Preface

In the construction of reinforced concrete structures such as tunnels, shipping locks
and basements it often occurs that the floor slab is concreted first and the walls and
roof are added after an interval of time. In consequence of this construction proce-
dure, cracks frequently develop in the walls (and possibly in the roof), since the floor
restrains the temperature and shrinkage deformations tending to occur in the walls.
Not enough is yet known as regards possible measures for restricting this type of
cracking. Accordingly, a Committee undertook research into the effect of one of
the most familiar measures of this kind, namely, the application of additional re-
inforcement disposed at right angles to the direction of cracking. The research
comprised a theoretical and an experimental part.
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CRACKING DUE TO SHRINKAGE AND TEMPERATURE VARIATION
IN WALLS

Summary and conclusions

In general, the choice of the correct measures for the prevention of cracking in re-
inforced concrete structures calls for a great deal of careful attention. The difficulty
is that in most cases little is known about the effectiveness of a measure applied. A
commonly employed precaution consists in providing extra reinforcement. Although
this will not prevent cracking, it could perhaps limit the widths of the cracks that
develop. In the present report it has been endeavoured to find out to what extent the
provision of reinforcement can be effective as a means of limiting the widths of cracks
due to deformation restraint.

Such cracks frequently occur in structures such as tunnels, shipping locks and
basements, i.e., consisting of rigidly interconnected parts which have been concreted
in various stages. The walls of such structures are usually concreted after the floor
slab has hardened. Because of this procedure, the floor and the wall are, as it were,
out of phase with regard to shrinkage and temperature behaviour (due to liberation
of heat of hydration). Differences in deformation thus tend to develop between floor
and wall, but they are prevented from actually developing by the rigid interconnection
of these structural parts. This restraint is liable to give rise to cracking of the concrete.

Deformation restraint also often causes cracking in cantilevered structures such as
balconies and in cantilevered cycle tracks and footpaths made of concrete.

An introductory chapter is followed by four chapters (Nos. 2 to 5) explaining the
types of structure in which cracking due to restraint may occur, what the consequences
of such cracking may be, and what counter-measures can be taken to limit the crack
widths. Next, Chapter 6 gives the results of linear-elastic analysis of stresses and strains
in walls joined to a floor slab, as published in the literature. The next chapter presents
a theory whereby the magnitude of the curvature can be calculated for a structure
subjected to restrained deformation due to shrinkage or some similar cause. It emerges
that this curvature considerably affects the resultant stresses and strains.

Since the literature gives hardly any information on the crack development process
and on the widths of the cracks that occur in structures subjected to restrained defor-
mation, some experimental research was carried out on wall models made of micro-
concrete (concrete with scaled-down granulometric composition). The effect of the
quantity of reinforcement on crack width was also investigated in this research, which
is described in Chapter 8.

A theory of cracking is developed in Chapter 9, presenting formulas for the rela-
tionships between the quantity of reinforcement, the deformation restraint, the quality
of the concrete, etc. The validity of this theory is examined in Chapter 10 with refer-
ence to the results of the tests performed on the wall models in the above-mentioned
experimental research. There is found to be good agreement between the theory and
the experiments.



In order to obtain information, inter alia, on crack widths developing over long
periods of time, the widths of cracks in actual structures were measured and are
reported in Chapter 11. The cracking and curvature theory presented here was verified
with reference to these measured values, and it is inferred that it is possible with the
aid of the theory to determine how much reinforcement is needed for limiting the
widths of cracks to acceptable values.

Chapter 12 presents considerations on the effect of the subgrade or underlayer on
the curvature behaviour of tunnels, locks and basements. It appears that in most
cases this effect is negligible, so that the curvature formulas given in this report can
be used unmodified.

The application of the theory of cracking in practice is explained in Chapter 13.
An important part of this procedure is the choice of the average value for the crack
width, which is dealt with in Section 13.2. The cracks due to deformation restraint,
as envisaged in this report, and the possible resulting corrosion of the (distribution)
reinforcement will not in principle directly affect the strength (loadbearing capacity)
of the structure. In view of this, and having regard to the development of available
repair techniques, the choice of the average crack width has been made co-dependent
on economic considerations. :

Finally, three worked examples are presented in Chapter 14.

The following general conclusions can be drawn from the research presented in this

report:

— The effect of reinforcement on crack width is greater in structures which preserve
their straightness than in curved ones, this being bound up with factors mentioned
below. The effect of reinforcement on crack width is greater according as the crack-
distributing effect of the connected floor slab is less.

— The extent to which a structural component undergoes curvature within its own
plane is found to be an important factor affecting the development of stresses and
strains. Thus, for example, in structures which remain straight the cracks are wider
than in curved ones. The linear-elastic considerations presented in the report and
the experimental research conducted — described in Chapters 6 and 8 respectively —
provide the evidence for this. The degree of curvature of a structure depends on the
flexural stiffness ratios of the rigidly interconnected parts of the structure.

— The floor slab has a crack-causing and a crack-distributing effect on the wall or
other component to which it is connected. Both these effects are greatest close to
the floor and diminish linearly to zero up to a certain distance from the floor.

- Reinforcement installed close to the floor is found to have hardly any limiting
effect on the width of cracks occurring in the vicinity thereof.



NOTATIONS

The following subscripts may be added to a symbol (here exemplified by a fictitious
quantity i):
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the quantity 7 relates to the roof of a tunnel, basement, etc.
the quantity 7 relates to the floor of a tunnel, basement, etc.
the quantity 7 relates to the wall of a tunnel, basement, etc.
cross-sectional area of longitudinal reinforcement

gross cross-sectional area of concrete

uncracked depth (height) of the concrete section of the wall
(effective) width of the concrete section

overall thickness of the concrete section

concrete cover to longitudinal reinforcement

modulus of elasticity of reinforcing steel

modulus of elasticity of concrete in tension

modulus of elasticity of concrete in compression

design value of tensile strength of reinforcing steel

design value of tensile strength of concrete

characteristic cube strength of concrete

ultimate tensile strength of concrete

bond strength between steel and concrete

ultimate bond strength

overall depth (height) of the concrete section

overall depth (height) of the part of the wall situated above the floor of a tunnel,
basement, etc.

depth (height) of the concrete section of a strip with reduced reinforcement at
the top of the wall

depth (height) of the concrete section of a strip with reduced reinforcement at
the base of the wall

moment of inertia of a section

length of a member

average crack spacing at a distance y from the floor
bending moment

normal tensile force

normal compressive force

normal tensile force at which cracking occurs

modular ratio of steel and concrete

average crack width (short duration)

permissible average crack width

number of cracks

distance to floor

length of zone with bond stresses on each side of a crack



strain

compressive strain of concrete at top of wall

strain at which the crack pattern has been completed

maximum strain of concrete

difference in strain due to shrinkage and/or temperature

restrained strain of wall at junction with floor

strain in wall at distance y from floor

normal tensile stress in steel at a crack

normal tensile stress in concrete between two cracks

relative quantity of longitudinal reinforcement in an overall rectangular
section = A,/bh,

@ expressed as a percentage

minimum required relative quantity of longitudinal reinforcement in an overall
rectangular section

relative quantity of longitudinal reinforcement in the concrete section of the
wall strips designated by 4, and A,

characteristic diameter of a plain or a deformed bar



Cracking due to shrinkage and
temperature variation in walls

1 Introduction

Choosing appropriate measures for the prevention, restriction or repair of cracking
in concrete structures constitutes a constantly recurring problem. In some cases
there may be differences of opinion as to the need for such measures, but these
differences can be avoided by applying requirements — based on technical grounds —
as to the amount of cracking that can be tolerated. It will then of course be desirable
to have some clear insight into the effect of the measures adopted. Quite often such
insight is lacking, especially in cases where cracks are caused by shrinkage and tem-
perature variation. In practice such cases are often encountered more particularly in
tunnels, shipping locks and basements. These structures mostly develop cracks in the
walls and possibly in the roof during construction (see Fig. 1). But in the service
stage, too, i.e., when the structure is in actual use, this type of cracking is not infre-
quently encountered in cantilevered balconies (see Fig. 2) and in cantilevered footways
and cycle tracks on bridges and flyovers.

A frequently employed measure in these structures is the provision of additional
reinforcement at right angles to the direction of the expected cracks. Although this
reinforcement cannot prevent cracking, it is considered capable of limiting the crack
widths to acceptable values. Opinions differ as to the effectiveness of the measure,
which is apparent, inter alia, from the fact that the percentages of reinforcement
installed for the purpose in practice range from 0,1-0,2% to more than 1,0 of the
concrete cross-sectional area.

In order to obtain a clearer picture of the effect attained, the Committee more
particularly studied the relationship between the quantity of reinforcement and the
widths of the cracks that occur. To this end, a literature research project was carried
out and experimental investigations were conducted on microconcrete models which

concreted later
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concreted first

Fig. 1. Cracks in tunnel walls.



Fig. 2. Cracking in a cantilevering balcony.

were subjected to imposed deformations. The quantity of reinforcement was varied in
order to ascertain the effect thereof upon crack distribution and crack width. Finally,
a theoretical analysis was established, enabling the quantity of reinforcement
resulting in acceptable crack widths to be calculated in advance.

2 Cracking in walls of tunnels, basements, etc.

In structures such as tunnels, shipping locks, basements, etc. is normal practice to
concrete the floor, the walls and, in certain cases, also the roof in a number of suc-
cessive stages. As a result of this working procedure, the hardening of the various
parts of the structure is subject to phase differences, as also are the development of
shrinkage and possibly the rate of temperature rise due to the release of heat of hydra-
tion. Since the parts in question are rigidly interconnected, such phase differences
give rise to stresses and often to cracking.
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Fig. 3. Schematic representation of shrinkage behaviour in a floor and in a wall subsequently
concreted onto it, and of the differential shrinkage.
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By way of example, the development of hardening and drying shrinkage in the
floor of a tunnel, lock or basement and in a wall subsequently cast onto the floor is
illustrated schematically in Fig. 3. The shrinkage is marked on the vertical, the time on
the horizontal axis. The curves indicate the shrinkage behaviour of the floor and of the
wall, respectively, in the absence of shrinkage restraint. After a hardening period ¢,
of the floor, the wall is concreted. During this length of time the floor has undergone
unrestrained shrinkage, and subsequent shortening due to this cause will not amount
to much. On the other hand, the increase in shrinkage in the wall, from that point of
time #; onwards, is much greater than in the floor. Hence a difference in shortening
between wall and floor develops, at least if the shrinkage process could take place
without restraint. The rigid interconnection between floor and wall resists this
difference in shortening, however, so that stresses are formed in these two parts of
the structure. The magnitude of these stresses will depend on the difference in shor-
tening and on the strain and flexural stiffness ratio of the interconnected parts.
Tunnels, locks, etc. generally undergo a certain amount of curvature in consequence
of the differential shortening.

Broadly speaking, tensile stresses develop longitudinally in the walls, and com-
pressive stresses in the floors. The walls often display vertical cracks due to the
tensile stresses. This is schematically exemplified in Fig. 4. The cracks are generally
most numerous in the proximity of the floor but they are more finely distributed
there, and the average crack width is smaller. Just above the construction joint
connecting the floor and the wall the cracks in the latter are indeed often invisible.

A phenomenon similar to that of differential shrinkage may occur in consequence
of temperature influences, e.g., if the temperature in the wall due to heat of hydration
becomes higher than that in the floor joined to it and subsequently goes down to
ambient temperature. Particularly in thick walls, such as those of tunnels and locks,
this phenomenon is more important than that due to shrinkage. By way of example,
Fig. 5 shows the temperature curves for a wall and a floor respectively. Directly after
concreting, the temperature in the wall rises rapidly and, in thick walls, sometimes
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Fig. 4. Cracking due to restrained shrinkage in a wall concreted onto a floor that had already
hardened.
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Fig. 5. Temperature-time relation (schematic) in a thick tunnel wall and in a tunnel floor, reckoned
from the time when the wall was concreted onto the floor.

reaches values above 50°C. The increase in length (thermal expansion) associated
with this rise can develop virtually stress-free, since the concrete at this stage is stil
plastic or is at most in its first stage of hardening, when the modulus of elasticity is
still very low. During cooling, which generally begins after one or two days and
which proceeds at a much slower rate than heating, the concrete has meanwhile
hardened more and now has a much higher modulus of elasticity, with the result that
restraint of deformation gives rise to such high tensile stresses that cracking occurs in
the wall. These cracks are often already present at the time of formwork removal. In
the concrete walls and floors of dwellings built with the aid of so-called tunnel forms,
in which accelerated hardening of the concrete has been achieved by heating, it is not
unusual to find cracks which likewise belong to the category of temperature cracks.
These, too, are often already present at the time of removing the formwork.

