Preface

Inspired by the building of concrete offshore structures in the North Sea the Industrial
Council for Oceanology (IRO) commisioned in 1975 the Institute TNO for Building
Materials and Building Structures (IBBC-TNO) to undertake research on the subject
fatigue of concrete. Project Group III-3 of the Stupoc (Steering Group on Offshore
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The experimental research comprised the testing of ca. 350 cylinders of plain concrete
both with constant-amplitude loadings as with program loadings. The main object of
the experimental research was to verify the validity of Miner’s damage rule for plain
concrete in compression.

In 1977 the Netherlands Committee for Concrete Research (CUR) decided to
finance a further research project on the subject fatigue of concrete.

The IRO-fatigue project served as a starting point for this research. The CUR-
committee C33 “Fluctuating loads™ was charged with the routine supervision.

The Committee was constituted as follows:

Ir. W. Colenbrander, Chairman
Ir. P. Eggermont, Secretary

Ir. A. J. M. Siemes, Technical secretary
Ir. J. P. Coppin

Ir. F. F. M. de Graaf

Ir. H. A. K6rmeling

Prof. Ir. H. Lambotte

Ir. J. van Leeuwen

Ir. J. H. A. M. Vrencken

Ir. P. H. Zaalberg

Ir. D. Zijp

Ir. J. C. Slagter, Mentor

The experimental work carried out at the IBBC-TNO comprised the testing of ca.
450 cylinders of plain concrete both with constant-amplitude loadings as with vari-
able-amplitude loadings with the object of a further verification of Miner’s rule. The
main part of the results is included in this report.

The research at IBBC-TNO was carried out by Ir. J. van Leeuwen and Ir. A. J. M.
Siemes who are also the authors of this report.






MINER’S RULE WITH RESPECT TO PLAIN CONCRETE

Summary

As usual with other materials the constant-amplitude test (Wdhler) is adopted as the
criterion for the fatigue sensitivity of concrete. In this test the number of load repeti-
tions N; the material can stand before failure occurs, is determined.

In general stresses vary in a more erratical way. As from tests no relation is knwon
between this kind of loadings and the service life of a structure, Miner’s rule is
adopted for predicting this life on basis of constant-amplitude tests. According to this
rule failure will occur if the following condition is satisfied :

1
=2 w =1

where c is the number of stress repetitions during the service life.

For plain concrete loaded in compression, IBBC-TNO have started a verification of
this damage rule, by executing ca 385 constant-amplitude tests at several stress levels,
ca 100 program loading tests and ca 180 variable-amplitude tests with several prob-
ability density functions for extreme values of the stresses.

The number of stress repetitions N; in a constant-amplitude test proved to be a
stochastic value with a logarithmic-normal distribution. Because of this aspect the
Miner number will not have the deterministic value one, but it will also be stochastic
with a logarithmic-normal distribution. A formula is given for the median value and
the standard deviation of M that can be expected on basis of the dispersion in a con-
stant-amplitude test.

From the program loading tests and the variable amplitude tests the Miner number
proved to have a logarithmic-normal distribution with in general a median value less
than one.

So it can be concluded that program loadings and variable-amplitude loadings are
more damaging than can be expected from constant-amplitude tests.

As the Miner number is not deterministic a semi-probabilistic design procedure will
be given. This procedure is based on the experience, gained in the investigation.






NOMENCLATURE

number of stress cycles (loading)

design loading

characteristic loading

static cylinder compressive strength

design strength

characteristic strength

index indicating a certain stress level

Miner sum or Miner number

Miner sum caused by the design loading

Miner sum caused by the characteristic loading

Miner number expressed as a design strength

Miner number expressed as a characteristic strength

mean value of log M

median value of M;

according to a logarithmic-normal distribution (M) = 10™(es M)
mean value of log N;

median value of N;;

according to a logarithmic normal distribution m(N;) = 10™°e N
mean stress in a variable amplitude test

mean value of the stress amplitudes

number of stress cycles giving failure in a constant-amplitude test at
stress level i

number of stress cycles

number of stress cycles in a block of a program loading

stress ratio: R = ¢’ (min;)/o’ (max;)

design resistance

design effect of the loading

standard deviation of f;,

standard deviation of log M

standard deviation of M, according to a logarithmic-normal distribution
standard deviation of log N;

standard deviation of the amplitudes in a variable-amplitude test
dispersion range

reliability index

load factor

material factor

maximum compressive stress
minimum compressive stress
stress amplitude



Notice

In this paper a distinction has been made between mean value and median value:

— mean value is the arithmetic mean;

— median value corresponds with a probability of 50%.

For symmetric probability density functions, like the normal distribution, the mean and
the median have the same value.

For asymmetric probability density functions, like the logarithmic-normal distribution,
the mean and the median have different values.



Miner’s rule with respect to plain concrete

1 Introduction

The load variations to which concrete structures are subjected often display an
erratic behaviour in relation to time. Besides, this behaviour is unpredictable, so that
these loads should be treated as stochastic quantities.

