin-
ciple, the same mathematical models are employed.

For the analysis of a structure several mathematical models are generally used - side
by side or consecutively. The result yielded by one model often constitutes an input for
the next one. By way of example an offshore structure will be considered which has to
be assessed with regard to fatigue. The fatigue is caused by the waves of the sea, and the
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following mathematical models are therefore required:

wave motion model for determining wave velocities;
wave forces model for determining wave forces;
dynamic structural model for determining stresses;
material model for determining fatigue.

e =

This example thus comprises four mathematical models “in series”. The first two serve
to determine the load from the external influence (sea waves); the last two serve to
establish the response of the structure, first at macro level, then at micro level. This is
shown schematically in Fig. 12. From the external influence we calculate the load need-

external influence

——*l material models I

macro-response
micro-response

ed for choosing the appropriate material model(s), e.g., a linear-elastic or an elastic-
plastic model. The macro response (stresses and displacements, dynamic or otherwise)
are then calculated from the load and the material model. Micro-response comprises,
for example, fatigue crack growth. To predict this it is, in general, necessary to make use
of macro-response as well as material models and the load. In reality the situation is of
course more complex, if only because there are many different forms of interaction. For
example, in the case of the offshore structure under consideration, there may be an
interaction between the macro-response and the wave forces. With structures of low
rigidity this interaction will be strong, whereas with rigid structures it will be weak.
Also, interaction may occur between the micro-response and the macro-response, e.g.,
because a fatigue crack affects the rigidity prof)erties of a structural connection or joint.
Despite these complications the schematic representation does of course indicate the
main features involved. In the following discussion of a number of commonly employed
mathematical models this scheme will therefore be adopted as the basis. The discussion
of these models will be very succinct, however, and be intended merely to give a
general overall picture.

Fig. 12. Diagram of a structural analysis.

2.3.2 Mathematical models for load determination

Mechanical loads on structures may arise from a great many different sources. A possi-
ble classification (but by no means intended as an exhaustive one) is as follows:
loads due to weight;

dynamic loads due to movements or collisions;

loads due to liquids;

loads due to wind and gas pressures;

temperature.

R~
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Fig. 13. Development of flow round a circular cylinder. a. laminar; b. turbulent; c. vortices.
(from a publication by Prandtl, 1927).

The mathematical models which are needed for passing from the description of the vari-
ous external conditions to loads on the structure vary quite considerably. The loads due
to weight are of course the simplest. Starting from the mass m or the mass density ¢, the
forces or volume loads are obtained on multiplying by the acceleration of gravity g

The determination of dynamic loads, e.g., those produced by rotating machinery,
collisions, etc., often requires elaborate calculations in accordance with the theory of
engineering mechanics.

Liquid loads [3] may occur in many different ways. The hydrostatic forces in tanks and
reservoirs are simple to determine. The forces associated with the flow of liquid through
a pipe or channel, involving the determination of frictional and impact forces, present a
more complex problem. Then there are forces acting on bodies in a liquid stream
(permanent or impermanent), e.g., offshore structures and ships. In that case there are
not just the forces due to irrotational flow to consider, but also the consequences of
turbulence and boundary layer phenomena (see example in Fig. 13).

Similar calculations can be done for wind and gas pressures. In some instances it may
be sufficient to determine static gas pressures (storage tanks); in others, more or less
elaborate aerodynamic calculations are needed (wind loads [4, 5] and explosion pres-
sures on buildings, chimneys, masts; aircraft design calculations). In those cases where
complicated hydrodynamic or aerodynamic calculations have to be carried out; com-
puters are now employed, while - apart from a great many ad hoc procedures - the finite
element method is extensively applied.

The fifth category in the classification given above comprises temperature in-
fluences. Determining the temperature behaviour in a structure, both as a function of
time and as a function of place, often requires elaborate calculations. Just as in the
previously mentioned cases, the conditions may involve steady heat flow (processors,
motors, solar radiation) or unsteady flow (fire, switching-on and switching-off effects,
chemical hardening process of concrete, etc.). In complex cases of this kind, too, a finite
element analysis with the aid of a computer may be required.

2.3.3 Mathematical models for the determination of macro behaviour

The determination of the macro behaviour of a structure, starting from given loads, is
largely the subject of structural analysis or engineering mechanics. In general, the
analysis for this purpose is based on three kinds of equations:

1. kinematic equations;

2. constitutive equations;

3. equations of motion.
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The kinematic equations establish a relation between the displacements of the struc-
ture and the internal deformations. The displacement field is usually given as a func-
tion of time in the original co-ordinates (Lagrange description). The kinematic equa-
tions may be linear or non-linear. The linear equations hold for small displacements;
the non-linear ones are required for the analysis of geometrically non-linear effects such
as buckling and membrane action.

The constitutive equations comprise material properties and establish the relation
between the strains, the rates of strain and the stresses, possibly as a function of tem-
perature. The simplest material behaviour is linear-elastic behaviour. More sophisti-
cated mathematical models take account of plasticity, viscosity, cracking, etc. In this
category of equations there is distinctly an interaction with the mathematical models
for micro behaviour.

Finally, there is the third category, the equations of motion, based on Newton’s law:
F=m-a,where F is the sum of the external load and the internal stresses. In many cases
with predominantly static loads the equations of motion can be reduced to equations of
equilibrium. Just as with the kinematic equations, linear or non-linear equations may
be chosen, depending on whether or not geometric non-linear effects are to be taken
into account.

With the aid of the above-mentioned mathematical models it is possible already to
find out quite a lot about the behaviour of the structure. Limit states such as maximum
loadbearing capacity governed by elastic or elasto-plastic instability can be investi-
gated, as well as the occurrence of unacceptable deformations or vibrations. For dealing
with complex problems an extensively used and successful approach consists in using
computer programs based on the finite element method [6]. Such problems include,
more particularly, the buckling and collapse load calculations for shells and stiffened
plate panels such as those in bridges, offshore structures, aircrafts, etc. Apart from these
sophisticated mathematical models there are of course many empirical design and
analysis methods. Much of the research conducted with advanced computer programs
aims at verifying and, where necessary, improving these empirical methods.

2.3.4 Material models

These often comprise mathematical models in which time does not explicity play any
part and models in which it does. The procedures to be applied for these two classes of
models if they are employed in a reliability assessment, have already been explained in
general terms in Section 2.2. In material models that have been designed for the pur-
pose of service life estimates the time-dependence of the material of course usually
plays an important part. Therefore this section reviews various mathematical models
for time-dependent material behaviour. Only a number of the most important limit
states will be considered (see also Chapter 4) and some characteristics of the material
models to be used in connection with these will be outlined.
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Fracture

From the viewpoint of materials technology it can be said that fracture occurs at the in-
stant when a hitherto subcritical defect or flaw becomes critical. In this conception,
therefore, the actual size of a defect in the structure is compared with a size of defect
that would produce fracture in this structure. This may occur because the defect in
question has grown in course of time or because the critical size has decreased. The
latter condition may occur as a result of material degradation or of an increase in (local)
stress due to varying external loads.

Not much is yet known concerning material degradation under the influence of load
and temperature. It can only be stated that a number of quantities defined in fracture
mechanics are available for characterizing the critical sizes of defects, such as the crit-
ical stress intensity factor (Kj.), the critical strain energy release rate (Gy), the crack
growth resistance curve (R curve), the crack opening displacement (COD), the critical
value of Rice’s path-independent contour integral (J.), etc. [7].

For describing the growth of actually existing defects under alternating load, Paris’s
relation [8] is often used:

da/dN= C(AK)" (11
where:

a = characteristic crack dimension

N = number of stress cycles

AK = variations in the stress intensity factor which occur in consequence of
the stress variations

C and m can be regarded as constant within not too large a range; see also Fig. 14.
If it is assumed that always the same initial defect occurs, the familiar stress-number
curve or “S-N” diagram (log A ¢ versus log N) can be derived from Paris’s relation. If the
stress amplitude is not constant, the effect of the various stress amplitudes can be taken
into account by applying the Palmgren-Miner rule [9, 10] which, on the assumption of
constant C and m, can likewise be derived from Paris’s equation. Of course, the actual
historical sequence as just the reverse: the stress-number curve and the Palmgren-

log da/dN

log AK

Fig. 14. Crack growth rate (da/dN) as a function of the stress intensity factor range (AK).
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Miner rule are older than Paris’s equation. The concepts developed by this last-
mentioned author and others can, however, contribute to obtaining better insight into
the applicability of the stress-number curve and the Palmgren-Miner rule.

If crack growth occurs in consequence of a constant load, it is known as creep crack
growth, a phenomenon which investigators try to describe with relations of the same
type [11]. Crack growth can also occur in consequence of mechanisms other than fatigue
and creep. For example, the combined action of stress and corrosive influences may
give rise to stress corrosion. This occurs if the stress intensity factor of existing defects
exceeds the critical value defined for that phenomenon (Kisee)- A quantity of this kind
must essentially also be embodied in the above-mentioned crack growth models, such
as Paris’s equation and its modifications, in the case where alternating load and environ-
mental influences act in conjunction with one another [12]. The resulting phenomenon
is known as corrosion fatigue.

Loadbearing capacity

When the loadbearing capacity of a structure is exceeded, this is associated with elastic
or with plastic instability. The material properties that are important in connection with
this are, inter alia, the elastic properties, the yield stress and the tensile strength. The
cases where the possible time-dependence of these quantities is not taken into account
have, in substance, already been discussed in Section 2.3.3.

In addition, it is sometimes necessary to take acount of dimensional changes in the
structure, e.g., due to wear or corrosion. Wear will be considered below. As for corrosion
(i.e., chemical attack brought about by environmental influences), this subject is of
such wide scope that it can hardly be dealt with in the present brief review. In many
instances the loss of material due to corrosion can be assumed to proceed linearly with
time. And, anyway, it would seem that corrosion specialists are generally less interested
in this aspect than in providing protection against corrosion, e.g., by means of coatings,
cathodic protection, etc. The service life of the protection system then becomes the
important consideration.

Deformation
Material deformation may, under the influence of stress, occur suddenly or it may pro-
ceed slowly. In the latter case it is called creep. The time-dependence of deformation
due to creep is determined by the familiar creep curves; see Fig. 15. In a typical curve as
shown here there are three regions, as indicated. In the past the secondary creep,
defined as the region of constant rate of deformation or strain, has received most atten-
tion. The strain rate in this secondary creep region is considered to satisfy an Arrhenius
equation with an activation energy that is dependent on the stress. On this assumption
is based, for example, the Larson-Miller parameter for the extrapolation of the results of
creep tests performed at elevated temperature and/or stress. Thus applying these
results to practical conditions; see Fig. 16.

Many other parameters of this kind have been proposed over the years [13]. Besides
these parameter approximations, other methods of extrapolation have also been

23



) fracture

|
|
|
|
|
m |
!
I
I
|
I

! |

! |

! |

1! il !

| |

! |

|

' {

1 |

t p=T(A+logL)
Fig. 15. Creep curve: deformation (strain) Fig. 16. Parameter approximation for service

(&) versus time (7). life (L) under creep conditions.
I primary creep o = stress
II secondary creep p = parameter with: 7= absolute
III tertiary creep temperature, 4 = constant

proposed; for these the reader is referred to the relevant literature. Also, mathematical
models have been proposed with which the primary creep region is described as well
[14]. It has been found, however, that the structure of the material is liable to undergo
changes during the creep process. Obviously, in such cases each material structure will
involve a number of material parameters, so that a creep model that is based not merely
on mathematical concepts, but also on available material-technological knowledge, will
be of a complex character. Furthermore, it must be very emphatically stated that any
model can at best be valid only for a limited group of materials. Finally it is pointed out
that, according to a recently developed approach, the creep phenomenon can advanta-
geously be described as the evolution of a collective of micro defects (cf., e.g., Appendix A).

With regard to creep and fatigue it is moreover to be noted that these forms of mate-
rial damage often occur under successively more than one set of conditions (namely
temperature, state of stress or stress amplitude). Besides, they may occur in conjunction
with each other. In such cases so-called life fraction rules are employed (see also
Chapter 4), such as the Palmgren-Miner rule already mentioned [9, 10]. The strain-
range partitioning method is used for dealing with creep-fatigue interaction.

Cracking

The cracks envisaged here may be those in building structures or, for example, in walls
of tanks or other such containers. In general, time-dependent models are not very
relevant to cracking in ceramic materials (brick) or concrete. For cracking in metals the
same time-dependent relations as mentioned above are valid (Fig. 14). However, crack
propagation under such circumstances often takes place in more than one direction,
whereas the relations in question have reference to propagation in one direction. In-
sight into the application of such relations to multidirectional crack propagation has
been deepened in recent years, however. In such structural features as the walls of tanks
or similar vessels (e.g., pressure vessels) the limit state is reached either because the
critical crack size is attained or because complete penetration of the wall occurs. In the
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former case, fracture will occur before leakage (guillotine fracture), whereas in the
latter it will be preceded by leakage. Obviously, this second alternative is far preferable
to the first, which is why many “leak-before-break” criteria have been developed.

Wear

Tribology is concerned, inter alia, with the investigation of the time-dependence of
wear processes. Failure of tribological systems very often occurs as a result of failure of
the lubrication system, however. This being so, a considerable amount of attention in
tribology is directed at the development of better lubrication systems. If loss of material
is permitted, it can often be taken to proceed linearly with time (expressed as a decrease
in volume or a decrease in height). More particularly, this is commonly the case both
with adhesive and with abrasive wear mechanisms, including erosion by solid particles.
In connection with erosive wear the angle of impingement is of major importance. The
time-dependence of cavitation and droplet impact erosion is fairly complex, on the
other hand; see Fig. 17.

t

Fig. 17. Mean depth of erosion (r) as a function of time (¢) in the case of cavitation and droplet
impact erosion.

Others

In cases where corrosion plays an important part, or cases where large deformations are
liable to occur which are not in themselves dangerous, termination of service life may
nevertheless ensue in consequence of unsightliness. So far as the authors of the present
report are aware, no time-dependent models for this type of behaviour are available.

In process engineering the question of efficiency is important. This technical field
will not be further considered here, however.

Furthermore, a structure may constitute a hazard to its surroundings. Often there is
time-dependence involved, or otherwise this dependence, if it exists, can be approxi-
mated by means of one of the models considered above. Also, for example, accumula-
tive action of ionizing radiation may occur, the time-dependence of which can be des-
cribed in nuclear physical and/or process engineering terms. This, too, is a field that
goes beyond the scope of the present report.

2.3.5 Special effects

Although in connection with all the above-mentioned aspects considerable simplifica-
tions will often have to be accepted in order to arrive at a solution for the reliability
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problem, it is found that actually in many instances of failure or premature termination
of service life the human factor has been of major influence. Also, it is now more and
more clearly realized that this human influence should somehow be represented in the
overall model. This realization, too, strengthens the tendency for a design to result, not
in a single (uniquely determined) structure, but in a range of possible alternatives.

Various models have been developed - e.g., by Rackwitz at Munich and by Bjerager
and Karlsson in Denmark - for taking account of human errors. One of the problems
encountered in developing such models is the contrast between the large number of
human errors committed in actual practice and the small number of serious mishaps
arising from them.

Some investigators [15, 16] propose adopting an empirical approach, using the corre-
lations between incidents, for the detection of error-sensitive structures. Nowak [17]
adopts the principle that the various error-introducing processes should be considered
independently of one another - thus establishing a sound basis of insight into the
mechanisms underlying these errors.

