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Preface

This issue of HERON contains the theoretical and numerical results of a research pro-
ject on mathematical models for the analysis of reinforced concrete structures, which
has been carried out at Rijkswaterstaat (State Public Works) in the Netherlands. This
project is part of the joint project “Betonmechanica” (Concrete Mechanics) which is
being conducted by Rijkswaterstaat, TNO-IBBC (Institute TNO for Building Materials
and Building Structures) and the two Universities of Technology at Eindhoven and
Delft, respectively. The whole project has been split up into four separate projects,
some of which consist of two parts in themselves. The following diagram shows the
(parts of the) four separate projects and their interrelations [1].
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The projects 1, 2 and 4 concern what we call the basic modelling of cracks, bond, etc.
They are being carried out by specialists on concrete research. The results of the pro-
jects 1 and 2 on the basic modelling of cracks and bond have been published in the
HERON issues 1981, 1a and 1b [2, 3]. These results are input for project 3 in which the
basic models are used to describe the global behaviour of a structure. In this third pro-
jecttwo computer programs have been derived, the Micro-model and the Macro-model.
These models were developed by specialists on numerical methods in engineering
mechanics.

The object of this approach was to concentrate on the investigation of basic com-
ponents in the behaviour of reinforced concrete structures, to model the behaviour of
these basic components and to incorporate these basic models in the global models.
With those global models reinforced concrete structures could be studied, thus increas-
ing the fundamental knowledge of the behaviour of reinforced concrete. More detailed
information about the objectives of the “Betonmechanica” project and the division into
four projects can be found in the workplan and survey of the joint project [1].

The joint project is being supervised and partly financed by the CUR-VB (Nether-
lands Committee for Research, Codes and Specifications for Concrete), which has set
up the Working committee A26 “Betonmechanica”. The authors are indebted to the
members of this committee for their contributions, help and encouragement.



The theoretical work for the Micro-model was done by dr. ir. H. J. Grootenboer (Bridges
Department of Rijkswaterstaat). Mr. P. J. G. Merks (Bridges Department of Rijks-
waterstaat) was very helpful in testing the program, performing the many calculations
and preparing the several documents which describe the program.

The basis for the Macro-model was initially laid down by dr. ir. J. Blaauwendraad
(Data Processing Division of Rijkswaterstaat), and ir. S. F. C. H. Leijten (Data Proces-
sing Division of Rijkswaterstaat) realized the program in its recent final form. Mr. R. H.
de Meijer (Bridges Department of Rijkswaterstaat) helped in testing the program and
carried out a number of calculations. Ir. J. van Mier of the University of Technology at
Eindhoven undertook to do a parameter study using the program. The project leader for
the overall work of both the Micro-model and the Macro-model was dr. ir. J. Blaauwendraad.

This publication can be regarded as a comprehensive summary of all the results. A
detailed account of the theory is given in the following reports.

1. GroOTENBOER, H. J., Finite element analysis of twodimensional reinforced concrete struc-
tures, taking account of nonlinear physical behaviour and the development of discrete cracks,
Doctoral Thesis, Delft University of Technology, The Netherlands, March 1979 [4].

2. LeuTeN, S. F. C. H. and J. BLAAUWENDRAAD, Stanil/1, a macro-beam-model for the nonlinear
analysis of reinforced concrete plane frames, Rijkswaterstaat, February 1981 [S].



NUMERICAL MODELS FOR REINFORCED
CONCRETE STRUCTURES IN PLANE STRESS

Summary

This issue of HERON reports the development of two numerical models for the analysis
of reinforced concrete structures in plane stress. In the PREFACE it is explained how
this project fits into a joint project named “Betonmechanica” in the Netherlands.

In an introductory chapter the motives for this study are outlined and the essentials of
reinforced concrete structures are reviewed. This survey indicates the need for analysis,
which led to the decision to derive a Micro-model and a Macro-model.

Micro-model

The Micro-model is a progam based on a special type of finite element method for plates
in plane stress. Material nonlinearities can be dealt with, but geometrical nonlinearity
has not been taken into account. Bond and bond slip are modelled. Probably a feature
which attracts most attention is the possibility of having discrete cracks across elements
in any direction. This makes the program particularly well suited to simulate structures
which fail in a brittle mode in which one crack or just a few cracks dominate their behav-
iour. The program is called MICRO/1.

Its scope is discussed in Chapter 2 and an outline in the theory is presented in Chapter
3. The program will mainly be used in a research context for the investigation of special
types of structures and details. Examples of the verification of the model, which are in-
tended to illustrate the field of applications, are given in Chapter 4. This part ends with
some conclusions and a survey of possible work ahead.

Macro-model

The Macro-model is a program for plane beams and framed structures. Material non-
linearities as well as geometrical nonlinearities are dealt with. In this program the con-
cept of “smeared-out” cracks is applied. Only bond and bond slip between the main
reinforcing bars and the concrete are modelled. The aim of the program is to calculate
the global behaviour of a beam up to failure load, rather than to study detailed stresses
as in the case of the Micro-model. The Macro-model program is called MACRO/1.

The scope of this model is described in Chapter 6, and the theory applied is outlined
in Chapter 7. Examples of analysis to verify the possibilities of the model and to illus-
trate the range of application are presented in Chapter 8. Finally conclusions and in-
dications for work ahead are given in Chapter 9.
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Numerical models for reinforced
concrete structures in plane stress

1 Introduction
1.1 Motives

In the course of this century the material called concrete, reinforced or prestressed with
steel, has become one of the most important building materials in civil and structural
engineering. The design and execution of new structures which - in respect of shape,
method of construction or manner of loading - are outside the range of standard experi-
ence make it continually necessary to investigate the behaviour of concrete structures.

Examples of such structures are: offshore structures, nuclear power stations, and
water engineering structures in or closely associated with the sea, such as the surge tide
barrier in the Eastern Scheldt (Oosterschelde).

Increase in dimensional scale and the introduction of new techniques in the building
of bridges and tunnels, however, also necessitate further research. In addition, the rise
in cost of all types of structure makes it essential to go on seeking less expensive alterna-
tive designs, materials and construction methods without lowering of safety standards.

Closely bound up with scale increase is the corresponding increase in the seriousness
of the consequences of disaster, so that careful and detailed structural safety analysis
becomnies more and more necessary. The central feature of such an analysis is an investi-
gation of the loading and of the behaviour of the structure under all kinds of conditions
such as cyclic loading (alternating loads), its time-dependent behaviour and especially
its behaviour under overloading.

Investigation of the behaviour of concrete structures has hitherto chiefly been based
on the results of tests performed on model structures or on structural components in the
laboratory. Such tests provide good insight in the deformation of the structure and the
magnitude of its failure load. But they yield only limited information on the strains and
relative displacements of the embedded steel. Because of this, the interpretation of the
behaviour and the detection of the causes thereof are made much more difficult.

Knowledge of the causes of a certain behaviour is important in order to predict the be-
haviour of other structures or of similar structures under different loads.

The possibilities of mathematically predicting the behaviour of a concrete structure
have been greatly extended as a result of the development of the computer. What are
needed, besides a numerical model for describing the structure, are mathematical
models embodying our knowledge of the behaviour of the constituent materials (steel
and concrete) and of their manner of cooperation. One important condition for the at-
tainment of an optimum result is the collaboration of investigators in these two fields of
research, namely numerical methods in engineering mechanics, on the one hand, and
fundamental research of reinforced concrete on the other. In the project “Betonmecha-
nica” this condition has been met.



1.2  Essentials of reinforced concrete structures

The behaviour of the material reinforced concrete is particularly complex. This is ap-

parent from the following points:

- The maximum tensile stress that concrete can resist is much less than the maximum
compressive stress that it can resist.

- The relation between compressive stress and strain deviates already at a relatively
low level of stress from the linear relation in accordance with Hooke’s law. Besides,
this compressive strain is dependent not only on the stress acting atany particularin-
stant, but also on the previous history of the stress.

- Concrete shrinks and swells. The magnitude and rate of these phenomena depend on,
among other factors, the humidity of the environment and the dimensions of the
structure.

- The creep deformation of concrete is considerable and may be as much as three times
the elastic deformation. On removal of load, part of the creep is recoverable and part
of it is irrecoverable.

- Ifa crack develops in concrete, transfer of shear forces across the crack nevertheless
continues to be possible because the faces of the crack are not smooth, so that the ir-
regularities on them will interlock if the width of the crack is small (aggregate inter-
lock). The magnitude of the maximum shear that can thus be transferred across a
crack depends on the width of the latter.

- The bond between the steel reinforcement bar and the surrounding concrete is not
perfect. For low load levels the connection behaves as a linear spring, but for higher
loads nonlinear behaviour may occur and even slip of the bar relative to the concrete.

- The anchoring zone of a rebar represents a complex problem, which essentially is a
three-dimensional stress state.

To compensate for its low tensile strength, concrete is reinforced with steel bars and/or
prestressed with tendons (high-tensile steel wires or bars).

In the composite material formed in this way the steel, by virtue of its quality and
shape, largely determines the cooperation of the two materials. Bond between con-
crete and steel, slip of the reinforcement and plastic deformation of the steel are impor-
tant aspects with regard to this. In an unreinforced concrete structure, cracks develop al-
ready at low values of the loading. Cracks may considerably reduce the stiffness of the
structure. When they are formed, the internal stress distribution is greatly changed. The
reinforcing steel, which in the uncracked structure contributes only little to the actual
loadbearing capacity, is now loaded to a high stress, as are also the contact surfaces be-
tween the steel and the concrete. The cooperation of the two materials now depends
greatly on the quality of their bond and on the dowel action of the reinforcement at a
crack in the concrete. The directions of the reinforcement and of the cracks have a major
effect on the anisotropic behaviour of the cracked composite material.

Failure of a reinforced concrete structure may result from the occurrence of large de-
formations and thus exhibit a “ductile” character. Alternatively, however it may be of a
“brittle” character. This last-mentioned form of failure can be particularly dangerous
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because itis notinitiated by large crack widths or deflections. In that case, too, the possi-
bility of redistribution of forces which exists in a statically indeterminate structure can-
not be utilized sufficiently.

1.3 Analysis needs

Calculations for the design and analysis of reinforced concrete and prestressed concrete
structures are usually based on linear elastic theory. This approach takes no account of
the non-linear behaviour of the constituent materials, the reduction in stiffness due to
cracking and the transition from isotropic to anisotropic properties for the composite
material. Such calculations can therefore only provide insight into the behaviour of a
structure at low values of loading. This is not necessarily a disadvantage with regard to
structures within the conventional range of experience. The codes of practice often
contain design rules to ensure that structures continue to conform to the relevant safety
requirements also at higher loads.

A different situation exists with regard to new types of structures for which experi-
ence is as yet lacking. In most cases there are no codes or established design rules for
them, and to test a prototype is often impracticable. For designing such structures and
assessing their safety it is essential to have information on their behaviour under loads
of large magnitude up to and including failure load.

Since this behaviour is to a great extent determined by the above-mentioned non-
linear behaviour of the materials, the analysis of these structures has to be based on
models which take this behaviour into account. The calculations do indeed become
much more complex in consequence of this and practically impossible to perform
without the aid of a computer. The evolution that non-linear analysis models for reinfor-
ced concrete structures have undergone in the period from 1967 to the present time is
considerable. All the models developed in this time are based in the finite element
method, because this numerical technique has proved to be particularly suitable for
solving many kind of problems in structural analysis with the aid of a computer. In the
work of all the investigators in this field the emphasis is on the treatment of cracking.
This is not surprising, since crack formation is of major influence on the stiffness, the
internal stress distribution and the maximum loadbearing capacity of the structure. The
first investigators to include cracking in their model were Ngo and Scordelis. In their
analysis of reinforced concrete beams they took account of the cracks by detaching the
elements at their boundaries.

This schematization of cracking was later also used by Nilson and by Stauder et al. In
this method a crack is treated as a line on either side of which the displacements may dif-
fer in magnitude. This model offers the advantages that the displacements at a crack can
be calculated and that these displacements can be taken into account in determining
effects such as aggregate interlock, dowel forces and yielding of the reinforcement. This
model nevertheless was abandoned, the reasons for this being:

- the limitation that cracks can occur only along the element boundaries. This results
in a high degree of schematization of the cracking pattern and considerable depen-
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dence on the subdivision into elements.

- the second drawback relates to the method of analysis. In consequence of the detach-
ment of the elements the system of equations must each time be established afresh
and inverted or decomposed. In addition, the altered number of degrees of freedom
has to be taken into account.

In general, the discrete crack model has been abandoned in favour of the approach in

which a crack is smeared or spread out over a whole element or over part of an ele-

ment. The crack is thus incorporated into the stiffness properties of the concrete, which
becomes anisotropic in consequence. The crack directions determine the principal
direction of this anisotropy.

One of the first investigators to use this method for the analysis of plates was Franklin.
Its great advantage is that cracking is conceived as a phenomenon like plastic deforma-
tion and can therefore be analysed by the same methods, with which a good deal of ex-
perience has already been gained. In this way, it becomes also possible to use standard
programs for the analysis of reinforced concrete structures.

The disadvantages of this method are due to “smearing out” the cracks. It is thus not
possible to deal with displacements at the cracks in the aspects already mentioned,
namely, aggregate interlock, dowel action and yielding of the steel. With this model the
crack spacings and crack widths are difficult to calculate, even if a fine-meshed net-
work of elements is used. Whether these drawbacks constitute a serious objection will
depend on the kind of structure to be analysed. Experience shows that structures in
which the bending moment is the determining quantity with regard to loadbearing
capacity (ultimate strength) and which have a ductile load-deformation diagram, can
very suitably be analysed with these models. On the other hand, structures displaying
brittle failure behaviour, which is frequently determined by one or a few dominant
cracks, are not so suitably amenable to analysis on the basis of this model with
“smeared-out” cracks. This frequently relates to shear cracks or flexural cracks in short
cantilevers and comparable other structures.

Another facet to which attention is paid in the work of many investigators, is the
mathematical modelling of bond. Not all of them adopt the same manner of schemat-
ization for the reinforcement. In those models that are based on discrete cracks the bars
are always described with the aid of separate elements. These reinforcement elements
are in many instances connected to the concrete elements by springs. The latter repre-
sent the behaviour at the boundary layer between steel and concrete. With this sche-
matization it is possible to take proper account of the slip of the reinforcement in the
concrete when the shear stresses between the bar and the concrete have attained a
maximum value.

In the models with “smeared-out” cracks the reinforcement is often incorporated into
the properties of the plate element. For this element the aeolotropic properties of the
composite material comprising concrete plus steel are then introduced into the analy-
sis. In that case, however, one usually does not take account of displacement of the steel
bar in relation to the concrete (slip).

Apart from the decision as to which method is chosen to represent the crack pheno-
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menon and the bond behaviour, it is always a difficult choice which model should be
preferred to describe the behaviour of plain concrete under two-dimensional and three-
dimensional states of stress.

A number of them can be found in literature. The results obtained with these respec-
tive models often differ considerably from one another, the reason being that as yet not
enough is known concerning this behaviour.

The knowledge which has existed also with regard to the shear transfer behaviour ata
crack (aggregate interlock) has been appreciably increased by the results of project 1 of
“Betonmechanica”. These results of theoretical and experimental studies concerning
the behaviour of the cracked zone are dealt with in the issue of HERON, 1981, No. 1a.

For the behaviour of the boundary layer between steel and concrete (bond), fresh in-
formation can be obtained from the results of project 2 of “Betonmechanica”. This will
be the subject of HERON, 1981, No. 1b.