Loads due to wind, wave motion, sea currents, earthquakes and traffics are of
this kind. As a result of such loads, but also in consequence of the dynamic behaviour
of a structure, stress variations may occur in the structural material which are likewise
stochastic and of an erratic character in relation to time. These stress variations may
in course of time cause fatigue failure. With the aid of constant-amplitude test (Wohler
test) an indication is obtained as to the extent to which a material is susceptible to
fatigue. In this test (see Fig. 1) the stress alternates with a constant amplitude and
constant frequency about a constant mean stress; the test is in itself therefore not
sufficient to serve as a basis for predicting the lifetime of a construction subject to
loads which behave erratically in relation to time (see example in Fig. 2). This difficulty
can be overcome by the application of damage assessment rules such as Miner’s rule.
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Fig. 1. Constant-amplitude test. Fig. 2. Erratically varying stress.

It would be outside the scope of this paper to deal more fully with the stochastic
character of the loading. In principle, it is presupposed that the statistical properties
of the loading or stress are sufficiently known to enable its erratic time-dependent
behaviour to be described accurately enough for the purpose.

2 Damage

In order to account for the phenomenon of fatigue it is assumed that with every
change in stress a certain amount of damage occurs in the concrete. The overall
damage that arises as the result of a number of stress cycles may result in a lowering
of the strength.

Hence an obvious approach is to choose units of damage in the material, i.e. in the
concrete, as the starting point for the assessment of the fatigue effect in consequence



of erratic stress variations (with a non-constant-amplitude, mean value and/or fre-
quency). Such assessment is necessary because a great many types of such stresses are
possible.

Although micromechanical investigation of materials has revealed that the damage
that occurs is associated with the formation of cracks and with changes in the length,
width and direction of the cracks, it has hitherto not proved possible to derive from
such research a serviceable method of measurement for ascertaining the degree of
damage.

Instead of basing oneself on a damage unit capable of physical interpretation it is
also possible to adopt hypothetical units. In that case it will, however, be necessary to
verify the hypothesis.

3 Miner’s rule

The most commonly employed hypothesis for determining the degree of damage due
to erratically varying stresses is Miner’s hypothesis [1]. He used it in 1945 to interpret
the results of tests on aluminium alloy bars using a simple loading program com-
prising two blocks. It has become common practice to apply this hypothesis also to
concrete structures and also in cases where the stresses display a more erratic time-
dependent behaviour. Indeed, it is now so widely accepted that it is referred to as
“Miner’s rule”. For applications of this kind, however, it has hardly been verified as
yet. IBBC-TNO (Institute TNO for Building Materials and Building Structures) has,
in collaboration with Stupoc (Steering Group on Offshore Structure Problems) and
CUR (Netherlands Committee for Concrete Research), made a start with this verifi-
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cation for normalweight concrete subjected to compressive stresses due to axial load.

Miner’s rule establishes a relationship between the damage due to erratically
varying stresses and the results of constant-amplitude tests. In such tests the number
of stress cycles N; needed to produce failure is determined (Fig. 1).

The results of a number of these tests performed at various levels of stress are

represented as so-called Wohler lines. For concrete the usual practice is to indicate
the value of N; on a logarithmic scale and the value of the applied maximum stress on
a linear scale. Plotted in this way, the results will conform approximately to a straight
line. A line of this kind is presented in Fig. 3, which is based on results of research
conducted by IBBC-TNO [2]. In that research it was found, on the basis of some 200
constant-amplitude tests, that the location of a Wohler line is dependent on a large
number of factors such as the minimum stress, the frequency of the cycles, the grade
of the concrete, the degree to which the concrete has achieved full hardening, and the
conditions of curing and testing.
Miner’s rule is based on the conception that the contribution to damage in conse-
quence of a single stress cycle ranging from a maximum stress ¢’ (max,) to a minimum
stress ¢’ (min;) has a magnitude 1/N;, where N; denotes the number of stress cycles
which results in failure in a constant-amplitude test at the same level of stress, prov-
ided that the conditions pertaining to the single cycle are the same as those partaining
to the constant-amplitude test. Therefore, besides taking account of the level of the
stress cycle, Miner’s rule also takes account of the factors already referred to earlier
on, such as the frequency, the quality of the concrete, the degree of hardening and the
conditions of testing and curing.

The damage due to a number of stress cycles ¢ will, according to Miner’s rule, make
a contribution M which is the sum of the damage contributions of each of the indivi-
dual cycles. Stated as a formula, this rule is:

1
N,

13

M=y

i=1

6

The rule is moreover linked to a failure criterion in that it is presupposed that failure
occurs when M becomes equal to unity (i.e., when M = 1). In the following M will be
called the Miner sum, while the value corresponding to the limit of failure is called
the Miner number.