3 Cracking in cantilevered balconies, etc.

Cracking occurs after a time in some structures because parts of them are unequally
affected by external conditions or respond with a difference in time lag to such
conditions.

Thus, in consequence of unequal external conditions, cracks may occur in can-
tilevered balconies in the service stage (see Fig. 2). This is because the balcony
structure is situated partly inside and partly outside the building. The cantilevered
outer part tends to vary in length under the influence of the daily variations in
temperature, whereas the inner part opposes this because its temperature varies
much less. The deformations of the cantilevered outer part are therefore resisted, so
that stresses occur which may result in cracking perpendicularly to the outer edge.
Although shrinkage also takes place, the differences in shrinkage remain small, since
the whole balcony structure was concreted in a single operation.

Cracking similar to that described above also often occurs in cantilevered footways
and cycle tracks. These cracks are likewise due to restrained deformations, but the
latter are now not caused by a difference in external conditions, but to a difference in
the (rate of) response to these conditions. More particularly, this difference is due to
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the fact that a cantilevered member of usually quite light or slender construction is
rigidly connected to a heavy main structural member. Under the influence of solar
radiation, for example, the lighter member will be heated up more rapidly and also
cool more rapidly than the main structural member, so that the temperature behaviour
in the respective parts of the structure will be subject to a difference in phase and
amplitude. In consequence of this, there occurs restraint of deformation, resulting in
the above-mentioned effects.

4 Consequences of cracking

Besides aesthetic objections, objections of a technical nature may necessitate con-

trolling the cracking process in structures of the kind referred to in the foregoing

chapters. These technical objections are:

— increased water permeability of the wall, a factor which is especially important in
tunnels and basements;

— increasing hazard of corrosion of the reinforcement, which is a factor to reckon
with in many kinds of structure.

Since a wall cracks through its entire thickness, its permeability may become quite

considerable. Even small amounts of water seeping through cracks will moreover

increase the corrosion hazard.

In the Netherlands, requirements relating to the restriction of crack widths are
mainly concerned with the danger of corrosion. Although the crack width is not the
only factor affecting the occurrence of corrosion of the reinforcement — the concrete
cover and the density of the concrete also play a part — it is nevertheless realistic to
impose limiting values. Corrosion reduces the effective cross-sectional area of the
reinforcement. Besides, corroded bars may cause spalling of the concrete cover, which
is aesthetically unacceptable and accelerates the corrosion process. Additional
objectionable consequences may be: the need to remove inleaked water by pumping,
and slipperiness due to freezing of the water. It is therefore desirable to impose limits
on the width of cracks.

5 Measures for the restriction of cracking

5.1 Additional reinforcement

The use of additional reinforcement to limit the width of cracks is a measure which,
in the Netherlands, is applied often more or less as a matter of course. The fact that in
the Netherlands code of practice for concrete construction (VB 1974) a direct rela-
tionship is indicated between reinforcement and crack width has undoubtedly con-
tributed to this approach.

The formulas for the calculation of crack width which are given in that code relate
to cracking caused by (external) loads. When the width has been calculated with the
aid of these formulas, the effect, if any, of shrinkage and/or temperature variations
upon the crack width can be allowed for. The cracks with which the present report is
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concerned, however, are not caused by (external) loads, but by shrinkage and/or
temperature variations. This being so, the required quantity of reinforcement tends to
be determined in widely varying ways. Sometimes the quantity is small because cost
aspects play a dominant part, in other cases a large quantity is used in order to comply
with stringent crack-restricting requirements.

In general, it can be stated that the quantity of reinforcement provided with a view
to restricting crack formation due to shrinkage and/or temperature variation is
determined by subjective judgment of by intuition, this being in part due to the absence
of a clear-cut method of analysis. Because of this, too, opinions differ with regard to
the effect achieved by this reinforcement. The widely varying percentages of steel
employed in practice reflect these differences. For the sake of completeness it should be
mentioned (see also Chapter 1) that cracking cannot be prevented by reinforcement,
but that the judicious use of reinforcement will limit the width of the cracks.

5.2 Technological and other arrangements

Since this report is more particularly concerned with the results of research into the
relationship between reinforcement and cracking, other measures for the restriction of
cracking will only be briefly considered here.

For structures in which cracks develop in consequence of the manner of construc-
tion, measures which result in limiting the difference in shortening between two
component parts are most effective. Such measures which limit the difference in short-
ening are, for example:

— Reduction of the cement content. The amount of heat evolved by hydration is
reduced in consequence, and so is the shrinkage (for equal water-cement ratio). The
cement content cannot be reduced indefinitely, however, because other factors also
play a part, such as the required strength of the concrete and the protection of the
reinforcement from corrosion.

— Using a slow-hardening cement. This causes the heat of hydration to be evolved
more gradually, so that it can more effectively be dissipated to the surroundings. A
slowhardening cement moreover reduces shrinkage.

— Using less water in the mix. The lower limit of the water content is determined by
the required workability of the fresh concrete. The addition of a plasticizer can
improve workability.

— Concreting the two parts of the structure in a single operation or with the shortest
possible interval of time between them.

— Retarding the drying shrinkage of the part concreted first. This can be done by
keeping it wet or by using a curing compound. In the case of thick walls cast onto
floors of tunnels or locks the effect of drying shrinkage is, however negligible in
relation to the shrinkage due to heat of hydration.

— Reduction of the deformations by cooling the part concreted last. Cooling should
be applied for the first few days after the concrete has been placed. It prevents
excessive rise in temperature due to the heat of hydration.

14
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— Applying a prestress, in successive stages, to the part concreted first. Such prestres-
sing, which should be applied after the completion of the part concreted last,
suppresses the difference in shortening between the two parts. With this procedure
it is possible, in principle, to obtain a (practically) uncracked structure.

Cracking caused by external factors cannot be prevented by the above-mentioned

measures, except prestressing.

In the case of cantilevered balconies, footways and cycle tracks it is possible to
reduce differences in shortening by means of thermal insulation, provided that the
cantilever lengths are not too large. Crack widths can also be limited by the provision
of expansion joints (artificial cracks).

6 Stress distribution in a wall in the uncracked stage

Various investigators have studied the stresses and strains occurring in the uncracked
stage in a wall connected to a floor. In all cases they based themselves on linear-
elastic behaviour, either adopting a purely analytical approach or having recourse to
research on linear-elastic models.

SCHLEEH [4] analysed the stress distribution in a wall for various ratios of wall
length and height. He also investigated the effect of the development or non-develop-
ment of curvature of the wall. In Fig. 6, for a wall with a ratio //h = 4, the calculated
distribution of the principal tensile stresses and the normal tensile stresses has been
plotted for the case where the wall cannot curve (i.e., remains straight). The stress
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Fig. 8. Stress distribution in the cross-section in the middle of the wall, in the elastic range, for
various values of //h.
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distribution in the case where the wall, likewise with //h = 4, can freely undergo
curvature is indicated in Fig. 7.

Particularly in the wall which remains straight there occur large “‘disturbance
areas” at the ends, i.e., the principal tensile stress directions deviate considerably
from the horizontal in these areas, so that cracks extending in a direction deviating
from the vertical can be expected to develop here. Another notable feature of this wall
is that, for a ratio //h = 4, there are no constant tensile stresses over the height of the
cross-section in the middle of the wall. For EI,,, = such stress conditions are
approximately attained only for higher values of //A namely, of about 8-10 (see
Fig. 8).

For the case where El,,, # o KawaMmoTo [5] determined the stress distribution
with the aid of photoelastic analysis. A tensile force was applied to a wall made of
synthetic resin and was “frozen in”; the wall was then glued to the floor. After the
glue had set, the force was “thawed out”. As a result of this the wall strove to shorten,
but was prevented by the floor. The results of this research are also included in Fig. 8.

Similar investigations were conducted by CARLSON and READING [6] and their
results are likewise given in Fig. 8.

7 Curvature theory

From the linear-elastic investigations described in Chapter 6 it emerges that the
curving of the structure has a considerable effect on the resulting stresses and strains
(see Figs. 6 and 7). The degree of cracking and the crack widths can be presumed to
be closely associated with this. Hence it is, in connection with possible crack-restric-
ting measures, important to gain insight into the magnitude of the curvature that the
structure can be expected to develop. On the basis of the interaction of forces between
wall and floor, formulas for calculating the curvature have accordingly been derived.

At the junction between floor and wall the shear forces S and bending moments M
will occur at the ends in consequence of the restraining action of the floor. If the
structure is not subjected to external loading, these forces and moments will be of

such magnitude as to satisfy three conditions (see Figs. 9 and 10):

— there is horizontal equilibrium between the normal forces in the structural parts
situated below and above the floor-to-wall junction respectively;

— the curvatures of the structural parts below and above the junction are equal;

— at the junction the sum of the shortening of the floor and the lengthening of the
wall is equal to the difference in strain A4¢, between wall and floor in the case of
unrestrained deformation.

With reference to the state of strain in the wall, floor and roof (if any), as indicated in

Fig. 10, it is possible to establish equations for the normal force, curvature and strain

occurring in each of these parts at the junction. Next, on the basis of three above-

mentioned conditions, the relations between the quantities in the equations can be
indicated and the unknowns solved. In establishing the equations it was presumed
that the roof slab (if any) was concreted simultaneously with the walls and would
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Fig. 10. Assumed state of deformation.

therefore strive to undergo the same amount of shortening as the walls. For the sake
of completeness, the effect of the reinforcement in the roof (@,) and in the floor
(w,) has been incorporated in the equations. In most cases, however this effect is
negligible, so that the calculations can be based on @y = 0 and @, = 0. The formulas
which have been derived are presented in Appendix A, where the intermediate stages
of their derivations have been omitted, however.

Since the formulas are unwieldy, a simpler procedure was sought. It was found
that in many cases the following can be assumed:
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Table 1. Strains occurring in some concrete structures, calculated with the formulas given in
Appendix A*

strain strains
dimensions difference in the wall
d, b, d, he dy by Ae, &y Eyw
structure m (m @ (m @m (m (%) (%0 (%0)

1 0,30 290 0,25 2,85 025 240 0,2 —0,045 0,182
0,3 —0,052 0,276
0,4 —0,060 0,369
0,5 —0,068 0,462
0,6 —0,071 0,561
2 0,20 3,00 0,20 2,50 - - 0,2 —0,045 0,188
0,3 —0,052 0,283
0,4 —0,055 0,374
0,5 —0,065 0,474
0,6 —0,073 0,569
3 0,20 3,00 0,20 2,50 0,20 2,60 0,2 0,000 0,178
0,3 0,049 0,283
0,4 0,053 0,374
0,5 0,059 0,468
0,6 0,062 0,563
4 0,40 6,00 0,40 2,50 0,20 5,20 0,2 0,009 0,179
0,3 0,000 0,272
0,4 0,044 0,368
0,5 —0,011 0,457
0,6 —0,016 0,549
5 0,40 6,00 0,40 2,50 0,40 5,20 0,2 0,050 0,187
0,3 0,087 0,279
0,4 0,049 0,370
0,5 0,049 0,462
0,6 0,048 0,554
6 0,50 6,00 0,50 4,00 - - 0,2 —0,044 0,183
0,3 —0,049 0,277
0,4 —0,054 0,370
0,5 —0,060 0,463
0,6 —0,066 0,556
7 0,50 6,00 0,50 4,00 0,50 5,00 0,2 0,049 0,187
0,3 0,068 0,277
0,4 0,075 0,371
0,5 0,047 0,465
0,6 0,046 0,558
8 1,29 18,60 3,00 7,34 1,20 15,60 0,2 —0,004 0,168
0,3 0,062 0,269
0,4 0,046 0,362
0,5 0,043 0,452
0,6 0,040 0,542
9 0,60 29,50 3,50 5,70 0,70 26,00 0,2 0,040 0,152
0,3 0,046 0,270
0,4 0,057 0,364
0,5 0,063 0,459
0,6 0,043 0,555
10 1,10 20,30 3,00 6,20 09 17,30 0,2 —0,002 0,169
0,3 0,060 0,270
0,4 0,046 0,363
0,5 0,044 0,453
0,6 0,042 0,543

* the following values have been used in the formulas: n=7, @,=15 mm, fo,=1,5 N/mm?,
®w=0,005, ®©4=0,0 and ®,=0,0



— at the wall-to-floor junction:
&, = 0,94¢, (7-1)
— at the top of the wall:
g, = 0,14e, (7-2)

These values were adopted after the curvature formulas given in Appendix A had
been applied to ten structures with specific dimensions (see Table 1). Values of Ae,
ranging from 0,029 to 0,069, were introduced into these calculations, the results of
which are likewise given in the table.