In conclusion it can be stated that the human failure probability can be taken into
account by the introduction of an extra limit-state-dependent random variable for each
individual limit state.

2.4 Techniques for performing the calculations
24.1 Levels

In general, the work involved in doing a probabilistic safety analysis comprises a good
deal of computational effort. Even if the calculations are performed entirely by com-
puter, the sheer quantity of computation to be handled remains a restricting factor with
regard to practicability. For this reason a considerable amount of research has been
undertaken, over the years, with a view to developing suitable approximate methods. In
order to co-ordinate the various approaches to these matters, the Joint Committee on
Structural Safety has defined three levels at which reliability analyses can be performed,
intended in principle for application in civil and structural engineering [18]. This classi-
fication has proved very convenient. It will therefore be outlined here and illustrated
with the aid of a simple example.

Characterization of levels I, IT and III

Level I: This level is intended for routine design use. For each of the stochastic variables
a certain unfavourable value is chosen, the so-called characteristic value, usually based
on a 5% confidence limit. In addition, a set of partial safety factors is applied; these
establish the margin between load and strength for the various cases to be considered.
Level II: The analysis at level I1 is an approximative analysis based on the so-called “first
order/second moment” principle. Briefly, what it amounts to is that only the mean
value and the standard deviation of each stochastic variable are taken into account,
linearization being applied if necessary. There are several variants as to how the approx-

26



imations are to be applied in detail. In principle, level II approximations are used for
two purposes, the more important of which is to provide a basis for level I procedures.
More particularly, by means of studies at level I, it is endeavoured, as it were, to under-
pin the partial safety factors of level I as soundly as possible. The second purpose con-
sists in applying the level II analysis to special or important structures for which an
above-normal standard of reliability analysis is considered essential, e.g., for offshore
structures, nuclear power plants, storage installations for liquefied natural gas, etc.
Level II1: This level comprises complete and exact analyses performed with the aid of
analytical or numerical integration procedures or Monte Carlo simulations. As already
mentioned, level III analyses generally demand too much computational effort to be
practicable for dealing with major problems. The scope for applying them exists mainly
in verifying and complementing level II approximations.

Example I

To illustrate and explain the reliability analysis levels introduced here, a simple
example - a so-called basic case - will now be presented. Consider the limit state of
Sailure of a simply-supported beam subjected to a point load at mid-span (see Fig. 18).
Both the load and the strength are to be regarded as constant, i.e., not varying with
time. It is further assumed that the beam will fail when the mid-span bending moment
exceeds the maximum moment that the beam can resist. In order to formalize this
failure criterion we may introduce a so-called reliability function Z, defined as follows:

Z=R-S
where

R =is the moment that the beam can resist
S = Fi[4 is the moment produced by the load

The event “failure” is thus identical with the event “Z < 0”.
In this case the reliability analysis at /evel II] consists in working out the well known
convolution integral:

©

P(Z<0)= | fs(#)Fr(¢) do (12)

0

where f5(¢) is the probability density function of the load F and F (¢) is the cumula-
tive probability distribution function of the strength R.
In a level ITanalysis the mean value and the variances of the reliability function Z are

%
L
Fig. 18. Simply-supported beam supporting a point load acting at mid-span; the beam fails when
the maximum mid-span moment Fi/4 exceeds the resisting moment R.

27



calculated with the aid of:
u(Z)=uR)—u(S) (13)
oX(Z) = a*(R) + o*(S) (14)

From this mean value and the standard deviation the reliability index S8 is then deter-
mined:

b=u(@)|o(2) )

Finally, on the assumption that Z conforms to a normal distribution, the failure probab-
ility is obtained as:

P(Z<0) = Dy(—.) (16)

where @y(— ) is the distribution function of the standard normal distribution. It is
evident that the result will be exact if R and S are both normally distributed; in all other
cases it will be an approximation.

Finally, treatment of this problem at /evel I will be considered. For this purpose the
characteristic values S, and R, are determined for which S) has a 5% probability of being
exceeded and R, a 5% probability of not being exceeded:

P(S<Sk) =Fs(Sk) =0,95 (7
P(R < Ri) = Fr(Ri) = 0,05 (18)
The designer’s requirement could then be, for example:

Sk vs < Rifyr (19)

where yr and ygare the partial safety factors. For guidance: if yg = yz = 1.0, the probabil-
ity of failure for a wide range of problems is approximately 10~ 2, For structural steel-
work the factors commonly adopted are ys= 1.5 and yg = 1.0. Depending on the nature
of the load, this assumption involves a failure probability of between 10~ %and 107"

2.4.2 Several causes of failure

In the foregoing example there was assumed to be just one cause of failure, namely, the
situation where the structural loadbearing capacity of one cross-section is exceeded
under the influence of a single load. In reality, of course, matters will often be much
more complex. As already explained in Section 2.2, for example, R and S may vary with
time (this case will be further considered below); also, several causes of failure may play
a part. For a certain structure the occurrence of failure may result from its maximum
loadbearing capacity being exceeded, from fire, from fatigue, etc. Furthermore, with
structures of greater complexity there may be several failure mechanisms involved in
each main cause. Combining the probabilities associated with separate mechanisms
into the overall failure probability for the structure is still a major problem. It is not so
much a theoretical problem (indeed at level III there is no problem); the difficulty lies
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in finding suitable approximations. These matters will receive further attention in
Chapter 4.

243 Service life and time dependence of strength and load

If R or S varies with time, or if failure is bound up with a cumulative load effect, the
probability of failure will depend on the period of time considered. By calculating the
probability of failure for various period durations we find, as already explained in
Section 2.2, the distribution function of the service life (Fig. 19). However, in some
cases this function can be obtained in a different and possibly more convenient way. To
do that it is necessary to be able to write the service life L directly as a function of the
basic variables:

L=f(x1,...., Xy) (20)

The variables x, ..., x, are the same basic variables that were adopted for R and S in the
foregoing treatment of these matters. Starting from (20) we can directly determine the
distribution function for L. This analysis can of course be performed at all three levels I,
II'and III. For the analysis at level Il we must then determine the mean value u (L) and
the standard deviation ¢ (L) on the basis of the parameters y (x;) and o (x;) and a lineari-
zation of (20). Next we can assume for L a normal distribution; with this the whole dis-
tribution function is established. If desired, we may alternatively assume a log-normal
or a Weibull distribution and/or introduce other variants into the analysis. The follow-
ing example will serve to illustrate this.

Example 2

Consider again a simply-supported beam, but now under fluctuating load (F); see Fig.
20. Suppose that at a certain point of time this beam - length /, width W, thickness B - is
found to contain a fatigue crack of depth a. We wish to know what the reliability of the
beam now is. First, we must realize that it will fail if the crack exceeds a certain critical
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Fig. 19. The distribution function for the service life is equal to the failure probability as a func-
tion of the period considered.
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Fig. 20. Simply-supported beam with fluctuating point load Facting at mid-span; the beam fails
when the crack depth (a) exceeds the critical value (a.).
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size (a.). To calculate this critical crack size we must know whether the beam will fail as
a result of unstable cracking that spreads through it or as a result of plastic instability. In
the former case the magnitude of a. is determined by the maximum load and a suitable
criterion of fracture mechanics, e.g., the critical crack opening displacement (J.) or the
critical value of the path-independent contour integral (J;.). In the latter case a. is deter-
mined by the maximum load and a criterion that describes the plastic instability, e.g.,
the yield stress (o,) or the ultimate tensile stress (o,). Actually (even in this simple
example) both failure modes must be taken into account, as described in Chapter 4. In
this example we shall, however, confine ourself to the case of plastic instability. For this
we have, in accordance with the stress model indicated in Fig. 21:

F.= (Bo,/L)(W—a)’ (1)
or:
ac= W— (FuaxL|Ba,)'" (22)

where F, denotes the critical load, i.e., the load at which failure takes place, and Fyax the
maximum load during the time interval between tand ¢+ A, the term At being a suit-
ably chosen “sample time” (the average cycle duration, for example).

de

Fig. 21. Stress model for failure due to plastic instability.

In (21) and (22) the ultimate tensile stress g, may (for example) moreover be time-
dependent. This possibility will not be considered in the present example, however.

A prediction with regard to the crack size (a) in the same time interval can be made
with, for example, the aid of Paris’s relation (11) (or some other relevant crack growth
relation).

In this case the value for AK to be substituted into this relation can be calculated
from:

AK= (LAF|BW**) @ (a| W) (23)

if the geometry-dependent function @ (a/ W) is known; this function is often given as a
polynomial approximation.

With the aid of (11), (21), (22) and (23) we can calculate a. and a or F, for the time
interval (¢, ¢+ At,). On the basis of this the probabilistic analysis can be carried out by
three methods.

First method
We define:

R=a,and S= qa, therefore R—S=a.,—a (24)
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This is, for example, in agreement with rule 2 in the table in 2.2.
From (11), (22), (23) and (24) follows:

R:R(I’V,Fmax,L,B,O'u) (25)
and
S=S(C,m,L,AF,B, W, ay,t, At,) (26)

where ay denotes the size of the defect at time 7= 0 and where it has furthermore been
assumed that the number of load cycles (N) has been converted via the (mean) fre-
quency into a time ().

The functional relationships (25) and (26) can in principle be determined from (11),
(22) and (23). Thus the distribution function of R and S can likewise be determined if
the distribution functions of the other parameters are known. Therefore it is also
possible to determine P(R— S < 0). By using the quantity Fy,,,, which has been intro-
duced in (22) and is defined with respect to the time interval (7, 1+ At), we ensure that
R and S are valid for this interval. Therefore (approximately, for not too large a value of
At):

P(R—S<0)=r(t)At 27)
By performing this calculation for various times (¢) we can find the conditional failure
rate as a function of ¢ r(¢). F; and f; can be calculated from this.
Second method
We define:

R=F, and S = F,.y, therefore R —S=F.— F,.« (28)
Now, in analogy with (26), we obtain from (11), (21), (23) and (28):

R:R(Bsgl,{’L’ VV,aO’t,AIX,AF;Cam) (29)

This functional relationship can in principle be determined from (11), (21) and (23), so
that again the distribution function of R can be determined if the distribution functions
of the other parameters are known. The distribution function of S = F,,, is dependent
on At (maximum value distribution) and is assumed to be known. Thus P(R — S < 0)
can again be determined, and the procedure is the same as in the first method.

Third method
Let L again denote the service life and ¢ the functioning time. We then define:

R=L and S=1¢ (30)
Hence we see that, in accordance with (20):
R=L:f(W;FmaXaL’Baau,C,maAF;ao,Als) (31)

Now R= L is calculated by integrating (11) between the limits a, and a, while making
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use of (22) and (23). We can again calculate P(R — S < 0) and proceed as in the other two
methods. The present method corresponds to the procedure outlined at the beginning
of this section. It might be supposed that F (¢) is directly calculated in this way. This is
not so, however: comparison of this method with the two preceding ones shows that
here too:

P(R—S<0)=r(r) dt (32)

By working out the three methods it can be shown that they are not substantially dif-
ferent from one another and the results they yield must be the same.

2.5 Probability interpretation and economy

Several methods and techniques that can be used in carrying out probabilistic analyses
have been indicated in Section 2.4. The central problem is to calculate the probability of
failure in a certain period, basing oneself on a given mathematical model and given
properties of the stochastic variables. Of course, this is only part of the overall design or
advisory assessment problem. At least as important are such questions as “How are the
necessary data to be obtained?” and “What next to do when a probability of failure has
been calculated?”

The second question will be discussed first. Obviously, determining the probability
of failure is not an end in itself. The failure probabilities or service life distributions that
are thus found must be further utilized in a deliberative process that must ultimately
lead to the best possible design or to optimum advice as to the use and maintenance of
the structure. The most obvious approach is to conceive to concepts of “best” and
“optimum” in the economic sense. The design or the advice should be so devised that
the sum of all the cost expectations is as low as possible. By way of example consider
again the simply-supported beam loaded in bending. Suppose that its depth W hastobe
determined. If a low depth is chosen for the beam, the construction cost ¢z will in prin-
ciple likewise be low. But in that case there is a high expectancy of damage (product of
damage cost ¢y and failure probability P;) because with a shallow beam (low W) the
probability of failure is high. If W is increased, the cost of construction will increase and
the damage expectar.cy will decrease (Fig. 22). An optimum will exist for a particular
value of W, This optimum will depend to a great extent on the ratio between damage
cost and construction cost r= ¢gcg . If the cost associated with damage is relatively low,

E&O_O/
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e W
Fig. 22. Total cost as a function of the design parameter W. The optimum depends on the ratio
r=cgcg.
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Fig. 23. Optimalization if the planned service life (L,) is also a design parameter.

it will be advantageous to choose a low depth for the beam. On the other hand, if the cost
isrelatively high, a design offering greater reliability is to be preferred. Hence it follows
that - as contrasted with what is commonly supposed - it does not constitute an opti-
mum solution to make all the parts or components of a structure exactly equal as
regards their functional reliability. Relatively cheap components have a high value of r
and should therefore be designed to a higher degree of reliability than relatively
expensive ones with a low r.

In preparing a diagram as shown in Fig. 22 it is necessary in principle to start from a
certain planned service life (design life). Of course, an analysis of this kind can be car-
ried out for more than one value of the design life. In that case a diagram as in Fig. 23 is
obtained. With each value of the design life L, is associated an optimally proportioned
design, characterized by a set of optimum structural dimensions. In general, for a short
design life the optimum will be obtained with correspondingly small dimensions; the
structure will have to be more stoutly proportioned according as L, increases. This is
more particularly relevant if ageing and wear play a part; it is less so in the case of struc-
tures subjected to predominantly static load and functioning at normal temperatures.

Of course, the next step in the chain of reasoning is to conceive L, as a design param-
eter. Then we can seek that value for L, at which the lowest minimum for the overall
cost is obtained. In that case it is necessary to base ourselves on annual cost, certainly
not on cost for the service life. Furthermore, an analysis of this kind is not meaningful
for just one individual part or component; the structure as a whole must be considered.
Finally, the purpose and the use of the structure must be taken into account. There is no
point in designing a structure to last for thirty years, however advantageous that may be
on a “per year” basis, if in all probability the need for that structure will no longer exist
in, say, ten years’ time.

Apart from practical problems associated with the assessment of the various cost fac-
tors, the economic criterion does not present many problems so long as the damage
(and monetary loss) is confined to strictly economic objects. The situation becomes
different when human life or other values that are difficult to valuate in monetary terms
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- such as environment, art treasures or scenic beauty - are involved. Of course, it can be
endeavoured nevertheless to express all these things in money and thus bring all the
factors under one common denominator. There are, however, many people who reject
such an approach and who wish to differentiate between economic factors and social/
ethical factors. The risk that a human being can acceptably run inrelation to a particular
structure is in that case referred to risks that people run in other sectors, e.g., from road
traffic accidents, accidents in the home, sports activities, illness, etc. The design prob-
lem is thus reduced to finding the most inexpensive design that does not exceed a cer-
tain maximum acceptable failure probability.