Apart from any safety margins that may be introduced, this conception leads to the
following formulation of the limit state with regard to fatigue:

lIA

51

= 1
M i;I Ni (2)
The value ‘one’ for the Miner number is deduced directly from a constant-amplitude
test. If Miner’s rule is to have general validity, it will also have to be valid for a test of
that kind, in which case the number of cycles ¢ is equal to N,, so that M becomes

equal to N;/N,;=1.
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For concrete loaded in compression, however, the assumption of a Miner number
M =1 on the basis of constant-amplitude test results is not correct. According to [2]
it emerges that N, is a stochastic variable with a logarithmic-normal distribution. (In
this paper these tests are comprised in the test series A and G). It can be shown that
the Miner number must also be a stochastic variable with a likewise approximately
logarithmic-normal distribution (see Appendix 1). Basing oneself on the result of a
constant-amplitude test, it can be shown (see Appendix II) that the median of the
Miner number and the standard deviation of the logarithmic value of the Miner
number are equal to:

m(M) — 101,15S2(log Ni) (3)
s(log M) = s(log N;) 4)

where s(log N,) is the standard deviation of the logarithm of the number of stress
cycles N; up to failure in a constant-amplitude test.

As the Miner number M has a logarithmic-normal distribution it would be obvious
to look at the logarithmic value of the Miner number log M, because this value has a
normal distribution. This distribution is more familiar and gives easier insight than
the logarithmic-normal distribution.

Nevertheless in equation (3) the median (50% probability) of the Miner number M
is given. (This median is in fact the Miner number corresponding with the mean-value
of log M). This procedure is choosen because of the fact that the Miner number is
directly related to the life time of the structure.

It appears therefore that the dispersion in a constant-amplitude test is of funda-
mental importance with regard to the probability of the occurence of a particular
Miner number i.e., the probability density function. Since there undoubtedly exists a
relation between the dispersion in the static compressive strength of concrete and the
dispersion s(log N,) in a constant-amplitude test, it can be presumed that the disper-
sion in the static compressive strength has a share in determining the probability
density function of the Miner number.

Hence it follows that for an experimental verification of Miner’s rule it is necessary
to pay attention to the relation between the static compressive strength, the number of
load cycles N; up to failure in a constant-amplitude test, and the value of the Miner
number. In such a verification the effect of dispersion should be considered more
particularly.

4 Experimental research

4.1 General

Fatigue testing was done by means of tests performed on plain concrete. The speci-
mens were subjected to axial compressive load. In order to obtain a homogeneous
stress in them, cylindrical specimens were used. These were 450 mm high and 150 mm
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in diameter and consisted of concrete made with gravel aggregate of up to 32 mm
particle size. The end faces of the cylindres were ground flat.

Two types of concrete were used: a high strength concrete with a cube strength at
28 days of 45 N/mm? (coefficient of variation 5%) and a lower-strength concrete with
a cube strength at 28 days of 30 N/mm? (coefficient of variation 10%). The composi-
tion of the two types of concrete is indicated in table 1.

Table 1. Composition of the concrete.

high-strength concrete low-strength concrete
portland cement, ordinary 360 kg 284 kg
water 162 kg 170 kg
water cement ratio 0.45 0.60
gravel 1860 kg 1871 kg
fineness modulus 5.40 5.40

The test set-up with the servo-hydraulic control equipment is illustrated in Fig. 4.
The tests were in all cases performed with a constant frequency.

Fig. 4. Test set-up with servo-hydraulic control equipment.

4.2 Constant-amplitude tests: series A to G

The constant-amplitude testing program (see table 2) had two objectives. First was to
determine by means of test series A and G values of N; which were used in the non-
constant-amplitude tests for calculating the Miner sum. The other objective was to
measure the influence of a number of parameters. For this purpose the following were
varied in the test series A to G:



— the curing and testing conditions; “wet” means cured and tested under water;
“dry” means tested and cured at 20°C and 50-659; R.H.;

— the age of the concrete at the time of testing; usually testing started at an age of
28 days; two series were, however, tested at an age of 3 and 1 year;

— the frequency; to speed up the time of testing and to avoid further hardening of
the concrete most of the tests were performed at a frequency of 6 Hz; to gain some
insight into the influence of the frequency, one series was tested at a frequency of
0.7 Hz;

— the concrete quality (strength class).

Table 2. Program of constant-amplitude tests.

concrete quality curing and number of
series at 28 days testing conditions age frequency tests
A B 45 wet 28 days 6 Hz 60
B B 45 dry 28 days 6 Hz 21
C B 30 wet 28 days 6 Hz 38
D B 45 wet % year 6 Hz 38
E B 45 wet 1 year 6 Hz 46
F B 45 wet 28 days 0,7 Hz 41
G B 45 wet 28 days 6 Hz 86
330

The tests were performed at eleven different levels of the maximum stress Ormax 1N
relation to the static strength f;, of the cilinders tested.
The maximum stress levels were combined with five stress ratios R = 6p,in/0max-
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The maximum stress varied from 0.45f,, to 0.95f,, and the stress ratio from 0 to 0.8.
The test results of the series A to F are given in Fig. 5 to 10 in the form of Wohler
curves. If at a certain stress level more than one value of N; was available, than the
mean value of log N; is given.
From series A the test with o}, = 0.70f,, and R =0 was repeated 21 times. The
results of that tests are given in a relative cumulative frequency diagram in Fig. 11.
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In Figs. 12 tot 14 the results of test G are given in the form of Wohler curves. As in
this series each test was repeated at least seven times, it was possible to give curves for
the mean value of log N; and to indicate the dispersion by means of curves at an dis-
tance corresponding to the standard deviation s(log N;). For comparison lines at a
distance corresponding to the standard deviation of the relative static strength
s(fy) = 0.03 are also given.
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A number of conclusions can be drawn from the tests:

— concrete with a higher static compressive strength is, for equal stress limits, able
to endure more stress cycles up to failure (i.e. possesses greater fatigue strength or
a longer working life) irrespective of whether the higher strength is obtained by
better concrete mix composition (see series A and C) or as a result of greater age
(see series A, D and E); the increase in fatigue strength is, however, less than prop-
ortional to the increase in static strength;

— concrete which has been cured and tested under water is found to have a higher
static compressive strength than concrete of the same composition which has been
cured and tested under dry conditions (see series A and B); the fatigue strength is,
however, practically the same in both cases;

— the frequency of the stress cycles is found to have a distinct effect on the fatigue
strength, loading applied at the higher frequency is less detrimental than at the
lower frequency (see series A and F);

— from the 21 similar tests of series A and from series G is follows that the dispersion
in N, can, with fair approximation, be represented by a logarithmic-normal distri-
bution (see Fig. 11);

— the magnitude of the dispersion in log N; is chiefly dependent on the value of the
stress ratio R (see Figs. 12 to 14);

— the dispersion in log N; has the same magnitude as can be expected in view of the
dispersion in the static compressive strength.

It should be noted that, although the concrete quality and the conditions of testing
were the same for series A and G, relatively large differences in their respective test

1.00

R=0.80
0.90 ¥
NN
0.80 =<
i T
o 2 =~
ElRZ o070
S
060
T 050
0.40
0.30
e m(log Nj)
020~ — —— s (logNyj)
————— s (f'hy)
010 l ‘ 1

0.00 100 200 3.00 400 500 6.00 700 8.00
—p log N

Fig. 14. Wohler curves of test serie G.
for R =0.80



results nevertheless occurred. A conclusive explanation for this has not yet been
found.

4.3  Program loading tests: series H, I and J

In a ‘program loading test’ a test specimen is loaded with a number of successive
stress blocks. A “block” is characterized by ¢’ (max;), a certain stress ratio R =
¢'(min;)/o’ (max;) and a certain number of cylces n; (see Fig. 15). In this section of

block 1 block2 block 3 block i
le } N

™

— n( number of cycles)

—_— '

Fig. 15. Program loading test.

the research project, which comprised about 100 specimens, three different test series
were performed, namely:

Series H: the loading program comprised only two blocks. After the predetermined
number of cycles had been completed in the first block, the program changed over to
the second (and last) block, in which the number of cycles up to failure was determi-
ned; although in this case the tests were not of constant amplitude, it must be admitted
that an important aspect of the erratic stress behaviour in relation to time, namely the
random sequence of the stress variations, was largely absent in this series; this draw-
back is less pronounced in series I and J.

Series I: the loading program comprised sequences of two, four or eight blocks; after
a sequence had been completed, it was repeated until failure occurred ; these sequences
differed from one another not only in the number of blocks, but also in the order in
which the blocks occurred in the sequence: sometimes the test was started with smal-
ler, sometimes with larger amplitudes; sequences in which the blocks were applied in
a more random succession were also performed.

Series J: the testing procedure was similar to that of series I, except that the average
stress per block was also varied in a test.
The Miner numbers were calculated on basis of the results of test series A.

The results of these test series are presented in the form of cumulative frequency
distributions in Figs. 16, 17 and 18. The values of log M have been plotted on the
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horizontal axis, while the cumulative frequency has been plotted on the vertical axis
to a scale with normal distribution. With a scale of this kind, a linear relation between
log M and the frequency of occurrence should be found if the Miner number conforms
to a logarithmic-normal distribution.

In the special case of series H two distributions are presented in Fig. 16. One of
them relates to all the test results, whereas in the other distribution the results of those
tests in which the specimens failed in the first block have been omitted, since these
were in fact constant-amplitude tests.
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Fig. 16. Cumulative frequency diagram for test series H.
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The combined result of all the program loading tests is given in Fig. 19. For the
individual test series H, I and J, and for these series combined, the mean value and
the standard deviation of log M as well as the median of M are given in table 3.
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Fig. 19. Cumulative frequency diagram for test series H, Iand]J.

Table 3. Results of program loading tests, series H, I and J.

series m(log M) m(M) s(log M)
H (all tests) —0.311 0.49 0.369
H (with omissions) —0.192 0.64 0.197
I —0.225 0.60 0.347
J —0.411 0.39 0.308
H,L)J —0.328 0.47 0.346
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The following conclusions can be drawn from the results of these tests:

— the value of the Miner number can be described with a logarithmic-normal distri-
bution;

- the median of the logarithmic-normal distribution of M is lower than could be
expected on the basis of constant-amplitude tests; from the results of the 21 similar
tests of test series A, namely, s(log N,;) = 0.298, a median:

m(M) — 101.]532(10gNi) — 101.15.0.2982 =1.27

was expected according to equation (3), whereas the measured value is even less
than unity;

- the dispersion in log M per test series is more or less constant; an exception to this
is series H, in which part of the results have been omitted and which shows less
dispersion, which is understandable because a number of “maverick” values have
not been .included in the results;

- s(log M) has approximately the value predicted by formula (4): 0.298.