Since the ten structures envisaged in the table constitute a reasonably good average
of structures occurring in actual practice, the range of validity of the formulas (7-1)
and (7-2) is a faily wide one.

In practice it can be verified, by comparison with the dimensions listed in Table 1,
whether any particular structure is within the range of validity. If not, the curvature
formulas given in Appendix A will have to applied.

8 Experimental research

8.1 Introduction

The linear-elastic approach and the investigations on linear-elastic models, as de-
scribed in Chapter 6, provide only a broad outline of information on the crack
development process. Since the effect of the reinforcement becomes manifest only in
the cracking stage, experimental research is needed.

For this purpose 18 model walls were constructed from micro-concrete, i.e.,
concrete with scaled-down granulometric composition (see Fig. 11). These models
were cast against a rolled steel section which was under compressive prestress (and
had thus undergone a shortening deformation) and which represented the floor. After
the concrete had hardened, the prestress in the steel section was reduced in stages, so
that a certain elongation was imposed upon the concrete wall.

The “substitution” of a rolled steel section for a reinforced concrete floor does not,
in principle, bring about any change in the behaviour of the wall; the stress and crack-
ing phenomena are the same as in a wall cast onto a reinforced concrete floor. A steel
section, however, has the advantage that no shrinkage and creep effects occur. The
tests do not simulate the situation where the temperature and/or the shrinkage varies
through the thickness of the wall, but the test results can be expected to be reasonably
applicable to such cases as well. In practice, tunnel walls, etc., have been found nearly
always to have cracks which go all the way through them. Surface cracks, which could
more particularly be expected in the case of non-uniform temperature and shrinkage
distribution through the wall thickness, actually very rarely occur.
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Fig. 11. Cross-sections of the wall models.

8.2 Test series

In all, three series of wall models were tested. In series I and II the occurrence of
curvature was prevented, whereas in series III it was not. Series I was performed in
duplicate in order to verify the suitability of the testing technique and in order to
obtain a (rough) indication of the effect of reinforcement on crack width. The chosen
dimensions of the walls corresponded approximately to 1/10 of those of a tunnel wall
and to 1/5 of those of a basement wall.

The wall models comprised in this experimental research are summarized in

Table 2. Summary of the wall models investigated (cross-sectional dimensions 60 mm x 375 mm)

longitudinal reinforcement

per wall face

bar
length B spacing Dgw
test series wall model (mm) (mm) (mm) %)
I* 1 3000 - - 0
structures 2 3000 2,5 22 0,75
remaining straight 3 3000 3,0 16 1,50
11 4 2500 2,0 43 0,25
structures 5 2500 1,4 21 0,25
remaining straight 6 2500 3,0 47 0,50
7 2500 1,4 10 0,50
8 2500 2,0 14 0,75
9 2500 2,5 22 0,75
10 2500 2,0 21 0,50
11 2500 2,0 21 0,50 **
III 12 2500 - - 0
structures 13 2500 1,4 21 0,25
undergoing 14 2500 1,4 10 0,50
curvature 15 2500 2,5 22 0,75

* performed in duplicate
#* no reinforcement in 4 of wall depth (height) adjacent to rolled steel section
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Fig. 12. Model reinforcing bars (actual size).

Table 2. In the series of tests the reinforcement percentage in the wall was varied and
also, for each percentage the distribution of the reinforcing bars. The reinforcement
consisted of deformed model bars of steel grade FeB 400 HW (f, = 400 N/mm?).
Some of these bars of various diameters are shown in Fig. 12. The micro-concrete had
an average compressive strength of about 30 N/mm?.

The wall models in series I and Il were cast symmetrically against a rolled steel

Fig. 13. General view of the wall models in test series I.

23



Fig. 14. Wall model 14 in test series III.

section (HE 500 A). Thanks to the symmetrical arrangement, all possibility of
curvature was obviated. The wall models in series 11 were cast against one side of a
rolled steel channel section (UNP 100), so that in this case curvature could develop.
These two arrangements are shown in cross-section in Fig. 11. As already stated, the
rolled steel section had been given a compressive prestress and had thus undergone
preliminary shortening before the wall models were cast onto them. The shortening
strain was about 0,075% (steel stress about 160 N/mm?). Before the concrete was
cast, the surface of the steel section coming into contact with it was treated with a
pneumatic-powered chisel. A comparative investigation had shown that, as a result
of this treatment, the bond achieved would be approximately equal to that of con-
crete to concrete in normal construction practice. Some more wall models before the
start of testing are shown in Figs. 13 and 14.

8.3  Method of testing

Prior to testing, i.e., before the compressive prestress on the rolled steel sections was
released, the wall models were measured in order to ascertain the amount of shrinkage
deformation that had already occurred. By measuring not only the wall models
themselves, but also dummy models without attached rolled steel sections, it was
deduced how much restraint of shrinkage shortening had occurred in the wall models.
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The degree of cracking was also determined. Next, the wall models were tested by
releasing the prestress in stages. After each stage of prestress reduction, deformation
measurements were performed and the positions of the cracks were ascertained. In
test series 1II the deflection and overall curvature were, in addition, measured after
each stage.

8.4 Test results

8.4.1 Deformations

The shrinkage before testing was ascertained at 0,030%, 0,026% and about 0,020% for
the wall models of series I, IT and III respectively. In series I and II the restraint of
shortening was found to be uniformly distributed over the full height of the wall; in
series III this restraint was almost complete near the rolled steel section and di-
minished over the height of the wall. In this last-mentioned test series the curvature
that occurred was of such magnitude that the shortening at the top of the wall
exceeded the shrinkage, i.e., a compressive zone developed there. The elongation
measured after each stage of prestress release is listed for series I and II in Table 3.

Table 3. Summary of the strains measured in the walls in series I and II, per loading stage

strain (%o)

loading stage series I series 11

0 0,30 shrinkage 0,26 shrinkage
1 0,35 0,31

2 0,39 0,35

3 0,44 0,40

4 0,48 0,44

5 0,55 0,51

6 0,62 0,58

7 0,70 0,66

8 0,79 0,75

Table 4. Summary of the strains measured in the walls, close to the junction with the rolled steel
section, in series III, per loading stage

strain (%o)

loading stage wall model 12 wall model 13 wall model 14 wall model 15
0 ca. 0,20 shrinkage ca. 0,20 shrinkage ca. 0,20 shrinkage ca. 0,20 shrinkage
1 0,26 0,25 0,19 0,23
2 0,30 0,32 0,23 0,30
3 0,34 0,40 0,28 0,38
4 0,42 0,46 0,33 0,44
5 0,52 0,53 0,40 0,50
6 0,60 0,61 0,48 0,57
7 0,74 0,72 0,57 0,65
8 0,82 0,79 0,70 0,75
9 0,90 0,87 0,75 0,83

10 0,99 0,94 0,86 0,89
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Fig. 15. Measured deformation distribution in the wall as a function of the distance to the steel
section, for some loading stages, in wall model 14 in test series IIL.
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Fig. 16. Curvature as a function of restrained shortening at the junction between the wall and the
steel section, in the wall models in test series III.
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The final values measured were 0,079%; for series I and 0,075% for series II. Such
high values, which do not occur in actual practice, were intentionally aimed at in
these tests, in order to avoid as much as possible having to extrapolate the results
obtained. In series III, when the prestress was released, the elongation of the wall
close to the rolled steel section increased (see Table 4), but the curvature became so
much greater that a compressive zone with increased compressive strain continued in
existence at the top of the wall models. This occurred even in the wall model con-
taining no longitudinal reinforcement. As a representative example the deformation
distribution of wall model 14 in series 11I is presented in Fig. 15. It appears that the
strains decrease linearly over the height of the wall. The curvature distribution in the
walls of series III has been plotted in Fig. 16, which also includes the curvature for
the extreme case of an uncracked wall joined to an infinitely flexible floor. It appears
from this diagram that the behaviour of the wall models under investigation is rather
close to this extreme case and that the reinforcement hardly has any effect on the
curvature.

no longitudinal reinforcement

| ’ o e,
N H/ MH | J?s,j 15 |/

a. wall model 1 of test series I

reinforcement ¢ 3,0-16
} !

l\ 1 \\ “ (;] o e
S \&i (HWL‘ MQM)H?'L Wby | o

L

b. wall model 3 of test series I

reinforcement ¢ 2,5-22
Tow = 0,75 %

NN \\ l, \,i{ (] e is{ ;/‘///{// | e

c. wall model 9 of test series II

reinforcement ¢ 1,4-21
Tow= 0,25 %

\m,‘x{mg, §H ;in M( \Mw MM, [

d. wall model 13 of test series II

reinforcement @ 2,5-22
Tow=0.75 %

/ Ew= 0,89 %o
My /

RARAERRIARATIN

e. wall model 15 of test series Il

Fig. 17. Crack patterns of some wall models after complete release of the prestress in the steel section.
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8.4.2 Cracking

Fig. 17 shows the crack patterns of some of the models investigated, after complete
release of the prestress. Both in the non-curved walls of series I and II (Figs. 17a,b,c)
and in the curved walls of series III (Figs. 17d,e) the development of cracking pro-
ceeded in a regular manner. By way of example, Fig. 18 illustrates the development of

Fig. 18. Development of the crack pattern in wall model 14 in test series III.
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the crack pattern in wall model 14 (series III) at four stages of loading. It appears that
the cracks steadily increase in number (particularly in the direct vicinity of the rolled
steel section) and in length. This latter effect was to be expected on the evidence of the
measured deformations, inasmuch as the cracks extend to the level where the strain is
equal to the ultimate strain (elongation at fracture) of the concrete. This level is higher
up in the wall according as the elongation of the rolled steel section increases (see
Fig. 15).

The effect of the reinforcement is clearly manifest in the crack patterns, more
particularly in the wall models in series I and II (values of @, above approx. 0,5%).
For low reinforcement percentages this effect is less pronounced or indeed absent.
The effect of the rolled steel section (the floor) on cracking is also clearly manifest:
close to the steel section the number of cracks is greater than at some distance from it.
At the junction of the wall and the steel section there were a very large number of small
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Fig. 19. Average crack spacing as a function of the distance to the steel section for some loading
stages, in wall models 7 and 14.
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cr_acks. By way of illustration, the average crack width has been plotted as a function
of the distance to the steel section for wall models 7 and 14 in Fig. 19.

8.4.3 Crack width

Whether or not the wall could develop curvature was found to be of major influence
on the width of the cracks. In the non-curved walls of series Iand II the average crack
width* increased steadily with increasing distance to the rolled steel section (Fig. 20).
The largest value occurred at the top of the wall. On the other hand, in the walls of
series. ITI the average crack width initially increased in the upward direction, reached
its largest value at a distance of about 200 mm from the steel section, and then
decreased (Fig. 21). In Table 5 the largest values for the average crack widths are
summarized for all the wall models. This table also gives the calculated widths. They
will be further considered in Chapter 10.

In the following comparisons between the measured largest values the correspon-
ding distances y to the rolled steel section have not been taken into consideration,
since this is of no interest with regard to these comparisons.

For all the values of @, and e, that were investigated it appears that the crack
widths and the effect of the quantity of reinforcement upon these widths are appre-
ciably smaller for curved models than for non-curved ones. For example, non-curved

1,0 — 1,0 1,0
Tow=0% Wow = 0,25% Tyw =075 %
ew = 0,6 %o Ew=0,b%o Ew = 0,4%o
0,8 0,8 0,8
06— 0,6 0,6
0,4 0,4 0,4
3
52 =2 ~<
0,2 0,2 / 0,2
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
— = w (102 mm) —— w (1072 mm) — > w (10"2mm)
wall model 1 wall model 5 wall model 9

Fig. 20. Average crack width as a function of the distance to the steel section, in some walls in test
series I and II.

* The concept “average crack width” is further explained in Chapter 10.
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Fig. 21. Average crack width as a function of the distance to the steel section, in wall models 12
and 14 in test series III.