Having discussed the choice between inter-element discrete cracks and smeared-out
cracks, the possibilities to incorporate bond in the model and the recent status of mate-
rial constitutive laws, we can state the needs for improvement. It will be a major step for-
ward to derive a fine-scale numerical model which allows for the occurrence of discrete
cracks at (preferably), any position within an element. This model has to include bond
behaviour, dowel action, aggregate interlock, creep, shrinkage and swell, and a gener-
ally applicable nonlinear constitutive law for plain concrete. It is obvious that such a
fine-scale program will be expensive in use because of the consumption of much core
and computing time of a computer. Therefore such 4 program can only be used for
research and for examining structural details. For complete structures we need a sepa-
rate program which takes account of the most important essentials of reinforced con-
crete without going into too detailed an analysis of the structure. In the context of the
project reported here one should think of a program for frames. The approach based on
smeared-out cracks will then serve the purpose, and the bond is only modelled along
the main reinforcement and not along the stirrups.

1.4 Micro-model and Macro-model

The requirements formulated in section 1.3 have been met in developing two programs,
which we have designated the Micro-model and the Macro-model. Both numerical
models are finite element models.

Micro-model
In the micro-model the physical phenomena of crack propagation, transfer of stresses
across cracks, bond stresses, etc. are described very realistically. The micro-model aims
at increasing the fundamental knowledge of the behaviour of reinforced concrete
structures.

First and foremost in connection with the development of the Micro-model was the
desire to devise a model with which the behaviour of a structure can be analysed under
various loads, enabling both the overall behaviour (e.g., a load-deflection diagram or a
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moment-curvature diagram for a portion of a beam) and the local occurrences within
the structure to be described. The aim is to devise an instrument which can take the
place of very expensive laboratory tests (with much internal recording of data) or which
can assist in the interpretation of laboratory measurements with a limited number of
recorded data. Of particular interest is the behaviour after the occurrence of the first
cracks and on attainment of the failure load. The model must be able to indicate the
failure load, the cause of failure and the deformations that occur. In reinforced concrete
structures the collapse mechanism is determined by the system of cracks that develops
in the concrete, and the collapse load or, more generally, the failure load will depend on
the stresses in the concrete and steel in the vicinity of the cracks.

Of special interest are those problems in which the structure, on reaching the failure
load, displays brittle behaviour. Such behaviour occurs in failure due to shear or to a
combination of shear and bending.

In these types of failure the dowel action of the reinforcement and the transfer of
shear stresses at a crack play a major part. The deformation of the structure on attain-
ment of the failure load will, in such cases, depend to a great extent on the slip of the
reinforcement and the deformations of the concrete. Brittle failure of a structure is often
the result of one dominant crack. The displacements at that crack determine the above-
mentioned dowel forces, the shear stresses at the crack and the steel stresses in the
vicinity of the crack.

It was endeavoured to find a model with discrete cracks, because in this way the dis-
placement at a crack can suitably be determined and the effects of these displacements
on the internal stresses can be taken into account. Also, this model can be expected to
make the dominant crack distinctly discernible.

The new program has been written as a subsystem of the general engineering system
Genesys. The name of this subsystem is MICRO/1. So the names Micro-model and
MICRO/1 may be used for the same program.

Macro-model

Apart from fundamental knowledge, designers wish to have a tool to investigate total
(marginal) structures. As already stated, the fine-scale Micro-model may be expected to
produce information that is too detailed for such operational problems and may cost a
lot of money. Therefore a rough-scale numerical model, in short: the Macro-model, was
developed at the same time. This program can be regarded as a new extended version of
an existing program, called STANIL, for plane framed structures (the name of the pro-
gram is a contraction of three Dutch words: STAaf = bar, Nlet-Lineair = non-linear).
The STANIL program had been developed in earlier years by Rijkswaterstaatand TNO-
IBBC. The now rewritten program is a subsystem of GenesYs and has been named
STANIL/1. So the names Macro-model and STANIL/1 may be used for the same pro-
gram. This rough-scale model aims at describing the behaviour of reinforced concrete
structures in a macro sense. In this model it is sufficient to use averaged values of stiff-
nesses (due to smeared-out cracks). Large beam-type elements are used.
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MICRO-MODEL

2 Scope of Micro-model

The Genesys subsystem MICRO/1 is a program for the advanced analysis of two-
dimensional plane structures of reinforced concrete, e.g. walls, a detail like a beam-
column connection and so on. The structures are assumed to display nonlinear elastic
behaviour and to be statically loaded. Only material non-linearity is considered. Creep,
shrinkage and temperature changes can be dealt with. The program produces plots of
cracks after each load increment which allows the crack propagation to be studied. Of
course, stresses, displacements and support reactions also occur in the output. The
width of all individual cracks is likewise calculated.

The shape of the plane structure may be arbitrary in the sense that the element mesh
consists of triangular concrete elements and straight reinforcing bar elements.

In the micro-model a method of crack schematization is adopted which combines the
advantages of discrete cracks and of the approach based on smeared-out cracks. The
cracks are treated as (what they in reality are) discrete material boundaries, for which
the displacements and the normal stresses in the crack direction may be different on
both sides. These discrete cracks may pass through the element mesh at any place in any
direction, and they are continuous over the element boundaries. Furthermore, the vari-
ous types of non-linear material time-independent and time-dependent behaviour are
considered in the model. Reinforcing bars may occur on the interface of two elements;
so they never cross a single element. A boundary layer for the bond phenomenon is
adopted between each bar and the neighbouring concrete elements.

Type of finite element method
A special type of the finite element method is applied. In deriving the triangular thin
plate elements for the plane state of stress in the concrete the concept of “natural
boundary displacement” is used, as was introduced by Blaauwendraad [6]. Instead of
degrees of freedom at the corner, separate sets of degrees of freedom have been intro-
duced for each of the three element edges. So the displacements at one edge are com-
pletely disconnected from the displacements of another edge in the same element. Such
elements show stresses at their boundaries which are always in equilibrium with one
another and with the internal loading. The stiffness matrix of such elements is derived
from an assumed field of stresses over the internal element area and an assumed dis-
placement distribution along the element boundaries (hybrid method).

It was considered that the freedom to choose a stress field offered the most promising
possibilities to describe the complex state of stress in an element crossed by a crack.
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Possibilities and restrictions of MICRO/1

Applications of the MICRO/1 program are found in investigating:

- cracks and stresses in wall-type structures;

- details of structures such as beam-column connections;

- the ultimate bearing capacity of beams and columns under combined states of nor-
mal force, bending moment and shear force; especially failure in shear can now be
studied,;

- all crack problems in which crack spacing and crack width are of particular interest;

- typical (details of) structures in which the overall behaviour is strongly dependent on
the bond characteristics.

It has to be stated here, however, that some types of problem cannot be properly model-

led. MICRO/1 has, for instance, not been built for the investigation of three-dimen-

sional stress states. This means that the anchoring zone of reinforcing bars cannot be

examined precisely. And, in general, each circular bend in a bar is schematized by a

sharp angle. So one should be careful in these cases.

Some of the facilities that the now available program MICRO/1 offers are (besides
those already mentioned above):

- the structure supports may be springs;

dependence relations between degrees of freedom can be stated;

the tensile strength can be chosen according to a random distribution over the several

elements;

- users can choose between two different constitutive laws for the concrete.

A separate program PLAAT/1 has been built for plates in bending, which to a great

extent is similar to the progam MICRO/1. This program for plate bending officially

does not belong to the “Betonmechanica” project and will therefore not be reported in
this publication.

Integration of basic models and global models

It was indicated in the Preface that the intention of the “Betonmechanica” project is
to incorporate the basic models from the other projects in the global models. In order
not to delay the development of the global models, preliminary choices had to be made
for the basic models based on what was known from the literature. The integration of
the results of the other projects in MICRO/1 has been scheduled at the time of pre-
paring this report. It may be published in a future issue of HERON.

Survey of contents

An outline of the basic considerations which led to the micro-model and theory will be
given in Chapter 3. It has been decided not to go into much detail, but to provide suffi-
cient information for understanding the essentials of MICRO/1. So the derivation of the
stiffness matrix of the triangular element for the concrete is not fully described; neither
the manner in which the global nonlinear equations were formed has been explained in
detail. In Chapter 4 the reader will find a number of applications which clarify the
potentialities of this new numerical tool in advanced mechanics.

16



3 Outline of theory of Micro-model
3.1 Physical phenomena to be modelled, and schematization of geometry

The structure is modelled with triangular elements of concrete and linear elements of
reinforcement (Fig. 3.1). Where reinforcing bars occur the material is concentrated at
the central line and the joining concrete elements are assumed to extend up to this cen-
tral line of the reinforcement.

The reinforcement will in general display displacements relative to the surrounding
concrete. Around the steel bar there is a boundary layer in which the bond phenomenon
takes place. Fig. 3.2 shows which cracks really may occur in this region and how it is
idealized to a homogeneous axisymmetric layer. The layer transmits a shear stress r
from the concrete to the bar. The deformation of the layer due to this shear force is
greatly influenced by the radial stress ¢. The dimensions of the layer can be neglected in
the finite element mesh (as can be done for the bars), but the stiffness relation between
the stresses 7and ¢ on the one hand and the corresponding deformations of the layer on
the other hand should be considered.

Fig. 3.1. [Illustration of assembly of triangular concrete elements and straight bar elements.

real boundary
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Fig. 3.2. Real situation in a boundary layer for bond and its idealization.
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Fig. 3.3. Cracks should be allowed to develop irrespective of the chosen element mesh.

The next phenomenon to be dealt with is cracking. We wish to allow the occurrence
of cracks irrespective of the choice of the element mesh (Fig. 3.3.).

In a crack, aggregate interlock takes place. This means that force transfer is still pos-
sible after cracking, but this is accompanied by displacements of the two crack faces rel-
ative to each other, parallel to the crack and also perpendicular to the crack (Fig. 3.4).

The crack zone behaviour is schematized as the behaviour of a homogeneous layer
between the two crack faces. In this layer (average) stresses r and ¢ occur, which cause
deformations of the layer corresponding to the parallel displacement of the crack faces
and the perpendicular displacement (the crack width). In the finite element mesh the

perpendicular displacement A)
——— #—iparullel displacement A

actual mode of force
transfer in a crack due to
aggregate interlock

-
—
o '
T '
| — :U | idealisation of the crack
| —4 ‘<_ lI zone for analysis
g7 D |

—
L__ _iéi ]

Fig. 3.4. Real aggregate interlock in the crack zone and the idealization of the zone.
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two crack faces can be assumed to have the same geometrical position, so we neglect
the dimensions of the crack zone layer (as is done with the bond layer). But the stiffness
relation between the stresses and the corresponding relative displacements of the crack
zone layer should be taken into account.

The proposed crack zone layer implies that the shear stress and the stress normal
to the crack are continuous across a crack. Note that the stress normal to the crack
need not be zero in this concept, as is normally assumed for cracks. This assumption
holds exactly only if no parallel displacement occurs. In the case of parallel displace-
ments the assumption is still fairly good for very small crack widths and for large crack
widths. For intermediate values of the crack width the normal stress and the shear stress
in the crack may have the same order of magnitude. The normal stress parallel to the
crack need not have the same value in the concrete on one side and in the concrete on
the other side of the crack. The analysis should allow for this discontinuity in stress
across a crack.

Finally, consider the situation of a crack crossing a reinforcing bar. In that position
two aspects must be considered: firstly, an abrupt change of the sign of the bond shear
stress and, secondly, dowel action. Fig. 3.5 shows the type of shear stress distribution
that can be expected along the reinforcement near a crack in a tensile region. The analy-
sis should take account of this, if not the exact distribution of the stresses, at least the
discontinuity at the crack must be accounted for.

Fig. 3.6 shows the deformation of a reinforcing bar when a parallel displacement
occurs in a crack. The bar behaves like a dowel, with high normal stresses transmitted
between the concrete and the bar. In this region the bar can be conceived as a bar loaded
in bending wich is supported by an elastic foundation.

SITRSELY;
YRR

Fig. 3.5. Abrupt change of sign for the bond shear stress near a crack.
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Fig. 3.6. Normal stresses between the bar and the concrete due to dowel action.

In this situation the boundary layer for bond is not in a state of axial symmetry, be-
cause the radial stress ¢ occurs only on one side of the bar. Such situations will occur
more often, which means that in fact two separate bond layers are needed, one on each
side of the bar.

3.2  Analytical modelling

The phenomena elaborated in Section 3.1 have to be modelled to allow for an analysis.
We will hereafter show how this is done. In this section it will be explained which stress
fields and displacement fields are applied. The constitutive relations between the stres-
ses and the corresponding strains will be described in the next section. We start here
with the situation of uncracked elements in Section 3.2.1 and will demonstrate in Sec-
tion 3.2.2 what changes are to be made if cracks occur.

3.2.1 Uncracked state
Concrete element

In Chapter 2 it has been explained that a triangular element of a special type isused. We
refer to this method as a hybrid method in which “natural boundary displacements” are
used. In a standard type hybrid method according to Pian a distribution of stresses over
the area of the element is chosen, and a separate independent interpolation is made for
the displacements along the boundary of the element. The stress distribution satifies
internal equilibrium conditions. The interpolation of the displacement is done using
degrees of freedom at the corners of the elements. The two degrees of freedom at such a
nodal point are common to all elements which meet at that node. So interelement com-
patibility is satisfied at forehand, butin general the interelement equilibrium of stresses
is not achieved.

This standard type of hybrid elements was so modified that displacements are inter-
polated at the boundary for each element edge using separate degrees of freedom for
each edge (natural boundary displacements), see Fig. 3.7. In this way the interelement
equilibrium for the stresses along the element boundaries can be greatly improved.
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Fig. 3.7. Standard type of hybrid elements (left) and hybrid elements with natural boundary dis-
placements (right).

This approach is considered to be of advantage for two reasons:

- the stress distribution in the elements can be chosen rather freely, which offers good
possibilities for elements after cracking;the same applies to the displacements at the
boundary;

~ the favourable experience previously gained at Rijkswaterstaat could be used.

The four stresses oy, 0,,, 0y, and o, are linearly distributed over the element area; so

they have different values at the three corners of an element. The interpolation is writ-

ten in a bridged form as follows:

Oy = Pi(%,p) i

inwhich o(x,y) is the vector of the stresses, 8 is a vector of twelve stress parameters and
Pi(x,y) a matrix, whose coefficients are functions of x and y.

The displacements along one element edge are linearly interpolated. So, for two dis-
placement components (one parallel to the edge and one normal to the edge), we need
four degrees of freedom. In abridged form:

u(s)=L(s)v

in which u (s) is a vector of two displacement components, v a vector of four degrees of
freedom and L (s) a matrix of two rows and four columns whose terms are linear func-
tions of the coordinate s, which is chosen along the edge in consideration.

The distributions for ¢(x,y) and for u (s) cannot be chosen completely freely. In the
hybrid theory some rules have to be obeyed which relate the distributions to each other.
These conditions are fully dealt with in [4].

The element results in a stress distribution which satisfies the conditions of equili-
brium within the area of the element (Fig. 3.6).

Oxx,x + Oxy,y = {qx

q
Oyxxt Opyy =@y <—f ‘x l——baxx

Fig. 3.8. Equilibrium conditions. vy
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Note that the stresses gy, and oy, in this report do not correspond to the convention of
the index notation. These stresses do not satisfy the condition that o, is equal to o, at
each each point (x,y) of the element, but satisfy this condition only in an average sense

5 S(ny— 0yx) d4=0

Ae

in which A4, is the area of the element. This approach was necessary to meet the condi-
tions of the hybrid method referred to earlier. It means that the element incorporates
some characteristics of the Reissner-Hellinger principle.