4.4 Variable-amplitude tests: series K to O

In variable-amplitude tests the value of the amplitude changes in each cycle or half
cycle. The cycles themselves remain sinusordally. With such tests it is, even more than
with program loading tests, possible to achieve a random sequence of cycles.

In this research several types of variable-amplitude tests were performed, namely:

series K, comprising tests with a stationay mean stress (Fig. 20a);
series L and M, comprising tests with a stationary minimum stress (Fig. 20b);
series M and O, comprising tests with a stationary maximum stress (Fig. 20c).

Table 4. Test program and results of series K.

test program results

mean standard deviation dispersion range

m(0) X fyu S(6) X[y wXfpu m(log M) m(M) s(logM)
0.65 0.0825 0.50 —0.278 0.53 0.439
0.65 C.125 0.50 —0.193 0.64 0.235
0.65 0.166 0.50 —0.338 0.46 0.197
0.575 0.0825 0.50 —0.204 0.63 0.339
0.575 0.125 0.50 —0.322 0.48 0.431
0.575 0.166 0.50 —0.307 0.49 0.446
0.50 0.0825 0.50 0.249* 1.77 0.713%
0.50 0.125 0.50 —0.126 0.75 0.406
0.50 0.166 0.50 0.077 1.19 0.366
0.575 0.125 0.60 —0.071 0.85 0.479
0.575 0.166 0.60 —0.148 0.71 0.302
0.50 0.125 0.60 —0.209 0.62 0.257
0.50 0.166 0.60 —0.060 0.87 0.399

* A few tests were terminated before the occurrence of failure
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Fig. 20. Variable amplitude tests.

In all these tests the frequency was kept constant (6 Hz).

The variation of the amplitude values was described with probability density functions
(see Fig. 20). The sequence of the cycles was, except for series N and O, of a random
character. Nevertheless the tests performed are completely reproducible because a
digital variable-amplitude generator specially developed by the investigating labor-
atory was used for the purpose [3]. The sequence of the cycles in series N and O was
regular.

In the variable-amplitude tests in series K the amplitude values were always nor-
mally distributed (see also Fig. 20a). For the program of tests in question table 4
gives the mean stress m(c), the standard deviation s(6) of the amplitudes, and the
dispersion range w. The results of the tests are given in the form of the mean m(log M)
of the logarithm of the Miner number the median m(M) and the standard deviation
s(log M). Each test was repeated at least seven times, and 96 test were performed in
all.

For calculating the Miner number the median m(N;) was derived from series G.
Further it was assumed that the damage caused by a half cycle is equal to the half of
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the damage caused by a full cycle. This assumption seems to be reasonable because
the probability density functions of the amplitudes were symmetric.

From all the test results together it emerges that m(log M) = —0.150 — hence
m(M)=0.71 — and s(log M) =0.416. In Fig. 21 the results are presented in the form
of a cumulative frequency diagram. For comparison, the distribution obtained from
test series H, I and J (see also Fig. 19) has been included.
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Fig. 21. Cumulative frequency diagram for test series K.

In the variable-amplitude tests with stationary minimum stress (series L) and with
stationary maximum stress (series M) various forms of probability density functions
were employed, namely, the normal distribution, the uniform distribution and the
triangular distribution with the highest frequency ecither at the lowest or at the highest
amplitude value. Each test was repeated 7 times.

In all, 56 tests were carried out. The test program and results are given in table 5.
The dispersion range w was always 0.5/,

For the tests of series L in which the minimum stress was stationary it was found
that m(log M) =0.148 — hence m(M) = 1.41 — and s(log M) = 0.365, while for those of
series M these values were m(log M) = —0.641 — hence m(M) = 0.23 — and s(log M) =
0.368. In Fig. 22 the results are presented in the form of cumulative frequency dia-
grams.

It can be concluded from the series L and M that variable-amplitude tests at a
relatively high stress level (series L) are more damaging than at a relatively low stress
level (series M). To find out if the random sequence of the amplitudes or the level
of the stationary stress dominates the extra damage the tests with the uniform
distribution were repeated on the understanding that the sequence of the ampli-
tudes was regular. Half of the tests started with an amplitude of zero; in 4096 (= 4 K)
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Table 5. Test program and results of series L and M.

test program results
standard
stationary stress type of mean deviation
series X ou distribution m(6) Xf 'y @)X [y, mlogM) m(M)  s(loghM)
L 6'min = 0.25 normal 0.5 0.125 0.304 2.01 0.478
0 min = 0.25 uniform 0.4 - 0.011 1.03 0.195
' min = 0.25 triangular 0.583 - 0.156 1.43 0.182
0" min = 0.25 triangular 0.417 - 0.122 1.32 0.497
together 0.148 1.41 0.365
M 0" max = 0.75 normal 0.5 0.125 —0.818  0.15 0.460
0’ nax = 0.75 uniform 0.5 - —0.653 0.22 0.226
0 max = 0.75 triangular 0.417 - —0.379  0.42 0.393
0 max = 0.75 triangular 0.583 - —0.715  0.19 0.268
together —0.641 0.23 0.368

cycles the amplitude increased gradually to the maximum value and in the next 4096

cycles it decreased to zero. This sequence was repeated until failure occurred.