Table 5. Summary of the measured and calculated maximum values of the average crack widths

reinforcement Ae, =0,4%, Ae, =0,6%, Ae, =0,8%,
bar
wall Dy Spacing @o,  Wem  Woer  Woer  Weem  Woer  Woer  Wiem  Wher  Wier
series model (mm) (mm) (%) (mm) (mm) Weem (mm) (Mm) wg, (mm) (mm) wg,
1 1 0 0,174 0,150 0,86 0,342 0,225 0,66 >0,405 0,300 <0,75
2 2,5 22 0,75 0,042 0,060 1,43 0,050 0,060 1,20 0,050 0,060 1,20
3 30 16 1,50 0,016 0,019 1,19 0,024 0,019 0,79 0,027 0,019 1,20
II 4 2,0 43 0,25 0,110 0,134 1,22 0,184 0,206 1,12 0,195 0,279 1,43
5 1,4 21 0,25 0,149 1,30 0,87 0,273 0,201 0,74 0,259 0,273 1,05
6 3,0 47 0,50 0,106 0,127 1,20 0,125 0,184 1,47 0,138 0,184 1,33
7 1,4 10 0,50 0,077 0,072 0,94 0,077 0,072 0,94 0,105 0,072 0,69
8 20 14 0,75 0,039 0,051 1,31 0,042 0,051 1,21 0,069 0,051 0,74
9 2,5 22 0,75 0,045 0,067 1,49 0,054 0,067 1,24 0,057 0,067 1,18
10 20 21 0,50 0,090 0,113 1,26 0,114 0,113 0,99 0,132 0,113 0,86
11* 20 21 0,50 0,094 0,113 1,20 0,110 0,113 1,03 0,128 0,113 0,88
111 12 0 0,022 0,022 1,00 0,050 0,045 0,90 0,075 0,069 0,92
13 1,4 21 0,25 0,019 0,020 1,05 0,037 0,040 1,08 0,053 0,063 1,19
14 1,4 10 0,50 0,015 0,018 1,20 0,026 0,037 1,42 0,035 0,058 1,66
15 2,5 22 0,75 0,019 0,018 0,95 0,028 0,036 1,29 0,042 0,057 1,36

* no reinforcement in § of wall depth (height) adjacent to rolled steel section
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wall models 6, 7 and 10 the average crack width for Ag, = 0,04% and @q, = 0,5%
found to be only half that in the similar model without reinforcement. For a larger
difference in strain this ratio is even greater (for 4e, = 0,06 and @o, = 0,5% the
crack width ratio with respect to the unreinforced model is about 1:3,5). On the
other hand, in the curved wall models the effect of the reinforcement for Ae, = 0,04%
is negligible. In the case of a larger strain difference some effect of reinforcement is
indeed discernible, but it remains much smaller than in non-curved wall models.

8.4.4 Maximum crack width

In connection with the corrosion hazard of the reinforcement not only the average
crack width, but also the maximum crack width*, is of importance. The tests have
shown that the ratio between maximum and average crack width in all the test
specimens was about 1,8, with a 5%, probability of this value being exceeded.

8.5 Conclusions

The results of the tests do not provide a direct answer to the question as to how great
an effect the longitudinal reinforcement has upon the width of shrinkage and tempera-
ture cracks. In fact, the cracking process is affected by a number of factors which
are difficult to separate from one another. An inspection of Table 5 indicates these
factors to be:

— whether or not a curvature can develop;

— the magnitude of the deformations suppressed by restraint;

the degree of curvature;

— the quantity of reinforcement;

— the distribution of the reinforcement.

Particularly the development or absence of curvature is found to have a considerable
effect. In practice there is a wide variety of structures with different amounts of curva-
ture, so that it is not reliably possible to make direct use of the information yielded
by the tests. First, a theoretical examination of the whole process of curvature and
cracking is needed. The method of curvature calculation given Chapter 7 already
makes a contibution towards this. In addition, in Chapter 9 a theory of cracking has
been developed which ties up with this curvature analysis. For the sake of com-
pleteness it is to be noted that the experimental research and the theory of cracking do
not provide any indication as to the maximum crack width that can be expected to
develop in the long run. This aspect will be further considered in Chapter 11. The
effect of the subsoil on the curvature of tunnels, basements, shipping locks, etc, will be
examined in Chapter 12.

|

* The concept “maximum crack width” is further explained in Chapter 10.
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9 Theory of cracking
9.1 General

In this chapter a theory of cracking is described, on'the basis of which the average
crack width which is expected to occur in a wall can be calculated. The state of strain
of the wall is assumed to be known, e.g., from a.curvature analysis as outlined in
Chapter 7. In this theory of cracking the wall is conceived as a member restained at
both ends and striving to undergo a certain deformation.

The floor exercises an influence on the cracking that occurs in the wall. It is pre-
supposed that this influence decreases linearly with increasing distance to the floor.
The procedure consists in first calculating the crack width without taking the effect of
the floor into account. Next, the effect of the floor is added.

9.2 Cracking in an end-restrained reinforced concrete member

A reinforced concrete member which is restrained at its ends and which strives to
shorten, e.g., in consequence of shrinkage, will be loaded in tension and may crack.
The first crack is formed at the weakest section when the tensile strength of the con-
crete is exceeded. The extensional rigidity of the member is thereby reduced, and the
tensile force is therefore also reduced. If the member then strives to shorten still more
the tensile force increases again. The next crack occurs when the tensile strength of
the concrete is once again exceeded. During this process, conditions relating to the
equilibrium of forces and to deformations are applicable. On the basis of these con-
ditions it is possible to derive formulas which describe the cracking process. Consider
the element shown in Fig. 22; it has a gross concrete cross-sectional area 4,, a length
L and a reinforcement 4, uniformly distributed over the concrete cross-section. In
the case of complete restraint of the strain ¢ the normal force in the as yet uncracked
member (¢ < g,) is:

N =E A {1+(n—1o}e 9-1)
where:

n = modular ratio of steel and concrete

With progressive shortening strain ¢ the maximum strain ¢, in the concrete will be
attained and the first crack will occur. The normal tensile force N, at which cracking
takes place is therefore:

Ny = A{l +(n— 1)@} f,, 9-2)

Sfou = uniaxial ultimate tensile strength of the concrete

where:

Nj is the largest force that can occur during the development of the crack pattern.
This force will always be attained just before each successive crack is formed. The
number of cracks will depend on the magnitude of the restrained shortening strain.
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Fig. 22. Schematized distribution of the stress and deformation in a reinforced concrete member
restrained at the ends.

For a particular value of this strain, designated as &, the crack pattern will have
become fully developed, i.e., further shortening will not give rise to any more new
cracks. Just before a crack is formed the steel stress at the cracks already present in
the concrete is:

_1+(n—Da
- @

Jou (9-3)

as

On each side of a crack, part of the tensile force in the steel is transmitted through
bond to the concrete, until — at some distance from the crack — a point is reached
where the two materials fully co-operate again. The bond strength between the
reinforcement and the concrete in the transmission zone can justifiably be assumed
constant. The ultimate value of the bond strength is fy,. The following formula for the
length of the zone with bond stresses on each side of a crack can be derived:

_Zx O, 1-0 9-4a
S S S o (9-4a)
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or:
_ gkfbu . 1-o _
T, o (5-4)

The values of ¢, and z are therefore independent of ¢, at least in the stage while the
crack pattern is developing. This incomplete crack pattern occurs in practice nearly
always in the case of imposed deformations due to shrinkage and/or temperature
variations*. The average crack width is obtained from:

2 1—o
w =S 0z = Zulougyy y1yzy 20 9-5)
2Ea 4Eafdu w

or, approximately (rounded off):

2

= Zifon e (9-5a)

4E, fq.®
This width w of the cracks already present will occur just before the formation of
each subsequent crack. Immediately after each successive new crack is formed, the
crack width decreases. This case is therefore not determinative and will not be further
considered here.
Besides the crack width, the anticipated number of cracks as a function of ¢ may be of
importance. For a member subjected to tensile force acting at its ends this follows
from the condition that the average strain of the reinforcement is equal to .

If X is the number of cracks just before the formation of the next crack, i.e., on
attainment of the maximum strain ¢, of the concrete between two cracks, the following
expression is valid (see Fig. 22):

X<2"S - 8u>2+8uL =¢L

a

Substitution of the formulas (9-3) and (9-4) into this expression gives:

L _ 3  (1-0)

- = 9-6

X 4E,f,,@° e—¢, (9-6)
and then with the aid of formula (9-5a):

L_ (-

b A r—y (9-6a)

* If the deformations are caused by external loads, a complete crack pattern will generally develop.
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where L/X can be conceived as an average crack spacing. From formula (9-6) it
appears that, for equal value of ¢, the number of cracks is proportional to the length of
the member. In Fig. 23 the average crack width and average crack spacing have been
plotted as functions of &. As already stated, the strain &, at which the crack pattern is
complete is not normally attained in practice.

The crack pattern is complete when the crack spacing has become less than 2z.
When this occurs, there is no longer sufficient bond length available to enable the
reinforcement to transmit so much tensile force to the concrete that the maximum
strain g, will again be attained. The magnitude of &, follows, with L/X = 2z, from:

— 1+(2n_1)6£}i/\, fbu _ .fbu (9_7)

2n® E, ~ 2n@E, 20E,
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9.3  Effect of the floor upon cracking

It is difficult to derive theoretically the effect of the floor upon the crack pattern and
crack width occurring in the wall. For this reason, merely the trends that emerged
from observations during the execution of the tests will be indicated here, as well as
results of the linear elastic considerations described in Chapter 6.

With reference to the test results (see Figs. 17, 18 and 19) it can be stated that the
number of cracks in the wall increases with decreasing distance to the floor. Directly
above the floor there are very numerous small cracks. A schematized crack pattern is
presented in Fig. 24. The spacing of the so-called primary cracks calls for some com-
ment on the basis of research by SCHLEEH [4] and others. Thus it emerges from Fig. 8
for non-curved walls that for //h > 10 the stress in the middle cross-section of the
wall remains constant over the entire height. This means that for I/ = 10 an imposed
deformation equal to the maximum strain ¢, of the concrete will produce a continuous
vertical crack (extending the full height) in the middle of the wall. On the assumption
that cracking close to the floor has little effect on the stresses near the upper edge, it
can be inferred from the values indicated in Fig. 8 that in the middle of a wall with
I[h = 4 there will occur a continuous crack when the strain becomes equal to:

e = I)O:—Zg—au = 1,77¢,

In walls with //h = 1,0-1,5 there are no tensile stresses at the upper edge, so that no
continuous cracks can develop in such walls. Broadly speaking, it can be assumed that
for walls that remain straight the expected spacing of the primary cracks, due to the
effect of the floor, will be equal to about 1,0-1,5 times the height of the wall. This
assumption is also valid for intermediate cracks, on the understanding that the length
must then be conceived as “wall height” (see Fig. 24). The assumptions are, in the
main, confirmed by the experimental results. Fig. 19 gives the measured average crack
spacing in the wall models 14 and 7 as a function of the distance to the floor. The
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Fig. 24. Schematized crack pattern due to the effect of the floor.
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theoretical lines for 4/ = 1,5 y and 4/ = 1,0 y, likewise shown, are found to be in
reasonably good agreement with the measured values. The deflection of the lines to
the vertical direction, as observed in the case of wall model 7, indicates that the forma-
tion of cracks in that range is determined by the reinforcement and no longer by the
floor. It is apparent from Fig. 19 that also for the curved wall the theoretical lines are
in good agreement with the measured ones. On the evidence of the foregoing it can be
stated that the reducing effect that the floor has upon the crack spacing 4/ decreases
linearly with the distance y to the floor. For convenience the following will be adopted
to express the effect of the floor:

Al, =y (9-8)
According to Fig. 19, on applying this equation in the case of small strain differences
Ae,, the values thus obtained for the theoretical crack spacing are too small. However,
as will be shown in Chapter 10, the crack widths calculated in this way are in good
agreement with the measured values.

To summarize, it can therefore be stated that in the vicinity of the floor the average
crack spacing 4/ is equal to y. This spacing is determined by the effect of the floor and
not by any reinforcement that may be present in the wall. Nevertheless a certain
amount of stress will exist in the reinforcement, and this stress will be greatest at a
crack. In the following, formulas have been derived with which the steel stress at a
crack, determined by the floor, can be calculated.