Reinforcing bar element

We shall now consider the connection of an uncracked triangular element and a reinfor-
cing bar (Fig. 3.9).

The concrete elements each transmit a linear distribution of normal stresses ¢ and
tangential stresses 7 to a reinforcement element. The linear stress r causes a quadratic
distribution of the normal force F in the bar. This implies that the two element forces at
the end of an element need not be equal to each other. These two forces correspond to
two axial degrees of freedom. The linear stress ¢ causes a quadratic shear force S in the
bar and a cubic distribution for the bending moments M in the bar element. In general
the described distribution for the shear force S and the bending moment M result in two
element forces at each end of a bar element, a force acting normal to the bar axis and a
moment. This implies that at each end two corresponding degrees of freedom are neces-
sary, a displacement normal to the bar axis and a rotation. The author of the program
has decided to omit the rotation of a bar element end and included only two displace-
ments, one axial and one normal to the bar axis. So the bar elements are connected by
hinges to each other. This choice makes the bending moments zero at the ends of the
bar and ensures that the bending moments in the bar remain small. The average shear
force in an element will always be zero. Furthermore it was decided not to take account
of the bending stiffness of the bar element but only to consider the shear rigidity (the
“dowel” rigidity along the length of a bar element). So, for the bar element the normal
force F and the shear force S, and their corresponding strains ¢ and y, are of impor-
tance. The stiffness relations are:

Fig. 3.9. Chosen connection of reinforcement to concrete.
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where

¢ = strain of steel

y = deformation in steel due to shear force
A = cross-sectional area of steel

E = modulus of elasticity of steel

D = “dowel” rigidity of steel

Bond zone element

The boundary layer for bond between the reinforcing bar element and the concrete
element can easily be added to the model. As shown in Section 3.1, this layer is repre-
sented by a stiffness relation between the stresses r and o acting on it and the corre-
sponding deformations A, and A |, . The stresses are related to the forces in the bar
element according to

dF

Tzd—s

Eié'
= ds

The stiffness relation is adopted as:

N

I K T
1

AJ_ 0 E g
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where

A, = parallel displacement in boundary layer

A | = widening of boundary layer

K =rigidity of boundary layer with respect to a parallel displacement
B =rigidity of boundary layer with respect to the widening

The stiffness relation adopted is considered to be a preliminary one. The final results of
the “Betonmechanica” project 2, which is studying the bond zone in more detail, are
awaited. The diagonal rigidity matrix chosen here may then be replaced by a fully filled
matrix.
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Fig. 3.10. Connection of steel bar and bond layer to the concrete elements in the present-day
version of MICRO/1.

As has been described here, the bar element and the boundary layer element are
separate elements. In the implementation in the program they were assembled to one
combined element. No distinction is made in the present version of the program be-
tween the two different bond layers on each side of a bar element. The overall behaviour
is comprised on one bar-boundary-layer element. Fig. 3.10 shows how the connection
between the combined bar element and the concrete elements should be conceived.
It implies that the two concrete elements on both sides of a bar element will have the
same displacements at this position.

3.2.2 Cracked state

If the stresses in a plate element attain the magnitudes at which (according to the
cracking criterion) the concrete cracks, a discrete crack is assumed to form, extending in
a straight line from one boundary of the element to another. Not more than two cracks
per plate element are permitted. For these cracks the limiting condition imposed is that
they must intersect each other at an element boundary and that they must, from this
point of intersection, each extend to a different side of the triangle. This requirement
results from the rule applied, namely, that at each side of the triangle only one point of
intersection with a crack is allowed to occur (Fig. 3.11).

Fig. 3.11. Possible cracks in the triangular elements.
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The crack direction is assumed to be perpendicular to the principal tensile stress. The
position of a crack within a triangular element is so determined that the crack links up
with a crack already present in an adjacent element. If the boundaries of the element
under consideration have not yet been encountered by a crack in adjacent elements,
the crack is assumed to pass through the centre of gravity of the triangle.

In a cracked element the three possible ways in which the parts thereof can undergo
displacement as a rigid body are taken into account. To this end, the following displace-
ments are considered at a crack:

- the displacement of the two crack faces relatively to each other perpendicularly to the
direction of the crack,

- the displacement of the two crack faces relatively to each other in the direction of the
crack,

- the rotation of the two crack faces relatively to each other.

The result of this is a linear distribution of the crack widening along the crack and a

constant shift along the crack. Therefore within a crack three additional degrees of free-

dom are introduced. Two of them (u; and u;) describe a linearly varying crack opening,

and one (v) is used to describe the parallel shift (Fig. 3.12). The natural boundary dis-

placements u and v at the outer edges have to be adjusted if a crack crosses an edge.

This is done by adding a discontinuous displacement interpolation to the linear dis-
placement interpolation of an uncracked element. This implies the additional degrees
of freedom Au° and Av’, shown in Fig. 3.12.

In the vicinity of a crack the stresses may vary greatly due to dowel forces in the bars
or to bond stresses between the bars and the concrete. To take account of these stress va-
riations and of the possibility of the normal stress at a crack displaying a discontinuity in
the crack direction, the linear stress field of the uncracked element is extended, for a
cracked element, by a stress field which is discontinuous across the crack, to:

o(xy) = Pi(x,y) 81 + Px(x,) B>

The discontinuous part of the additional stress field P(x, ) 82 is shown in Fig. 3.13 (the
distribution along the element edges).

(=}

Ad®
Av°

Fig. 3.12. Additional displacements u;, u;and vin the crack, and Auand Av°for the discontinu-
ous displacement interpolation at the element boundary.
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Fig. 3.13. Fig. 3.14.

Distribution of the stresses, according to the Distribution of the stresses, according to the
discontinuous part of the additional stress discontinuous part of the additional stress
field, along the boundaries of a plate field, along the boundaries of a plate
element with one crack. element with two cracks.

The choice of this stress field and the corresponding displacements Au’and Av® pre--
serves full inter-element equilibrium in a element boundary crossed by a crack.

In an element a second crack is permitted only if this crack runs from the uncracked
edge to the intersection of the first crack and the element boundary (see Fig. 3.14). Now
the additional stress field is discontinuous over both cracks and we find additional
degrees of freedom along all three element boundaries.

If a bar element is intersected by a crack, then - as in the plate element - the stress
functions and displacement functions are extended by adding extra fields. These fields
are compatible with the extra stresses and displacements used in the plate element. The
constant additional fields for rand ¢ yield linear additional fields for the normal force F
and the shear force S (Fig. 3.15).

Au®
Av®
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Fig. 3.15. Extra stress fields and degrees of freedom in a bar element intersected by a crack.
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On briefly assessing the choices made for the cracked state, the following can be
stated. The analytical model fully allows for aggregate interlock and bond. It will
depend on the mesh fineness whether or not the bond stresses near a crack can be dealt
with correctly (see Fig. 3.5). The abrupt change can be described, but we shall need a
number of elements to follow the rapidly damping nature of the local phenomenon. It is
more doubtful if the dowel action (see Fig. 3.6) is modelled correctly. Here we shall also
need a couple of elements to describe the rapidly varying local phenomenon; it may
be a shortcoming of the analysis that as yet no bending of the steel bar is considered.

3.3 Material properties

Section 3.2 defined what stresses and related deformations occur in the analytical
model. In this section we shall describe which constitutive laws are used to relate the
stresses to the deformations. The behaviour of a material is always described with the
aid of a number of models, each of which describes a particular aspect of the behaviour.
In the Preface these models are called the basic or material models, in order to distin-
guish them from the overall models for the analysis of a structure, such as the Micro-
model, in which the basic models are used. The latest knowledge concerning the behav-
iour of the materials is embodied in the basic models. More particularly with regard to
concrete, however, the available knowledge of its behaviour under various conditions is
still very incomplete, and research on the subject is still in full swing. The Micro-
model has therefore been conceived such that the basic models can quite simply be
replaced by others or be increased in number.

The Micro-model comprises basic models for the following material properties for
concrete:
- a non-linear stress-strain relationship,
- a cracking criterion for concrete in tension,
a crushing criterion for concrete in compression,
a shrinkage model,
- a creep model,
a model for aggregate interlock in a crack;
for steel:
- a non-linear stress-strain relationship;
for the boundary layer between steel and concrete:
- a non-linear shear stress-displacement relationship,
- a non-linear normal stress displacement relationship.
For some material properties alternative models have been included, from which the
user can make a choice according to his own judgement. No experimental research into
the behaviour of the materials has been undertaken within the context of this study.
With the exception of the model for aggregate interlock in a crack, the basic models for
the description of the concrete properties have been taken from the literature. Where
several models are reported in the literature, a choice has been made on the basis of
agreement with experiments and of the serviceability of such models in the Micro-
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model. Pending the results of research on the force-displacement relations in a crack
and on the cooperation between steel and concrete, which is being carried out within
the framework of the “Betonmechanica” project (see Preface), simple linear elastic and
elasto-plastic models for the properties have been adopted. No models have been in-
cluded for describing the relaxation of prestressing steel and the time-dependent defor-
mations at a crack and in the boundary layer. The reason for not (yet) taking account of
the two last-mentioned creep deformations is the existing lack of knowledge concerning
these deformations. In comparison with the creep of concrete, the relaxation of steel is
such a rapid process that it is assumed to have been completely accomplished before
the concrete starts its creep.

3.3.1 Constitutive laws for concrete

The MICRO/1 program can be used with two alternative basic models for plane con-
crete, one due to Link and one due to Buyukozturk. Both will be described and if modifi-
cations were made, they will be indicated.

3.3.1.1 Link’s model

This model comprises a non-linear stress-strain relationship, a criterion for cracking and
a crushing criterion for concrete in compression. These two criteria are stress criteria [7].

Non-linear stress-strain relation

This model is based on results of experimental research by Kupfer et al. concerning the
behaviour of concrete under two-dimensional states of stress. Basing himself on these
results, Link developed formulas for the calculation of the strains (¢) associated with
any (arbitrary) two-dimensional state of stress. These formulas define the total strains
depending on the actual stresses, the uniaxial compressive strength of concrete, the
initial modulus of stiffness and the initial value of Poisson’s ratio. Presupposing coinci-
dence of the orientation of the principal directions of the stress tensor and the strain
tensor, and assuming symmetry of the stress-strain relationship, Link formulates the
constitutive relationship as follows:
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The symbols in the relationship have the following meanings:
Ef = secant modulus of elasticity in the principal direction i
v’ =secant value of Poisson’s ratio in the principal direction i
0;; = principal stress in the direction i

¢; = principal strain in the direction i
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Fig. 3.16. Stress-strain for uniaxial state of stress for Link’s model.

For the very elaborate formulas for E; and v; the reader is referred to [7].

To give an impression of the nature of those formulas, the result is sketched for a uni-
axial state of stress in Fig. 3.16. This is indeed the type of stress-strain diagrams found by
Kupfer et al. in their experimental investigations. Link obtained his formulas through
curve fitting of these results.

The model is in good agreement with the experimental results of various investigators.

Besides this advantage, it has some disadvantages, however, namely:

- the model is purely elastic and therefore takes no account of the permanent deforma-
tions that remain on unloading, nor of the dependence of the strains upon the stress
path followed,

- the assumptions made in deriving the formulas have yet to be investigated as to their
validity,

- the elaboration and precision of the formulas suggests an accuracy which is decidedly
unrealistic with reference to a material such as concrete.

Cracking criterion
In considering the behaviour of concrete subjected to two-dimensional states of stress a
distinction is drawn between the crushing.and the cracking of the concrete.

By cracking is here understood the formation of cracks in the concrete perpendicu-
larly to the plane of the two-dimensional state of stress. These cracks develop if one of
the principal stresses is positive (tensile stress) or if both of them are positive. Many
authors make use of a stress envelope as shown in Fig. 3.17 for describing the states of
stress for which these cracks arise. This general approach is also adopted by the author
of the MICRO/1 program.

The values SB, S4 and tan (a) are needed for describing this criterion. The points 4
mark the transition from the cracking criterion to the region where crushing of the con-
crete occurs. Experimental results indicate for tan (@) values ranging from i to .
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For the calculations performed for this report the following have been adopted:

S, =f., = uniaxial tensile strength of concrete
Sp = f..= uniaxial compressive strength of concrete
tan (a) = 1

It is assumed that if the stresses attain a value located on this cracking stress envelope, a
crack is formed perpendicular to the larger principal stress (= tensile stress) and the
stresses at right angles to this crack have to become zero.

Crushing criterion

By crushing of concrete is understood the formation of cracks both in, and perpendicu-
lar, to the plane of the two-dimensional state of stress. This type of cracking occurs if one
or both of the principal stresses are approximately equal to the monoaxial compressive
strength of concrete. As a result of such cracking the ability of the concrete to transmit
large compressive stresses is reduced. In Link’s constitutive model of concrete no
account has been taken of the post-crushing strength. It has not been attempted to
extend the model for this aspect. In stead, a fictitious slightly inclined branch has been
added to achieve that the numerical iteration process will come to a good result.

The model for the failure criterion of concrete according to Link [7] is, like his con-
stitutive model, based on the tests of Kupfer et al. His original criterion is valid both for
failure in cracking and for failure in crushing. In the Micro-model this model accord-
ing to Link is used only to describe the crushing of concrete. The transition from
cracking criterion to crushing criterion is located at the points 4 for which the value of
tan (@) is equal to ;. Using the method of “curve fitting”, Link has established a number
of formulas for the failure envelope for various kinds of concrete. He even suggests a
generally-applicable formula for normal weight concrete. The shape of this function is
shown in Fig. 3.18. This formula is also used in MICRO/1.

The model is in good agreement with the experimental results of Kupfer et al. How-
ever, this model likewise has the drawback of taking no account of the stress history and
of giving an exaggerated impression of accuracy. Moreover, the model does not provide
a facility for softening after crushing has occurred.
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Fig. 3.18. Link’s crushing envelope.

3.3.1.2 Buyukozturk’s model

Link’s model may prove inadequate for analysing the behaviour of structures which,
after being loaded, are unloaded or on which the various loads are not simultaneously
increased monotonically. A constitutive model for concrete which does take account of
permanent deformations and also of the dependence of the strains upon the “stress
history” is that of Buyukozturk [8]. His work is also based on the experimental investiga-
tions of Kupfer et al., so no major differences can occur with Link’s model. The main
distinction is that this model is based on the conception of elasto-plastic material behav-
iour supplemented with isotropic strain hardening in consequence of plastic deforma-
tions. The main aspects of the model are demonstrated in Fig. 3.19.

In the plane of principle stresses g1; and o0y, two surfaces are indicated. The inner one
is the yield surface. For stress states which remain inside this surface the concrete be-
haves in a linearly elastic manner.