The other half of the tests were started with the maximum aplitude. Each sequence
was combinated with either a stationary minimum stress of 0.25f,, or a stationary
maximum stress of 0.75f;,. Each combination was repeated 7 times. In all, 28 tests
were carried out. The test program and the results are given in table 6.

In Fig. 23 the results of all the tests of series N and O are presented in the form of
cumulative frequency diagram. For comparision, the results of the tests with the uni-
form distribution of the series L and M are also given.

As can be seen from the test results, the regular sequence of the amplitudes is
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Table 6. Test program and results of series N and O.

test program results
started
stationary stress type of mean with
series Xf o distribution m(6)x [, amplitude mlogM) m(M) s(logM)
N 0 min = 0.25 uniform 0.5 zero —0.100  0.79 0.210
maximum —0.194  0.64 0.254
together —0.147 0.71 0.229
(0] 0 max = 0.75 uniform 0.5 Zero —0.280 0.52 0.255
maximum —0.568  0.27 0.238
together —0.424  0.38 0.320

more damaging with stationary minimum stresses (series N versus series L) and less
damaging with stationary maximum stresses (series O versus series M) than is the
random sequence. Variable-amplitude tests with a random sequence seem to give
extreme values for the Miner number.
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Fig. 23. Cumulative frequency diagram for test series N and O.

5 Interpretation

From the program loading tests as well as the variable-amplitude tests it emerges
that the value of the Miner number can be satisfactorily described with a logarithmic-
normal distribution. This was also to be expected on the ground of theoretical con-
siderations (see Chapter) 3).

By virtue of the logarithmic-normal distribution of N; and in accordance with the
formulas (3) and (4) the median value and the standard deviation of the Miner num-
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Table 7. Comparison of theoretical and measured results of non-constant amplitude tests.

from m(M) s(log M) m(M) s(logM)
series s(logN,) series measured measured from (3) from (4)
H 0.298 A 0.49 0.369 1.27 0.298
1 0.298 A 0.60 0.347 1.27 0.298
J 0.298 A 0.39 0.308 1.27 0.298
K 0.142-0.538 G 0.71 0.416 1.05-2.15 0.142-0.538
L 0.142-0.538 G 1.41 0.365 1.05-2.15 0.142-0.538
M 0.142-0.538 G 0.23 0.368 1.05-2.15 0.142-0.538
N 0.142-0.538 G 0.71 0.229 1.05-2.15 0.142-0.538
(0} 0.142-0.538 G 0.38 0.320 1.05-2.15 0.142-0.538
WEIGLER [4] ~1.05 ~2.0 ~0.9 18 1.05
WEIGLER [5] ~0.95 ~1.0 ~0.9 7 0.95
TEPFER [6] ~1.15 ~0.63 ~0.95 33 1.15

ber can be calculated. For the various test series table 7 indicates which values of
m(M) and s(log M) were measured and which were expected on the basis of these
formulas.

The table also includes the results of program loading tests of WEIGLER [4 and 5]
and TEPFERS [6]. As these results were, generally speaking, not available in the form
used in this resport, they have been obtained by measurement from diagrams, etc., so
that there may be minor deviations from the actual results obtained by those in-
vestigators.

It appears from the table that in general the measured median value m(M) is smaller
then the median value predicted by the formula. This indicates that in non-constant-
amplitude tests a higher degree of damage occurs than in constant-amplitude tests.

The difference between the values m(M) of series L, M, N and O indicates that this
higher degree of damage is related to the type of loading program, and the sequence
of the cycles.

The standard deviation s(log M) that has been measured both in the program load-
ing tests and the variable-amplitude tests, has always the magnitude that could be
expected according to formula (4).

From the test results it can be concluded that:

— the measured distribution of the Miner number is in accordance with the distribu-
tion which could be expected on the ground of theoretical considerations;

— the standard deviation of the Miner number s(log M) is almost equal to the value
s(log N;) that could be expected on the ground of the theoretical considerations
mentionated ;

— the standard deviation s(log NV,) is of the magnitude that could be predicted on the
basis of s(f3,);

— in general more damage appears in non-constant-amplitude tests than could be
predicted on the basis of constant-amplitude tests in combination with Miner’s rule.

- the extra damage is related to the stress level and the sequence of the cycles.
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From table 7 it follows that the test results of both WEIGLER and TEPFERS are in ac-
cordance with the conclusions mentioned before. This is so in spite of the relatively
large scatter in their investigations.