If in a wall the crack spacing 4/, at a distance y from the floor is equal to y, for an
average strain ¢,, then the following equation applies to the reinforcement (see Fig. 22):

/
z @_ﬁz)Jrﬁy:ygy (9-9)
E, E,) E,

a

where, in accordance with formula (9-3), we may put:

g @ I~
“1+(n—1d

0,0

Oy = as

With formula (9-4a) and ¢,; = 0,,, formula (9-9) becomes:

no 2fauh®@y\*  4fyE
Gasy = —2fdu~g—y+J< f“g y) + fd;aysy (9-10)
k k k

where @ # 0 and @, # 0.

The crack width w, is obtained from:

_ @kafsy. 1—(1) )
4fE, 1+(n—1o

(9-11)

y
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Formula (9-10) is valid for y > 2 z, or with the aid of formula (9-4a):

DOy,  1=0 D 0uy (9-12)
2fdu 1+(n- 1)@ 2fdu

y=

For practical reasons no formula for calculating the steel stress in a case where
¥ < 2z has been derived. In such cases, should they occur, it is advisable to calculate
the crack width for small values of y on the assumption that there is no reinforcement
at this distance from the floor. Thus, all strain will be concentrated in the cracks. The
crack width w, is then:

Wy = v, (9-13)

The crack spacing and the crack width are now entirely determned by the effect of the
floor. Since it can, for curved structures of normal type (see Chapter 7), justifiably
be assumed thate, =~ 0,94¢,and &', = 0,14s,, formula (9-13) can be further developed
with regard to e, we can write:

g, = <0,9 — %) de, (9-14)
On substitution of this into formula (9-13) we obtain:
_ y
w, =y (0,9 - }T> Ae, (9-15)

In this formula the crack width w, attains a maximum value for y = 0,45 &,. The
associated value for e, is 0,454¢,. The maximum value for the average crack width is

then:
Wy max = O,20th£v (9-16)

This theoretically expected maximum therefore occurs in the wall of a curved structure
of normal type without longitudinal reinforcement.

For structures which remain straight the maximum value of the average crack width
will occur at the top of the wall, so that the following can be substituted into formula
(9-13): y = h, and &, = 4e,. Hence we obtain:

w = h,Je, (9-17)

This theoretically expected maximum therefore occurs in the wall of a non-curved
structure without longitudinal reinforcement.

9.4 Validity of the theory

In the derivation of the formulas in 9.2 and 9.3 it has implicitly been assumed that the
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quantity of reinforcement provided is such that no yielding of the steel will occur
during cracking of the concrete, i.e.:

o-asy é fa

In the theory presented in 9.2, relating to a member restrained at its ends, this assump-
tion is necessary in order to ensure the presupposed crack-distributing action of the
reinforcement.

In the case of cracking governed by the effect of the floor the requirement o, < f,
is not so stringently applicable, because in the absence of reinforcement the crack
distribution, and therefore the crack width, will be determined only by the effect of
the floor. Nevertheless, in both cases the following principle holds:

If reinforcement is applied as a measure to restrict cracking, the steel stress that
occurs in it should remain below the yield point.

This is so because if the steel yields, the certainty as to the permanent effect of the
reinforcement upon the crack width will have gone. A required minimum reinforce-
ment percentage @,,;, can be deduced on the basis of this consideration. For this
purpose o, in formula (9-3) is replaced by f,, giving:

- fbu fbu
Opin = 2 x18 9-18

Y -18)
To apply the formulas derived in 9.2 is therefore permissible only of formula (9-18) is
satisfied. For the formulas derived in 9.3 the requirement that o, < f,, should
likewise be fulfilled. By putting o,,, = f, and f;, = 2,5 f,,, we obtain on combining the
formulas (9-10) and (9-11):

_ Ee D J
Bpnin = —2 — Fits (9-19)
/u 4fduny
gkfa
yz 3
2 (9-20)

If the lower limit is taken as:

_ gkfu

2fdu

and this value of y is substituted into formula (9-19), we obtain:

5 =21

[
min 2nfa (9_21)
In this formula: ¢, = e, for structures which remain straight and ¢, = 0,454¢, for
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curved structures of normal type. For structures whose curvature is calculated with
the aid of the formulas given in Appendix A, the value of ¢, is, inter alia, obtained
from that calculation. In formula (9-21) we should put:

&, = 0,5,

Hence it is necessary to satisfy formula (9-21) before the formulas derived in 9.3 can
permissibly be applied.

10 Verification of the theories of curvature and cracking

The theories presented in Chapters 7 and 9 have been verified against the results
obtained with the wall models tested in the experimental research. The characteristic
features of these models have already been summarized in Table 2. With these data
the curvature of the wall models in series IIT was first calculated as a function of the
strain at the wall-to-floor junction. The formulas given in Appendix A were employed
for the purpose. For the wall models in series I and II, which remain straight, no
curvature calculation is of course required.

The curvature calculation results as well as the measured curvatures have been
plotted in Fig. 16. There is fairly good agreement. The calculations moreover indicate,
as the measurements do, that there is practically 1009 restraint at the junction with
the floor. Therefore it is, within certain limits, permissible to assume complete
restraint even for walls joined to relatively flexible floors.

After the curvature calculations were performed, the average crack widths* were
calculated for all the wall models in series I, 1T and T11 for strain differences of 0,04%,
0,069, and 0,087 respectively. The formulas given in Chapter 9 were used for the
purpose. For the bond strength f,, between concrete and steel the approximate value
fau = 2,5 fy, was introduced. The results of the calculations and also the measured
crack widths are summarized in Table 5. The ratios between the calculated and the
measured widths are also indicated. The average of the ratios wf.,;/Wpes is 1,10, the
standard deviation being s = 0,239 and the coefficient of variation v.c. = 0,217
(21,7%). In view of the erratic character of the phenomenon of cracking in concrete,
there can be said to exist fairly good agreement between the calculated and the
measured values. This being so, it appears reasonable to suppose that the crack widths
can be calculated with satisfactory accuracy also for intermediate cases.

Definitions

In describing, among other phenomena, the crack widths which we found to occur in
the experimental investigations some concepts have been used which will now be
defined.

* The concept of average crack width is explained at the end of this chapter.

41



Average crack width

At an (arbitrary distance y from the floor the widths of all the cracks which are present
in the wall at that level are measured. Next, these widths are added together and their
average is determined. The value calculated in this way is referred as the average
crack width and is therefore linked to a distance y from the floor.

The average crack width is not constant over the height of the wall. At a certain
value of the distance y the average crack width attains its maximum value. In walls
which remain straight this maximum occurs at the top of the wall. In walls which
undergo curvature the maximum occurs somewhere intermediately between the floor
and the top of the wall.

Maximum crack width
When the widths of all the cracks in the wall which are present at an (arbitrary)
distance y from the floor have been measured, one of these widths will have the
largest value. This is referred to as the maximum crack width and is therefore likewise
linked to a distance y from the floor.

The maximum crack width is not constant over the height of the wall. However, the
ratio of maximum to average crack width is approximately constant over the height of
the wall.

11 Long-term crack width

In determining the required quantity of reinforcement it is necessary also to take
account of the crack width that develops in the long run. Little information on this is
available, however. Some indications have been obtained from inspections carried out
by the Committee in some tunnels constructed in the Netherlands, namely, the
Heinenoord, the Benelux and the Schiphol tunnel. At the time of the inspection these
tunnels had already been in use for some years. The quantities of reinforcement
installed in them, and the measured maximum crack widths*, are listed in Table 6.
The maximum values which actually occurred are found to remain reasonably well
within the limits laid down in the Netherlands code of practice for concrete construc-
tion, although relatively low reinforcement percentages were employed. In order to
verify that the theory of cracking and curvature presented in this report is in agree-
ment with the measured values, appropriate analyses of these tunnels were carried
out. Since there was insufficient information on the temperature and shrinkage
behaviour in the tunnels values ranging from 0,02% to 0,06% were adopted for the
strain difference 4e, in these calculations.

Application of the curvature formulas given in Appendix A showed the calculated
curvature of the tunnels to be in good agreement with the assumed values

g, = —0,14¢, and ¢, = 0,94¢,

* This concept is explained in Chapter 10.
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Table 6. Summary of the measuied and calculated maximum values of the average crack widths
in some tunnels

longitudinal reinforcement

FeB 400 strain
Whnax difference Wmax
B Do measured As, calculated
tunnel (mm) ) (mm) (%0) (mm)
Heinenoordtunnel 16 0,18 0,40 0,2 0,25
0,3 0,40
0,4 0,54
0,5 0,69
0,6 0,84
Beneluxtunnel 19 0,28 0,45 0,2 0,21
0,3 0,33
0,4 0,45
0,5 0,56
0,6 0,68
Schipholtunnel 16 0,30 0,45 0,2 0,19
0,3 0,30
0,4 0,42
0,5 0,54
0,6 0,66

With regard to the crack width calculations it can be stated that, in connection with
the relatively low percentages of reinforcement installed, the calculation procedure
presented in 9.2 could not be applied. The crack width distribution has accordingly
been determined with the formulas (9-10) and (9-11). The calculated average crack
widths* are given in Table 6 (see, inter alia, Fig. 21).

If it is assumed that the ratio W,/ Wayerage 15 approximately equal to 2 also for the
above-mentioned tunnels, the calculated average crack widths for de, = 0,029, are in
reasonably good agreement with the measured values. This could indicate that a
temperature difference of about 20°C had occurred between the walls (+ roof) and
the floor, which is an acceptable value. It would, however, also mean that the crack
width had undergone little or no increase as a function of time. This conclusion ties up
well with the results of crack measurements that the Committee carried out over
period of some months during the construction of a lock for yachts near the outfall
sluices in the Volkerak estuary. In that case, too, it was found that the cracks, once
they had formed, underwent no further appreciable increase in width. On the basis of
this experience it can justifiably be concluded that the width of shrinkage and tem-
perature cracks in tunnels, shipping locks and basements undergoes little or no
subsequent increase.

As for the long-term crack width in cantilevered balconies, footways and cycle
tracks there are no grounds for arriving at a different conclusion. Although in these
cases the ambient temperature may vary more than in tunnels, this will not necessarily
result in a permanent increase in crack width.
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12 Effect of the subgrade on the curvature

The curvatures measured in the experimental research on models reported in Chapter
8, and the curvature formulas therefrom and mentioned in Chapter 7, relate in princi-
ple to structures which can freely undergoo curvature, i.e., they do not take account of
the possible effect of the subgrade (foundation soil) under, for example, basements,
locks and tunnels.

In order to obtain more insight into the effect of the subgrade upon the curvature,
some supplementary calculations were done. Elastically supported beams varying
in length and flexural stiffness were analysed. The modulus of subgrade reaction was
also varied for each beam in these calculations. The cases analysed are summarized in
Table 7. Just as in the experiment research, the beams were assumed to be loaded by
an externally applied bending moment M,. In a beam which can curve freely the
curvature and the bending moment remain constant along the entire length; in an
elastically supported beam they do not. For this latter case it was investigated to

Table 7. Calculated effect of subgrade upon curvature

My M
flexural modulus of subgrade reaction
stiffness ko (N/mm?)
' EI** length
section * (Nmm?) (m) 0,0025 0,005 0,010 0,050

&7 6034,8-101 5 1,0000 1,0000 1,0000 1,0001
10 1,0001 1,0002 1,0004 1,0022
15 1,0005 1,0011 1,0022 1,0109
20 1,0017 1,0035 1,0069 1,0348
25 1,0042 1,0084 1,0169 1,0859

30 1,0088 1,0175 1,0352 1.1818

229 1999,5-101% 5 1,0000 1,0001 1,0001 1,0006
10 1,0005 1,0010 1,0020 1,0098
15 1,0025 1,0050 1,0099 1,0500
20 1,0078 1,0157 1.0315 1,1619
25 1,0192 1,0385 1,0776 1,4167
30 1,0399 1,0805 1,1640 1,9566

6,50

15,00 |

|
= 1

60,8-10%5 5 1,0003 1,0007 1,0013 1,0067
10 1,0054 1,0107 1,0215 1,1097

0,30
e

w 15 1,0273 1,0549 1,1111 1,6156

- il 20 1,0873 1,1781 1,3708 3,6948

45 25 1,2193 1,4609 2,0234 25,1315
5,00

30 1,4796 2,0696 2,7471 —16,1227

* dimensions in m
** E=30000 N/mm?



what extent the bending moments which occur along the length of the beam differ
from M, as this provides a direct indication of the curvature of the beam.