We now come to the other question posed at the beginning of this section, namely:
how are we to determine the properties of the respective stochastic variables? The core
of the problem is that in principle there is always a shortage of data for objectively estab-
lishing various types of distribution. In order to arrive at results, we are compelled to
proceed intuitively in making a number of subjective assumptions. This state of affairs
leads some people to the assertion that a probabilistic reliability analysis is impossible
or, to say the least, rather pointless. Yet this is hardly a logical argument. What it
amounts to is this: They have recourse to probability theory because there are uncer-
tainties involved, but then they reject that same probability theory when the uncertain-
ties turn out to be even greater than anticipated. Besides, it is represented as if, with the
rejection of the probabilistic element, the subjective element would disappear too. Of
course, that is not so. The subjectivity is inherent in the problem, and an objective solu-
tion simply does not exist. No matter how the problem is tackled, there always comes a
time when we have to rely on intuitive statements - “engineering judgement”. It is pre-
cisely by bringing probability theory into the picture that we can help to ensure that we
do not have to make any greater appeal to intuition than is necessary.

The branch of probability theory offering the possibility of assigning probabilities on
subjective grounds is known as “Bayesian probability theory” [19]. Briefly, this theory
comes to the following. So long as data are not available, we start from so-called a priori
distributions which are based entirely on an intuitive assessment of the situation. If ob-
jective statistical information subsequently becomes available, we convert the a priori
distributions by formal procedures into.the a posteriori distributions. Then, if certain
requirements are fulfilled, it can be shown that, according as more statistical informa-

I a priori
data Bayesian
n > ;
analysis

a posteriori

Fig. 24. Principle of a Bayesian analysis.
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tion becomes available, the a posteriori distribution will depend less and less on the a
priori distribution. In other words: when abundant statistical information has been
acquired we finally come back to “ordinary probability theory” (see Fig. 24).

The fact that the stochastic characteristics of the problem variables are interpreted
“in a Bayesian way” does of course have consequences with regard to the interpretation
of the result. The calculated probability of failure should not be regareded as a fre-
quency of cases of damage which will in fact be observable in the future. It is more diffi-
cult to indicate how it should be regareded. Actually, the failure probability is a number
which, in a scale extending from 0 to 1, reflects the engineer’s confidence (or lack of con-
fidence) in the structure concerned. This number, and also the manner in which it is
constituted, can help in making the best possible decisions in the light of the available
information and assessments. The advantage over a deterministic design lies in the
quantification of the uncertain factors and their effect on the final result. Major un-
certainties at the level of the problem variables are often found not to work their way
through into the probability failure, whereas other and relatively minor uncertainties
may well do so. With the probabilistic approach the designer becomes more clearly
aware of where the critical point are located an how these may be taken into account in
as balanced a way as possible both in the design and in the subsequent utilization of the
structure.

3 Review of general aspects associated with service life and safety considerations
3.1 Reasons for this review of general aspects

In general, depending on the type of structure and the environment within which it
functions, it often occurs that widely different sets of factors play an important part in
the assessment of the safety and service life of engineering structures. With regard to
buildings, for example, the structural strength and the climatic influences (wind load,
etc.) are important, while in the case of, say, production machinery and technical instal-
lations it is often necessary to take account of thermal fatigue, wear, importance of
avoiding interruptions in production, etc.

Despite the above-mentioned differences in the aspects included in the service life
and safety considerations, these considerations do have a number of features in com-
mon for a wide range of different structures. In principle it is therefore possible to set up
amore or less general scheme in which all conceivable aspects can be more or less logic-
ally accommodated. The use of such a review consists more particularly in the fact that
more and more structures are being designed in which a wide range of aspects is simul-
taneously involved. In such cases the scheme can serve as a check-list with the aid of
which it can be verified which elements may play an important part in the safety con-
siderations in a given case.

A possible set-up for a scheme of this kind is given in Section 3.2 of this chapter. The
basic idea is that a structure has to endure a number of external influences, develops
a response to these, and perhaps attains a limit state.
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On the basis of this approach five main inputs have been chosen:
. external influences;

properties of the structure (material and geometry);

. limit states;

special effects;

safety criteria.

QA=

The external influences and the various forms of response in most cases exhibit a dis-
tinctly stochastic character. In every case where service life is a consideration, it will
have to be indicated whether or not this stochastic character is to be explicitly taken into
account. Limit states should in principle be defined in a deterministic manner.

Errors and certainties of design, execution and operation constitute a special category
of aspects in connection with service life considerations. As these aspects cannot readily
be accommodated in the first three of the above-mentioned categories, they have been
assigned a separate fourth category. Determining the reliability of a structure or esti-
mating its service life is in fact not an end in itself. The results of this analysis will have to
be verified with reference to particular safety criteria in order to ascertain whether the
design, or the further functioning of the structure, is to be regarded as meaningful. Since
it is advisable to adopt a more systematic approach also in imposing these initial re-
quirements, the category “safety criteria” has been included in the check-list.

Each of these five categories will now be briefly discussed.

3.2 Basis for the set-up of the check-list (see folding-out page)
Category 1: external influences

Any influence that is able to shorten the service life of a structure or part of a structure
must possess energy in one form or another. For the purpose of further subdividing the
various influences it is therefore helpful to base oneself on the well-known classification
of energy in the forms of mechanical, thermal, chemical energy, etc. A similar approach
is adopted, for example, also in [20] and [21].

The mechanical influences are, in the first place, the normal static and variable loads.
The latter may be further subdivided into rapidly varying loads (with frequencies of the
order of the natural frequency of the structure) and slowly varying loads. The static and
variable loads will for the most part be due to the usual causes such as dead weight, live
load, wind, machinery driving forces, etc. Quite a different type of load is that consisting
of impulse loads, separately listed in the review of aspects, which are mostly of a more
“disastrous” character: collisions, crashes, explosions, etc. Yet another possible me-
chanical influence is constituted by imposed displacements of supports, exemplified by
earthquake effects and the settlement of foundations.

The physical influences include temperature and radiation. Temperature is impor-
tant for several reasons. For one thing, rises or falls in temperature may cause non-
uniform expansion or contraction and thus produce stresses in a structure. Further-
more, temperature has considerable effect on the mechanical properties of the struc-
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ture. At low temperatures the material may become brittle; at high temperatures there
is likely to be a loss of rigidity, strength and creep resistance. Just as with mechanical
influences, temperature fluctuations may exhibit a more or less normal character of a
“disastrous” character. The rise in temperature of the stay cables of a cable-stayed
bridge or the heating-up of an internal combustion engine are examples of normal
temperature changes, whereas an outbreak of fire in a building or the boiling-over of a
nuclear reactor is to be classed as disastrous.

Chemical influences comprise the action of acids, salts, catalyst poisons, etc. or
simply the consequences of rusting due to the presence of air and water.

Finally, there are the biological influences, more particularly those due to micro-
organisms, which are of importance in connection with the fouling of ships’ hulls due to
growth of organisms attaching themselves.

Category 2: response of the structure

Every influence to which a structure is subjected will call forth a particular response,
depending on the nature of the influence concerned. Static forces mostly bring about
elastic deformations and stresses; elevated temperatures cause a reduction of strength
and rigidity; a varying load causes fatigue; etc.

The various forms of response are not easy to classify, the more so as all sorts of inter-
actions may occur. In [21] a distinction is drawn between two groups, namely, the
reversible and the irreversible processes. The purely elastic response is an example of a
reversible process; fatigue and wear are irreversible. With some processes the distinc-
tion is less clear-cut: creep, for example, may be partly reversible and partly irrever-
sible. Another possibility is to distinguish between responses that are mainly sponta-
neous and those where the time and ageing effect play a part. This subdivision partly
coincides with the preceding one, as in the case of elastic response (reversible, instanta-
neous) and fatigue and wear (irreversible, cumulative). On the other hand, plastic defor-
mations are irreversible, but mostly the instantaneous plastic behaviour will be impor-
tant, whereas with reversible creep the time factor is of importance. We must conclude
that a clear-cut and fully satisfactory subdivision is not possible. In the review presented
here such a subdivision has indeed not been aimed at. The various conceivable forms of
response have merely been so arranged that the reversible and/or instantaneous charac-
ter predominates as we move further up in the list and that the irreversible and/or
cumulative time character predominantes as we move further down.

Precisely what forms of response should be included, and where they should be fitted
into the scheme, are questions which are of course susceptible of various interpreta-
tions. Much will depend on the degree of refinement sought, and on where it is desired
to set the limits of the systems to be considered. If we confine ourselves to the purely
structural aspects, we arrive at a different list than the one obtained if functional aspects
are also included. By way of example, consider the sludging-up of a pipeline. In the
purely structural sense this will not necessarily have serious consequences. From the
functional point of view, however, it is a form of response that shortens the service life.
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Category 3: limit states

In the context of the service life and/or reliability of a structure the so-called limit states
play an important part. By limit state is understood a state of the whole system, charac-
terized by a change - whetheror not of a distinctly instantaneous kind - which so affects
the structure that its further functioning or its continuation in existence will have to be
reconsidered. In general, a certain safety margin with respect to the attainment of the
limit state is often required in order to avoid the consequences that could result from
attaining that state.

The actual limit states of systems can be subdivided into:
- ultimate limit states;

- limit states of serviceability (or fitness for use);

- progressive limit states.

Quite often, too, limit states of fatigue are distinguished, which are related to the devel-
opment of micro-defects into unacceptable cracks under the influence of a large num-
ber of load variations. These do not in fact constitute a separate category, because they
eventually merge into one of the above-mentioned categories.

The ultimate limit states are associated with actual cessation of existence of the struc-
ture, i.e., complete failure. This may involve fracture, plastic deformation on a large
scale, or local or overall loss of stability. The limit states of serviceability are associated
with less-than-optimal functioning of the structure, though without loss of mechanical
equilibrium. In the latter case it is necessary to give close consideration to the question
as to how far it is desired to refine the system and where its limits are precisely to be set.
Without as yet committing itself to an explicit choice the “review of aspects” lists a
number of limit states of this type.

These matters call for a few explanatory comments. Thus, “inadmissible deforma-
tions”, “inadmissible cracking” (e.g., in the walls of a liquid storage tank) and “excessive
wear” (e.g., in the engine of a motor vehicle) are examples of limit states with a typically
technical background. On the other hand, with “unsightliness” the aesthetic aspect
plays the dominant part, while with “inadequate efficiency” the economic aspects are
more particularly relevant. With regard to the limit state “danger to the environment”
we may think of, for example, cumulative radioactivity which must not exceed a partic-
ular permissible maximum level. Against this, danger to the environment is sometimes
conceived as a second-order limit state: first a particular limit state is considered, e.g.,
fracture, and the probability of its occurrence is calculated; then it is checked whether
or not this probability exceeds a particular-limit value.

Besides the above-mentioned limit states, in present-day design methods a specific
distinction is sometimes made with regard to the so-called progressive limit states in
which the capacity of the structure to withstand and survive harmful influences plays an
important part.
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Category 4: special effects

It is a well known fact that substantial proportion of structures that have been (or are to
be) put into service do not comply with requirements applicable to them, this being due
to unforeseen human errors. Although there is generally little statistical information
available concerning this type of errors, it is nevertheless necessary to take them into
account as well as possible in an overall analysis of service life or reliability. If necessary,
missing statistical data should be supplemented with subjective assessments as con-
ceived in Bayesian probability theory. In this category of influences the following
groups are to be distinguished:

Uncertainties of design

These uncertainties in the design, which are separate from those in the modelling of the
structure, may be associated with anything ranging from relatively unimportant errors
of arithmetic to major fundamental errors. Experience with matters of this kind has
shown, inter alia, that a substantial proportion of causes of failure is due to possibly crit-
ical steps in the design process having been overlooked. The effect of arithmetical errors
committed in design calculations has hitherto not been the subject of any appreciable
scientific investigation, though examples could be given to show the increase and
decrease of such errors. In this context it is very important that the problem should be
tackled by independent scrutiny and by the application of many different checking
methods, more particularly in relation to the application of increasingly sophisticated
analysis procedures and complete numerical computation techniques.

Errors of communication

These may comprise errors and uncertainties due to gaps in communication between
the owner and the designer of a structure with regard to the requirements that it has to
fulfill, or between the designer and the builder with regard to materials and manufactur-
ing processes, or between the designer and the user with regard to installation proce-
dures, or between the owner and the user with regard to safety regulations, etc.

Uncertainties of manufacture and/or execution

The functional reliability of a structure depends on the quality of the materials and
the workmanship actually applied, as compared with the assumptions with regard to
these factors adopted in the design. Properly organized quality control and an adequate
level of inspection can do much to limit these uncertainties. However, with regard to
this class of uncertainties there is likewise an almost complete lack of statistical infor-
mation.

Commercial and political subsidiary influences

Political or economic factors may cause departures from the original design, the tech-
nical installations provided, or the management of a structure, and they may thus adver-
sely affect its reliability and safety. This risk will also increase if insufficient time or
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capacity (human as well as financial) is available for attaining the required level of qual-
ity and specified degree of care in building and commmissioning the structure.

Mathematical models and statistical models

This set of influences which is liable to introduce errors and uncertainties is bound up
with the mathematical models chosen to describe the physical processes and with the
statistical parameters that have been introduced for the stochastic variables. In their
nature these uncertainties resemble human errors.

Category 5: criteria for the assessment of safety/reliability

In considering the safety aspects or the service life aspects of a structure it is relevant to
define the objective that is aimed at for the structure. In other words: what is the prob-
ability of a desired service life not being attained? For determining this level a number
of criteria have to be considered, such as:

Social criteria

In general, what constitutes an acceptable level of risk is determined by the degree in
which a particular risk is voluntarily accepted, the reasons why a certain risk is taken,
difficulties in verifying a particular level of risk, the number of human lives at hazard,
and also the historical background of the risk.

Economic criteria

The reliability or the specified service life is also linked to the economic value, which is
determined by continuation of production and by the cost entailed by unserviceability
or failure. In this respect it is endeavoured to establish a relation between failure risk,
failure cost, cost of construction and level of inflation in order thereby to arrive at an
economically justified choice for the desired failure probability or service life predic-
tion, as has already been discussed earlier (Section 2.5).

Environmental criteria

The effect of environmental requirements upon the desired safety levels for present-day
structures has greatly increased in recent years, partly as a result of a number of very
serious disasters involving considerable danger to the environment of, in some cases,
large numbers of people. Offshore activities, transport by sea, etc. are instances in point.
It will be obvious that any attempt to refer the above-mentioned factors to one common
denominator and to translate the result into a desired safety level must as yet encounter
major problems. For the time being, therefore, we must content ourselves with applying
some fairly general guidelines.

3.3 The check-list applied to a number of studies performed
3.3.1 General remarks with regard to the review of aspects

The check-list presented in the preceding section of this chapter gives a preliminary
review of factors which may be of importance in carrying out reliability and/or literature
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studies. Obviously, a check-list of this kind can never be really complete and thus offer a
ready-made solution to every problem. Nevertheless, this check-list does provide a
survey of importance influencing factors affecting reliability/service life over a fairly
wide range.

Day-to-day experience in actual practice shows that, in carrying out a reliability
analysis, it is essential to restrict the number of factors involved in the analysis in order
to arrive at a solution and that quite often such restrictions are indeed justified. In con-
nection with problems liable to arise in practice, factors that are really outside the inves-
tigator’s specific discipline may also play a part. In such cases the check-list enables him
toreview, in an early stage, all the relevant factors that may be involved and to initiate a
soundly based analysis.