In view of this result it seems to be justified to use Miner’s rule to take account of
the effect of erratically varying stresses. This conclusion is however only valid within
the restrictions of the testing program, like the type of loading, the frequency, the
concrete quality etc.

6 Semi-probabilistic analysis

The safety of a structure manifests itself in the margin that exists between the effect
of the loading and the resistance of the structure. In the case of fatigue the safety can
be defined in two ways, namely:

— as the margin between the magnitude of the existing load and the strength of the
structure;

— as the margin between the intended lifetime and the expected lifetime of the
structure.

The difference between these two definitions is due to the fact that in the material
both the level of the stress cycles and the number of cycles are determining factors
with regard to failure.

On the basis of the results and the experience gained from the research described in
the foregoing, it is possible to indicate how a safety margin with regard to fatigue
failure can be defined with the help of Miner’s rule and the distinction between Miner
sum and Miner number. For this purpose the starting point adopted is the semi-
probabilistic design procedure (level 1 procedure) as envisaged, inter alia, in the
CEB-FIP Model Code for Concrete Structure. In accordance with that Code it must
be shown, in the ultimate limit state, that the effect S, of the characteristic load F, mul-
tiplied by a load factor y, (the so-called design load F}) is less than the resistance R,
of the structure. This resistance R, is dependent on the design strength f, of the mate-
rial, which is the characteristic material strength f, divided by a material factor 7,
Hence

Su(Fiys) = R Sifvm) (5)

In the case of cyclic loading the effect thereof is the occurrence of damage in the
material. This research has shown that Miner’s rule can be used for determining the
degree of damage, so that the effect of the load S,(F - ys) thus becomes the Miner sum
M py(F,y,), which can be determined as follows:

. S| )
Mpg= MpyFyy,) = Z N (0)
i=1 15
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In this expression ¢ denotes the number of stress cycles which occurs in the intended
lifetime of the structure in consequence of the characteristic loading (defined as a
conservative load-time history) multiplied by y,. A complication in determining the
Miner sum is due to the fact that it is necessary to make use of a stochastic material
property, namely, the number of constant-amplitude stress cycles N; up to failure.
For N, the median value m(N) has to be taken so that no safety margin with regard to
a material strength is introduced, because according to formula (5) 7,, can only be
introduced in R;. Equation (6) then becomes:

i 1 <1
My = MpfFpopp) =Y —= Y~ 7
r rdFics) igl 1omeeN) = m(N) @

It is to be noted that the value of y, is related to the load factor that should be applied
in a corresponding analysis with regard to (quasi) static loads. This factor y, serves
to take account of a number of similar uncertainties.

The resistance R, of the structure can be expressed in a Miner number M. As
appears from the research, the Miner number can be conceived as a stochastic variable
characterized by a logarithmic-normal distribution. If the values of m(log M) and
s(log M) are known, it is possible to determine a characteristic value of the Miner
number according to:

Mfk — [Qtm(log M) = s(log M)] (8)
The value of 8 depends on the accepted probability of My, not being reached.
Next, the design value M, must be determined with the aif of M, and y,,. Having
regard to the logarithmic-normal character of the Miner number, the following
obvious definition suggests itself for M ,:

My = 10 oz ¥ =850 M1 ©)

The probability of the occurrence of M, is thus defined similarly to the design strenght
in the case of (quasi) static load.

For simplification a value B'(B* > p) can be so introduced into (9) that the design

value M, is directly obtained. The procedure for the analysis can now, starting from
the equations (5), (7) and (9), be summarized as follows:

MpFiyp) = My,

i m(lN) < 1 Qim(log M) =p*s(log )] (10)
i=1
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The procedure outlined above is so contrived that the value for M ra Mmust be deter-
mined by means of material research with appropriate stress-time relations. It is then
up to the designer to calculate the Miner sum M,. This operation is reduced to the
level of constant-amplitude stresses. Non-constant-amplitude stresses will therefore
have to be reduced, with the aid of a suitable counting method, to the level of
constant-amplitude stresses.

7 Fatigue limit Series P

Usually constant amplitude tests are performed up to about 2 x 106 cycles. This limit
was also used in this investigation because of the fact that with higher limits testing
takes too much time. This is expensive, and in consequence of the further hardening
of the concrete the test results will be too optimistic.

For calculating the Miner sum it can nevertheless be important to know what
damage is caused by cycles with low stress levels.

In the literature a fatigue limit is often adopted. This means that there is a maximum
stress level below which no fatigue damage occurs even with very high numbers of
cycles. For this fatigue limit a maximum stress of about 0.5f,, is often mentioned.
Experimental evidence for this fatigue limit is never given, however.

As a first step in establishing evidence for the existence of a fatigue limit, in series P 54
similar constant-amplitude tests were performed. In these tests the stress varied from
a minimum of zero to a maximum of 0.4 x f;..

Apart from the stress level, the same conditions were maintained in this series as in
series G. Testing was continued up to at least 2 x 10° cycles unless failure occurred.

The result of the testing was that two out of 54 specimens failed before 2 x 106
cycles were reached. Another result was that in the tests which were not stopped at
2x10° cycles three other specimens failed.