The results of the calculations are summarized in Table 7. M, denotes the moments
occurring midway along the beam. From the values of the ratio M, /M, it appears
that in most cases M, and M, are of the same order of magnitude. Hence it can be
inferred that usually the curvature of the structure is little affected by the forces
developed by the subgrade. Only in relatively long structures (/ = 30 m or more)
supported on a base with a modulus of subgrade reaction of around 0,05 N/mm? - a
high value for our country — do larger differences occur. In such cases the assumption
that no curvature of the structure will develop is a safe one. It is to be noted that
structures on piled foundation also more or less freely develop curvature. This applies
to basements, locks and tunnels supported on piles, at least if the piles are of normal
size and normally spaced.

13 Application of the theory of cracking in practice

13.1 Material properties to be adopted

13.1.1 Tensile strength and bond strength

In order to use the formulas derived from the theory of cracking in Chapter 9, the

values to be adopted for the tensile strength f,, and bond strength f;, must first be

decided. Two questions must be considered in connection with this:

a. In what stage of the hardening process do the expected deformations occur and
what, at that instant, is the average tensile strength of the concrete.

b. What value is to be adopted for the tensile strength f,, to enable, inter alia, @,,;, to
be calculated with formula (9-18).

These questions are considered in the present chapter. Although the circumstances

are different from one case to another, it is possible to give approximate guidelines for

the tensile strength to be adopted.

Re a. Deformations arising from rises in temperature due to hydration of the
cement and causing the concrete to crack will occur in, for example, tunnel and lock
walls about 3-7 days after concreting. In this stage of deformation the tensile strength
of the concrete will — depending on the composition of the concrete, the grade of
cement, etc. — be about 40-80%; of the standard 28-day tensile strength.

Deformations due to temperature variations caused by climatic conditions play a
part in cantilevered balconies and in cantilevered footways and cycle tracks on
bridges, flyovers, etc. In these cases the standard tensile strength may already have
been fully attained before the anticipated deformations occur. Early cracking must
then have been prevented by the application of appropriate measures during execution
of the work.

Deformations due to shrinkage of the concrete develop at a relatively slow rate. In
this case it can, for the purpose of cracking analyses, likewise be assumed that the
concrete has fully attained its standard tensile strength.
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Re b. The criterion with regard to the calculation of ®,;, in accordance with
formula (9-18) is that when the tensile strength in the concrete is reached, the steel
should not yet be at its yield point, for only then can be crack-distributing effect of the
reinforcement be ensured. Therefore the value of the concrete tensile strength is a
major deciding factor with reference to the quantity of reinforcement required.

Now the tensile strength of concrete is something of a stochastic quantity displaying a
rather considerable scatter (dispersion). For the determination of @,,;, it makes a
good of deal of difference whether the characteristic lower limit, the average or the
characteristic upper limit of the tensile strength is adopted.

Before a reasonable value can be determined for the tensile strength to be adopted, it
will therefore be necessary consider in somewhat more depth the process and the
theory of cracking. In formula (9-2) it has been presupposed that normal force N
remains unchanged during the development of the crack pattern. However, because of
the scatter in the tensile strength of the concrete, this assumption is not quite correct.
The first crack occurs at the section where the tensile strength is lowest. The next crack
occurs at a section with higher tensile strength, and so on, until finally the upper limit
of the tensile strength has been reached. The normal tensile force N, will therefore
increase during cracking. It will accordingly depend on the expected deformations
whether @,,;, in formula (9-18) will be based on the characteristic lower limit, the
average or the characteristic upper limit of the tensile strength.

So although the tensile strength depends in principle on a number of factors and
although each case must be considered individually, it is quite appropriate to give
general guidelines for the values to be adopted.

— Tunnel, lock and basement walls:
To be adopted for f,,:

fbu =fb
To be adopted for fg,:
fdu = 235fbu = 2,5fb

In these formulas f, denotes a lower limit for the concrete tensile strength, associated
with the quality (strength class) of the concrete concerned, as laid down in the
Netherlands code of practice for concrete construction.

— Cantilevered, balconies, footways and cycle tracks:
To be adopted for fy,:

_ Jom
fbu - 20

+ 1,0
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where:

Il

average tensile strength of concrete in N/mm?
average 28-day cube strength in N/mm?

fbu
f,cm

To be adopted for f,,:
fdu = 2’5fbu

13.1.2  Modulus of elasticity
In a number of formulas the modulus of elasticity E, of the concrete in tension is used.
This may be taken as equal to the modulus of elasticity in compression.

13.2  Permissible crack width

The requirements as to crack width restriction are very important in connection with
calculating the quantity of reinforcement to be provided.

If cracking is liable to endanger the loadbearing capacity of a structure, the limiting
values for the crack widths laid down in the code of practice will have to be conformed
to. On the other hand, the cracks with which this report is concerned are, generally
speaking, not structural cracks. Although certain requirements may be laid down on
the basis of the serviceability of the structure, the criteria for crack width restriction
are somewhat subjective. This being so, the limiting value imposed for the crack width
will vary from one case to another.

There is a further aspect to be considered. Techniques for the repair of cracks are
developing fairly rapidly. Synthetic resins are increasingly used for the purpose, often
successfull. In view of this, it may be appropriate to consider whether, depending on
the type of cracking, it may justifiably be preferable to accept a certain probability of a
limited number of wider cracks instead of complying with a predetermined maximum
crack width. If such cracks do indeed occur, they can be repaired.

——» frequency

—— crack width
1 calculated crack width (Chapter 9)

2 permissible maximum crack width
3 actual maximum crack width

Fig. 25. Relationship between the calculated and the maximum permissible crack width.
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This approach is primarily a cost-saving one, as less reinforcement is used, but it
may subsequently become necessary to spend more money on repairs. These con-
siderations lead to a — partly economic — assessment of what is acceptable in principle.

In practical terms this philosophy means that the calculated crack width (which is
the expected average crack width) is allowed to be closer to the permissible (maximum)
width according as the permissible value can acceptably be exceeded by a greater
amount. These aspects are further elucidated in Fig. 25. In principle, it is possible to
establish a scale of crack widths whose frequency distribution can be represented in
the form of a Gaussian curve. The theory of crack width as set forth in Chapter 9
relates to the average width (see Fig. 25). If this calculated value is equated to the
permissible maximum crack width, it means that 507 of the cracks that occur will be
wider than the permissible maximum. If crack widths are in principle not allowed to
exceed the permissible maximum, the calculated crack width (= average width) will
have to be not more than about half this maximum width.

The procedure consists in determining the permissible average crack width w by
dividing the specified maximum width by a factor which depends on the acceptable
percentage of cracks that may exceed the permissible value. Some percentages with
their associated factors are listed in Table 8. The values for W obtained in this way
should be used in the crack width formulas of Chapter 9.

Table 8. Factors for taking account of permissible maximum crack width

percentage exceeding factor

5 1,80
10 1,62
15 1,51
20 1,41
30 1,26
40 1,12
50 1,0

13.3  Calculation of the reinforcement

After the expected deformation, the material properties, the crack width and the
curvature of the structure have successively been determined, the required quantity of
reinforcement can be calculated. The further stages of the analysis will now be
described in their appropriate sequence:
a. First, it must be investigated whether the calculated crack width of the structure
remains below the specified limiting value even without reinforcement.
For structures which remain straight, with the largest crack widths at the top of
the wall, we have in accordance with formula (9-17):

w=h,de, =W (13-1)
For curved structures of normal type we have in accordance with formula (9-16):
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w = 0,20h,de, < W (13-2)

For structures whose curvature has been calculated with the aid of the formulas
given in Appendix A (see Fig. 10):

w=y {Ew—(EW—EL)EX—} =w

w

The crack width according to this formula attains a maximum for:

h, &,

Zw
’
2 &,—¢,

y=

The maximum value of the crack width is then:

2
o (13-3)

If it indeed turns out that the calculated crack width remains below the specified
limit even if no reinforcement is provided, the analysis will have been completed.
In actual practice a certain amount of nominal reinforcement will of course
nevertheless be installed.

. If the permissible average crack width is only slightly exceeded, it can be inves-
tigated whether, with the stated minimum reinforcement percentage ®,,;,, the
calculated crack width remains below the specified permissible value. This mini-
mum percentage of reinforcement should in the first instance conform to formula
(9-21), i.e.:

Brin = LE;yf;f (13-4)
n a

For cantilevered balconies, etc. it is necessary to substitute &, = de, in this
formula, and for curved structures of normal type the value to be substituted is
&, = 0,454e,. For structures whose curvature is calculated with the aid of the
formulas in Appendix A the value of &, follows, inter alia, from the calculation.
Then g, = 0,5¢,, should be substituted into formula (13-4). If this formula is not
satisfied, the quantity of reinforcement should be increased until it is. Next, the
crack widths can be calculated with formulas (9-10) and (9-11).

Depending on the nature of the structure, substitutions for y and ¢, can be in-
troduced into formula (9-10). In accordance with 13.1 furthermore:

fdu = 295fbu
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For cantilevered balconies, etc.:

y=h, en g =4e

so that:
na,h, 2,5 ) 2 7
Gasy = — Hou +2 \/ ( / b“”‘”W’“W) 4 2 wEaltnAe, (13-5)
Qk gk Qk

On applying formula (9-10) for curved structures of normal type, the following can
be substituted into this formula:

y=0,45h, en & = 0,454¢,

so that:

— h — 2
Gugy = — 2,250, f"“;;w w 2\/<1£5f;l'"wwhvv> n 0,506fyuEu 1Az, (13-6)
k k

Dy
For structures whose curvature is calculated with the aid of the formulas in
Appendix A, the following should be substituted into formula (9-10):

Ew

y= en ¢, =05, (13-7)

Ew—Ep 2

When o, has been calculated, the calculation of the crack width can be performed

on the basis of formula (9-11), into which can be substituted according to 13.1:
fdu = 2’5fbu

so that:

2 —
DOy 1—a,

w, =
Y 10fyE, 1+(n—1)o,,

<w 13-8)

Non-compliance with formula (13-8) means that the floor does not have a suffi-
ciently good crack-distributing effect to keep the crack width below the specified
average value. In that case the distributing effect will have to be achieved by
means of reinforcement. The formulas derived in 9.2 will have to be used for this
analysis. Formula (9-5a) gives the expected average crack width, inter alia, as a
function of @. On substitution of @ = @,,, w = W and fq, = 2,5 fyu in accordance
with 13,1 and rearrangement, we obtain for the required percentage of reinfor-
cement:

- __ gkfbu
@, =0,5 \/ T (13-9)




This formula is valid in the cracking stage, i.e., in which the strain that occurs must
not exceed &, in accordance with formula (9-7). On substitution of nE, = E, and
® = @, into this formula, we obtain ,with formula (13-9), the following expression
for the strain ¢, :

275fbuw
< —_r -
8y < \/ kEa (13 10)

For cantilevered balconies, etc. we must again put g, = de,, for curved structures
of normal type &, = 0,45 4e,, and for the other structures g =0,5¢,.

If formula (13-10) is satisfied, it remains to check that for the calculated percentage
of reinforcement the stress in the steel will remain below the yield point. The
required minimum reinforcement percentage for this is indicated in 9.4. Formula
(9-18) is applicable, whence we obtain:

B, 2 ff; (13-11)

If this condition is satisfied, the calculation will have been completed. If not, then
o,, will have to be increased to the required reinforcement percentage based on
formula (13-11). If formula (13-10) is not satisfied, it can first be attempted to
satisfy it by, for example, decreasing &, which results in a reduction of @, in
accordance with formula (13-9). If this attempt does not succeed, it means that a
completed crack pattern exists (see also Fig. 23). For the sake of simplicity, this
case has not been taken into consideration in the theory of cracking presented in
9.2 and 9.3 because the crack pattern can in practice be expected mostly to be in
the stage of development. Nevertheless, it will now be explained how to proceed in
the case of a complete crack pattern, i.e., for which the condition expressed in
formula (3-10) is not satisfied. The crack width must then be calculated from:

w, = Ale, (13-12)
where:

Al = <2c+0,15 %) (13-13)

w

In this formula ¢ denotes the concrete cover to the reinforcement. On substitition

of formula (13-13) and w, = w into formula (13-1) we obtain, after rearrange-

ment, the following expression for the required percentage of reinforcement:
0,152,

o, = ——-2X (13-14)
w—2ce,
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In order to ensure that the stress in the reinforcement remains below the yield point
of the steel, the following condition must be satisfied in order to apply the last-
mentioned formula:

By D 1 fa—2,5Q2cBy +0,152 o (13-15)
5wEa

lIA

&y

If this condition is not satisfied, @,, will have to be increased until it is. The usual
substitutions for &, can again be introduced into the formulas (13-12) and (13-14),
namely:

g, = 0,5, for curved structures in general
g, = 0,454¢, for curved structures of normal type

g, = Ae, for structures which remain straight

13.4 Distribution of reinforcement over the height of the wall

After the required quantity of reinforcement has been calculated its distribution over
the height of the wall has to be determined. In general, it will not be uniformly distri-
buted. Thus, less reinforcement need be installed just above the floor and, in curved
walls, also at the top of the wall. The width of the strip in which such reduction of
reinforcement is permitted will depend on how much reinforcement is placed in the
strip. Thus the width of the strip will be smaller according as the percentage of reinfor-
cement is lower. According to the Netherlands code of practice for concrete construc-
tion (VB 1974) a certain minimum percentage of reinforcement should at least be
provided, however.