On crossing this surface the concrete starts yielding, but because of isotropic harden-
ing the stresses can still increase as wel as the strains, which then consist of an elastic

start of crushing

intermediate
hardened state

start of yielding

this part is not usedd\\\
\

~— —_—

Fig. 3.19. Plot of the yield criterion and crushing criterion in the Buyukozturk’s model.
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part ¢ and a plastic part ¢”. For general states of strain an equivalent plastic strain £” has
to be defined to measure the amount of plastic deformation. Similarly, an equivalent
stress & has to be introduced which defines the position of a yield envelope. This equi-
valent stress increases for increasing equivalent strain, causing the envelope to move
outwards. It is necessary to adopt a strain hardening rule 6= H(¢”) to relate g and £” to
each other. When the equivalent strain reaches a critical maximum value &5, the con-
crete starts crushing. This is the case for states located on the outer envelope in Fig.
3.19. Outside this crushing surface combinations of stress o1; and g, can still occur, be-
cause the concrete still can transmit some stress. Buyukozturk did not include a post-
crushing branch in his model. The author of MICRO/1 has assumed that on attainment
of the crushing criterion there occurs a transition from an isotropic hardening model to
an isotropic softening model. In a uniaxial state of stress the modified model of
Buyukozturk is thus represented by Fig. 3.20. The value of the stress, ap at the end of the
elastic region is about one-third of the concrete crushing strength in compression f..
We see in the diagram (as was the case in Link’s model) a cut-offin the branch for ten-
sile stress, due to cracking. Buyukozturk himself did not formulate a cracking criterion.
He only defined a failure criterion for cases where both principal stresses are negative
(compression). For the compressive/tensile and the tensile/tensile region he adopts the
cracking criterion which is also used in conbination with the Link model. Asapplied by
Buyukozturk, the crack criterion and the crushing criterion are both stress criteria.
The author of MICRO/1 has slightly modified Buyukozturk’s overall concept for the
failure criterion (both cracking and crushing). He considers the transition from crushing
with cracks to occur at a value of —15 and —, respectively, for the ratio o1/ o2 (or,
stated differently: tan (@) = ). So it is assumed that the crushing criterion for the case
where both principal stresses are negative (compression) also holds for a part of the
compressive/tensile region (see full lines in Fig. 3.19). In the approach of MICRO/1 the
crushing criterion is considered to be a strain criterion. It corresponds to a maximum
value for the equivalent plastic strain (24,x). Having now given a “helicopter” view of the
modified Buyukozturk model, we shall describe in more detail the linear stress-strain
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Fig. 3.20. Stress-strain diagram for uniaxial state of stress for the modified Buyukozturk’s
model.
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relation, the cracking criterion and the crushing criterion, and give an account of the
hardening and softening model.

Linear stress-strain relation

In the elastic region of the stress space the constitutive relation for the Buyukozturk
model is:

&1 1 —V a1

=

&2 -V 1 022

where

¢; = principal strain in direction i
0;; = principal stress in direction i
E = modulus of elasticity

v = Poisson’s ratio

Cracking criterion
See the explanation for the Link model and Fig. 3.17. The same applies to the Buyukoz-
turk model.

Yield and crushing criterion, equivalent stress
Buyukozturk uses a “generalized Mohr-Coulomb” formula for the yield surface F:

F=3/3h+aJi+J—5=0

For two-dimensional states of stress the symbols in this formula denote

Ji=0n+ Oyy

1/ 2 2 1 2
Jr=1(0%+ 0py — 0x0y) + 4 (0 + 0)x)
o = equivalent stress

When yielding starts, the equivalent stress ¢ has the value «, (see Fig. 3.20), which is
about one-third of /. ; o increases for growing values of the plastic strains up to the maxi-
mum value f, when crushing occurs. Thereafter it decreases for increasing values of
plastic strains until it becomes zero. The concrete has then become totally exhausted.

Strain hardening rule; equivalent strain
Whenyield occurs, plastic strains will develop. According to the Prandtl-Reuss assump-
tion, with isotropic hardening the plastic strain increments de” are perpendicular to the
surface F. We can write this as follows:

oF

P _ AsP |
de? =de [60
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where dz” is the increase of the equivalent plastic strain and {0F/do} denotes the vector
which defines the direction of the plastic strain increment. Note that de” is zero if F 0
and that it is positive unequal non-zero if F> 0.

In the MICRO/1 program the'increase of the equivalent strain (d”) per loading stage
is defined as (using index notation and summation convention).

de” =V; def deff

This is a normal convention in elasto-plastic models.

How to sum the contributions dz” of all n stages of analysis presents a problem, for a
strain path in the strain space need not be in the same direction at each stage. Indica-
tions exist that plastic deformations in the case of biaxial compressive loading are about
20% less than in the case of monoaxial compressive loading. This means in fact that we
have to use different strain hardening rules 6 = H(&”), depending of the state of stress.
This is, however, not practicable. In the MICRO/1 program the strain hardening rule for
mono-axial loading is used for all states of stress, but the equivalent strain €’ is adjusted
artificially in each stage of analysis to account for the differences in hardening. To
decide how to do this we have to bear in mind that we want to predict the new value of
the equivalent stress o after an increase in £”. Given a magnitude £’ in biaxial loading,
we can use the strain hardening rule for mono-axial loading to find the appropriate new
value of & by taking a greater value of £”. In the MICRO/1 program this increase is
chosen to be 20%. In other words, the equivalent strain £” is weighed with a multiplica-
tion factor « of the value 1,2.

This procedure has also been used in the compressive/tensile region of the stress
space in order to achieve a smooth transition from the compressive region to the tensile
region. Surveying all possible states here from mono-axial compression up to mono-
axial tension, it can be presumed that the occurrence of plastic strains will strongly
decrease. Yet the strain hardening rule for mono-axial compression in this whole region
can still be used by again introducing the factor @, which now ranges from the value 1 up
to a high value, for which the value 10 is chosen.

biaxial compression

Fig. 3.21. Weighing factor « for adjusting the equivalent plastic strains.
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Fig. 3.21 shows a plot for the chosen values of ¢ in the two-dimensional stress space. It
is described by the following formula:

ag

a

= 2 R
1/011 + 02— 501102

This formula is also applied in the tensile/tensile region. It causes artificial intensive
hardening there, which implies rapid growth of the stress. So the crack criterion will be-
come dominant very soon. Summing up, we can calculate an (artificial) total plastic
strain £” as follows:

=) ade’
i=1
This total plastic strain is used in the relationship between g and £” for mono-axial load-
ing in compression. In MICRO/1 a second order polynomial is used for this relation-
ship:

G=ay+ a1’ + (")’

The coefficients @y, @; and a, are to be so calculated that ¢ is about one-third of the
crushing strength f, for zero value of £” and that 5 equals f, when £ reaches the maxi-
mum value &5,. For this value of the strain the derivative dg/de” must be zero.

Itis not easy to specify an isotropic softening model for concrete for values of £” larger
than £4.x, no experimental results being available. In MICRO/1 is has been assumed
that the second order polynomial for & also holds for softening. We then get the curve
plotted in Fig. 3.20.

It must once again be pointed out that the validity of the various assumptions adopted
in the analysis has not yet been sufficiently verified by experimental results. From the
limited amount of comparative information available it does, however, already emerge
that the supposed orthogonality of the increase of the plastic strains and the yielding
surface may not be correct.

3.3.2 Shrinkage of concrete

The shrinkage deformation of concrete is here considered independently of the state of
stress and of the creep deformation. Recent research shows that there is indeed a con-
nection between shrinkage and creep. These investigations had, however, at the start of
the MICRO/1 program not yet resulted in a model that can be incorporated into an
overall model. The model for shrinkage employed here is based on CEB Report 111
(1975) [9].

The shrinkage deformation is determined with the formula:

M~

£(/) = L e {R(P{K, (Far tari+ 1)) — K; (Fae ta{i))]

i

1

where:
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() — shrinkage strain after the j'" day
& {R (i)} = basic shrinkage (final shrinkage value)

Fu = corrected fictitious thickness

() = corrected age

K, (Fuk, 1) = function describing shrinkage behaviour
R (i) = relative humidity at day /

jand i =time in days

The corrected fictitious thickness is
F,; = k,,* actual thickness

The factor k, is dependent on the humidity of the environment. The basic shrinkage ¢ is
dependent on the degree of drying of the concrete, which in turn depends to a great
extent on the relative humidity of the environment of the structure. No tables or formu-
las for the basic shrinkage are included in the program. This shrinkage has to be stated
for each period of time by the user of the program. The function K; with which shrink-
age behaviour is described is dependent on the corrected fictitious thickness Fy, and
the corrected age 7. The program comprises tables for determining K; ; these tables are
based on the graphs published in [9] (see Fig. 3.22).
The corrected age is determined with the formulas:

where T'(i) is the temperature in degrees centigrade on day i.
For each period of time the following quantities have to be introduced into the
program:
- the basic shrinkage ¢,
the temperature T
the end time of the period j
the correction factor for the thickness k,

s final value
T 120
1.05

030

0.80
075
0.70

1
10 100 1000 10000
— log t¢y

Fig. 3.22. Function K.
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3.3.3 Creep of concrete

Like the model for shrinkage, the model for creep is based on CEB Report 111 (1975).
Creep deformation is determined by applying a multiplying factor ¢ to the non-time-
dependent non-linear deformation. By basing the calculation of creep deformation on
the total non-time-dependent deformation it is ensured that at high compressive stres-
ses (> 0.5 compressive strength) the creep deformation is no longer proportional to the
stress, but increases progressively.

The creep model comprises two parts;
- the recoverable creep, sometimes referred to as the delayed elastic deformation,

- the irrecoverable creep.
The creep deformation after day j is determined with the formula

eercen(J) = L ¥ (D)[@p*(Ky {Fare i+ 1)} = K, {Fa, (i) +

0r#(Kefta(i+1) = ta(D))*(1 = Ko {ta(j+ 1) = ta(i + 1)})]

where:
&reep(/) = vector with creep strains after day j
(i) = vector with non-time-dependent non-linear strains at day i
o = final value of irrecoverable creep deformation
o, = final value of recoverable creep deformation
K, (Fu, t2) = function describing irrecoverable creep behaviour
K. (t2) = function describing recoverable creep behaviour
Fy = corrected fictitious thickness
to(j) = corrected age

The quantities ¢, and Fy, are dependent on the relative humidity of the environment of
the structure. As in the case of shrinkage, no tables or formulas for the values @pand g,
have been included in the program. The program user has to state these quantities for
each period of time. The corrected fictitious thickness is calculated with the formula:

F .= k,* actual thickness

The factor k, is dependent on the humidity of the environment. The corrected age 7, is
dependent on the temperature and on the type of cement. The following formula has
been adopted for determining f,:

J )+ 10°
ta(j Z 300 At;

where 7{7) is the temperature in degrees centrigrade on day iand k, is a factor depending
on the type of cement employed.
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Fig. 3.23. Function X, .
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Kr /// equation for K. with QL =0.08
0.5F //// - --—graph published in CEB, nr. 111, 1975
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1 10 100 1000 10000

—> log(t-t,)

Fig. 3.24. Function X, .

The graphs for K, (Fig. 3.23) are incorporated in the form of a table in the program. The
graph (Fig. 3.24) representing the behaviour of K, has been converted into the formula:

K={1—- e~ 2 lo)}

The numerical value of the factor a can be stated by the user; @ = 0.09 is recommended.

By describing the recoverable creep with the aid of a Kelvin element this creep can,
per period of time, be completely determined from the stresses and the recoverable
creep that has already occurred at the beginning of the period. Hence it is not necessary
toremember the whole stress history. The increase in creep deformation thus becomes:

80r66p(j+ 1) Screep( ) Aecreep(.l"" 1) (.]+ 1)[@1) ( {dea C2(J + 2)}
J+1

{de, to(j+ l + Z (0r (1- o~ wali+ 1)y patali ))
i=1

_‘”62(]"'2)* atg(i+1) _ : w5 % —atg(j+ 1)* atyo(i+1) _ aty(i)
(e e )] = L e*()[one (e et )]
i=1

Hence:

Atcreer(j+1) = €*(j+ 1)@, #*AK, + e*(j+ 1) g, (1 — e~ 2l Dgeatal+ D)y

& (j)*(e” alp(i+2) _ o= ata(i+ 1))
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In this formula for the creep deformation increase the symbol ¢, (/) denotes the recover-
able creep deformation after the j th day. For each period of time the following quantities
have to be introduced into the program:

the final value of the irrecoverable creep g,

the final value of the recoverable creep g,

the temperature T

the correction factor for the thickness k;,

the correction factor for fictitious time £,

334 Aggregate interlock in a crack
The generalized aggregate interlock as defined in section 3.2 requires a relation be-
tween rand o, on the one hand, and A , and A | , on the other hand. Because the results
of the “Betonmechanica” project concerning force transfer in cracks were not available
when writing the program MICRO/1, a preliminary assumption was made. Pending
those results a rigid-plastic model was adopted for the parallel displacement A, ata
crack and the shear stress 7 (Fig. 3.25).

The maximum shear stress (rax) that can be transmitted in a crack will depend on the
crack width A | . The following relation is assumed:

1
Tmax = m
where
A | = crack width
k = constant

In Fig. 3.26 the variation of 1y, with A | is shown.
In MICRO/1 it is assumed that no tensile stress can occur normal to a crack.

T
‘Tma X

-

—> 4

Fig. 3.25. Rigid-plastic model for aggregate interlock in a crack.

T max

!

—_—

—_— Al(crock width)

Fig. 3.26. Maximum shear stress as a function of crack width.
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3.3.5 Behaviour of the steel

The program incorporates two different models for describing the behaviour of the rein-
forcing steel or prestressing steel, namely:

- the ideal elasto-plastic model for steel with a pronounced yield range,

- the non-linear elasto-plastic model for steel without a pronounced yield range.
Any flexural stresses that may be acting in the steel are not taken into account in either
model.

Ideal elasto-plastic model

It is assumed that yielding of the steel bar can occur at a crack in the concrete. Here the
yield deformation of the steel is highly concentrated locally, so that in the program a
delta function is used to describe the plastic strain behaviour over the length of the bar.

Fig. 3.27. Ideal elasto-plastic model for reinforcement.

Non-linear elasto-plastic model
The relationship between the stress (o) and the strain (¢;) is introduced for the purpose
of this model. This relationship is represented in the form of a polygon.

Just as in the ideal elasto-plastic model, in the non-linear elasto-platic model the tan-
gent modulus of stiffness on unloading is taken as equal to the tangent modulus (Ey) at
the origin.

|

—> €

Fig. 3.28. Relationship between o and ¢ in the non-linear elasto-plastic model for the reinforce-
ment.

3.3.6 Bond characteristic and dowel action

The behaviour of the boundary layer between steel and concrete under a shear stress is
described by an elasto-plastic model for the shear stress and the parallell shift A, in-
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2
T = e (AP

k = factor
tan (a) :Gb

Qe Apl —> Ay

Fig. 3.30. Ideal elasto-plastic model for dowel forces.

cluding softening. The influence of the normal stress has not yet been taken into
account.

Pending further research into the effect and magnitude of the dowel forces, an ideal
elasto-plastic relationship between relative displacements perpendicular to the centre-
line of the bar and forces acting on this centre-line has been adopted in the program.

3.4 Numerical procedure for nonlinear analysis
3.4.1 Initial strain method

The load can be applied in steps in such a way that results are available for a full loading
path. However, the analysis is not an incremental procedure. To analyse the result for a
new load step, the full load is applied. The nonlinear effect of the materials is dealt in
accordance with the “initial strain method”. This means that the nonlinear analysis is
replaced by a linear one, in which the load vector is adapted to account for all nonlinear-
ities. The stiffnesses for the linear part are kept constant, which makes it necessary to
decompose the global stiffness matrix of the structure only once.

To work in this way, the various stress-strain relationships are all written in the form

o=D(e—¢)
where:

o = stress(es)

D = initial modulus of elasticity (matrix)
¢ =total strain(s)

¢! = initial strain(s)
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Fig. 3.31. Initial strains for two stress levels.