For a number of studies in the field of the reliability/service life of structures (carried
out, at least partly, at the TNO Division for Building and Metal Research), whether on a
probabilistic basis or otherwise, it has been attempted to classify these with the aid of
the check-list (see summary of results on page 44).

First in column 0 it is indicated which factors are involved, generally speaking, in an
investigation of this kind when 90% of the cases encountered in everyday - mechanical
as well as civil or structural engineering - practice are considered. The variables taken
into account fora number of studies, briefly described below, are indicated in columns 1
to 12. With regard to the variables belonging to categories “external influence” and
“properties of the structure” a distinction is made between a deterministic approach to
the variable concerned (designated by D) and a statistical approach (designated by S).

What is especially notable in this table is that in “everyday practice” (column 0) in
general only a very limited number of factors is brought into the analysis. The same is
true, though to a less extent, of the studies 1 to 12, although the investigators who

undertook these studies found then nevertheless to be fairly complex. This fact illus-
trates the complexity of the whole set of problems with which we are concerned here. A
second notable feature is that in some of these studies (more particularly 9 to 12) a large
number of factors is indeed taken into account, but that all these factors are regarded as
known and given quantities (deterministic). Also, a number of apparent or real discre-
pancies can be found. To mention just one example: in some of the studies, fracture
was particularized as a limit state, although no fracture mechanics analysis was per-
formed. It emerges, too, that - in the studies presented here, anyway - the reliability
analysis is often concerned with “technical factors”, whereas such concepts as unsight-
liness, lubrication, chemical influences and non-mechnical thermal loads are only ex-
ceptionally taken into consideration. Finally, it appears that only in a few of the studies
the reliability that has been determined is in fact compared with the reliability required
on the basis of economic factors.

3.3.2 Short description of the studies performed

(The numbering corresponds to the numbers 1 to 12 of the columns in the summarizing
table on page 44):
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Stupoc safety study of offshore structures [22]

With the aid of level Il reliability analyses combined with spectral calculation tech-
niques for wave loading, a simple offshore structure consisting of a single column
was investigated. Its safety with regard to maximum loadbearing capacity, fatigue
and the foundation was considered. See also Appendix B.

. Lighting columns subjected to wind load [23]

Lighting columns vibrate under the action of wind load and are thus liable to fati-
gue. This was analysed with the aid of spectral calculations. Then a procedure for
optimum design on the basis of economic criteria was outlined.

. Reinforced concrete slabs exposed to fire [24]

With the aid of Monte Carlo simulations it was shown that the reinforcement
should preferably be installed higher up in the slabs than has hitherto been normal
practice. Although the risk of overloading is thereby increased (as the internal lever
arm is reduced), the greater depth of concrete cover to the bars reduced the risk of
failure in the event of fire.

. Surge tide barrier in Oosterschelde [25]

In connection with the design and construction of the surge tide barrier in the Oos-
terschelde (Eastern Scheldt) probabilistic reliability analyses were performed for a
number of structural members. The results were further elaborated in probabilistic
fault tree analysis in which other failure causes were also considered, such as colli-
sions, mistakes of management or failure of hydraulic and electric systems. The
resultant failure probability was verified with respect to a previously accepted
social norm.

Low-cycle fatigue of thin-walled tubes [26]

Large plastic deformation may be caused by the sometimes quite considerable
thermal gradients that are liable to occur in cylindrical members (e.g., of nuclear
power stations) when expected and/or unexpected power variations occur. In com-
bination with creep this phenomenon can result in fatigue damage. With the aid of
Monte Carlo simulation this damage was analysed as a function of the transients
acting on the member and of the material data. The central theme of this study was
to investigate the use of probabilistic methods for obtaining a better basis for relia-
bility or safety predictions. See also Appendix C.

Plastic collapse of a portal frame [27]

The effect of combined interdependent failure mechanisms was investigated for a
simple portal frame.

Stress analysis of a mould for die-casting [28]

By means of the finite element method the thermal stresses occurring in a mould
for the die-casting of aluminium parts for coffee-making machines were calculated.
On the basis of these stresses and their dynamic character an estimate of the service
life expectancy was made, and ways of so improving the design were shought that
this life could be increased.

Service life predictions for insertion vibrators of a soil compaction barge [29]
Measurements were performed with a view to determining the vibration ampli-
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tudes and stresses in the poker-type soil compacting vibrators for insertion into the
ground. Furthermore, these amplitudes and stresses were determined also by cal-
culation. The measured and the calculated values were compared and interpreted.
A service life prediction was based on the stresses thus found to occur, and it was
investigated how this life could be increased.
Gas pipes [30]
Rapid crack propagation in gas pipelines presents a serious hazard. This is due to
the large amount of energy stored up in gas under pressure (as distinct from high-
pressure liquids). There is sufficient energy even to cause ductile cracking to pro-
ceed in an unstable manner. As a result, cracks hundreds of metres in length can be
formed quite suddenly, crack growth rates of up to 300 m/s having been observed.
In this project, the resisance to (or energy absorption associated with ) unstable
crack propagation was studied, and measuring methods were (further) developed.
BROS fracture research [31]
This program was concerned with the evaluation of the risk of small cracks occur-
ring in nozzles and walls of nuclear reactor pressure vessels as defined in the ASME
Boiler and Pressure Vessel Code, Section III, Appendix G, where reference is
moreover made to WRC Bulletin 175. The first part of the program (BROS I) ran
from 1973 to the end of 1979. In the main, it comprised the following investigations:
- elastic-numerical analyses of the stress field at the tips of nozzle corner cracks;
- experimental verification of the applicability of those analyses;
- experimental determination of critical crack size and crack growth rates under
fatigue conditions on the basis of elastic criteria (Kj., AK);
- evaluation of methods for the determination of critical crack sizes on the basis of
elastic-plastic criteria (COD, Jj.);
- study of the suitability of acoustic emission for the detection and location of
defects.
Evaluation of two-dimensional defects [32]
If inspection of offshore structures reveals small fatigue cracks, these will generally
be surface cracks or embedded cracks, i.e., cracks wich extend in several directions
at once under fatigue conditions (two-dimensional defects). Much less is known
about this phenomenon than about fatigue crack propagation in one direction (one-
dimensional defects). Fatigue crack propagation in several directions was studied
in this research. The results lent support to the recent hypothesis that this crack pro-
pagation takes place in such a manner that maximum relaxation of the material
(maximum increase in compliance) takes place.
Service life estimation by NDT (non-destructive testing)
The purpose of this project is to develop a non-destructive testing method for esti-
mating the service life of structures which operate under mechanical load at high
temperature. The development process will be backed by destructive testing for
evaluating the non-destructive testing method. It will be endeavoured to measure
the growth of a defect, or a collective of micro-defects, by means of fatigue tests and
metallographic examination, while furthermore the decrease in critical defect size
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will be determined by fracture mechanics investigation.

In the studies 10, 11 and 12 the phenomenon of crack growth under fatigue or creep
conditions is very much to the fore, while in 12 attention is moreover focused on struc-
tural changes and viscous behaviour of the material during service. All these pheno-
mena imply that the material behaviour is time-dependent. This may have an important
effect on the nature of a stochastic treatment when that is added to these subjects that
have hitherto merely been treated deterministically.

Review of aspects relating to service life considerations

see page 40 et seq. — 01234567289 101112

1. External influences

mechanical static force ° SSDS S DD
variable forces eSS SS DD DD
frictional forces
impulses
imposed displacements S D
imposed accelerations

physical temperature S D D DD
radiation
moisture

chemical oxygen + water D D
acids D
salts D D D
poisons

physicochemical lubricants or the absence thereof

biological micro-organisms

D

2. Properties of the structure (material and geometry)

mechanical elastic o S
plastic
dynamic °

creep

damping S
fatigue o S
fracture mechanics (defects) DD
thermodynamic D
effect of temp. on material properties

physical thermal D D DD
absorption/emission
ageing
electrical

mechanical/chemical/physical ~ wear resistance

chemical corrosion resistance S D
susceptibility to accretion
internal chemical activity

geometric shape design DD DDDDDDD
slenderness °
dimensional accuracy S SSS DDD
initial imperfections ° S D D
initial micro-defects D
inhomogeneties D

w2

mechanical/physical viscous {

(Aw}

(wlw]
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(continued)

see page 40 et seq. — 0123456789 101112
3. limit states
ultimate limit states fracture X X X X X X X X
maximum loeadbearing capacity o X X X
limit states of serviceability inadmissible deformation . X X X
inadmissible cracking X X X
excessive wear
unsightliness
inadequate efficiency X
danger to environment X X
progressive limit states insufficient redundancy
stress redistribution not possible
4. special effects
errors and uncertainties in design X X
execution/manufacture X
operation/management X X
uncertainties associated with mathematical models X X X X
statistical models
general maintenance
inspection X X X X
repairs
5. damage criteria
social criteria voluntary risk
risk modifiable X
injuries/deaths involved X
economic criteria importance to maintain production e X X
cost of repairs X X
cost of inspection
environmental factors effects on wildlife X
effect of people and animals etc. X

4 Various causes for attaining a limit state

4.1 Introduction

If a structure fails, this is due to a particular limit state being exceeded through the
action of a particular mechanism. In general, however, that limit state is just one of the
many that could have been exceeded, and the mechanism, too, was just one among
many possibilities. In designing or assessing a structure it is necessary to take account of
this overall set of possibilities. The check-list presented in the preceding chapter serves
in preparing an inventory of the factors that could be relevant in that context. It

involves:

1. giving due consideration to all the failure mechanisms (limit states) that may play a
part, and describing the extent to which these influence one another (taking account
of the so-called special effects, where relevant);

2. investigating the statistical behaviour of the parameters (loads, temperature, yield
point, etc.) that play a part with regard to the various limit states.
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With the aid of the check-list it is possible to obtain a qualitative conception as to which
limit states could be so important as to call for a more quantitative analysis. Broadly
speaking, the probability of the limit state of structure being attained increases accord-
ing as there are a greater number of possible causes. These matters will be considered in
more detail in the present chapter.

4.2 A structure conceived as an assembly of series and parallel systems

Fig. 25a shows an example of an elementary series system. The force S has to be trans-
mitted in its full magnitude by each of the individual elements. Ifjust one element does
not succeed in doing this, the structure fails. A series system is therefore comparable to
a chain whose strength is equal to that of the proverbial weakest link.
Its counterpart is the parallel system, as shown in Fig. 25b, of which, incidentally,
there exist three variants. These variants are (see Fig. 26):
1. The strength of the system is equal to that of its best element.
2. The strength of the system is equal to the sum of the strengths of the individual
elements.
3. The strength of the system is equal to the maximum in the force-deformation dia-
gram obtained by summation of the forces in the force-deformation diagrams of the
individual elements.

Variant 1 is the extreme opposite of the series system in that now it is the strongest, not
the weakest, element that governs the strength of the system. In electronics a system of
this type is known as the parallel system with hot reserve. The second variant is called
the parallel system with cold reserve. For purely mechanical systems it is more impor-
tant than the first. For a system like the one shown in Fig. 25b to be behave indeed as
envisaged here, the material must possess adequate ductility (toughness). If this condi-
tion is not satisfied, it is not permissible simply to add together the respective individual
strengths; the overall force-deformation pattern will then have to be considered instead.
This brings us to the third variant. An instructive publication dealing with it originated
in the fibres industry of the 1940s [34]. A recent review of the present position is givenin
[35].

‘S
Fig. 25. Series system and parallel system.
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Fig. 26. Variants of parallel systems.
1. strict parallel system

F 2. ductile parallel system

3. brittle parallel system

Variant 2: Rgystem =ZR;

A

r\// \\ R2 .
/ L _&R3 g Variant 1: Ry = max R,
// \_~ \ system
/ " Variant 2: Ryem= ZR;
Variant 3: Rsystem =mox{£F*,(u)} Variant 3: Rygem = max {ZF, (u)}

From the mechanics point of view the series system corresponds to a fully statistically
determinate structure, while the parallel system corresponds to a kinematically deter-
minate structure. Actually, pure forms of these systems are comparatively seldom
encountered in practice. Some examples do exist, however (Fig. 27). In order to avoid
temperature stresses and residual stresses, many lattice girder bridges are built as static-
ally determinate structures. A telecommunication transmission tower on a piled foun-
dation comprising a large number of piles is an example of an almost ideal parallel sys-
tem. In most cases, 4however, both types of system are presented in one and the same
structure. Consider the portal frame shown in Fig. 28, for example. According. to
elementary plastic theory for frames this structure has three possible collapse mech-

432%

AR 2 A

.

1

Fig. 27. Examples of a series and a parallel system in practice.

|

47



Sy Sq

Sy—»
Ry R3 R, R2 R

R Rg,

7 2 7 7

PR

S
Sp—» S)—s ‘
Rz Ry X 4
3
I m
R1 R5 R-] R5
% d g g

Fig. 28. Portal frame with three collapse mechanisms.
I beam mechanism
II sidesway mechanism
III combined mechanism

anisms, namely, a beam mechanism, a sidesway mechanism, and a combined mech-
anism. For each of these mechanisms (collapse modes) a reliability function can be
defined:

Zi=Ry+2R;+ R, — (%)Sla (323)
Zy=Ri+Ry+ Ry + Rs — S»a (32b)
Z3=R; + 2R3 +2R;+ Rs — (%)Sla—Sza (32¢)

where S; and S, are the loads and R; to Rs are the moments that can be resisted at the
respective points in the structure, while a denotes a deterministic length. The parallel
character of the structure is manifested in the adding together of several R; values within
one and the same mechanism. The series character is bound up with the presence of
several mechanisms, each with its own Z;. Thus there are indeed various mechanisms
involved, but each of these in itself forms a parallel system.

In the above-mentioned example there were various causes of failure, but they all
related to the plastic limit-loadbearing capacity being exceeded. Of course, failure may
be caused by much more widely divergent mechanisms such as plasticity, buckling,
creep, fatigue, fire, etc. The various mechanisms may moreover affect one another,
though that does not make very much difference with regard to the essence of the relia-
bility problem. Therefore, in the next sections of this chapter, the elementary series
system envisaged in Fig. 25 will be dealt with in detail. In Section 4.3 this will be done in
the R and S domain, while the time aspect will largely be left out of account. The ana-
lysis in the time domain will be considered in Section 4.4.

4.3 The series system; R and S domain

Consider a series system comprising n elements. For each element a reliability function
Z; can be established:
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Z=R—S, (33)

Per element an associated failure probability can be determined, as explained in
Chapter 2:

Py =P{Z;<0} (34)

In this way we find n separate failure probabilities. This information is not sufficient to
enable the failure probability of the whole system to be determined, however. But it is
possible to indicate lower and upper bounds [36], namely:

max {Pﬁ} < Pf< ZPﬁ (35)

In Fig. 29 the lower and upper bounds for Py, as well as a possible curve for Pyitself, are
indicated as a function of n for the case where all the probabilities P, are equal. Clearly,
the lower and upper bounds diverge rapidly for large values of n. Indeed, these bounds
have significance only if one or a few probabilities P; dominate or if there are indica-
tions that the system is close to one or the other bound, In order to investigate this latter
possibility, we shall now proceed to prove (35) and to ascertain precisely when the
bounds are reached. For the sake of simplicity we shall do this for the case n= 2. The
relationships is fundamentally no differnt for any value of n.