By combining the formulas (9-10) and (9-11) it will now be determined at what
distance y, from the floor the crack width attains a particular permissible value w. For
the purpose of this derivation a lower reinforcement percentage has been introduced
than follows from 13.3.

With regard to formula (9-11) we may put:

w, w

lIA

y

On neglecting the term

1—o

rre-ns =10

and substitution of w, = w, formula (9-11) becomes:

2,5fouEa?
oy =2 PIET 1316
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As already stated, when this formula is applied, it must be ensured that the yield point
S, of the reinforcement is not exceeded:

Oasy éfa (13'163')

If this condition is not satisfied, other values will have to be chosen for &, and/or w in
formula (13-16). If formula (13-16a) is satisfied, o,,, can be eliminated by equating
formula (13-16) to formula (9-10); &, (see Fig. 10) is expressed in &, and ¢'y. After
rearrangement and reduction, this results in second-degree equation for y. On substi-
tution of y = y, we then obtain:

8w—8;; 2 — 2’5fbu"_v _ =
I v, + {2nwr\/ E.o, e Yy +wW =0 (13-17)

Two values for y, result from this equation. The smaller value y,,,;, indicates the
width h,, of the strip, adjacent to the floor, in which the value adopted for @, can be
applied. The larger value y,,,, indicates the distance, measured from the floor, above
which the value adopted for @, will likewise suffice. The width of this upper Strip A, is
therefore:

hwb = hw—yvmax

From equation (13-17) it appears that increasing @, and/or reducing w will - in
connection with the condition a,,, < f, — result in smaller strip widths A, and h,,,. The

asy =
values of ¢, and &', follow from the curvature calculation or, in the case of curved
structures of normal type, from the assumptions:

&, = 0,94¢,

For structures which remain straight:
g, = —0,14e,

!’
&, = &, = de,

Summarizing, the calculation procedure for y, is therefore as follows:

- curved structures in general: by solving equation (13-17)
— curved structures of normal type:

w a k

Lo 2 {Zna_)r / S 0,9Asv}- y+ =0 (13-18)

— structures which remain straight:
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w

= (13-19)

Ae,—2nd, \/-——Z’Sfb"w
Eag k

In this case only one value is obtained, namely:
Yy =Vvmin = hwo
When the widths of the strips have been calculated, it must be checked that y,;, is not

less than twice the transmission length z. By combination of the formulas (9-12) and
(13-16) we obtain:

& E,w
> a 13-2
Yymin = \/ 275fbu ( 0)

If this condition is satisfied, the operation of determining the widths of the strips has
been completed. If it is not satisfied the strip width calculation will in principle have to
be repeated i.e., starting from formula (13-16) and introducing different values for &
and/or w.

If relatively low values are adopted for @,, the values of %, and A, will be little
affected by @,. In that case it will suffice if p, is calculated on the assumption that
@, = 0. The calculated or the required quantity of reinforcement can then never-
theless be installed in the strips calculated in this way. Basing oneself on @, = 0, itis
necessary in connection with passing to the limit values (@, = 0; @&, = ?) to replace
the formulas (13-17), (13-18) and (13-19) by respectively:

— for curved structures in general:
£y — &

- y:—e,y,+w=0 (13-21)

w

— for curved structures of normal type:
w
= — _ 13-22
Yy (0,45 + \/0,20 Aﬁvhw> h, ( )

— for structures which remain straight:

_ w
yv_AEV

(13-23)

14 Examples

Three examples are presented here to illustrate how, having due regard to a limit value

54



of 0,25 mm for the crack width, the required quantity of reinforcement can be cal-

culated. For these examples so-called structures of normal type have been adopted (see

Chapter 7), for which the expected curvature can with reasonable certainty be deter-

mined in a simple manner. In cases where the structures concerned are not of normal

type the curvature will, as already stated, have to be calculated with the aid of the

formulas given in Appendix A.

In the calculations the permissible crack width is based on considerations of
corrosion of the reinforcing steel. Two cases are envisaged:

a. the permissible value of 0,25 mm for the crack width is adopted, with a 50%
probability of being exceeded, i.e., a certain number of cracks will subsequently
have to be repaired;

b. the permissible value of 0,25 mm for the crack width is adopted, with a 5% pro-
bability of being exceeded.

The quantity of reinforcement calculated in case (a) is smaller than in case (b), but the

probability of having to execute repairs is greater in case (a) (see also 13.2).

14.1 Cantilevered balcony slab, cycle track, etc.

EEE—

l-f 1,20

Fig. 26. Cantilevering balcony slab.

Given data:

fin =35 N/mm?
E, = 28000 N/mm?>

’

& =d4e,=30-10"° (assumption)

steel grade FeB 400 (f, = 400 N/mm?) with:
E, =2,1-10° N/mm?

e =8 mm
w  =0,25 mm
35,0 2. .
Sou = >0 + 1,0 = 2,75 N/mm* in accordance with 13.1.1
2,1-10°
© 28000 75
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a. Calculation of the curvature:

Since the slab cannot curve in the horizontal plane, no calculation of curvature is

required.

b. Calculation of crack width for a 50% probability of exceeding the permissible

value:

The average crack width for a 50% probability of exceeding the permissible value is:
0,25

_ w
W=—=——=0,25mm
Lo 1,0

The largest crack width occurs at the outer edge of the cantilevered slab. It will be
checked whether there is at this edge still sufficient crack-distributing effect from the
floor located farther inwards. If there is no reinforcement in the structure, the expected
crack width, as determined from formula (13-1), is:

w = h,de, = 1200-30-107° = 0,36 mm

This is substantially in excess of the chosen average of 0,25 mm. The crack-distri-
buting effect of the floor located farther inwards thus turns out to be insufficient, so
that the desired effect will have to be obtained by providing reinforcement. The
required quantity @, according to formula (13-9) is:

By =0.5 \/ 82D 00065
2,5:2,1-10°-0,25

aow = 0,65%

or:

It must be checked that, for the expected strain de, = 0,3 x 1073, there is not a
complete crack pattern (see Fig. 23), for in that case formula (13-9) is not valid. The
check is performed with formula (13-10):

g, < /%i%ﬂ?é: 1,01-1073
8:2,1-10°

Since the expected strain ¢, is equal to 4g, = 0,3 x 1073, the condition is satisfied.

Next, it must be checked that the steel stress in the calculated quantity of reinforce-

ment @,, indeed remains below the yield point. This is ascertained with the formula:
2,75

D =
By z Jgy = 0:0069

Hence it emerges that the quantity of reinforcement @,, (= 0.0065) falls short of this
value, i.e., the yield point is exceeded, which is not acceptable. Hence the quantity
actually to be provided is:
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@,, = 0,0069
Bow = 0,69%

Next, the width 4, of the strip in which a reduced quantity of reinforcement can be
used is determined. In order to obtain an indication of the effect of @, upon the strip
width A, two cases @, = 0 and @, = 0,0035 have been considered, with &, = 8 mm.
Obviously, other values can also be adopted. For the case @, = 0 we have according
to formula (13-23):

0,25

=Ny = =833 mm
Y 30-1073

For the case @, = 0,0035 we have according to formula (13-16):

Jz,s -2,75-2,1-10%-0,25
O-LIS)’ = 2

2 = 4248 N/mm? > f, = 400 N/mm?

Hence this does not satisfy the condition, but on introducing &, = 10 mm instead of
8 mm we obtain o,,, = 380 N/mm?, which does satisfy the condition.
The strip width A, (= »,) is now obtained from formula (13-19):

0,25

Yy = hwo= =990 mm

2,5:2,75-0,25
2,1-10°-10

30‘10'5—2‘7,5-0,0035\/

It appears therefore that the value of 4, is only little affected by @,.

It remains to be checked that for @, = 0,0035 the crack spacing y,,;, (= strip
width A,,) is not less than twice the transmission length z, or according to formula
(13-20):

. . 5-

This condition is satisfied, since yypnin = 990 mm.

It is apparent from the foregoing that the reinforcement percentage @,,, = 0,69%
calculated for the outer edge of the balcony should be provided over a width of
approximately 0,30 m.
¢. Calculation of crack width for a 59 probability of exceeding the permissible

value:
The average crack width for a 5% probability of exceeding the permissible value is:
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It has already been shown above that, in the absence of reinforcement in the structure,
a crack width of 0,36 mm is to be expected. Since this greatly exceeds the chosen
average value of 0,14, there is no point in investigating whether the provision of a
certain minimum nominal reinforcement will keep the calculated crack width below
the chosen average value.

Hence the required quantity of reinforcement must be determined by means of
formula (13-9):

— /.Jz@__ _ 0.0087
2,5:2,1 10° -0,14

@oy = 0,87%

Next, it is checked whether there is indeed a crack pattern in process of development
(see Fig. 23), since formula (13-9) is based on this. This check is performed with
formula (13-10):

252,750,
b, (= 4e) < \/# = 0,76-10"2
8:2,1-10

This condition is satisfied, because de, = 0,3-107% <0,76-107 3. The value of @,,
should be larger than follows from formula (13-11), for otherwise the yield point of
the reinforcement will be exceeded ; hence:

Since @,, = 0,0087 > 0,0069, this condition is satisfied.

For convenience, the strip width #4,, in which a reduced quantity of reinforcement
can be used is determined for @, = 0. As already shown in section b, the introduction
of a higher value for @, will have very little effect on the value obtained for the strip
width A,,. For @, = 0 this width is calculated as follows from formula (13-23):

0,14

= 30.10°3 = 467 mm

yV: wo

In this strip it is therefore permissible to use less reinforcement, e.g. the minimum
quantity required by the Netherlands code of practice (VB 1974).
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14.2  Basement wall

2,80

0,30,

[

S
=3
o

Fig. 27. Basement wall.

Given data:
d, =030 m
b, =6,00m
d,=0,30m
h, =2,80 m

grade of steel FeB 400 (f, = 400 N/mm?) with:

E, =2,1-10° N/mm?

=12 mm

Ae, = 0,4-1073 (assumption)

w = 0,25 mm

fou = fo = 1,5 N/mm? in accordance with 13.1.1
2,1-10°

= — =
30500

>

a. Calculation of the curvature:

On comparing the given dimensions with those of the structures envisaged in Table 1,
it is apparent that the basement in question is a structure of the normal type. As
regards the expected curvature, the strain at the top of the wall is therefore:

&= —0,1-0,4-10"3 = —0,04-107°
and at the junction with the floor:
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g, =0,9:0,4-1073 = 0,36-1073

Note: These values calculated with the “exact” formulas given in Appendix A become
respectively:
&= —0,054-1073
and
e, =0,375-1073
b. Calculation of crack width for a 50% probability of exceeding the permissible
value:
The average crack width for a 50 probability of exceeding the permissible value is:

w025
L0~ 1,0

W=

= 0,25 mm

First, it is checked whether the crack width will remain below the specified average
value even without reinforcement. In that case the crack-distributing effect of the floor
will be determinative for the crack width according to formula (13-2):

w = 0,20-2800-0,4-107% = 0,22 mm

Hence it turns out that even in the absence of reinforcement the calculated crack
width remains below the specified average of 0,25 mm. For practical reasons some
longitudinal reinforcement will nevertheless be provided.