The value of D is chosen for ¢ = 0 (at the origin) and is kept constant in the analysis. The
initial strains may be due, inter alia, to the non-linear stress-strain relationship of the
concrete or the occurrence of displacements at cracks (being the three degrees of free-
dom which describe crack width and crack shift), but may also be caused by shrinkage
and creep. An analysis by this method is based on an iterative procedure, as follows. For
the first iteration the initial strains ¢’ are taken as zero. For a given full external load the
stresses (o7) at the various points of the structure are calculated. Then the initial strains
(&1) associated with these stresses are determined from the stress-strain diagram, see
Fig. 3.31. On the basis of these new initial strains the structure is again analysed for the
same load. To do so, an additional load vector is composed on the basis of the new initial
strains, which is summed with the full vector of external load. The resulting adapted
load vector is used to calculate new displacements and stresses. Next, with the new
stresses (o,) at the various points of the structure the initial strains (82] ) associated with
these are calculated. Now if the newly calculated stresses differ greatly from the pre-
viously calculated stresses, the iteration process is continued until the difference be-
tween the newly calculated stresses and those calculated in the previous iteration is
sufficiently small.

How the iteration process proceeds depends on the structure and how it is loaded and
supported. In a statically determinate structure only one iteration is needed to reach the
exact solution. For a statically indeterminate structure more iterations are needed. The
rate of convergence in this case can be increased by using a relaxation method with a
relaxation factor between zero and one.

Fictitious visco-plasticity

It is a drawback of the “initial strain method” that it cannot directly be used with mate-
rials having an ideal elasto-plastic behaviour (see Fig. 3.32) because for such materials
the initial strain is not uniquely defined for each stress.

|

—_—

Fig. 3.32. Ideal elasto-plastic material behaviour.
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viscous
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ideal plastic model visco-plastic model

Fig. 3.33. Modification of an ideal plastic model into a visco-plastic model.

For determining the initial strain of an ideal plastic material the latter is conceived as
being replaced by visco-plastic material model. This means in effect that a viscoﬁs dam-
per is connected parallel to the plastically deformable part (see Fig. 3.33).

If the visco-plastic model is loaded by a force F larger than the yielding force S, a force
F— S will act upon the viscous damper. The rate of strain (¢,,) of this damper is depen-
dent on the load and on the viscous stiffness K:

ép=K(F—S)

If the iteration process is conceived as a fictitious creep process with a time interval At
between each two successive iterations, then the increase in visco-plastic strain per
iteration is:

Agy, =i, At=KAt(F—S)

The iteration process (creep process) is continued until the difference F— S of the two
forces has become sufficiently small. The viscous damper serves merely as a means for
determining the initial strain. The viscous stiffness K and the time intervals At are
therefore only auxiliary quantities. The magnitude of the product X A¢ determines
whether the calculation converges and how rapidly. Carmeau, indicates what values
should be adopted for K At for the various plastic material models. In general, the pro-
cess is found to converge satisfactorily if the following is conformed to:

2F—S)

Ag, < D

(where D is the modulus of elasticity of the material) or:

2
KAt<B

A disadvantage which sometimes is attributed to the initial strain method is that it has a
more restricted range of convergence than the initial stress method. The stability of the
iteration process is greatly increased by ensuring that the increments of the initial
strains per iteration are not taken too large. A guiding criterion for this is:
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Ae <5
The concept of fictitious visco-plasticity described here is introduced in the micro-
model for two aspects. It is used when a crack occurs to release the tensile stresses nor-
mal to the crack which have to drop back suddenly to zero (S=0). Itis also used whena
yield envelope is exceeded for the plain concrete. In that case the stress has to be
brought back to the relevant equivalent stress (S= o).

Alternative handling of cracks

It was said above that crack displacements are manipulated as initial strains, which
offers the advantage that the the global stiffness relationships for the structure need
then be analysed only once and that the system of equations need be decomposed only
once. However, there is of course an alternative possibility. The displacements at cracks
can be accommodated directly in the system of equations. This does not necessitate
recalculating the stiffness relationships per element, but it will be necessary to re-estab-
lish and decompose the whole system of equations. Every time a number of cracks have
formed, these are accommodated in the equations. This procedure makes for more
rapid iteration.

34.2 Numerical procedure

We will first explain the finite element method for uncracked concrete elements.
Following the notation of Grootenboer’s doctoral thesis [4], all natural boundary displa-
cements # and v and the displacements « and v in the reinforcement bar elements (see
Section 3.2.2) are assembled in a vector v°. At each loading step the full new load is ap-
plied to the structure. The set of equations which governs the behaviour of a structure
can then be written in the form

SV =k+ k,

where S is the global original stiffness matrix, kis a vector due to applied full loads and
volume loads. The vector k, comprises the influences due to all initial strains. The deri-
vation of the set of equations on the basis of the assumed displacement fields, stress
field and material properties is not presented here. The interested reader will find the
explanation in [4]. Here it may suffice to state that the set of equations is the structural
generalization of the stress-strain relation which was mentioned in Section 3.4.1. This is
easily seen, if we write it in another way

De= o+ De!

Suppose the set of equations is satisfied for a certain full load. When a new load incre-
ment is applied, the set of equations is solved iteratively for the full new total load by
adjusting the initial strains until all criteria of nonlinearity are satisfied to a certain
accuracy.
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Cracked state

We now envisage the situation that cracks will develop. In that case the already exist-
ing stress field with parameters §; is extended with an additional discontinuous stress
field with parameters 8,. Apart of the already existing degrees of freedom v° (hereafter
called vﬁ) we now have the additional degrees of freedom Au® and Av® at the inter-
section of cracks and element-edges. We assemble these additional degrees of freedom
in a vector vg. In [4] it is derived that the set of equations in the uncracked state now is
replaced by two coupled sets of equations of the form

Savi=ks+ ke, — kg,
Spve = kg + key—

VA

Here k4 is a vector due tot applied loads and volume loads corresponding to the dis-
placements v, and kj is a vector due to possible loads corresponding to the displace-
ments vg. This latter load vector is always zero.

The load vector k,, is due to the initial strains which are linked to the already existing
stress field with parameters 6, and k,, is a load vector due to the initial strains which are
linked to the additional discontinuous stress field with parameters 8,. These initial
strains include material nonlinearities, temperature effects, creep and shrinkage, but
also the vector v " of the three degrees of freedom in a crack u;, u;, v (see Section 3.2.2).
The vector kj, is calculated from the stress parameters f,, and the vector £,% from the dis-
placements v§. The symbols S, and Sy represent matrices.

The split-up of the equations into two sets is done to avoid the alteration of the original
system matrix S and the renumbering of the degrees of freedom v§. During the iterative
solution procedure both sets of equations are solved in sequence. In each fresh itera-
tion, first the displacements v] are calculated with the aid of the initial strain load
vector k;,, and the secondary stress parameters 8, from the preceding iteration. Then
the displacements vy are calculated with the aid of the initial strain load vector k., from
the preceding iteration and the newly calculated displacement v9. In each iteration the
initial strains ¢’ (including the internal crack displacements v¢’) are adjusted to the
criteria of non-linearity or to the stress conditions for a crack.

To take into account the internal stress redistribution due to a crack, one element
crack at a time is allowed to occur. Only when the normal stresses on the crack surfaces
have become sufficiently low another cracked element can occur. Each time a new
crack is formed, the matrix S has to be formed and decomposed again. Because the
bandwidth of this matrix stays very small, this requires much less time than reformation
and decomposition of matrix S would take.

Initiation of cracks

To decide when an element is cracked and to determine the direction of the crack we
use the average stresses over an element. When these stresses are in the range in which
the crack criterion is valid and supersedes the criterion more than it does in other ele-
ments, a crack is assumed to form (with the restriction that the normal stresses on the
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existing crack faces are small enough). A crack is made to pass through the centre of the
triangular element, exceptifalready a crack ends at the boundary of the element. In that
case the new crack proceeds from this existing crack.

In reality there is a local stress peak near the tip of a crack. This causes further spread-
ing of a crack, even if the average stresses in the vicinity thereof - apart from the stress
peaks - are below the cracking criterion.

In the MICRO-model these highly localized stress fields are not included. The effect
that, in an element adjacent to the end of an existing crack, a crack will develop at lower
average stresses than it would if there were no cracks present, is here dealt with by
reducing the cracking criterion for this element. The calculations that have been per-
formed show a reduction to about 0.7 to be satisfactory.

A crack, once it has been introduced into the model, remains in existence. The proce-
dure does, however, take account of the possibility that, on further loading or unloading
the structure, it may occur that a crack closes up again by compression, but as soon as
tensile stresses act across a closed crack, the latter opens again. Transfer of compressive
stresses across a crack is possible only for zero crack width.

Fictitious visco-plastic approach

It has been stated in Section 3.4.1 that a fictitious visco-plastic model is used in the case
of elastic plastic materials. This is so for the aggregate model in the crack and for the
Buyukozturk model for concrete. By doing this, the iteration process can be conceived
as a fictitious creep process with a time interval Azbetween each two successive itera-
tions and a loading of the viscous element equal to the unbalanced stresses (o). Per
iteration the increase in the internal crack displacements Av or initial strains Aelis:

Av (or Ae') =KAto

To ensurée that the iteration process is stable the value of K must not be taken too large
(see Section 3.4.1). The number of iterations needed per load increment is greatly
influenced by the number of cracks present in the structure.

Alternative handling of cracks

The alternative way of handling cracks, as was described in Section 3.4.1, is used when-
ever a certain number of cracks have formed. This accelerates the iteration process. The
system matrices S, and S are then changed in order to take account of the condition
that the normal stresses on the faces of open cracks must become zero. ‘

34.3 The MICRO/1 program

The MICRO/1 program operates as a so-called subsystem under the control of the
Genesys system and is programmed in the Gentran language, a dialect of Fortran. In-
put of this program is done with tables and commands which are defined in the Genesys
manner and which can be stated unformatted.

The numbering of the degrees-of freedom and the manner of solving the ultimate sys-
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tem of equations are based on the wave front method. The modified Crout algorithm is
used for solving the system of equations. This algorithm is so programmed that during
decomposition only the system triangle is present in the working storage. The output is
selective and may take the form of tables and/or diagrams. Fig. 3.34 presents an overall
flowchart.

Special feature

The program allows for scatter in the tensile strength of concrete and in the bond
strength. Particularly for concrete it is true to say that its composition is liable to vary
from one point to another in a structure. In the program each element will (if desired) be
assigned a different tensile strength. This results in a realistic distribution of crack
spacings and crack widths in a state of homogeneous stress.

START +
initialize

read-in input tables and commands
test Tnput

I generate numbers of primary degrees of freedom |

process numbers of primary degrees of freedom
in tables for loading and support

| generate error messages ]

l set up primary element matrices |
| set up and decompose primary system of equations

I set up primary loading vector—|
1

| Sforward and back substitution in primary system of equations ]

has an element cracked >
yes

o in the foregoing analysis?, _l
generate numbers of secondary

degrees of freedom
are cracked elements
—no yes
nresent? —}

[set up secondary loading vectoﬂ

set up and decompose secondary
system of equations

|fom7ar'd and back substitutionj

calculate primary stresses plus crack widths of the
cracks incorvorated in the stiffness matrix

no ——are cracked elements present?}-yes

| caleulate secondary stresses ]

[ealeulate visco-plastic strains |

1determine cracking notential per eZement—|

l—no \Jormation of new cracks? yes _l

Fig. 3.34a. Overall flowchart of the MICRO program.
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— no formation of new cracks? yes -—J

[calculate crack position l

rcalcu late secondary elemerﬂ

matrix
] {
— no are there cracked elements?}—yes
estimate displacements
——————‘1 at cracks
1
has the maximum number of o
yes iterations been merformed yet?
__ yes has a sufficient degree of no
I \ accuracy been attained?
must another loading
no stage be avvlied? yes
must the element matrices and
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" must time-dependent yes
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I Caleulate time-dependent deformations

Tgo to 20 to verform iteratioEl

Fig. 3.34b. Continuation of overall flowchart of the MICRO program.

4 Verification and application examples

In order to test the MICRO-model with regard to its serviceability and ability to meet
the objectives, a number of structures whose experimental behaviour has been des-
cribed in the literature were analysed with the aid of the model. Since only a limited
number of analyses were performed, it was not practicable to check all the possibilities
of the model. In the analyses the time-dependent behaviour and the behaviour under
alternating load were not considered. Although the possibile occurrence of dowel
forces in the reinforcement and of parallel displacement at a crack was allowed for in the
model, neither of these phenomena occurred to any significant extent in the structures
analysed.

If possible, the analyses have been performed in a displacement-controlled way. Just
as in performing an experiment, an analysis based on a prescribed displacement offers
advantages in comparison with an analysis based on a prescribed loading. Thus, in the
prescribed displacement method any retrograde changes in the load-deflection diagram
can be detected, whereas this is not possible in an analysis based on a prescribed load-
ing. Also, the first-mentioned method is advantageous in a case where the structure
develops ideally plastic or very nearly ideally plastic behaviour. In an analysis based on
a prescribed displacement the iteration process will, in such a case, still converge rea-
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sonably rapidly, whereas in the prescribed loading method there will be very poor con-
~ vergence or indeed none at all.

Unfortunately, an analysis based on a prescribed displacement is not always possible.
If a structure is subjected to a number of point loads or a uniformly distributed load
which are of variable magnitude, it will be necessary to perform the analysis with a pre-
scribed magnitude of the loading.

In the following sections results will be presented of some of the analyses performed.
The first example is the simulation of a part of a beam in a state of constant moment.
The next example is a plate in a state of plane stress, with a small couple of heavy cracks
dominating the behaviour. The third example shows how beam failure in shear can be
appropriately predicted. And finally the subject of a fourth example is the analysis of a
beam-to-column connection.

The second example (plate in plane stress) and the third example (beam failing in
shear) relate to structures in which one or two discrete cracks dominate the behaviour of
the structure. Such problems cannot be modelled satisfactorily with “smeared-out”
cracks. The MICRO/1 program does cover these phenomena, however.

4.1 Beam subjected to pure bending

One condition for succesfully employing a computer program for the analysis of struc-
tures having a complex internal pattern of forces is that a numerical model of his kind
should correctly analyse the basic cases with regard to loadbearing capacity. One such a
basic case to be analysed is a reinforced concrete beam loaded in bending. The beam
chosen is one of a series of beams with varying percentages of reinforcement and sub-
jected to four-point loading tests as reported in [10]. The beam selected for' the present
purpose was No. 8 with a proportion of tensile reinforcement equivalent to 0.47% of the
cross-sectional area of the beam. The dimensions of this test specimen and the manner
of loading are indicated in Fig. 4.1.

In order not to have to consider the effect of shear force in this analysis, the latter
was confined to the behaviour of the region between the two point loads, where the
bending moment is constant.

For analysing the behaviour in pure bending it will suffice to consider only a short
portion of the beam. This portion should, however, be chosen sufficiently large to
ensure that several cracks will develop in it, so that both the state of stress at a crack and
the state of stress between two cracks are comprised in the analysis. Accordingly, for an
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Fig. 4.1. Test on beam for constant moment (dimensions mm).
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Fig. 4.2. Element mesh.

expected maximum crack spacing of 140 mm, a 350 mm long portion of beam was
adopted for the analysis.

At its left-hand end this portion is loaded with a prescribed angular rotation yp,
whereas rotation is prevented at the right-hand end (Fig. 4.2). The effect of the concrete
cover to the bottom reinforcement has not been taken into account in the analysis. This
omission can result in 13% over-estimation of the concrete stresses in the uncracked
beam. When cracks develop in the beam, however, the effect of ignoring the bottom
cover is negligible. The element mesh is shown in Fig. 4.2.