If n=2, the exact probability of failure can be written as:

P=P{Z,<0 of Z,<0}=
=P{Z, <0} +P{Z, <0} —P{Z;<0 and Z,<0} (36)

Since a probability is, by definition, positive, the last term of (36) is positive. Hence we
may write:

P,< P{Z, <0} + P{Z, < 0) 37)

Thus the right-hand inequality in (35) has been proved for the case n = 2. It follows, too,
that the upper bound is exactly satisfied if the last term of (36) is zero. This is the case if
the mechanisms associated with Z; < 0 and Z, < 0 are mutually exclusive, i.e., if the
strength of the first element is less than the load, it is impossible for the second element

Pt ZPg;
A

Pt

max. P“

1.2 3 4 5 6 7 8

—» N

Fig. 29. Lower and upper bounds for the failure probability P,of a series system comprising n
elements with equal individual failure probabilities Py.
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to have a strength that is also less than the load. A situation of this kind does not, of
course, occur in actual practice and therefore the upper bound is hardly ever entirely
exact. Ifthe events Z, < 0 and Z, < 0 are not mutually exclusive, but are independent of
each other, the difference between Prand the upper bound is often very small, however.
For then, basing ourselves on (36), we have:

Py=P{Z, <0} + P{Z, <0} — P{Z, <0}P{Z, < 0} (38)

The product term can usually be neglected in relation to the linear terms. The condition
is that the probabilities P{Z; < 0} are low. Besides, equation (44) in Section 4.4 is an ex-
pression for the failure rate which is exact if all the events Z; < 0 are independent of one
another,, from which the failure probability P;can then be calculated, also for large
values of n.

For extending the proof to the lower bound it is necessary to work out (35) further:

Pr=P{Z, <0} + P{Z, < 0} — P{Z, < 0}P{Z, < 0|Z, < 0} (39
which can be rearranged to:
Pr=P{Z, <0} + P{Z, < 0}[1 — P{Z, < 0|Z, < 0}] (40)

By definition a probability is always less than 1, so that the term in square brackets is
positive. Therefore:

P> P{Z, < 0) (41)

It can of course similarly be shown that also P;» P{Z, < 0}, thus proving the left-hand
inequality in (35). The lower bound is exactly attained if P{Z, < 0|Z, < 0} =1, i.e., the
one mechanism implies the other. In other words, there are now no random differences
between the various elements; instead, all the elements have precisely the same
- though stochastic - strength. In statistical terms this means that the various mech-
anisms are completely (positively) correlated or are completely interdependent.
Therefore, as a good approximation, it can be stated that the upper bound occurs in
the case of independence, the lower bound in the case of complete positive dependence.
In reality there mostly occurs partial dependence. Calculations shown that the upper
bound then in many instances does nevertheless provide a serviceable approximation
[37]. For not too large values of n and not too high a correlation, Pyis fairly close to the
upper bound. If greater accuracy of the results is required, there are methods providing
closer approximations, as described in [38, 39, 40, 41], for example. Despite the fact that
those methods demand less arithmetical work than a level III procedure, there is as yet
no satisfactory solution available for really large values of  (in excess of 100, say). At
present, efforts are being made to find procedures that link up as far as possible with
level II analysis of the individual mechanisms. So far, however, these efforts have not
produced a satisfactory result. Perhaps the best available possibility at present is a com-
bination of Monte Carlo with level II, i.e.,.a Monte Carlo simulation is performed, not
for the purpose of directly determining Py, but in order to determine a mean and a stan-
dard deviation for Zn,i, = min (Z;). This procedure requires far fewer simulations, and
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the failure probability is ultimately obtained via Pr= ®@y(— 8) - where S= y(Zmin)/
0(Zmin) - or possibly other distribution function.

4.4  The series system; time domain
441 Some comments on one possible limit state

The methodology described in the foregoing resolves itself into the following: for a par-
ticular time interval we suitably define R and S; then we determine, from the distribu-
tion functions of R and S, the probability that the event Z= R — S < 0 will occur during
that interval. A special choice for R and S is that the “consumed” operating time or
service time (¢) is defined as S, while the total service life (L) is defined as R. In that case
therefore the distribution function of R is immediately equal to F; . With this choice the
service life (L) is expressed as a function of a number of other quantities (xi, x,, etc.):

L=1t(x1,%2,...,%); p>1 (42)

The distribution function of L is then calculated from this.

Because of the (apparent) simplicity of this choice, it will, in the following treatment
of the subject, be assumed that it is indeed always a possible choice. The same treat-
ment is, mutatis mutandis, applicable also in conjunction with other definitions of R
and S, however (see also Section 2.4.3).

A worked example for one failure mechanism, namely, creep crack growth, is given in
Appendix A. In that example a Weibull distribution is found for F;. This is not very
surprising, the reason being that a service life distribution often has to be a smallest-
value distribution. The Weibull distribution is the only such distribution which is di-
rectly - i.e., without transformation of the parameters or truncation - bounded on the
left. In many other cases of fatigue and creep, if only one possible limit state is con-
sidered, an approximation based on the Weibull distribution is likewise satisfactory [42,
43, 44, 45].

442 Mutually independent causes

If several possible limit states have to be considered simultaneously, an exact expres-
sion can be found (as already noted in Section 4.3) for the case where the causes of
attaining the limit states are statistically independent of one another. In that case a func-
tional relationship as in (42) must be found for each possible limit state. In view of the
independence these relationships can be represented as follows:

Ll = tl(xla"'7xp); p > 1
Ly=6(Xp41,.%); 2P+ 1 (43)
L3 = t3(xq+1""ax!); r> q+ 1

For each L a distribution function (F,, B, F;, etc., respectively) can be calculated. From
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these, with the aid of (6) and (9), we can calculate for each limit state an (instantaneous
conditional) failure rate r, r,, r3, etc. The failure rate due to all the failure mechanisms
collectively is then obtained by adding together the failure rates of the individual failure
mechanisms. Proofs for the permissibility of this summation are given in Appendix D
(see also the example on p. 217 of [46]). These proofs are conducted on similar lines to
those given in the preceding section and make use of the statistical definition of in-
dependence: the events 4; and 4;,, are mutually independent if P(4; and 4;,) =
P(A4;)P(A;+1). Hence we can write:

F= r1+r2+... (44)

With the aid of (10) and (6) we can determine from r the distribution function and the
probability density function for the attainment of a limit state due to all the causes
together.

For applying (10) it is convenient to have for r(¢) an integrable closed-form expres-
sion. In the literature some expressions of very general applicability are indeed to be
found, but quite often they are very complicated, e.g., see [47]. A simpler expression is
obtained by basing oneself on an exponentially increasing failure rate:

r=ryexp (Ift.); t>0, 45)

where r, is the failure rate at time = 0 and ¢, is a characteristic time constant. Substitu-
tion of (45) into (10) and integration between the limits 0 and tyields a Gumbel distribu-
tion truncated on the left at 1=0.

An example of the applicability of this formulation is given in Appendix E, where the
form of the associated distribution function and probability density function is present-
ed, while moreover an acceptable explanation is given to show that this expression will
give satisfactory results for the failure rate of structures, or parts of structures, that are
subject to many possible causes of attaining a lirnit state.

4.4.3 Mutually dependent causes

Two different reasons why failure mechanisms may be interdependent are to be disting-

uished:

1. there is only statitical interdependence: the mechanisms do not affect one another
physically;

2. the mechanisms do affect one another physically.

First, case 1 will be considered, i.e., the case where the various failure mechanisms do
not accelerate or retard one another, but where the various expressions for L share a
number of parameters in common, for example:

L1=t1(x1,...,xp);p>1 .
Ly =0(Xm, -y Xg); 4> m, mKp (46)
L3= tg(x,,,...,x,); r>n ngq
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where the expressions for L, and L, share the parameters x,, to x,, the expressions for L,
and L; share the parameters x, to x,, etc.

This case can in principle be solved at level III, e.g., by means of Monte Carlo simula-
tion. With that procedure, at each simulation step a value is assigned to all the param-
eters x;, and then the smallest of the values of L; calculated with those parameters is
chosen. In this way, after the requisite number of simulation steps have been perform-
ed, a corresponding number of values of L will have been obtained, to which a distri-
bution function can be adapted. If desired, the values of L can be designated as being L,
or L,, or Ls, etc., so that an insight into the dominance of one or more failure mech-
anisms is obtained. However, because of the elaborate nature of level III calculations,
the approximate methods mentioned in Section 4.3 deserve consideration.

The case where the failure mechanisms affect one another in the physical sense, as
envisaged in case 2 above, calls for some comment, too. What characterizes these
instances of failure is that, if it is attempted to take account of the various failure
mechanisms collectively by means of a life fraction rule (e.g., the Palmgren-Miner rule),
the right-hand member of this rule may be larger or smaller than 1. An example is provi-
ded by the interaction between creep and fatigue. For instance, it may be attempted to
describe the life of a specimen, exposed to one set of creep conditions and one set of
fatigue conditions, by means of the following life fraction rule:

fftg+ nfng=D 47)
where:

t =exposure time of the specimen to the creep conditions

tz = length of time that results in failure under these conditions

n = number of cycles for which the specimen is exposed to the fatigue condi-
tions

ng = number of cycles that results in failure under these conditions

D = criterion for failure: in this case fracture

Therefore the first term of (47) representes the fraction on the service life under creep
conditions, and the second term represents the fraction under fatigue (see Fig. 30) con-
t/tg

D>1

D=1

D<1
»>n/nR

1

Fig. 30. 1/t (creep) vs. n/ng (fatigue) for cases where creep and fatigue accelerate each other
(D< 1), can simply be added (D= 1), or retard each other (D> 1).
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ditions. Now if, for example, D is smaller than 1, this means that D is dependent on the
ratio of the two terms in the left-hand member of (47), for if one of these terms is zero,
then (by definition) D= 1. Creep and fatigue therefore accelerate each other (syn-
ergistic effect). So in this case it is evidently not possible to speak of separate damage
mechanisms; instead, the two phenomena must be considered together in order to ar-
rive at one formulation (42), or a valid life fraction rule must be found in which the right-
hand member is equal to 1 (see [48], for example).

4.5 Some examples

Numerous examples of the simultaneous occurrence of various causes for the attain-
ment of a limit state, inclusive of special effects, can be obtained from the check-list
given in Chapter 3. In the present section a few comments on two simple examples of
the combined occurrence of two failure causes will merely be offered.

The first example is that of /eakage and fracture. Under the heading “cracking” in Sec-
tion 2.3.4 it has already been noted that, for example, in pressure vessels “leak before
break” is much preferable to the reverse, “break before leak”. For this reason several cri-
teria to ensure the first of these two alternatives have been developed. It can be stated
that checking a “leak befor break” criterion is not sufficient; the probabilities of the
occurrence of leakage and of fracture separately must be calculated, from which in turn
the overall failure probability and the probability of “leak before break” can be calcula-
ted. Alternatively, an existing “leak before break” criterion may be used and a proba-
bilistic analysis be performed on it.

The second example to be considered here is that of fire and overloading. As a rule,
fire is a typical instance of a failure cause with a constant failure rate. On the other hand,
with overloading it is necessary to take account of possible reduction in strength of the
structural material as time passes, resulting in increased failure rate.

As already stated, these are merely two examples of cases where only two causes of
failure occur in conjunction with each other. Of course, a formulation such as (44) is
suitable for simultaneously taking account of many more mechanisms, but it will, for
practical reasons, often be necessary to apply restrictions.

4.6 Summary

In general, a structure has a large number of limit states. Whenever one of these is ex-
ceeded, the structure can be said to have failed. Besides, there is an even larger number
of mechanisms through which those limit states can be attained. In the terminology of
reliability analysis this means that we are concerned with a series system: failure occurs
as soon as one of the mechanisms results in one of the limit states being exceeded. So
long as the various mechanisms are stochastically independent of one another, the
analysis generally presents no problems. In the R and S domain the summation of the
failure probabilities of the individual mechanisms gives an excellent approximation,
and in the time domain the procedure of simply adding together the conditional failure
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rates even provides an exact solution. Also in the case of complete interdependence
there are few problems. There is then always a governing mechanism, namely, that
which involves the greatest failure probability in a particular time interval. Of course,
the real problem is that in most cases there is partial dependence. If the correlations are
not too high and the number of mechanisms is not too large, the solutions for mutually
independent mechanisms provide serviceable approximations. If there is a large num-
ber of closely correlated mechanisms, however, a more accurate analysis is necessary.
Various possibilities have been described in the literature. A choice will have to be
made from among these in each individual case considered. Atpresentajudicious com-
bination of level 1T and Monte Carlo would appear to be the most appropriate method.

5 Summary, conclusions and possible continuation

In this report it has been attempted to present a general philosophy for the assessment of
the safety, reliability and service life of structures. There exists a relationship between
the reliability of structures and the accuracy or certainty in the prediction of service life.
Existing uncertainties can often be merely reduced by further research, not eliminated.
A correct approach to dealing with those uncertainties is possible only within the
framework of probability theory.

Assessing the safety of a structure comes down, in principle, to the comparing of two
quantities: the load and the strength. Failure occurs as soon as the load exceeds the
strength. Taking this conception as the starting point, a basic philosophy was developed
in Section 2.2. The simplest case occurs when the strength and the load are both
independent of time. A situation of this kind is encountered when, for example, the load
is due to the dead weight of a structure which is not appreciably subject to ageing. For
those cases the probability of failure is obtained through convolution of the probability
density function of the load and the distribution function of the strength; see Fig. 31.

In most cases, however, time effects (Fig. 32) cannot be neglected. Loads may vary
with time; material ages or is susceptible to cumulative effects. The concepts of load
and strength may, in cases of this kind, moreover usually be defined in more than one
way. For example, in the case of fatigue the load may be defined as the instantaneous
value, and the strength be allowed to decrease with time as a result of fatigue. Alter-

fs.fr RS
fR (r) R
fs(s)
S h
> s >y
Fig. 31. Probability density functions Fig. 32. Strength and load plotted
for load S and strength R. as functins of time.
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Fig. 33. a. Distribution function for service life L.

b. Probability density function for service life L (unconditional failure rate).
c. Conditional failure rate; the curve is known as a bathtub curve because of its shape.

natively, however, a constant strength may be adopted and the load be defined as a
cumulative effect. The first of these two approaches is perhaps more closely in line with
physical reality; in other respects, however, the two are equivalent. Which of them is to
be preferred can be made to depend entirely on the computational amenability of the
problem. If possible, the available freedom can best be so utilized that strength and
load are independent, while one of the two is time-independent.

In the case of time-dependence the probability of failure is always calculated for a
particular period, e.g., the interval (0, T), where T may be an intended service life or
inspection period. By calculating the failure probability for several values of T we
obtain the probability distribution for the service life (see Fig. 33a). Differentiation of this
yields the probability density function of the service life, known also as the unconditio-
nal failure rate (see Fig. 33b). On dividing this failure rate by the completement of the
failure probability, we obtain the conditional failure rate (see Fig. 33c) or “hazard
function”.