¢. Calculation of crack width for a 5% probability of exceeding the permissible value:
The average crack width for 5% probability of exceeding the permissible value:
w 0,25

w = 1,8—“1—,?:0,1411'1[11

In the foregoing it has been calculated that without reinforcement a crack width of
0,22 mm is to be expected. This greatly exceeds the chosen average of 0,14 mm, so
that there is no point in checking whether the minimum reinforcement to be provided
in compliance with the Netherlands code of practice for concrete construction
(VB 1974) will keep the calculated crack width below the specified average. The
required quantity of reinforcement @, is accordingly obtained from formula (13-9):

5o=05 [ 215 oo
2,5-2,1-10°-0,14

50“, = 0,78%

In order to reduce the calculated crack width from 0,22 mm for @,,, = 0% to 0,14 mm
it is therefore necessary to provide 0,78% of reinforcement.
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Now it must be checked whether, for the expected strain, there is indeed an incomplete
crack pattern, this being the condition to permit formula (13-9) being applied. The
check is performed with formula (13-10):

g, < \/%’5_1’5_0’1_‘3 =0,46-10"3
12-2,1-10°

Since &, = 0,454¢, = 0,45-0,4-1073 = 0,18-1073, this condition is indeed satisfied.
As a final check it must be verified that the stress in the calculated reinforcement
@,, remains below the yield point. This check is performed with formula (13-1 1):

The yield point is not exceeded, since @,, = 0,0078 > 0,00375.

Next, the width of the strip in which the calculated reinforcement is to be installed
must be calculated. According to 13.4 a reduced quantity of reinforcement can be
provided in the strip widths &, and £, near the floor and at the top respectively. For
@, = 0 these strip widths are obtained from formula (13-22):

0
y, = <0,45 + \/ 0,20 — W_lf%) 2800 = 1260 + 767 mm
0,4-103-2800

Whence:
Byo = Vymin = 1260 —767 = 493 mm

b = My = Yy max = 2800 — (1260 +767) = 773 mm

The relatively small value for 4, is due to the chosen value of w = 0,14 mm for the
average crack width. For the average value w = 0,25 mm required in section b it
turns out that in principle the entire wall can remain unreinforced.

If the calculation of the strip widths is based on, for example @, = 0,003 with
& = 12 mm instead of @, = 0, the values for the strip widths are found to undergo
only little increase, namely, 4., = 531 mm and &,, = 955 mm.

To summarize, the arrangement adopted for restricting the crack width in the wall
consists in installing the reinforcement in three strips, namely:

— close to the floor: a strip about 0,50 m wide, designated as #,,, and provided with
nominal reinforcement;

— along the upper edge: a strip about 0,90 m wide, designated as 4, and provided
with nominal reinforcement;

— between these two strips: an intermediate zone about 1.40 m wide in which the
calculated reinforcement @,,, = 0,78%. is provided
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14.3  Tunnel wall

1,00 1,00 1,00

F Lty e
18,60

Fig. 28. Tunnel cross-section.

Given data:

d, =129 m

b, = 18,60 m
d,=3x1,00 m= 3,00 m
hy =734 m

d; =120 m

by = 15,60 m

steel grade FeB 400 (f, = 400 N/mm?) with:

E, =2,1-10° N/mm?

@ =20 mm

Ade, = 0,6:107 % (assumption)

w = 0,25 mm

fou = fo = 1,5 N/mm? in accordance with 13.1.1

Note

The wall thickness has been taken as the sum of all the wall thicknesses. The floor
width is the overall width of the tunnel and the width of the roof is the tunnel widths
minus the wall thicknesses.

a. Calculation of the curvature
On comparing the given dimensions with those of the structures in Table 1 it is
apparent that the tunnel is a structure of the normal type. As regards the expected

curvature, the strain at the top of the wall is:

ey =—0,1-0,6-107> = —0,06-10~3
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and at the junction with the floor:
&y =0,9-0,6-10"> = 0,54-10"3

Note. These values calculated with the “exact” formulas given in Appendix A
become respectively:

&y = —0,040-1073

and
g, =0,542-1073
b. Calculation of crack width for a 509, probability of exceeding the permissible
value:

The average crack width for a 509 probability of exceeding the permissible value is:

w 0,25

W =
First, it is checked whether the crack width will remain below the specified average
value even without reinforcement. In that case the crack-distributing effect of the floor
will be determinative for the crack width according to formula (13-2):

w = 0,24e,h, = 0,2:0,6- 1077340 = 0,88 mm

This value greatly exceeds the chosen average value of 0,25 mm. Hence there is no
point in checking whether the provision of nominal reinforcement will keep the
calculated crack width below the specified average. The required quantity of reinforce-
ment @,, is accordingly obtained from formula (13-9):

B, =05 /& ~ 0,0076
2,5-2,1-10°-0,25

Doy = 0,76%
Next, it must be checked whether, for the expected strain, there is an incomplete crack

pattern (see Fig. 23), this being the condition to permit formula (13-9) being applied.
The check is performed with formula (13-10):

e, = \/2_’5A£,0’25§ =0,47-10"3
20-2,1-10

Since &, = 0,45 de, = 0,45:0,6-107% = 0,27-1073, this condition is indeed satisfied
It must now be checked that the stress in the calculated reinforcement @, remains
below the yield point. This check is performed with formula (13-11):
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_ 1,5
Dy = 300~ 0,00375
This condition is likewise satisfied.

Now the width of the strip in which the calculated reinforcement is to be installed
must be calculated. According to 13.4, a reduced quantity of reinforcement can be
provided in the strip widths #,, and h,,, near the floor and at the top of the wall
respectively. For @, = O these strip widths are obtained from formula (13-22):

0,25
Yy = <0,45 + \/0,20 - %3—> 7340 = 3303 £+ 2778 mm
0,6-107°-7340

Whence:

hwo = yvmin == 3303‘—2778 = 525 mm
By = By =y max = 71340—(3303 +2778) = 1259 mm

If the calculation of the strip widths is based on, for example, @, = 0,003 with &
14 mm instead of @, = 0, somewhat larger values for h,, and h,, are obtained,as
appears from the following.

According to formula (13-16):

Oosy =2

2,5:1,5-2,1-10°-0,25
\/ 7 = 237,2 N/mm? < 400 N/mm?

and from equation (13-18) it follows that:

0, -1073 2,5-1,5-0, _
—6—~——y3+(2-6,9-0,003 J-M—0,9-0,6-10 3) ) 4025 = 0
7340 2,1-10°-14

whence:

0,822 —5166,22y,+25-10° = 0

2_ 4. .15.10°
). = 5166,22 + \/51626,3282 4-0,82-25-10 = 3150 + 2622 mm

from which are obtained:
Byo = Vymin = 3150—2622 = 528 mm
By = Ny — Vymax = 7340 —(3150+2622) = 1564 mm
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The final check consists in verifying that the crack spacing y,;, (= strip width 4,,) is
not less than twice the transmission length z, or according to formula (13-20):

. . 5.
yvmin;\/m 2,215.1?50,25 443 mm

This condition is satisfied, since y,;, = 528 mm.

To summarize, the arrangement adopted for restricting the crack width in the wall

consists in installing the reinforcement in three strips, namely:

— close to the floor: a strip about 0,50 m wide, designated a %, and provided with
nominal reinforcement;

— along the upper edge: a strip about 1,50 m wide, designated as ., and provided
with nominal reinforcement;

— between these two strips: an intermediate zone about 5,30 m wide in which the

calculated reinforcement @,,, = 0,76% is provided.

c. Calculation of crack width for a 5% probability of exceeding the permissible
value:
The average crack width for a 59 probability of exceeding the permissible value is:

w 0,25
g=18 = 0,14 mm

It has already been calculated that, in the absence of reinforcement, a crack width of
0,88 mm is to be expected. This is far too large, and the required quantity of longitudinal
reinforcement @,, corresponding to w = 0,14 mm must be calculated with the aid of
formula (13-9):

B =05 /“2041 _ 00101
2,5-2,1-10°-0,14

CBOW = 1,01%

Now it must be checked whether in this case there is an incomplete crack pattern
(see Fig. 23), this being the condition to permit formula (13-9) being applied. The
check is performed with formula (13-10):

2,5-1,5-0,
& < /%%0 14_ 0,35-1073
20-2,1-10°

Since ¢, = 0,454¢, = 0,45-0,6-1072 = 0,27-1073, this condition is indeed satisfied.

Next, it must be checked that the stress in the calculated reinforcement ,, remains
below the yield point. This is done with the aid of formula (13-11):
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_ 1,5
@y, = ——’—0 = 0,00375

N

This condition is amply satisfied.

Now the width of the strip in which the calculated reinforcement is to be installed
must be calculated. According to 13.4, a reduced quantity of reinforcement can be
provided in the strip widths A, and h,y,, near the floor and at the top of the wall
respectively. For @, = O these strip widths are obtained from formula (13-22):

y, =045+ \/0,20 - ——O’_l—j—— 7340 = 3303 + 3010 mm
0,6-1077-7340

Whence:
Pyo = Yy min = 3303 —3010 = 293 mm
Py = Py — Yy max = 7340—(33034+3010) = 1027 mm

h,, is small because of the low value adopted for the average crack width w = 0,14 mm
and fairly large 4e,. If the calculation of the strip widths is based on, for example,
@, = 0,003 with @, = 14 mm instead of @, = 0, the values for the strip widths
determined with formulas (13-16) and (13-18) are found to undergo only little increase
namely:

hyo =295 mm

hy, = 1248 mm

Finally, it must be checked that if @, = 0,003 is adopted, the crack spacing yymin
(= strip width A,,) is not less than twice the transmission length z, or according to
formula (13-20):

. . 5.
Vvmin ;\/W: 331 mm

Since Yymin = 295 mm, this condition is not satisfied. However in view of the smallness

of the difference, a value of 295 mm can acceptably be adopted for 4.
To summarize, the arrangement adopted for restricting the crack width in the wall

consists in installing the reinforcement in three strips, namely:

— close to the floor: a strip about 0,30 m wide, designated as #,,, and provided with
nominal reinforcement;

— along the upper edge: a strip about 1,20 m wide, designated as 4,,, and provided
with nominal reinforcement;

— between these two strips: an intermediate zone about 5,80 m wide in which the
calculated reinforcement @,,, = 1,01% is provided.
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APPENDIX A

Formulas for the ,,exact” calculation of curvature

In Chapter 7 a simple method of determining the curvature of structures subject to
restraint of deformation, such as tunnels, shipping locks and basements, has been
presented. It yields sufficiently accurate results in the case of structures of normal
type, i.e., with “normal” dimensions. For structures with dimensions outside this
range, however, the curvature will have to be calculated with the aid of the formulas
given in this appendix. Before applying these formulas it is advisable to read Chapter 7.

Al Formulas for the wall

Normal force:

Ay E}

w

H, = — {ncﬁw(sw+s;) + ila—(eu—i-s'b)(l —@w)} (A-1)

Bending moment (with respect to the underside of the wall at the junction with the
floor):

_ Awa;) — ’ ’ i _ _a_ =
M, = — h,, {nww(aw+2sb)+ ey ™ <2 hw> (1-o,)+
a a _
- —e)(1— A-2
", (3 2hw> e wW)} (2

In both formulas:

E, a  &,—é
n=—and —=-"—>-
Eb hw 8w_gb

if e, <¢, <¢,,thena = A,

ife, > ¢, thena =0

A2 Formulas for the roof

Normal force:

byEy

’ p — a ’ ’ — d ’ !
Ny = 3 [a(l —0y) {K (ep—ep)+ 281)} + dyn, {ﬁ (ey—ep)+ 26,,}J (A-3)

Bending moment (with respect to the underside of the wall at the junction with the
floor):
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bEL
M, = d6b[aa—c—ud){a(sw—a{,)<3—z£—>+hws;,<6—3§>}+

+dynd, {dd(aw —g) <3 -2 %) + hyz), (6 -3 %)} (A-4)

w

In both formulas: if a > dg, then a = dy

A3 Formulas for the floor

Normal force:

N = A_"E_E_L {z(swmsv) + %’i (5 -a,;)} (1+(n= Do) (A-5)

Bending moment (with respect to the top of the floor at the junction with the wall):

M, = A"gE"dv {3(sw+Asv)+2%(sw—sg>} {I+(n—Do,} (A-6)

In both formulas a negative value must be introduced for 4e,.
On the basis of the conditions stated in Chapter 7 the following equations are valid
for the equilibrium of the forces and bending moments respectively:

N.,+Ny—N, =0 (A-7)
M,+M;—M,=0 (A-8)

The two unknowns &, and &, can be solved from the formulas given here.

In the case of “roofless” structures, such as locks, the formulas for Ng and My
should be equated to zero.

Cantilevered structures such as, for example, balconies and footways on bridges,
cannot curve. In such cases no curvature calculation is therefore required.
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