Furthermore, the analysis has been based on the under-mentioned material prop-
erties, as reported in [10]. The properties of the boundary layer between steel and con-
crete have been estimated.

Concrete: non-linear behaviour: Link’s model
fo = =311 N/mm’
fo = 3.75 N/mm?
E,= 30000. N/mm’
Ve = 0
Steel: ideal elasto-plastic model
f, = 441, N/mm’
E, =218500. N/mm’

Bond: fy = 3.75 N/mm?
Gy= 3500. N/mm’

Typical results of the analysis are found in Fig. 4.3 and Fig. 4.4. In the first one the cur-
vature, the maximum crack width and the stresses in the reinforcement and in the
concrete are compared with the experimental results. The bending moment at which
the first crack occurs is 10 kNm in the experiment and 11 kNm in the analysis. When-
ever a crack is formed, there is, according to the analysis, a slight decrease in the mag-
nitude of the moment for a somewhat greater angular rotation. These decreases in
bending moment are not manifest in the experiment because it was performed under
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Fig. 4.3. Typical results of MICRO/1 for a constant moment area in a beam.

load-controlled conditions. The bending moment at which yielding of the tensile rein-
forcement occurs is 32 kNm in the experiment and 33.5 kNm in the analysis.

The relations between the average (tensile) stress in the bottom reinforcement and
the bending moment as determined in the experiment and in the analysis are reason-
ably similar. On comparing experiment and analysis, the abrupt increase in the aver-
age steel stress as calculated in the analysis after the occurrence of the first crack is
notable. The difference between experiment and analysis is due to the fact that in the
experiment a longer portion of the beam is considered and the cracks do not occur at the
same load but develop only gradually between a moment of 10 kNm and 24 kNm. In the
analysis, on the other hand, all big flexural cracks occur at the same bending moment of
11 kNm. The fact that in the experiment these cracks do not all occur at the same load
must be due to internal scatter (variation) in the tensile strength of the concrete and/or
to scatter in the bond between concrete and steel.

The effect of this scatter manifests itself not only in the differences in bending
moment at which the cracks occur, but also in the scatter in the crack spacings. The
crack patterns obtained experimentally and by analysis, at a load at which yielding of
the bottom reinforcement occurs, are shown in Fig. 4.4. The distances between the big
flexural cracks are in good agreement with each other, which makes us suppose that the
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Fig. 4.4. Crack pattern associated with yielding of “the bottom reinforcement.

chosen values for bond are of the proper order of magnitude. In the experimenta couple
of short additional cracks occur which do not occur in the analysis. This may be due to
scatter in the material properties in the experiment. Other analyses (not reported here)
also produce the short cracks, however.

From the comparison of analysis and experiment it appears that the behaviour of a
beam loaded in bending can be satisfactorily analysed with the Micro-model. In
making this comparison, much attention has been paid to the differences between the
calculated and the experimentally determined results in consequence of the scatter in
the actual material properties. This scatter, however, has little effect on the overall be-
haviour and on the magnitude of the steel and concrete stresses. It is significant only in
so far as the average crack spacing and crack widths are concerned. The homogeneous
material model gives good results for the maximum crack spacing and maximum crack
widths.

4.2 Plate in plane stress

In Section 1.3 was stated, as one of the aims of the Micro-model, that this model
should be suitable for the analysis of structures in which only few dominant cracks
determine the behaviour. The reason for this aim is that models with “smeared-out”
cracks do not do sufficient justice to these dominant cracks. An example of a structure
in which only a few dominant cracks determine the behaviour is the plate WT2 in the
series of tests on various types of plate structure described by Leonhardt and Walther in
[11]. The plate in question is loaded along its upper edge, as shown in Fig. 4.5. Noticing
the position of the cracks, it is to be expected that not much shear stresses will develop
in the cracks. In this problem the bond data will be of more importance than the data for
aggregate interlock.

On account of symmetry of the structure and of the boundary conditions, it is suffi-
cient to confine the analysis to one half of the structure. For analysing the half plate the
boundary condition on the right-hand side is the symmetry condition that the horizon-
tal displacement of the plate midway between the two bearings must be zero.

The network of elements for the concrete and for the reinforcing bars, respectively, is
indicated in Fig. 4.6, as well as the manner of loading and support.
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Fig. 4.5. Crack pattern and reinforcement in plate loaded on top.
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Fig. 4.6. Crack pattern and element mesh in analysis of plate loaded on top.
Since the structure is subjected to a uniformly distributed load, the analysis had to be

performed with a stepwise increasing load applied to the top of the plate. The following
material properties have been adopted in the analysis:

Concrete: non-linear behaviour: Link’s model
fo = —30.1 N/mm?’
Jou = 3.5 N/mm?
E. = 32000. N/mm?’
Ve = 0.2
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Steel: non linear elasto-plastic model
E, =210000. N/mm’

fH = 400. N/mm? (some hardening)
Bond: fo = 4.7 N/mm?
Gy=  47. N/mm’

The result of the analysis for the crack pattern is shown in Fig. 4.6. In Fig. 4.7 the results
for the stress ¢, in the bottom reinforcement and the maximum crack width are com-
pared.

It is very gratifying to find that the MICRO/1 program produces one dominant crack
per half of the structure. This seems to be a major step forward in the analysis of struc-
tures in which such phenomena occur. Analysis and experiment both reveal only a few
dominant cracks which start at the bottom of the plate, between the axis of symmetry
and the support, and which in the upward direction bend towards the centre of the plate.
It is the feature of bond slip which makes it possible that large crack widths develop. The
analytically calculated width of the cracks is likewise in sufficiently good agreement
with the measured widths. It does, however, emerge from the crack pattern determined
by analysis and by experiment, respectively, that the number of elements in the analysis
is too small to describe the correct crack spacing in the bottom edge of the plate.

Since the number of smaller cracks which would develop at the bottom edge of the
plate have only little effect on the overall behaviour, the load-deflection curves accord-
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Fig. 4.7. Stress in bottom reinforcement on axis of symmetry and maximum crack width in plate
loaded on top.



ing to experiment and according to analysis are in excellent agreement (not shown
here).

The steel stress also is in very good agreement with the results of the experiment. This
is more or less to be expected if the crack pattern is similar in the experiment and in the
analysis. The steel stress is determined by the cantilever arm between the compression
zone and the bottom reinforcement, and this arm is almost the same in the experiment
and the analysis.

The maximum crack width wy,., is strongly dependent on the number of cracks that
will occur and of the assumed bond data. The sequence in which the cracks come into
being is also important. Taking account of these considerations, the agreement between
the experiment and the analysis is reasonable.

4.3  Beam failing in shear

One might say that the examples in Section 4.1 and 4.2 have proved the ability of
MICRO/1 to simulate bending failure. We now consider a reinforced concrete beam
which fails in shear. This beam is one of a series of beams which were tested in the
Stevin Laboratory of the Delft University of Technology in the Netherlands in a pro-
gram of research to investigate the influence of beam depth and crack roughness on the
shear failure load [12]. The beam was loaded as shown in Fig. 4.8.

On account of symmetry of the structure, the boundary conditions and the loading, it
was sufficient to confine the analysis to one half of the structure. The network of
elements, the restraints and support and the external loading of this half structure have
been shown in Fig. 4.9.

The experimentally determined failure load and the failure load found from the
analysis were very close to each other (112.1 kN and 112.4 kN). The load-deflection
curves for the experiment and the analysis are given in Fig. 4.10.
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Fig. 4.8. Shape of tested beam and manner of loading.
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Fig. 4.9. Network of elements.
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Fig. 4.10. Diagram of load F and deflection w.

It follows from the load-deflection curves that the analysis leads to a somewhat lower
stiffness than was registrered in the experiment. An explanation for this lower stiffness
may be too low a tensile strength for the concrete in the analysis, which results in the
premature occurrence of cracks and a bend in the load-deflection curve at a lower value
of the load than in the test. The maximum bond-stress between steel and concrete may
have been chosen too low as well.

Fig. 4.11 shows the crack patterns just before failure, according to experiment and
analysis. In the experiment as well as in the analysis abrupt failure occurred, caused by
crushing of the concrete at the tip of an inclined (shear) crack. Now the analysis also pro-

Fig. 4.11. Crack pattern in experiment and analysis.

56



duces the short cracks which occur in the tension zone between the major cracks which
run into the compression zone. The agreement between the crack patterns is remark-
able indeed. That failure is due to shear in this case is once more supported by the fact
that the reinforcing bars in the tension zone were still below the yield stress.

4.4 Beam-to-column connection

A beam-to-column connection is a structural feature in which a combined state of
normal force, bending moment and shear force occurs. This will clearly be reflected in
the crack pattern that develops. A structure has been analysed which was investigated
in the Stevin Laboratory in a program of research on the strength and rigidity of various
types of beam-to-column connections.

These tests are more particularly of interest because they showed these specimens to
fail at a lower value of the load than had been anticipated on the basis of the failure loads
of the sections of the beam and of the connected columns. Test specimen No. 1402 in
this series of beam-to-column connections described in [13] has been analysed. The
structural dimensioning and the manner of loading and support are shown in Fig. 4.12.

For details of the analysis, see [4]. Here we want to demonstrate the possibilities of
the MICRO/1 program. The failure load in the analysis (F,= 61,5 kN) corresponds
rather well to the failure load in the experiment (F, = 65.3 kN). The lvad-deflection
curve (not shown here) is in very good agreement with the analysis. The analysis was
terminated at 7 mm deflection of the beam, because for this value the analysis indicates
that crushing occurs in the concrete in the compressive zone of the lower column
directly under the beam. Such crushing in that region is also found to occur in the test
specimen. A number of typical results is shown in Fig. 4.13. The crack patterns corre-
spond quite well. Both the experiment and the analysis reveal diagonal shear cracks
which develop in the connection.
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Fig. 4.12. Loading, support and reinforcement of beam-to-column connection.
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It was very satisfactory to find that MICRO/1 succeeded in simulating some special
fact which occurred in the experiment. The two bending moments applied by the two
column parts to the connection are equal in the uncracked state, but start differing when
cracks develop. At the failure load this distribution is in the proportions of 31% (upper
column) and 69% (lower column) in the experiment. The analysis did not produce the
same figures, but demonstrated substantially the same effect (40% and 60%).

The potential of the MICRO/1 program may be underlined by one more special
result. The vertical bars in the column and the horizontal bars in the beam are found to
slip in the connection area when the deflection w of the beam end exceeds 3.5 mm.

Apparently the length of the reinforcing bars in the connection region is too short for
the rather abrupt change of the stresses in the bars. The calculated stress o, for the
column reinforcement is presented in Fig. 4.14.

The right-hand diagram in Fig. 4.14 relates to the bar nearest to the beam. It is easily
seen that the steel stress do not change very much when the deflection wincreases from
3.5 mm to the double value of 7.0 mm. This bar slips over the total length of the connec-
tion area and in part of the upper column. The steel stress therefore does not reach the
yield stress. A similar effect has been observed in the beam bars. This is a major reason
why the connection fails at a lower value of the load than had been anticipated on the
basis of the failure loads of the sections of the beam and the column.

5 Conclusions and work ahead

As stated in Chapter 2, the aim of the Micro-model has been the development of a tool

with which the behaviour of two-dimensional structures in plane stress can be analysed.

This behaviour to be analysed comprises:

- the deformation of the structure at a particular magnitude of the load;

- the magnitude of the load at which cracks are formed in the structure;

- the crack spacing and crack widths;

- the slip of the reinforcement;

- the stresses in the concrete and in the reinforcing steel at a particular magnitude of
the load; '

- the magnitude of the failure load.

In the analysis it is necessary to take account of the non-linear and possibly time-depen-

dent behaviour of concrete, the non-linear behaviour of steel, the non-linear behaviour

in the zone of contact between these two materials, and the possibility of transfer of

stress across a crack in the concrete.

Conclusions

On comparing the results of analyses with those of experiments it appears that the
Micro-model can provide a good insight into the above-mentioned behaviour charac-
teristics. This is true both of structures with fairly well distributed cracking and of struc-
tures with only a few dominant cracks. From the analysis of the beam-to-column con-
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nection it emerges that the slip of the reinforcement is of major influence upon the
internal stress distribution, the magnitude of the failure load and the deformation of the
structure. Also the development of a few dominant cracks, with large widths, in the
plate loaded at its upper edge is possible only because the bottom reinforcement in this
plate can slip in relation to the concrete. The slip of the reinforcing steel as well as the
associated development of dominant cracks are well reproduced in the analyses.

From the results of the analyses it furthermore appears that the elements developed
on the basis of the hybrid method with natural boundary displacements provide a good
insight into the stresses and deformations even if the structure is divided into a limited
number of elements.

The scatter of the tensile strength of the concrete in the structure is found to be of
major influence on the scatter in the crack widths and crack spacings. On the other
hand, the effect of this scatter in the tensile strength upon the overall deformation of the
structure is not significant.

When a number of identical experiments are performed, the scatter in the measured
crack widths will, however, likewise be greater than the scatter in the deformation.

On judging the differences between experiment and analysis it is necessary to take
account of this scatter. An analysis based on the assumption that the tensile strength of
the concrete does not vary from one part of the structure to another will suffice only if
the object of the analysis is to obtain insight into the deformation, the average crack
width and the average crack spacing.

The method adopted in the analyses, where the elements at the end of a crack will
undergo cracking at lower stresses than elements not so situated, gives values for the
crack penetration depth which are in good agreement with reality. It also appears that
the continuity of the cracks in the analysis agrees well with the experimentally deter-
mined cracking behaviour.

Work ahead

The satisfactory performance of the Micro-model with regard to the results presented
here does not mean that this model or the material models employed do not require any
further refinement. We shall list a number of arguments in support of continuing along
this line of research.

First of all, since only a limited number of structures has been analysed, not all the
possibilities of the model have been tested to an equal degree. Especially dowel action
was absent in the structures analysed.

The data for aggregate interlock and bond which have been applied in the several
analyses were chosen on the basis of engineering judgement and furthermore so as to
map the experimental investigations in the best possible way. The values used are in the
range which is not a variance with information found in existing literature. The choice
of these data can be improved in the future by using the results of project 1 of “Beton-
mechanica” in which the transfer of forces in cracks has been studied and the results of
project 2 for the bond zone. The integration of these results in the Micro-model will not
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only mean that the material data are better estimated. In fact, the more refined idealiza-
tions of the aggregate zone and the bond zone as shown in Section 3.1 must replace the
actually chosen preliminary models of Section 3.2.

The recent Micro-model has been developed for monotonically increasing loading.
Unloading of material along a different path than loading has not been considered yet.
In general, cyclic loading could be a good extension of the program.

The Micro-model as reported here provides facilities for creep and shrinkage based
on CEB report 111, dating from 1975. More insight in this problem field has meanwhile
been gained indicating that it is necessary to take account of the moisture process in the
concrete to define the coupled phenomenon of creep and shrinkage properly. It is worth
considering integration of the (so called) “Munich model” in the Micro-model to
achieve this purpose.

It must be borne in mind that the Micro-model has been developed for plane stress
problems. Many problems, especially details of large structures, however, must be trea-
ted, as three-dimensional states of stress. It may not be too difficult to prepare a Micro-
model for cases in which both the structure and the loading are axisymmetric. A major
change of the Micro-model would be needed, however, to make it applicable to any gen-
eral three-dimensional problem. This effort may even be an order of magnitude more
complex than the existing two-dimensional version of the Micro-model.