Both the unconditional and the conditional failure rate indicate the probability that
the load will exceed the strength in the time interval (¢, ¢+ dr), divided by the interval
duration dz. The unconditional failure rate relates to the probability of the strength
being exceeded in the interval considered and not earlier. The conditional failure rate
likewise relates to the probability of the strength being exceeded in the interval consid-
ered, given the condition that this does not occur earlier. In both cases there is therefore a
tie-up with the period preceding the interval considered, and it is this fact that is at the
centre of the difficulties encountered in seeking to calculate these functions. In many
instances these relationships with the past are accordingly neglected or simplified.
What consequences this is liable to have in various cases has not yet been properly clari-
fied and will have to be a subject for further research.
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Which of the three above-mentioned functions will have to be used in a particular
case will moreover depend on circumstances. The distribution function and the uncon-
ditional failure rate are often considered to be of importance for structures whose effec-
tive service life is determined by factors other than within the structure itself. But if the
effective service life is to be determined partly on the basis of the failure risk, it becomes
necessary to base oneself on the conditional failure rate (e.g., the “bathtub curve” in Fig.
33c). If the curve is decending, no replacement for technical reasons must be done. If it
is ascending, the conditional failure rate may be just as important as the reliability for
the whole service life. It is to be noted, incidentally, that the unconditional and the con-
ditional failure rate do not show any major numerical differences in the range that is
usually of importance.

In general, the calculation of a failure probability is a computationally intensive ope-
ration, especially if an exact analysis is aimed at. This being so, in many cases we must
content ourselves with approximations. An extensively used approximate method is the
so-called level II analysis, in which approximations are applied by means of lineariza-
tions and substitutive normal distributions. This level Il occupies the middle positionin
a subdivision into three levels, in which level III denotes the exact probabilistic analy-
sis, and level I the so-called semiprobabilistic practical analysis. The three levels
defined in this way should not be regarded as unconnected with one another. The object
is to use the same concepts, as far as possible, on all three levels and to compare the
results obtained. However, it cannot be said that satisfactory approximate procedures
are available for all problems in his field. More particularly the case where there
are several correlated causes of malfunction still presents unsolved problems. If
level III calculations become too unwieldy for the purpose, an approach based on
Monte Carlo simulation would at present appear to be one of the most appropriate
methods. In order to keep the number of simulations within acceptable limits, we
would content ourselves with a level II-type analysis on which only a mean value
and standard deviation of a failure-relevant quantity are determined. It will then
be necessary to make an assumption as to the nature of the distribution (normal,
Weibull, etc.).

Besides the above-mentioned computational problems associated with probability
and service life analyses, there are problems relating to the availability of the necessary
data. In general, there will not be enough data available to enable statistical distribu-
tions to be estimated with sufficient reliability. From this state of affairs it is often con-
cluded that probabilistic analysis is obviously an impossibility. Such a conclusions is
indeed inescapable if we completely hold on to the conventional frequentistic prob-
ability concept. An alternative possibility, however, is to change over to the Bayesian
probability concept, which offers the possibility of adding the missing information on an
intuitive basis (see Fig. 34). The objections attaching to the introduction of subjective
elements into the analysis can be countered by pointing out that otherwise a subjective
assessment will have to be made at some other point in the analysis anyway. Thus the
Bayesian analysis is no more than a tidy method of dealing with the intuitive aspects and
moreover of keeping the influence thereof to a minimum.
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data Bayesian
analysis

a posteriori

Fig. 34. Principle of a Bayesian analysis: an intuitive a priori distribution is combined with
objective data to give a so-called a posteriori distribution, with the aid of Bayes’s
theorem.

The failure of a structure is caused by a number of external influences that act upon
the structure from the environment. Generally speaking, these influences may be of a
mechanical, physical, chemical or biological nature. To translate an external influence
of this kind into an actual load acting on a structure will in principle require a mathemat-
ical model, as will also the determination of the response from the load (see Fig. 35).
Mathematical models are just as essential in a probabilistic analysis as in a determinist-
icone. In principle, too, the same models can be used for both types of analysis. A num-
ber of commonly employed mathematical models are briefly described in Section 2.3.

It is of course very important that, for dealing with a particular structure, the correct
mathematical models are set up and that the appropriate experts are consulted. A prime
requirement is to have a proper understanding of the hazard to which the structure may
be exposed and how it will - for given material and geometry - respond to them. To
assist the designer in these matters, a check-list (see Fig. 36) has been included in this
report (Chapter 3). This list lays no claim to completeness or to offering an ideal solu-
tion; it is to be regard=d as an initial attempt in that direction. It can be enlarged or im-
proved in the future. Also, the list does not offer any criterion of the intensity at which
any particular phenomenon could be disregarded from the outset. Indeed, this appears
very difficult, having regard to the unnumerable interactions that are possible. Thus,
“mechanical stress” and “chemical aggression” may together constitute a much more
serious hazard than the mere sum of the two actions occurring separately would lead us
to suppose. Applying the check-list therefore does not offer a guarantee against
unpleasant surprises. It can, however, provide a safeguard against “forgetting” to make

external influence

[ load Je -+ material models ]

macro-response
micro-response

Fig. 35. Diagram of an analysis.
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1. External influences
mechanical static for

frictional for
impulses

physical temperature
radiation
moisture

chemical oxygen + water,

poisons
physicochemical lubricants
biological micro-or

Properties of the structure (material

Fig. 36. Check-list (detail).

account of particular influences and furthermore serves as a suitable framework for
efficient investigation in the event of unexpected difficulties nevertheless occurring in
practice.

In Chapter 4 some attention is devoted to the simultaneous occurrence of several
possible causes of failure (see Fig. 37). A service life distribution function (see Fig. 38) is
proposed which, backed by theoretical considerations, can be expected to possess more
general validity for structures exposed to many simultaneous causes of failure. It is con-
sidered important to seek information that will support, or refute, this expectation.

P(tailure)
A

f H » N
1 10

Fig. 37. Failure probability as a function of the number of possible causes of failure » and their
mutual correlation p.
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Fig. 38. Possible shapes of probability density functions of the service life when there are several
possible causes of failure.

The objective of this research has been to investigate whether, in the sphere of safety and
service life, it would be possible to achieve harmonization of conceptions between engi-
neers of different disciplines, more particularly civil engineering, mechanical engineer-
ing and metallurgy. It clearly emerges from the research that this objective is by no
means simple or easy to achieve. The problem that an engineer encounters in his day-
to-day practical duties are of major influence on the way in which he approaches such
matters as safety and service life. In civil (and stuctural) engineering, for example, the
concept of “service life” does not attract any great interest, certainly not as a parameter to
be optimalized. Yet design engineers in this field are alive to the uncertainties besetting
structural analysis. This state of affairs means that while they do not, on the one hand,
feel much need for accurate mathematical models, they are, on the other, very receptive
to probabilistic thinking. In mechanical engineering the environmental conditions of a
structure are generally of a more extreme nature than in civil engineering, but are gen-
erally also better known. Therefore the use of sophisticated mathematical models is
more likely to prove advantageous (high temperature, fatigue, etc.). In the sphere of
safety and service life the emphasis is on the “safety aspect”, to which a probabilistic
approach is increasingly being applied. The materials technologist, finally, is often con-
fronted with problems that can primarily be solved in the laboratory. Because of this,
there is a preference to obviate the uncertainties as far as possible by means of experi-
mental research and the application of physical models. This approach is obviously
associated with a more deterministic pattern of thinking. Considerable attention is
focused on the “service life aspect”, i.e., the service life is regarded as a design parameter
or otherwise, in the case of an existing structure, is determined partly also on the basis of
safety considerations.

The differences in conceptual approach outlined above - inevitably in a schematic
way - should not always be regarded as undesirable. However, engineers of different
disciplines have to work in collaboration with one another in complex and socially
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important constructional projects (nuclear power stations, tanks for liquefied natural
gas, surge tide barrier in the Oosterschelde, offshore structures). They should therefore
be able to establish contacts with one another’s specialized skills at the appropriate
stage and to communicate without difficulties. The safety of the structure is their joint
concern, and it is important that each can accommodate his specialized knowledge cor-
rectly in the overall analysis. To this end, it is essential to have a shared overall concept
of the safety problem with terminology, methodology and interpretation that are clear
to all concerned. The present authors trust that they have made a contribution to that
aim with this report. Concepts from the various technological disciplines have been col-
lected and placed in relation to one another or accommodated in more comprehensive
schemes. It has been attempted to present a generally-utilizable approach for the
assessment procedure relating to a wide range of structures. It virtually goes without
saying that a first-time attempt of this kind can, despite much effort, never claim to be
one hundred per cent successful in achieving its stated objective. What it has merely
done is to start out on a road and to ascertan that it is necessary to proceed further along
this road. Besides, this will involve several lines of advance. Firstly, there are still many
theoretical problems waiting to be explored in depth, more particularly in connection
with the occurrence of several causes of failure. Secondly, it is important to try to solve a
number of practical problems with the theory presented here. This will undoubtedly
lead to modification and adaptation of the schemes and procedures given in this report
and to a more precise demarcation of sets of problems which as yet have not been very
clearly established. Finally, there is a third line of advance: publicity. It would indeed be
rather pointless if these conceptions were recorded in a report that would be consulted
and applied merely within a small circle of specialists. So it will be necessary to engen-
der interest in these matters, both within and outside the orbit of TNO, e.g., by means of
publications, courses or symposia. Besides, the reactions that can be expected from
these initiatives will be essential to the conduct of the further research that has to
be done.

Conclusions

1. The research has shown that there are differences in conceptual approach between
the respective technological disciplines concerned. The aim to harmonize these dif-
ferent approaches has resulted in the “basic philosophy” and the “check-list” (as an
instrument for the demarcation of reliability and/or service life problems) presented
in this report.

2. Studies relating to the reliability/service life of actual structures are at present ham-
pered mainly by the large amount of computational effort involved (computer costs)
and by the lack of sufficient (statistical) information. Schematizations and approxi-
mations are therefore necessary. Although good progress has been made in recent
years and serviceable approximations have become available, many problems are
still unsolved or inadequately solved. Thus, notably it is necessary to gain more
insight into the consequences of particular schematizations and/or the effect and
scope of the approximations introduced through the mathematical models.
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In applying probability theory to the assessment of the safety of structures it is pre-
ferable to base oneself on a Bayesian (subjective) interpretation of probability. In
general, not enough statistical data are available to allow successful application of a
frequentistic probability interpretation.

Essential lines of further research:

1.

Applying the check-list and basic philosophy, presented in this report, in actual prac-

_ tice and supplementing or adjusting them on the basis of the practical experience

6

that will be grained with them.

Further elaboration of the sub-problems discussed in the report and the verification
of solutions for existing or future practical reliability/service life problems. In partic-
ular, this should comprise the solving of computational problems, the study of
several correlated causes leading to the attainment of limit states and, finally, the
evaluation (technical/economic) of the reliability/service life levels to be
determined.

Giving wider publicity, both within and outside TNO, to the conceptions that have
evolved from this research - by means of publications and/or symposia.

Notation

fx(&) probability density function of X

Fy(%) distribution function of X

fi(¢) probability density function for service life
F.(t) distribution function for service life

(service) life, lifetime

..} probability of event {...}

probability of failure

r(t)  conditional failure rate
R(t) strength as a function of time
S(¢) load as a function of time

time
reliability function
reliability index

#(X) mean value of X

X) standard deviation of X

@y() distribution function of normal distribution
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7 Appendices

A. Example of procedure in the time domain with one possible cause of failure

1 Background and set-up of the analysis

The serivce life of a structure or part of a structure can often be described deterministic-
ally with the aid of a formulation for the growth of a defect (or a collective of defects),
e.g., in the form:

da/dt=férowth(yla J’2,-~,yn) (AI)
where:

a = mean characteristic magnitude of the defects

t = time

Jerowtn = a known growth function
Y1...y, = parameters which may be dependent both on & and on ¢

Integration of (A1) between the initial value of a (a) and the critical value thereof (a.)
(which may moreover be time-dependent) yields the service life of the structure
considered.

An example of such a growth law is obtained by application of the “damage model”
(see Fig. A1) to an austenitic steel under creep conditions (constant stress, high tempe-
rature). In the fracture mechanics literature various quantities are introduced, of which
it can be supposed that they govern the growth of a defect (or a collective of defects) -
such as Kj, J;, C* and oy.. If we assume that this last-mentioned quantity, the ligament
stress (oner), is the defect-governing quantity for this material under these conditions,
we can define the growth law as follows:

da/dt+ ol (A2)
From the model we obtain the ligament stress:

Onet = U/(l _/1) (A3)

Fig. Al.  Collective of defects, 2D model. Here it is assumed that: d, = d, = d and defined:

A=ald.
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where ¢ denotes the (constant) nominal stress.
With the definition of A:

A=ald (A4)
we can formulate the growth law as follows:
dijdt= Clo|/(1—A)}’|d (AS)

The measure for the mean spacing of the defects ((7) is here regarded as constant, as also
are Cand p. By comparison with growth laws of similar type, and from fracture mechan-
ics considerations concerning the energy required for plastic deformation associated
with the propagation of defects, it can reasonably be supposed that the magnitude of the
exponent p is not less than 2. With these assumptions it is possible to integrate (A5) be-
tween the limits 4, (the value of 1 at time ¢= 0) and A, (the critical value of A at failure).
We shall further assume:

Jo=0 (A6)

and:

do=1— (A7)

g

Oy

where o, is the tensile strength of the material.
The result of the integration is:

L= (1/q){1 - (0/0u)*}(00] o)~ " (A8)
where:

L = service life

t =d|Co{® Y, a time constant
g =p+1

0y = nominal value of ¢

In this formulation all the service-life-governing quantities, and therefore the service
life itself, are conceived as deterministic quantities. By conceiving the service-life-
governing parameters as stochastic quantities it is possible to calculate a distribution
function for L. The language called SIMULA, available to the IWIS-TNO, has been
designed for procedures of this kind. Such a calculation for (A8) has been carried out by
that Institute on the following assumptions.

There are no indications that other than normal distributions should be chosen for
the distribution functions to be applied, except for that of g. Experience has shown that
in expressions like (A5) the value of p is more often just above 2 instead of being much
higher (although this latter possibility certainly exists, with values ranging up to about 7
or 8). A non-skew distribution would be decidedly unacceptable. These findings, and
the theoretical limits resulting from the above-mentioned fracture mechanics con-
siderations, make an exponential distribution appear a very reasonable assumptions.
Accordingly, normal distribution functions were adopted for all the quantities, except
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g, for which an exponential distribution was chosen with 3 as the lower limit.

In the program it was taken into account that perhaps the following future develop-
ments can be realized as simply as possible:

1. The substitution of a different right-hand member into (A8), perhaps containing
parameters with possible other distribution functions, conceivably including some
that are not available as standard ones in SIMULA.

2. The application of the procedure to a non-integrable growth law, so that a numerical
integration of a differential equation like (A1) will have to be accommodated in the
program.

In connection with the stochastic properties of g, already referred to, and the way in

which the exponential distribution is available as a standard feature in SIMULA

(namely, as a one-parameter distribution), it was necessary to recast (A8) ina somewhat

different form for the purpose of the analysis:

L= {n](u+3)}{1 = (o/0u)"* P}(a0]0)“*? (A9)
where: u=qg—3=p—-2

The numerical values employed in (A9) are indicated in Table Al.