Failure occurred at the following numbers of cycles:

N, = 1.782.710
N, = 1.914.170
N, = 2.830.130
N, = 3.173.210
Ns = 3.266.710

From these test series it can be concluded that

— at 0.4f,, no fatigue limit exists;
— after more than 2 x 10° cycles failure is possible.

8 Further research

To provide a firmer base for the analysis procedure envisaged in equation (10) it
would appear primarily desirable to establish a suitable counting method for calcu-
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lating the Miner sum My, for non-constant-amplitude stresses. Various counting
methods are known, more particularly used in connection with aircraft design. These
are, however, applicable to materials used in the manufacture of aircraft. It will there-
fore be necessary, starting from the available knowledge of concrete fatigue as well
as such knowledge yet to be acquired, to undertake an evaluation and possible
modification of existing methods of counting.

Furthermore, it is desirable to undertake research into the Miner number M, for
stress-time relations which can be described only with the aid of statistical methods,
in order thus to obtain a further link-up with random loads such as those which
occur in civil engineering. In connection with this it is also necessary to establish the
degree of damage in relation to the type of loading in the case where Miner’s rule
does not give an accurate description of the damage process. Since the constant-
amplitude tests have shown (see chapter 3 and [2]) that factors such as concrete grade,
hardening time and the conditions of curing and testing also affect the number of
stress cycles up to failure, it appears necessary also to ascertain the effect of these
factors on the Miner number.

As a start of this research, IBBC-TNO is carrying out variable-amplitude tests in
which the amplitude values are described by means of asymmetric probability density
functions.

IBBC-TNO has moreover developed a microprocessor based random generator,
with which it is possible to produce random loadings with every desired probability
density function and power spectrum.

Fig. 24. Random signals with a normal distribution and a single peak spectrum (left) and a broad
band spectrum (right).
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The random generator consists of two seperate parts:

A computer program for generating random numbers. These numbers are the
coordinates of the peaks and valleys of a random signal with a given probability
density function and a given power spectrum.

The numbers are stored on a magnetic tape cassette with a storage capacity of some
100000 peaks and valleys.

A micro-processor system for reconstructing the original random signal starting
from the peaks and valleys on the magnetic tape.

A micro-processor interpolates a cosine function between two succesive peaks and
valleys.

Peaks and valleys can have 256 different values, this is also true for the time
difference between two successive peaks and valleys.

The accuracy is in consequence better then 0.4%. With a 1 MHz processor a
maximum frequency of 30 Hz can be generated, with a 2 MHz processor this is
60 Hz.

In Figure 24 two scope picture of random signals are given.
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APPENDIX I

If N, is a stochastic variable with a logarithmic-normal distribution, then it can be
shown that the Miner number must also be a stochastic variable with likewise a
logarithmic-normal distribution.

If Miner’s rule is generally valid it must also be valid for evaluating the results N; of
constant-amplitude tests. In that case the Miner number is:

_ Ni
~ m(Ny)

M (1.1)

In formula (I.1) m(N,) is a constant and N; is logarithmic-normal distributed. The
value M is in that case also logarithmic-normal distributed.
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APPENDIX 11

Basing oneself on the results of constant-amplitude tests formulas can be given for
the mean value and the standard deviation of the Miner number.

From appendix I it is known that the Miner number M has a logarithmic-normal
distribution. So it is possible to give formulas for m(M), m(log M), s(M) and s(log M).
As in calculating the Miner sum a value will be found that is related to m(M) and
directly related to a more familiar dispersion s(fy,), only formulas will be given for
m(M) and s(log M).

From constant-amplitude tests it is known that N; has a logarithmic-normal distri-
bution. So log N; has a normal distribution.
The median value for N, can be found from:

M) = | N L exp [_{low] }z
“w  /2n-s(log N;) s(log N;)

1 exp [_ , [iog N,;—m(log Ni):lz]
J2m-s(log Ny) s(log N;)

[N

= | exp[ln10-log N;]

After rearranging it follows:

m(N;) = exp [m(log N;)-In 10+%1n* 10- s> (log N,)] x

y }0 1 ex [{log N;—m(log N;)—In*10- s*(log N,.)}Z:I _
“w /21 s(log N;) 25 (log N)
— {Qtm(iog No)+1.1552 (log Ni)] (I.1)

As the Miner sum, calculated from a constant-amplitude test, has the value:

n-10"mdoe N (i1.2)

= g =
the median value of M will be

m(M) = 10mes No+ 1.1552(log Ni) =m(log N1 _ 1()1-15s2(log No) (I1.3)
The standard deviation s(log M) follows directly from the Miner sum:

n

= lom(log Ny) (11'4)
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In IL.4 is 10™"#N) constant, n is a stochastic variable. In the case of a constant-
amplitude test n=N;:

N; _ o
M= Lomios v log M =log N;—logm (log N;) (I1.5)

As alog N, has a normal distribution with a standard deviation s(log N;), the standard
deviation of log M has to be:

s(logM) = s(logN;) (I1.6)
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