Finally, one may question the basic assumption of the Micro-model that no large dis-
placements occur, allowing a linear relation between strains and displacements to be
adopted. The occurrence of wide cracks could raise the question whether displacements
will become large. The results gained until now in no way support such an idea, how-
ever. If test results do show extreme displacements of (parts of) a structure after the
occurrence of one dominant and fatal crack, these extreme displacements do not occur
until the failure load is reached. So they develop only in the very final stage which
comes after the point up to which the Micro-model is of value.
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MACRO-MODEL

6 Scope of Macro-model

The Genesys subsystem STANIL/1 is a program according to the finite element
method based on displacements, for the nonlinear analysis of displacements and stres-
ses in structures consisting of reinforced concrete beams and columns. The structures
are assumed to show an elastic behaviour and to be statically loaded. Geometrical non-
linearities are taken into account.The STANIL/1 program is an extension to an existing
program which was reported in 1972 [14]. That program was based on the concept ofa so
called layered beam element, a concept that was used in parallel studies by other inves-
tigators.

The element gives very good results for load combinations of pure bending and axial
forces. However, the influence of shear forces could not be simulated adequately, and
no bond slip was taken into account. These problems have been solved in the new pro-
gram STANIL/1 now presented, which uses a beam element taking shear deformations
and the action of vertical stirrups into account as well. The full theory of this program is
reported in [5].

Applications of the STANIL/1 program are found in investigating:

- the ultimate bearing capacity of reinforced concrete beam/column structures;

- the failure mode when the ultimate bearing capacity is reached (for example “bend-
ing failure” or “shear failure”) as well as the deformation capacity at failure (ductile
or brittle);

- the stiffness of structures after the occurrence of cracks and the influence of cracking
on the stability of structures.

It is proper to state here, however, that the corner connections between beams and

columns are not adequately accounted for in the existing version of the program. The

corner connections between beams and columns are considered to be perfect, which is
not always the case in practice.

Some of the facilities the now available STANIL/1 program offers are:

- the shape of the cross-section of a beam or column may be prismatic or nonprismatic
(though symmetric to the plane of the structure);

- elements may be connected to the nodes by hinges;

- spring supports whose force-displacement characteristics may be nonlinear (elastic);

- choice of iteration method,;

- graphical output of stresses and inclinations of cracks.

Integration with other subprojects

It was indicated in the Preface that the intention of the “Betonmechanica” project
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is to incorporate the basic models in the global models. In order not to delay the
development of the global models, preliminary choices based on what was known from
the literature were made for the basic models. At the moment the final reports of pro-
jects 1,2 and 4 are awaited. The implementation of the results in the Macro-model will
then take place. The Macro-model presented in this report does not yet contain the
results of the other projects.

7 Outline of theory of Macro-model
1.1 Physical phenomena to be modelled and schematization of geometry

The principles of STANIL/1 can easily be explained by considering a simple test beam
supported at the ends and loaded by two concentrated forces. The beam is inspected at a
stage where considerable formation of cracks has occurred.

In the pure bending area of the beam the deformations are restricted to axial strains
in both concrete and longitudinal reinforcement (Fig. 7.1). For finite element analysis it
is convenient to make a distinction between the curvature x,, and the axial strain Cxx-
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Fig. 7.1. In the pure bending area the deformations are restricted to axial strains in both con-
crete and longitudinal reinforcement.
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Fig. 7.2. In the shear span of the beam the concrete is subjected to a two-dimensional stress
(strain) state.
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In the shear span of the beam diagonal cracks may occur (Fig. 7.2), causing elongation
of the stirrups. The concrete in the shear span is, apart from axial strains, also subject to
a vertical deformation e, (in the direction of the stirrups) and a shear deformation y,,.
Itis essential to realise that the concrete is subjected to a two-dimensional state of stress
(strain).

The basic idea behind the beam element used in STANIL/1 is, that the element
should be capable of simulating every possible two-dimensional stress (strain) situa-
tion. Moreover, only one element is used over the depth of (for example) a girder.

Modelling of the physical behaviour of a structure

How a structure is schematized in order to be able to analyse it with STANIL/1 will be
illustrated by an example of a simple test beam. Because of symmetry only half the
structure has to be considered (Fig. 7.3). The reinforced concrete structure is divided
into a number of elements; in this example four elements are chosen.

The longitudinal reinforcement is smeared out into two thin sheets, each having the
same cross-section (mm?) as the actual reinforcement. The stirrups in an element are
smeared out over the full length of the element. In the front view of the element an
imaginary grid is placed; a grid line extending in the direction of the axis of the element
is called a fibre, while a grid line which is perpendicular to the axis of the element is
called a section. The behaviour of the element is derived from the behaviour of a
number of sections. The behaviour of a section is derived from the behaviour of a
number of fibres in that section.

The material properties may, depending on the stress-strain situation, be different at
each point of the grid. The material properties of a fibre are considered to be representa-
tive for a layer on both sides of the fibre concerned. Therefore this type of element is
often referred to as a layered beam element. The behaviour of a section is found by
appropriately summing the behaviour of each separate layer.

Cracking of concrete is taken into account by modifying the material properties. In
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Fig. 7.3. Schematising the structure to a numerical model.
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this approach the occurrence of discrete cracks is simulated by replacing the cracked
concrete by a fictitious homogeneous material with properties which represent a rela-
tion between average stresses and average strains in cracked concrete.

How the element can be made to simulate every possible two-dimensional state of
stress (strain) will be indicated in Section 7.2. The relations between stresses and
strains which are used in STANIL/1, will be described in Section 7.3.

The mathematical procedure adopted in the nonlinear analysis will be explained in
Section 7.4.

7.2 Analytical modelling

In order to ensure that every possible two-dimensional state of stress (strain) which may

occur ina beam (column) structure can be simulated, a field of displacements is chosen,

allowing the following deformations to occur:

- deformation of concrete and longitudinal reinforcement by normal force (axial
deformation) and bending moment (curvature);

- deformation of concrete by shear force and elongation of the stirrups;

- slip of the longitudinal reinforcement with respect to the surrounding concrete.

By allowing these deformations to occur, it can be presumed that truss action in a beam

can be simulated, in which case concrete diagonals and vertical hangers are needed.
The choice which was made for the distributions of the various deformations will be

described below.

Deformation of concrete by normal force and bending moment

The field of displacements is so chosen that the axial deformation exxand the curvature
Kxx may vary linearly along the axis of the element. For this a total of 7 degrees of free-
dom is needed (uf, uy, us and wy, wy, @1, @,), see Fig. 7.4.

Deformation of concrete by shear force and tensile strain in stirrups

The field of displacements is so chosen that the shear deformation Yxy and the tensile
strain in the stirrups e, may vary linearly along the axis of the element, for which another
4 degrees of freedom are needed (y;, y, and A#h;, Ahy), see Fig. 7.5. The bond between
concrete and stirrups is assumed to be negligable.

Fig. 7.4. Degrees of freedom and deformations for axial strain e and curvature K, .
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Fig. 7.5. Degrees of freedom and deformations for shear y,, and strain in stirrups e;.

strain_in stirrup

vertical strain
r@

Fig. 7.6. Distribution of the vertical strains in a section of the beam element.

uncracked

cracked

The vertical strain in concrete e,, is also derived from the strain in the stirrups e, . It is
assumed that vertical strains in concrete only occur in that part of concrete which is
cracked (see Fig. 7.6).

Slip of longitudinal reinforcement with respect to the surrounding concrete

In the beam element of STANIL/1 there occurs interaction between concrete and
longitudinal reinforcement. This interaction is achieved as follows. Around the rein-
forcement bars a tubular bond spring is imagined which represents the contact zone
between the concrete and the reinforcement. Besides the above-mentioned field of dis-
placements u° for axial displacements of concrete (degrees of freedom uf, uy and us) a
separate field of displacements u"is chosen for the longitudinal reinforcement. The dis-
tribution of u” along the axis of the element is quadratic (just as u ). The relative dis-
placement (slip) of the bond spring is found as the difference between the displace-
ments of the reinforcement and the concrete, resulting in three additional degrees of
freedom (Aui, Auy, Aus). For both bottom and top reinforcement 6 extra degrees of
freedom are necessary.

From experience gained in testing the Macro-model it was learnt, however, that it
is preferable to ensure a priori that the difference of the displacements between steel
and concrete (slip) only varies linearly (see Fig. 7.7).

The anchorage zone of the longitudinal reinforcement (at the end of a beam or
column) is in fact a complicated three-dimensional stress (strain) problem. In
STANIL/1 this is schematized by adding an extra point spring between the end of the
reinforcement and the concrete at that place.
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Fig. 7.7. Modelling of the slip of the longitudinal reinforcement with respect to the surrounding
concrete.

7.3. Material properties

In the previous section it was indicated which deformations are taken into account in
STANIL/1. These deformations have corresponding stresses. The relations between
stresses and strains which are used in STANIL/1 will be described below.

Beforehand it should be noted that no time-dependent effects are taken into account
and that all material components are considered to have an elastic behaviour.

Concrete

In the beam element used in STANIL/1, concrete is subjected to a two-dimensional
state of stress. In general, stresses o,,, o,y and o, occur corresponding to deformations
&xx, &y and 2g,,. The relation between an increment of stresses and an increment of
strains may generally be described as:

Aoy, dy dy ds Acgyy
Aoy |=| di d5s ds || Ag, (7.1)
Agy, dp dy dy || Ale,,

The coefficients d; to dy determine the stiffness of concrete against deformation. In
STANIL/1 the following relations are used at present:

Aoy E. 0 0 Ay,

Aoy, |=|0 E 0 Ag,, Jor uncracked concrete (7.2)
Aoy, 0 0 GJ]|[A2,
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and if in one of the principal stresses, say direction 1, the tensile strength is exceeded:

AU“ 0 0 0 A€11
Aoy |=|0 E 0 A&y for cracked concrete (7.3)
AO’lz 00 aG A2 €12

The coefficients E,, E, and E, in the above relations are derived from the stress-strain
diagram which is found by means of one-dimensional compression tests. The shear
modulus G is taken as 0.5 x Ep, E, being the unit stiffness in the stress-straindiagram of
concrete. In (7.3) ais a constant to simulate the aggregate interlock in cracked concrete.
In STANIL/1 a default value is chosen, being a=0.5.

The tensile strength of concrete, i.c., the stress at which concrete will start cracking, is
made dependent on the principal compressive stress in the two-dimensional state of
stress (see Fig. 7.8).

The so called tension stiffening effect is taken into account. If cracks occur in rein-
forced concrete, the stress in the crack becomes zero, but a tensile stress may be trans-
ferred between two cracks. This phenomenon is taken into account for by adding a des-
cending branch in the stress-strain diagram of concrete (in the tensile area). Crushing of
concrete is assumed if strains occur in the structure which are smaller than ¢, (see Fig.
7.8).

Reinforcement and bond
Longitudinal reinforcement and stirrups are considered to be subjected toa one-dimen-

tension stiffening is
the average tensilet
stress between cracks-

>0,
the tensile strength
/s dependent on the
principal compressive
stress

Fig. 7.8. The material properties of concrete are derived from a stress-strain diagram for one-
dimensionnally loaded concrete and a crack/yield criterion for two-dimensionally
loaded concrete.
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' |
failure } failure 1

¢ . .
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REINFORCEMENT BOND

Fig. 7.9. The material properties of the reinforcement and bond are derived directly from the
stress-strain and stress-slip diagram respectively.

68



sional stress situation in STANIL/1. Dowel action is not incorporated in the model. The
relation between stresses and strains can therefore be derived directly from the relevant
stress-strain diagram. The extreme values of the strains in the diagram are taken to be
the failure criteria for the reinforcement (see Fig. 7.9).

For the bond between the longitudinal reinforcement and the surrounding concrete a
similar assumption is made: the interaction takes place in a one-dimensional bond
spring; there is a relation between the actual bond stress 7in the tubular surface of the
spring and the actual bond slip A, the relative displacement of the reinforcement with
respect to the surrounding concrete. The extreme slip values in the stress-slip relation
are taken to be the failure criteria for the bond spring (see Fig. 7.9).

7.4 Numerical procedure for nonlinear analysis

The finite element method based on displacements yields a set of equilibrium equa-
tions which in matrix notation can be written as:

Sv—k=0 (7.4)

in which § represents the stiffness matrix of the structure, v the vector of displacements
and k the load vector.

In case cracking of concrete is taken into account as described in section 7.3, the stiff-
ness matrix § is a function of the actual strains and therefore a function of the displace-
ments v. The set of equations in (7.4) is then nonlinear, characterized by a continuously
changing coefficients matrix S. Therefore for solving (7.4) an iterative method is gen-
erally followed.

STANIL/1 offers the choice of two commonly used methods: the tangent stiffness
method (also referred to as the Newton-Raphson method) and the initial stiffness
method. In both methods the initial stiffness Sy for the first iteration step is the same.
From the second iteration step on, the tangent stiffness and the initial stiffness, respect-
ively, are used in these two methods. The tangent stiffness method generally shows
faster convergence, while the initial stiffness method has the advantage that the stiff-
ness matrix has to be calculated and assembled only once, so that less computational
effort is required for all iteration steps after the first. As it is often preferred to follow a
load-deflection diagram step by step when performing a nonlinear analysis, an in-
cremental procedure is incorporated in STANIL/1: the load may be applied in incre-
ments. For the iteration process this means that if the initial stiffness method is chosen
in the STANIL/1 analysis, the method is applied per load increment. In a subsequent
load increment a new initial stiffness is calculated for that increment.

Procedure

What actually happens in the iteration process consists in determining iteratively those
displacements v for which (7.4) is satisfied. As an incremental procedure is followed in
STANIL/1, it is more convenient to write (7.4) in terms of increments:

S,Av— Ak=0 (1.5)
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Fig. 7.10. Example of two iteration steps to determine the state of equilibrium k;, v, starting
from the state of equilibrium k, v, by the Newton-Raphson method.

in which Av and Ak represent increments of nodal displacements and nodal forces
respectively and S, (a function of v) represents the tangent stiffness matrix. The itera-
tion process is carried out with the aid of (7.5). The procedure will be discussed in more
detail for the tangent stiffness method (Newton-Raphson).

Let us consider a structure in a state of equilibrium where the load on the structure is
equal to k= ky and the corresponding actual displacements are equal to v= vo. Next the
load on the structure is increased to k= k; by applying a new load increment (k; — ko).

We now want to determine the displacements v; for which:

SV1 - k} =0 (76)

The first estimate v{" for v, is made with the following linearized analysis (Fig. 7.10).
In the state of equilibrium kg, vo we determine the (tangent) stiffness SO Thisis done
as follows. The displacements v, correspond to strains. With the aid of the material prop-
erties the stiffness corresponding to the strains can be determined for each element of
the structure and therefore also the stiffness matrix S of the structure. The stiffness
matrix S/? is the tangent to the load-deflection diagram which we are looking for. Next
we calculate the intersection point of this tangent with the line k= k; as follows:

AWV = — K (7.7a)
and

SOAvY AV =0 (7.7b)
which yields Av®. The first estimate vV for v, is:

v =po+ AvD (7.7¢)

The displacements vV correspond to strains and the internal stresses which correspond
to these strains can be derived from the relevant stress-strain relations. From the inter-
nal stresses, the internal nodal forces k{" can be calculated. The new situation v{", k{"

2
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itselfis a state of equilibrium again (though not one which was looked for) which serves
as a starting point for a new estimate of v;. The next iteration step is:

AK? =k — kY
SOAYD _AkD =0 AY?

vi? = vV Ay@

v S @

for all load increments

for all elements

Fig. 7.11.