Table Al. Stochastic properties introduced for the parameters; g, = 80 MN/m?, deterministic

parameter 4 u o Oy

dimension (year) (=) (MN/m?) (MN/m?)

distribution* normal negexp normal normal

a* 150 1 80 400

b* 40 not 5 20
applicable

* According to IWIS-TNO’s manual “SIMULA”, Section 12.2, pp. 104 and 105, under “4. real
procedure normal” and “S. real procedure negexp.” For this analysis:
a = mean value
b = standard deviation

2 Detailed analysis

IWIS-TNO investigated how many simulation steps had to be performed in order to
obtain a smoothly continuous curve. For each step four draws had to be made, namely,

one for each parameter mentioned in Table A 1. Calculations were carried out with 1000,
10000 and 50000 simulation steps respectively. The scatter in the curve obtained
depends also on the number of classes into which the values obtained for L are divided.
The result of each of the three above-mentioned analyses was assessed for division into
100 and into 25 classes.

3 Results and discussion

The result of the assessment of the scatter is presented in Table 42. Not surprisingly, the
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Table A2. Result of scatter assessment

number of simulation steps number of classes result*
1000 100 - —
1000 ‘ 25 +

10000 100 -

10000 25 +

50000 100 +

50000 25 + +

* — — =very much scatter

—  =much scatter

+ = moderate scatter
+ = little scatter

+ + =very little scatter

best result was obtained with the largest number of simulation steps (50000) and the
smallest number of classes (25). It is found, however, that a good result is also obtained
even with 10000 steps and 25 classes. It is to be noted that division into 25 classes can
claim to be a reasonable optimum. This number is small enough to be conveniently
manageable, yet it is amply sufficient with regard to the attainable accuracy, especially
in view of the major uncertainties that will generally exist in the stochastic properties of
the initial parameters, as given in Table Al.

The result of the analysis comprising 50000 simulation steps and 25 classes is
presented in Table A3. Included in the computer program is the plotting of the values
listed in the second and third columns of this table (number and cumulative number,
respectively) as “printer plots” (see Figs. A2 and A3). These give a good idea of the scat-
ter and of the functional behaviour of fand F respectively. The correct numerical values
of f(in year ~!) can be calculated from the fourth column of Table A3 (percentage) by
dividing the values of this column by 100 times the class widths. By division of the
values listed in the fifth column (cumulative percentage) by 100 the values of F are
directly obtained. It is to be noted, however, that the values of f found in this way relate
to the class midpoints, whereas the calculated values of F relate to the class boundaries.
Values of F for the midpoints were obtained by linear interpolation. The values of rin

number number
7992[ L4854
6682} 37501
5372} 30148}
4062} 22795 |
2752} 15442
1442 8089 |
YA eSS
2173 8885  156.16 2509 92.31 159,52
years years
Fig. A2. “Printer plot” of the second Fig. A3. “Printer plot” of the third column
solumn (number) of Table A3. (cum. number) of Table A3.
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Table A3. Results of the analysis in 50 000 simulation steps and 25 classes
class
class cum. cum. perc. r=f/(1-F) midpoint
(year) number  number  perc. = 100F (k year™) (year)
<-179 0 0 .00 .00 - -

-1.79- 493 34 34 .07 .07 0.101 1.57
4.93- 11.65 614 648 1.23 1.30 1.84 8.29
11.65- 18.37 2383 3031 4.71 6.06 7.36 15.01
18.37- 25.09 5008 8039 10.02 16.08 16.8 21.73
25.09- 31.82 7649 15688 15.30 31.38 29.8 28.46
31.82- 38.54 8908 24596 17.82 49.19 444 35.18
38.54- 45.26 8376 32972 16.75 65.94 58.7 41.90
45.26- 51.98 6698 39670 13.40 79.34 72.9 48.62
51.98- 58.70 4674 44344 9.35 88.69 87.0 55.34
58.70- 65.42 2832 47176 5.66 94.35 99.4 62.06
65.42- 72.14 1455 48631 2.91 97.26 103 68.78
72.14- 78.86 763 49394 1.53 98.79 115 75.50
78.85- 85.59 369 49763 74 99.53 130 82.23
85.59- 92.31 124 49887 .25 99.77 105 88.95
92.31- 99.03 67 49954 13 99.91 125 95.67
99.03-105.75 27 49981 .05 99.96 124 102.39

105.75-112.47 10 49991 .02 99.98 106 109.11
112.47-119.19 5 49996 .01 99.99 114 115.83
119.19-125.91 2 49998 .00 100.00 99.2 122.55
125.91-132.63 1 49999 .00 100.00

132.63-139.35 0 49999 .00 100.00

139.35-146.08 0 49999 .00 100.00

146.08-152.80 0 49999 .00 100.00

152.80-159.52 1 50000 .00 100.00

the sixth column of Table 43 were determined with the aid of (9) from the values fand F
for the class midpoints. The last column of the table gives the values of the midpoints,
these being the arithmetical mean values of the relevant class boundaries.

The shape of Fig. A2 suggests that the distribution in question can be satisfactorily

——— t in years
001 23510235 10223 5 10°

1
5
3
2
107
5
.
o 3 F
10?2
T 5 7 |
g I
10°
g 7]
2
10404

Fig. A4. r versus ¢ (double-logarithmic): the straight line corresponds to a two-parameter

Weibull distribution. Points for which F> 0.9 have been omitted.
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approximated by a two-parameter Weibull distribution. If this is correct, the values of r
plotted logarithmically as a function of time (i.e., the class midpoints) should be located
approximately on a straight line. Fig. 44 shows this requirement to be quite closely ful-
filled for the most important part of the distribution. This is in agreement with what was
found in practice (for example, see [44] and [45] for the service life functions of test
specimens which were loaded under fatigue and creep conditions.

The normal distribution and the log-normal distribution are found to be less satis-
factory, as is apparent from Figs. 45 and A6. It is to be noted that in these diagrams the
deviation from the straight line (associated with the normal and the log-normal distribu-
tion respectively) is greatest in the range of the low values of F, i.e., where the reliability
is still acceptably high, this being therefore precisely the range that is of greatest
interest.

F 1.F F
%09 3 0,01 93,99
— 0,05 99.95
99 02 998
2 1 99,0
95
0 90
N 10
80 4 20 80
40 £
0
5 /, 0 60 50
20 3 80 20
Va -t 90 / 10
p 9% /‘ 5
/ r-2 930 4 2
1 I ' r 05
998
04 F-3 = i 905
: ' 9999 1
o 0 4 t?r? eqraso 2346 10 2346 100
y t in years
Fig. AS. Fversus ¢ on normal statistical Fig. A6. Fversus ton log-normal paper:
paper: a straight line corresponds a straight line corresponds to a
to a normal distribution. log-normal distribution.

B. Fatigue analysis of offshore structures

1 Introduction

As part of the MaTS 28 project relating to the safety of offshore structures the proba-
bility of fatigue failure of a structure consisting of a single tube was calculated [49, 50, 51].
This probability was calculated for various values of the wall thickness of the tube and
for an assumed service life of 50 years. Within the framework of the project “Service life
of structures” it was considered relevant also to vary the service life. This appendix gives
the results of such an analysis.
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2 The structure and the mathematical model

For a full discription of the mathematical model and of the structure the reader is
referred to the above-mentioned literature [49, 50 51]. The principal data are recapitu-
lated here.

The structure is shown in Fig. B1. A hollow steel tube is installated in water 100 m in
depth and supports a deck superstructure weighing 2000 tons. The base of the tube
rests on a piled foundation of such high rigidity that the tube can be regarded as com-
pletely restrained (fixity). Of the various loads acting on the structure only wave load is
assumed to contribute to fatigue damage.

The procedure adopted in this analysis is shown in the flow diagram of Fig. B2. It is
assumed that the sea action throughout the service life of the structure can be sub-
divided into a number of stationary (steady-state) stochastic processes, called sea states.
The water motion within a sea state is described statistically with the aid of a wave
spectrum.

On the basis of the wave spectrum a stress spectrum for the stress variations can be
calculated. The resulting fatigue damage is quantified as a Miner sum. Summation of
Miner sums per sea state results in a Miner sum for the whole service life. According to
the model, failure occurs when the total Miner sum is larger than 1.

The procedure outlined above was worked out probabilistically. The following were
adopted as stochastic variables to be taken into account:
water fluctuation within a sea state;
significant wave height per sea state;
predominant wave direction per sea state;
wall thickness of the tube;
added mass resulting from the surrounding water;
damping constant;
fatigue parameter.

N AW

For quantitative data see Table B1.

equate the total
Miner sum to zero

determine the wave
spectrum
determine the
stress spectrum
determine the Miner
sum per sea state
add the Miner sum of

100m 1=— D=10m @ the sea state to the
total sea state

mass m: 2000 ton

|
Y r L—no all sea states dealt with yes
40m |l 30m
tailure if total Miner sum
is larger than 1

Fig. B1. The offshore structure considered. Fig. B2. Flow diagram of fatigue analysis.
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Table B1. Summary of all the problem variables

var. designation type mean a/y
d, depth of water D 100 m -

/ length of tube D 120 m -

D diameter of tube D 10 m -

d wall thickness N 0.15-0.25 m 0.05
0w mass density of water D 1024 kg/m? -

st mass density of steel D 7800 kg/m’ -

g acceleration of gravity D 9.8 m/s? -
Cy wave force coefficient D 2 -
my mass of deck D 2.10° kg -

y coefficient for added mass N 0.9 0.10
L service life D 158-107 s -

n displacement of free water surface NPM 0m pm
¢ direction of individual wave train C2 0 rad pm
b predominant wave direction U 3.14 rad pm
H significant wave height W 2.17 m 0.60
7 damping constant N 0.01 0.25
E modulus of elasticity of steel D 210-10° N/m? -

k slope of S-N line D 4 -

Cc fatigue constant LN 9.10° N*/m? 0.62
type designation:

D = deterministic

N = normal

NMP = normal with Pierson-Moskowits spectrum
LN =log-normal

U = uniform
C2 = cos’ distribution
W = Weibull

3 Results of the analysis

Calculations were performed for wall thicknesses of 150, 170, 190, 210, 230 and 250 mm
for planned service lives of 25, 50, 75, 100, 200, 400, 600 and 1000 years. The probability
of failure was determined for each wall thickness and service life. The numerical results
are presented in Table B2 and B3. In Fig. B3 they are shown in graphic form, where the

Table B2. Results of the analysis (8-values)

L d=0.15 0.17 0.19 0.21 0.23 0.25
25 1.39 2.70 3.90 4.99 5.81 5.55
50 0.54 1.87 3.11 4.08 4.87 5.65
75 0.03 1.27 2.59 3.53 4.36 5.10

100 -0.33 1.16 2.22 3.14 3.98 4.71
200 -1.23 0.11 1.25 2.17 3.00 3.73
400 -2.16 -0.82 0.26 1.18 2.00 2.74
600 -2.71 —-1.45 —-0.32 0.59 1.40 2.14

1000 -3.42 -2.11 -1.07 —-0.16 0.64 1.38




Table B3. Probability of failure

L d=0.15 0.17 0.19 0.21 0.23 0.25
25 0.82-107" 0.35-107? 0.48-107* 0.29-107° 0.31-107% 0.29-1071
50  0.29 0.31-107" 0.94-107° 0.23-107* 0.57-107° 0.85-107%
75 0.49 0.85-107" 0.48-107? 0.20-10°° 0.60-10°° 0.17-10°¢
100  0.63 0.15 0.14-107" 0.85-107° 0.35-107* 0.12-10°°
200 0.891 0.46 0.11 0.15-107" 0.13-107? 0.98-107*
400  0.9842 0.79 0.40 0.12 0.23-107" 0.31-1072
600  0.9966 0.9265 0.63 0.28 0.81-107" 0.16-107"
1000  0.9998 0.9826 0.86 0.56 0.26 0.84-107"

planned service life L is marked on the horizontal axis and the failure probability on the
vertical axis. For the various wall thicknesses different curves are thus obained, which
are located higher up in the diagram according as the wall thickness is less.

The presentation of the results in Fig. B3 is based on an interpretation thereof as
failure probabilities associated with a planned service life. However, the same results
are also susceptible of a different interpretation. The life L of the structure can be
conceived as a stochastic variable, and the curves in Fig. B3 then become distribution
functions Fy () = P{L < t} for the stochastic variable L for various wall thicknesses. Dif-
ferentiation of the distribution functions gives the probability density functions f; (¢)
for the service life. These have been plotted in Figs. B4a to B4f. For small values of the
wall thickness d the service life has a low mean value and the probability density func-
tion is very narrow, indicating a not very large standard deviation. With increasing wall
thickness the probability density function does not “shift along”, as might be expected,
but progressively flattens out. The mean as well as the standard deviation increase.

A log-normal distribution for L would appear to be a reasonable assumption. This is
suggested both by the results presented in Figs. B4a to B4f and by the fact that the pre-
dominant stochastic variable (i.e., the fatigue parameter C, [50] or [51]) has a log-normal
distribution. The validity of the assumtion is confirmed in Fig. BS, where the functions
F; (¢) have been plotted on log-normal probability paper.

1.00
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- 080F
El L
3
T 0.601
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i d=210mm
0.20f
d=230mm
A mm

[l F i
50 100 400 600 1000
—» t(years)

Fig. B3. The probability of failure as a function of planned service life L for various values of the
wall thickness d.
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Fig. B4.
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Probability density functions for the service life L for various wall thicknesses.

The following rough estimates for the mean and the standard deviation of the service
life L can be adopted:

d

150 mm
170 mm
190 mm
210 mm
230 mm
250 mm

u(L)
100 years
250 years
600 years
1200 years
2000 years
4000 years

o(L)
100 years
250 years
600 years
1000 years
1600 years
3000 years

This table likewise shows that with increasing design thickness of the tube wall there is
more particularly an increase in life expectancy. The relative scatter is very much the
same for all values of the wall thickness d.
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Fig. BS. Service life distribution on log-normal paper.

4  Summary and conclusions

The probability of failure of a simple offshore structure due to fatigue for various design
dimensions (wall thicknesses) and various planned values of the service life I, was cal-
culated. The results obained can alternatively be interpreted as distribution functions
for the service life L, conceived as a stochastic variable. The distribution functions
arrived at are of the log-normal type. The life expectancy was found to range from 100 to
4000 years, depending on the wall thickness of the tube. The relative scatter was fairly
large in all cases.

Values of between 0.8 and 1.0 were found for o (L)/u (L). Hence it appears meaning-

ful to complement deterministic service life calculations for this type of structure by a
probabilistic analysis.
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C A method of determining the reliability of structures and an extension thereof
for predicting their service life

1 Introduction

The starting point for the considerations presented here is formed by a study relating to
the determination of the reliability of a thin-walled tube loaded by internal pressure and
cyclic thermal loading [52, 53]. The method is based on Monte Carlo simulation, while
the failure criterion is the occurrence of inadmissible accumulated plastic strains and
creep fatigue damage. The reliability of the structure loaded in this manner was calcu-
lated on the basis of characteristics - deduced from practical data - relating to the ran-
dom character of the variables that play a part on this problem. Finally, a sensitivity
study was carried out in order to ascertain the effect of various parameters on the overall
reliability of the thin-walled tube under the given conditions.

Within the context of the project “Service life of structures” (see, inter alia, [54]) it was
investigated how the above-mentioned study could be applied to the determination of
the service life of such structures by conceiving the life also as a stochastic parameter.
This appendix gives some results of an analysis of this kind.

2 The structure analysed

First, the structure and the mathematical model will be briefly described.