. e——

for all elements

| read and transform inpuTI

determine the strains in the
element at the actual displacement

]

determine with the aid of the material
properties the stiffness of the element
corresponding with the actual strains

—

assemble the element stiffness
matrices in the total stiffness
matrix of the structure

\ tangent stiffness

determine the loadvector; this is the
difference between the external load
and the internal nodal forces

solve the set of equations and add
the increment of the displacements
to the displacements that were
already present

determine the strains in the element
at the actual displacements

initial stiffness

properties the internal stresses and

determine with the aid of the material

the internal nodal forces in the element

between external load and internal
nodal forces

determine the difference (residual forces)

difference small enough?

no

yes

Lprinr displacements, forces and stresses

]

Block diagram of the STANIL/1 program.

iteration
method?

(7.82)
(7.8b)
(7.8¢)
(7.84)
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In general terms the iteration process can be written as:

ARG = g — K (7.92)
SO AyITD — AkU+D =0 Apl+D (7.9b)
D = {0 4 ApU+D (7.9¢)
P+ i) (7.9d)

This process is repeated until Ak has become sufficiently small.

In the initial stiffness method the procedure is similar, but for all iteration steps after
the first step of the load increment the stiffness matrix S; ) is not calculated again but
taken as equal to S*. The procedure followed in the STANIL program is indicated in

Fig. 7.11.

8 Verification and application examples

In order to check the STANIL/1 program, an extensive verification was carried out. A
number of limit cases was studied, such as beams subjected to respectively pure ten-
sion, pure bending and pure shear. Furthermore a study was carried out in which for one
particular structure a number of parameters was varied, such as tensile strength of con-
crete, percentage of stirrup reinforcement, percentage of longitudinal reinforcement,
etc. [15]. The object of this parameter study was to investigate the sensitivity of the
STANIL/1 model to the variation of certain model parameters and also to check
whether the behaviour predicted by STANIL/1 reflected the real behaviour, known
from experiments. The results of the parameter study teach the following:

- The coefficient ¢ for simulating the aggregate interlock has a weak influence.

- The tensile strength £,, of concrete is of most importance. Only low values result in
forming a truss in the beam.

- The bond characteristic for normal reinforcing bars hardly affects the behaviour of
‘the beam.

- The anchorage zone spring has no influence.

- The percentage of main reinforcement is highly important. High percentages give
rise to failure in shear. The shear strength increases if more main reinforcement is
used.

- The effect of the percentage of web reinforcement on the behaviour of beams is con-
siderable. For low values a truss will develop, and for high values a beam will fail in '
shear-compression.

Having checked the limit cases and the influence of the choice of model parameters, an

analysis was carried out for some structures which have been investigated experimen-

tally and in which the influence of shear was noticeable.

In this chapter, some results of analysis for the limit cases of pure bending and pure
shear will be discussed. Furthermore, the results of analysis for a T-beam structure in
shear and a continuous beam structure will be discussed and compared with experi-
mental results.
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8.1 Beam subjected to pure bending

One of the first verifications carried out with the STANIL/1 program concerned the
case of pure bending. For this purpose, a structure for which material data and the
moment-curvature diagram were known from experiments was analysed [10].

Calculations were done for three different values of tensile reinforcement, namely
wo=1.50%, @o=0.50% and oo = 0.22%. Here we shall confine ourselves to the case:
o= 0.50%. The cross-section of the beam is indicated in Fig. 8.1.

The stress-strain relation which was used for the STANIL/1 input is shown in Fig.
8.2. In the formula of Fig. 8.2 ¢, is the strain when the stress in the reinforcement
reaches the yield stress; f. is the compressive strength of the concrete measured at 28
days on cubes of 200 x 200 x 200 mm® (in N/mm?).

The stress-strain relation for the reinforcing steel was assumed to be bilinear with a
slight round-off near the yield level. Inclusion of the slight round-off gives a smoother
transition from the “cracked branch” in the moment-curvature diagram to the horizon-
tal branch for yield.

The results of the STANIL/1 analysis together with the experimental results are
shown in Fig. 8.3. In this diagram the bending moment is plotted as the ratio of the
actual bending moment to the “ultimate” bending moment. The “ultimate” bending
moment is taken as approximately equal to the bending moment when the reinforce-
ment starts yielding in the experiment. It can readily be seen that the correlation be-
tween the experimental results and the STANIL/1 analysis is very good. Similarly good
agreement has been obtained for other percentages of reinforcement. Both the stiffness
of the structure involved and the ultimate failure load are predicted very well by
STANIL/1.

A'=151mm?

Fig. 8.1. Dimensions of the beam under investigation for pure bending.

-35 -2 (o €cy =07 Ef:,.e
=07(fc
: ! €eu € %o Ot =07(35 +1)
: —_— Op =083 fc
1
|

Op

|
|
|

Fig. 8.2. The stress-strain relation of concrete used for the STANIL/1 input.
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Fig. 8.3. The case of pure bending wy = 0.50%.

8.2 Beam subjected to pure shear

The overall goal of the development of the new STANIL-beam model was to incorpo-
rate the effect of shear deformation in the model. It was already known that combina-
tions of pure bending and axial forces could be simulated very well with the previous
model. Including the effect of shear forces now, it was felt necessary to study thoroughly
the behaviour of the model in the case where shear stresses are dominant. Therefore a
theoretical beam was investigated.

The beam which was chosen (see Fig. 8.4) consists of infinitely rigid tensile and com-
pressive flanges and a concrete web of finite rigidity. Due to the infinite rigidity of the
flanges, the axial strains in the concrete web will remain zero. As long as no cracking
occurs, no vertical stresses will occur either. Just a state of constant shear stress is pres-
ent in the web. Once diagonal cracks occur (initially under 45°), internal redistribution
of stresses will take place, after which vertical stresses will occur in the concrete, due to
action of the stirrups (tension in the stirrups, compression in the concrete). Calculations
were carried out with STANIL/1 for several amounts of web reinforcement, correspon-
ding to w-values 0.025, 0.05, 0.1, 0.2 and 0.6, where o is the mechanical proportion of
stirrup reinforcement which is defined as @ = pf;/f. in which p is the percentage of stir-
rup reinforcement, f, the yield strength of the stirrup steel and £, the yield strength of
concrete. The coefficient for simulating the aggregate interlock of cracked concrete was
assumed to be a=0.5.
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Fig. 8.4. Dimensions and material properties of the beam under investigation for pure shear.

A typical result is shown in Fig. 8.5. This is the load-deformation curve for the case

®=0.1. The model can describe a number of aspects:

- The initial crack inclination of 45° changes with increasing load.

- The ultimate failure load predicted by STANIL/1 corresponds very well to the failure
load predicted by a theory of plasticity for the same theoretical beam model (Nielsen
et al.).

SHEAR FORCE [kN]

500 T T
2000mm l
400 b
Ag=10" mm?
80x400 mm?
SUXAU0 mm © AS= 107 mm?2
L
300
l\\ XW=0.1
YC 190
Ys
200 /
100
=X WEB CRUSHING
Y. YIELD OF CONCRETE
Y, YIELD OF STIRRUPS
|
2.5 5.0 75 10.0 12.5 5.0 175 20.0 775 [m RAD]
—> SHEAR DEFORMATION
Fig. 8.5. Load-deformation curve for the case of pure shear.
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Fig. 8.6. The relation between stress in stirrups and shear force for the case of pure shear.

- At failure load the web may crush and/or the stirrups yield. STANIL/1 predicts the
same phenomena as the plasticity approach of Nielsen et al. For very low percentage
of stirrups the STANIL/1 program provides additional information. The strains in the
stirrups then become so large that they may be considered to fracture.

Another interesting result which can be obtained with a STANIL/1 analysis is shown

in Fig. 8.6. Here the stresses in the stirrups are plotted versus the applied shear force for.

w-value of 0.1. Furthermore the dashed line indicates the relation which would apply if
the truss analogy would hold with bars inclined at 45° and zero tensile concrete
strength.

The results qualitatively reflect the behaviour which is known from experiments: a
certain amount of shear force can be resisted without the stirrups being stressed; first
after diagonal cracking of the concrete the stresses in the stirrups increase roughly with
a similar steepness as predicted by truss analogy (the dashed line).

8.3 Shear test on a T-beam

In Section 8.2 we examined a theoretical beam in pure constant shear. In order to inves-

76



L 1125 750 | 1125
™

]

front view

4610=312 mm?
$12-113
6624 =2714mm?2

dimensions in mm

cross section

Fig. 8.7. Survey of the structure; shear test on a T-beam.

tigate whether the STANIL/1 beam model is able to predict reasonably the behaviour
of realistic structures in which shear deformations are considerable, a beam was anal-
ysed for which Leonhardt and Walther published material data and experimental
results in [16].

The experiment consisted of a simple test on a beam which had a T-shaped cross sec-
tion; the beam was referred toas TA 1. The structure is shown in Fig. 8.7. In this beam no
homogeneous state of shear stresses is to be expected.

In the STANIL/1 analysis only half the structure was considered because of sym-
metry. A total of 4 beam elements was used, each 375 mm long (3 in the shear span, 1 in
the constant moment area). In the experiment the structure was loaded by applying two
point loads which were increased step by step. In the STANIL/1 analysis a displace-
ment controlled approach was used. Instead of applying a point load, the displacement
of that point of the beam was increased incrementally.

The load displacement curve of the structure is shown in Fig. 8.8. It is to be noted that
for shear forces higher than 300 kN no experimental data are available. The ultimate
failure that was measured in the test was equal to 348 kN while the STANIL/1-analysis
gave 343 kN. It can therefore be concluded that both the failure load and the global stiff-
ness of the structure as predicted by STANIL/1 show very good correlation with the
experimental data.

Furthermore the failure mode found in the STANIL/1-analysis (web crushing), was
also indicated in the test report. It is also worth noting that the STANIL/1-analysis
predicts limited ductility for the structure. The test report also contains data on the
stresses in the stirrups. In Fig. 8.9 a comparison of the test results is made with the
results of the STANIL/1-analysis.
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Fig. 8.8. Load-displacement diagram, shear test on a T-beam.
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Fig. 8.9. The relation between the stresses in the stirrups and the applied shear force; shear test
on a T-beam.

The correlation between the STANIL/1 results and the experimental results is fairly
good. This becomes even more clear on considering that the experimental curve was
found by averaging the stresses of four stirrups which showed higher stresses than the
average of the total shear span. On the other hand, the stresses in the stirrups as predic-
ted by STANIL/1 were practically the same in all three elements in the shear span.

8.4 Continuous beam structure

A further expansion of the investigation of the capabilities of the STANIL/1 beam
model concentrated on a continuous beam structure being supported at three places;
experimental results for the beam under investigation were reported in [17]; the beam
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Fig. 8.11. Load-displacement curve; continuous beam structure.

was referred to as beam B2. The test beam was designed such, that the effect of shear
forces on the stiffness of the beam after cracking may not be neglected. The beam under
investigation is shown in Fig. 8.10.

In the STANIL/1 analysis only half the structure was considered because of sym-
metry. A total of § beam elements, each 250 mm long, was used. The material properties
were taken from [17].

In the experiment as well as in the STANIL/1 analysis the load was increased step by
step. The load-displacement curve of the structure is shown in Fig. 8.11.

79



TOTAL LOAD [kN]

300
¥
250 J : A T
e 7
il 7
I 7 M2
b A
200 —
(s NS S
v M1
7
150 ,’}/
77|
7, M1
1y —— ELASTIC MOMENT
100 _ -—- STANIL/1
7/ EXPERIMENT
x4
S
/ M2:
50 —— ELASTIC MOMENT
— — STANIL/1
—. EXPERIMENT
10 20 30 40

— > MOMENT [kNm

Fig. 8.12. Bending moments in the span and at the middle support for varying load; continuous
beam structure.

It may be concluded that the correlation between the results of the STANIL/1 analy-
sis and the experimental results is very good. This is particularly interesting as it was
shown earlier, that with a beam element, not accounting for shear deformation, it was
not possible to analyse this structure properly. Apparently the extension of the element
with shear deformation as described in this report increases the capability of the
element considerably.

In the experiment, the’ maximum bending moment in the span and the bending
moment at the support in the middle, were also recorded during the loading of the struc-
ture. The results of the experiment are compared with those of the STANIL/1 analysis
in Fig. 8.12.

Once more, it is apparent that the correlation between STANIL/1 results and experi-
mental results is good. It may therefore be concluded that the STANIL/1 beam model is
very well capable of simulating the behaviour of this continuous beam structure.

9 Conclusions and work ahead

The STANIL/1 program is an extension and renewal of the existing program STANIL
on the basis of “smeared-out” material properties. The old program was capable of
handling deformations due to extension and to bending, and combinations thereof.
Geometrical nonlinearities were taken into account. The materials were defined in non-
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linear elastic terms and a tension-stiffening feature was implemented. In the old pro-
gram only cracks normal to the bar axis could occur, either overa part of the depth of the
beam or all-through cracks.

The extension introduced in the newly derived program STANIL/1 comprises, apart
from additional options, the possibilities to allow for shear deformation and to model
the bond mechanism between the main reinforcement and the concrete. Now crack pat-
terns may occur which are inclined to the bar axis.

Conclusions

Fully in accordance with its ultimate purpose the Macro-model is capable of dealing
with shear deformations and bond slip, while the correct simulation of pure bending
and pure tension and combinations thereof and the geometrical nonlinearity are pre-
served. The prediction of crack patterns in the web of girders is satisfactory, as well as
the feature that the inclination of shear cracks changes for increasing load. In a case
where the deflection of a beam is due to both bending deformation and shear deforma-
tion, the analysis with the new STANIL/1 program shows better results than the old
STANIL program.

The results found for the stresses in the stirrups are in agreement with existing expe-
rience and expectations. For a main reinforcement percentage as normally applied in
practice, the bar does not slip relative to the concrete. The stiffness of the bond spring (if
not chosen extremely small) is of no marked influence on the results. If inclined shear
cracks occur, the stress in the main reinforcement is increased by a constant amount
along that part of the beam where a constant shear force occurs. This conforms to what
can normally be expected.

Conceptually, the Macro-model has not been derived to investigate detailed stresses
but to determine the global behaviour of a beam or framed type structure in a reliable
way. This aim hasindeed been achieved, which implies at the same time that we are pre-
pared to accept a less sound representation of the full internal state of stress.

Work ahead

There are always possibilities for improving a numerical model. In the case of the
Macro-model one may for instance think of a special element for the beam-to- column
connection. In Section 4.4 the Micro-model application gave information on the
cracking and slip aspects in such an area. In Chapter 6, however, it has been stated that
the Macro-model presupposes perfectly rigid connections. Therefore a special element
would be advisable.

In any case one can implement the results of project 1 and 2 of “Betonmechanica” in
the Macro-model. The force transfer study of project 1 should result in a more general
constitutive relation for (reinforced) cracked concrete than has been tentatively chosen
in MACROY/1 for the time being. The bond model can be made more realistic, too,
taking account of the effect of radial stresses as well (which now has been neglected).
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However, in view of the weak influence of the bond layer properties on the global beha-
viour, an adaptioﬁ of the bond layer is not very urgent.

A desired feature in STANIL/1 is the implementation of creep and shrinkage. It will
have to be judged in the future if such an extension is sufficiently attractive and worth-
while.

Finally, a major task is seen in so extending the Macro-model that frames in three-
dimensional space can be analysed. This involves bending and shear deformation in two
different planes and, apart from extensional deformation, also a torsional deformation
mode. The connections in such space-frames will be of even greater complexity.
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