The structure is shown in Fig. C1. The thin-walled tube is loaded by an internal pres-
sure p which is (virtually) constant and by large cyclic temperature differences through
the wall thickness, these being due to sudden shutdowns affecting the system in which
this tube is accommodated. It is assumed that this occurs in accordance with the tem-
perature variation curve at the outer face of the pipe wall shown in Fig. C2, resultingina
maximum temperature difference of 110 °C through the wall during a shutdown period.

The mathematical model is based on a method developed by Bree, while the criterion
for failure of the structure has been chosen in accordance with the damage criteria
stated in ASME Code Case 1592.
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Fig. C1. Thin-walled tube, loaded by internai pressure, with temperature gradient in the wall of
the tube.
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In a very general from the failure probability of these structures can be written as:

pf= F(p7 R7 h7 E, a,AT:V, Uy’ Orefy He, lhold, Tmax, Cyclesy Nﬂ'a Td’Dcril)

Of these quantities the following ones have been taken into account as stochastic

variables:
- wall thickness #;
- modulus of elasticity E;

- coefficient of thermal expansion a;

- yield stress o,;
- creep parameters n. and or;
- creep fatigue parameters N, and

T,.

Quantitative data for these parameters are given in Table CI.

Table C1. Summary of the problem variables adopted

quantity designation type mean y variance ofu
P internal excess pressure D 4.82-10° Nm? -

R radius D 102.5 mm -
AT max. temperature difference D 102°C -

v Poisson’s ratio D 0.3 -
thold holding time at 550 °C D 160 hr -
Trax maximum temperature D 550°C -
cycles number of cycles D variabel -
Dyt critical fatigue parameter D 0.6 -

h wall thickness N 9.53 mm 0.004
E modulus of elasticity N 1.5594-10" Nm ™ 0.04
a coeff. of thermal expansion LN 15.5-107¢ °C™! 0.05
o, yield-stress N 2.05-10° Nm™ 0.058
n, creep parameter N 5.52 0.04
Oref creep parameter LN 1.17-10° Nm™ 0.15
Ny fatigue parameter LN Ny=f(A¢e,) 0.80
T, fatigue parameter LN T,=f (o) 0.60

type of distribution functions:
D = deterministic

N =normal

LN = log-normal

Material 1.6770
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Table C2. Calculated failure probabilities as a function of the number of load cycles

number of load cycles
10 100 200 1000 3000 6000 10000

P(e> &) 0.99-10° 0.14-107*  0.11-107"  0.29 0.73 0.907  0.9678
P(D>D,) 0.19-107* 0.11-107" 0.42-100" 033 0.66 0.838  0.9187

3 Results

Two failure criteria will be considered separately here: maximum accumulated plastic
strain (¢>> &) and creep fatigue damage (D > Dcr). The reason is that in this way a better
insight into the character of each of these two criteria is obtained. Since these criteria
are statistically independent of each other, this approach involves no further implica-
tions.

The two criteria were analysed for 10, 100, 200, 1000, 3000, 6000 and 10 000 thermal
cycles, corresponding roughly to a planned service life 0of 0.22,2.2,4.4, 22, 66, 132 and
220 years. For each number of cycles the probability of not satisfying one of the two
above-mentioned criteria was calculated. The numerical results are given in Table C2,
while they are presented graphically in Fig. C3. The planned number of load cycles is
marked on the horizontal axis; the probability of the two criteria being exceeded is
indicated on the vertical axis. For 1500 cycles, say, the probability of the two criteria not
being satisfied is, for both of them, approximately equal to 0.45. Furthermore it is not-
able that for ngyes > 1500 the governing criterion is the total accumulated plastic strain
and that for ngyces < 1500 it is the creep fatigue damage.

This diagram is capable also of a different interpretation, namely, as a calculated dis-
tribution function of the stochastic service life (F () = P{L < t}). Hence it follows, for
example, that the probability of the actual life L being less than a planned life (e.g. 1500
cycles) is equal to 0.45.

S —— | —

p(e>Ecr)

- chr)

W

—— Pfailure
o
o
N

4
O L L
200 1000 2000 3000 5000 6000 10000

— > Peycli

Fig. C3. Calculated failure rate as a function of assumed numbers of cycles for the two different
failure criteria.
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Fig. C4. Verification for log-normal distribution function.

Because the parameters most important to both damage criteria have a log-normal
distribution, this distribution function can likewise be expected to have a log-normal
character. In order to verify this, the ourves in Fig. C3 have been plotted again in Fig. C4,
but now in a manner devised specially for log-normal distribution functions. True log-
normal distribution functions are represented in this way by straight lines. The lines in
the diagram show that the calculated distribution functions are very close approxima-
tions of log-normal ones. ‘

Differentiation of the distribution function obtained yields the probability density
function f; (¢) for the service life associated with the two damage criteria considered, as
shown in Fig. C5. The following rough estimates for the mean and the standard devia-
tion of the service life are obtained:

u(L) o(L)
> & 2452 2695 cycles
D> D, 3700 7421 cycles

From these results it is apparent that the relative scatter in this “design life” is fairly
large, for both criteria.

4  Summary and conclusions

The failure probability for a very simple structure was calculated for a range of different
assumed numbers of design cycles. The results have been recast to give a distribution
function for the service life L, this life being conceived as an extra stochastic parameter
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Fig. C5. Probability density functions for the service life L in the case of two failure criteria.

in the system. The distribution function for L is very satisfactorily approximated by a
log-normal distribution function, which, having regard to the parameters of the prob-
lem and their probability density functions, was indeed to be expected. For the two
damage criteria a mean value for this service life of about 1700 cycles is obtained, but
the relative scatter (o/u) is found to be fairly considerable.

The important conclusion to be drawn from this study is that a service life calculated
on a deterministic basis is - for this class of problems, anyway - of little value, but that
certainly the statistical character of the various parameters, and therefore also the statis-
tical character of the calculated service life, should be considered.

Of course, these results are not entirely unexpected. For example, if the random
variables that determine the creep fatigue damage (I, and 7;) are considered, it will be
directly evident that a service life calculated on the basis of these quantities will assu-
redly also exhibit a by no means negligible scatter in the results.
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D  Proofs of r=2r;

Two proofs will be given. The first is rather fundamental and indicates a possible limita-
tion. The second makes more use of already available knowledge and is much simpler
for that reason.

First proof
The precise definition of the instantaneous conditional failure rate in consequence of
the i-th failure cause (r;) is:

r,-ziimOP{(t< L < t+ Af)|(Li> 1)}/ At (D1)
t—

Define the event 4, as:

A= (< Li<t+ Ab)|(Li> 1) (D2)
Then (D1) can be written in abbreviated form as follows:
ri= lim P(4;)[At (D3)
At-0

Furthermore the following expression can be written for the instantaneous conditional
failure rate in consequence of all the failure causes together (r):

r= lim P{(t< L< t+ At)|(L> t)}At= lim P(uU 4,)|At (D4)
At—0 At-0 i

In accordance with the relevant Venn diagram we can write:
P(4,0 4)) =P(4) + P(4) — P(A1n 4y) (D5)

As we have assumed all 4, to be mutually independent (therefore also 4, and 4,), we
have by definition:

P4, N 4y)) = P(4,)P(4) (D6)
Substitution of (D6) into (D5) gives:

P4, 0 4y)) = P(4) + P(4y) — P(41)P(4,) D7
Now if we define 4;, as:

A =AU 4 (D8)
we obtain:

P(A] U A, UA3) = P(A12 UA3) = P(A]z) + P(A3) — P(A12 f\A3) ==
= P(Alz) + P(A3) — P(A]Q)P(A3) (D9)

Substitution of (D8) into (D7) gives:

P4 U Ay U 43) = P(A4)) + P(4) + P(4s) +
— P(Al)P(Az) - P(Al)P(A3) -_ P(AQ)P(A}) +
+ P(A))P(4)P(45) (D10)
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Proceeding in this way, we find:

P(U 4;) =) P(4;) +a number of higher-order terms (D11)
Now:

lim P(4;) =0 for all (D12)

At—0

so that the higher-order terms may be omitted in (D11):*
P(gA,):ZP(Ai) (D13)

Substitution of (D13) into (D4) gives:

r= lim lZP(A,—)]/At:ZIim P(4)[At (D14)
At—0 |i i At—-0
which with (D3) becomes:
r= Z r; (D15)
Second proof

If there are only two causes of failure, with instantaneous conditional failure rates r; and
r, respectively, we have to prove:

r=n+n (D16)

By complete induction we then obtain (D15).
Now:

n=A[(1-F) (D18)
and:

n=A|(1-F) (D18)
Therefore:

n+n=(hHh-Hh+fH—-HF)(1—F—F+REF) (D19)
Furthermore:

r=f|(1—F) (D20)

From the independence of the two failure causes it follows that:

F=F+F-HREb (D21)

* This is the central feature of the proof. It is possible to conceive a case where it is not correct.
Thus, if it emerges that the time has been essentially quantified and that, for example, the small-
est possible At~ 107 s, and if particles are found with a life not exceeding this value by more
than a few orders or magnitude and these particles have various modes of decay (i.e., several pos-
sible “failure causes”), it may turn out that for these the statement (D15) is not exact.
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Hence we obtain:

f=dFdi=fi+f,— K Li—fiF; (D22)
Substitution of (D21) and (D22) into (D20) gives:
r=(fi+h—-Fh-HF)|(1-F—-FK+FF) (D23)

From (D19) and (D23) it follows that:
r=n+n (D24)

E A service life distribution function for structures that may fail from many causes

1 An example

With modern structures it is often very difficult to predict which cause will be the first to
bring about failure. What makes it difficult is of course the great complexity of such
structures, the more so as they are usually not built in large numbers, so that it is not
possible to collect statistical data for service life. Besides, such data would in general
become available, if at all, only at a time when they are no longer needed. So it must be
virtually ruled out that it will ever be possible to make predictions on the basis of practi-
cal data of this kind. However, it appears obvious and reasonable to compare the service
life of structures with, for example, the life expectancy of the human body - for which
statistical data are indeed available. After all, the human body, too, can be conceived as
a “structure” with a high degree of complexity and susceptible to many causes of
“failure”.

An example of r-values for inhabitants of the Netherlands who died in 1975 is given in
Table E1[55]. These values, plotted linearly against time (for which the class midpoints
are taken here), result in the familiar “bathtub curve”, as shown in Fig. EI, though
admittedly its shape does not always closely resemble a bathtub. The descending initial
part of this curve relates to deaths in early childhood (or what are often called “teething
troubles” in an engineering context) and will not be further considered here (though

Table E1. r-values deduced from Netherlands mortality table 1975 [55]

class class midpoint r
o0 (yr) (kyr™)
0-1 0,5 10,6
1- 5 3,0 0,7
5-10 10,0 0,3
15-30 22,5 0,6
30-45 37,5 1,3
45-65 55,0 8,0
65-75 70,0 32,3
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Fig. E1. rvs. t, linear: “bathtub curve”.

this does not mean to say that this part is always unimportant in the case of structures).
If the then following part of the curve could be approximated by a Weibull distribution,
it should, when plotted as a double logarithmic graph, be represented by an approxima-
tely straight line. From Fig. E2 it appears that this condition is not satisfactorily fulfilled:
the curve remains concave upwards. However, if we adopt for r, not the expression pro-
posed by Weibull, but the expression (45) given in Section 4.4.2 of this report, namely:

r=roexp (4t.); >0, (45)

we obtain a straight line when we plot rversus ¢on single logarithmic paper: see Fig. E3.
It turns out from this diagram that the points in the age range above about 15 years can
be approximated reasonably well by a straight line (see, for example, also [56], pp. 22
and 246).
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of Table E1. of Table E1.
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Fig. E4. A number of possible shapes of the probability density function (E2) (made non-
dimensional).

2 Distribution function and probability density function

From (45) (see above) we can, with the aid of (10) (see Section 2.2 of this report), readily
derive an expression for the associated distribution function:

F=1—exp {—t.(r—n)} (E1)

From (E1), (45) and (6) the following expression for the probability density function can
be obtained:

f=rexp {—t.(r—r)} (E2)

This is a two-parameter distribution function with parameters ryand ¢,. As in the case of
the Weibull distribution, a three-parameter distribution is obtained if in (45) the condi-
tion ¢t> 0 is replaced by > ¢,.

The shape of the two-parameter distribution is determined by the product of t.and r,.
Fig. E4 shows a number of possible shapes of the probability density function (made
non-dimensional) with the negative natural logarithm of the product of # and ry (n) as
the parameter.

3 Justification of applicability

Suppose that a structure or part of structure can fail in consequence of many different
mutually independent causes. Suppose furthermore that each failure cause indepen-
dently results in a failure rate r;. The overall failure rate (r) can then, in accordance with
(44), be written as:

r=2r (E3)

Now suppose that the service life distribution function due to each of the failure causes
separately can be approximated by a two-parameter Weibull distribution:
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Fi=1—exp {— (¢0,)"} (E4)
The associated failure rate is:
ri= (B oiﬁ")tﬁ'w1 (ES)

The (independent) parameters of this distribution are 0;and ;. The expression (E5) for
r;can be put into non-dimensional form, while at the same time the parameters are sep-
arated, by introducing the substitution:

0fi=pitfi~ 1/Ciro (E6)

This is possible because to every conceivable combination of 0, and g; corresponds a
value of the parameter C;introduced with this. The newly introduced quantities ¢, and r,
can be so chosen that they are equal for all Weibull distribution functions. By substitu-
tion of (E6) into (E5) we obtain:

rfro= Ci(4t.)" ! (E7)

where C; and g; are the new (independent) parameters.

Now consider the range ¢> t,. Suppose that there are two failure causes with failure
rates r,, and r,,_;, which both satisfy (E7) with parameters C,, and 8, and C,,_, and
PBm—1, respectively. Suppose furthermore that both failure causes contribute substan-
tially to all cases of failure at time ¢ considered. This means that r,, and r, _ are of the
same order of magnitude at that time. Now if we assume $,,_ to be smaller than 8, it
means that C,_; is larger than C,,.

By making a number of assumptions it becomes possible to give more quantitative
expression to what has been stated in the preceding paragraph. Assume that at time
t= mit, failure occurs just as frequently in consequence of the m-th cause as in conse-
quence of the (m — 1)-th. Then:

T =Tm—-1 (E8)
when:

t=mt, (E9)
From (E7), (E8) and (E9) follows:

Com?n 1= C,_ ymPn171 (E10)

Now assume that:

Bn=Bm-1+1, (E11)
then (E10) becomes:
Cn=Cu_1/m (E12)

Assume that, in analogy with (E11) and (E12), the following holds for every i:
Bi=pi-1+1 (E13)
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and:

Ci=C_1[i, (E14)
Then:

Bi=Lo+i (E15)
and:

Ci=Gyli! (E16)

Furthermore, suppose that §, =1 (being the lowest possible integer value that 8 can
assume) and Cy = 1 (a permissible supposition by virtue of the introduction of r, which
can still assume all values). Then, on substitution of (E15) and (E16), we obtain from
(E7):

o= (1]i")(yt.)’ (E17)
Substitution of (E17) into (E3) gives:
r=nZ(1/iN) ()’ (E18)

In order to set limits to the summation we must bear in mind, on the one hand, that in
the above reasoning we tacitly adopted 0 as the lowest value for jand, on the other hand,
that in principle there is an infinite number of possible failure causes, so that (E18)
becomes:

r=rn Y (1/i(4t.)' = r exp (ft.) (E19)
i=0
which is identical with (45) in Section 4.4.2 of this report.
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