Contents

Preface . . . . . . . . . . . Lo .5
Summary . . . . .. L ..o e e e e e .1

IrR. S. H. BRUNEKREEF
1 The behaviour of partially prestressed concrete beams loaded in pure bending 9

1.1 Introduction. . . . . . . . . . . . . . . . . .. ... 9
1.2 Definitions . . . . . . . . . . . . .. ... ... 9
1.3 The design method . . . . . . . . . . . . . . .. ... ... . 10
1.4 The experiments . . . . . . . . . . . . . . . ... ... . 14
1.5 Conclusions . . . . . . . . . e B

IR. J. C. WALRAVEN

2 Tests on partially prestressed T-beams subjected to shear and bending . . . . 18
2.1 Introduction. . . . . . . . . e e e e e e e 18
2.2 Experimental investigation . . . . . . . . . . . . . . . . .. .19
2.3 Instrumentation and testing arrangement . . . . . . . . ) |
2.4 Crack development during loading . . . . . . . . . . . . . .. . 23
2.5 Analysis of vertical equilibrium during the loading process . . . . . 27

2.5.1 Analysis techniques . . . . . . . . . . . . . .. e 27

2.5.2 Resultsof analysis . . . . . . . . . . . . . . ... ... 28
2.5.3 Some considerations concerning the shear-carrying capacity of

the concrete compression flange . . . . . . . . . . . ... 29

2.6 Discussion of design formulas with respect to the test results. . . . . 31

2.7 Conclusions . . . . . . . . . ... . 35

Pror. 1R, A. S. G. BRUGGELING
3 The redistribution of stresses in axially compressed reinforced concrete column 36

3.1 Introduction. . . . . . . . . . .. C e e e e ... . 36
3.2 Methods of analysis . . . . . . . C e e e e e 36
3.2.1 Rateofcreep methods . . . . . . . . . . . .. .. .. . 36
3.2.2 Effective modulus method . . . . . . . . . . - (4]
3.2.3 Comparison of the various methods of analysis . . . . . . . 42
324 Formulas . . . . . . . . . . . ... C e e e e e e . 43
3.3 Theexperiments . . . . . . . . . . . . .. C e e e e . 44
3.3.1 Specimens to betested . . . . . . . . . . . ... .. .. 44
3.3.2 Testseries. . . . . . . e e e e e e 45

3.3.3 Concreting — concrete quallty C e e e e S 11



3.4 Experimental results
3.5 Analysis of experimental results .
3.5.1 Behaviour on macro and micro scale .
3.5.2 Relationship. .
3.5.3 Formulas to calculate the shrmkage shortenmg of longltudlnally
reinforced concrete specimens .
3.5.4 Comparison of results of calculations w1th formulas and mea-
sured values . A
3.5.5 Calculation values given in the recommendatlons
3.5.6 Deformations after unloading .
3.6 Conclusions .
Acknowledgements .

PrOF. IR. A. S. G. BRUGGELING
4 Time-dependent deflection of partially prestressed concrete beams .
4.1 Description of time-dependent behaviour in general.
4.1.1 Plain concrete . .
4.1.2 Reinforced concrete structures .
4.1.3 Uncracked reinforced tendons under unlform dlstrlbuted tensﬂe
stresses . .
4.1.4 Cracked remforced concrete tendon
4.1.5 Reinforced concrete beam in bending .
4.1.6 Influence of prestress on the deformation .
4.2 Information from literature .
4.3 The experiments .
4.4 Analysis of experimental results . .
4.4.1 Deflections at midspan under short term loadmg
4.4.2 Increase in deflection at midspan under sustained load
4.4.3 Deformation of the tensile zone under sustained load .
4.5 Summary of experimental results .
4.6 Conclusions .

5 References .
6 Notation .

7 Appendices .

49
51
51
54

55

57
59
60
60
62

63
63
63
63

64
66
67
70
70
74
76
76
77
78
80
80

82

84

87



Preface

In the Stevin-Laboratory of Delft University of Technology, a series of investigations
started some years ago on the behaviour of partially prestressed concrete. That was,
because this type of concrete seemed to be a versatile method which could be applied
to many sorts of structures. Unfortunately, there was a lack of knowledge and
experience which did not allow to use this method immediately in practice.

In the mean time, the programme has been finished and before a new series begins
based on the results of the investigation, a need was felt to publish the results in order
to get in discussion with the colleagues of this special field. The FIP-Congress 1978,
held in London, was a very suitable facility for this purpose. We would be pleased
if we could receive comments and further suggestions.

Besides the authors, most of the members of the Stevin-Laboratory, department
for concrete structures, have contributed to the work which is reported here.

Especially the efforts and help of dr. ing. H. W. Reinhardt, ir. J. A. den Uyl and
ing. G. Timmers for preparing this edition of Heron are thankfully acknowledged.

Delft, february 1978 The editor






Summary

This publication over partially prestressed concrete contains four parts, two of them
dealing with calculation methods and the short time behaviour and two of them
considering the long time behaviour of partially prestressed concrete. All four sub-
jects are treated partly theoretically and partly experimentally.

The first part presents a new method, based on the use of a reference force, for the
design and analysis of cross-sections of partially prestressed concrete structures
loaded in pure bending. The influence of relaxation, shrinkage and creep is taken
into account in the reference force.

The method is also useful when mixed reinforcements are used. In the tests the
cross-section of the reinforcement and the prestressing steel was varied. The influence
of this variation on the behaviour and cracking of partially prestressed concrete
beams was studied. The experiments have shown that this design method and the
method for crack control is safe and sufficiently accurate.

The second part deals with an investigation into the behaviour of nine partially
prestressed concrete T-beams. The variables in this series were the level of prestressing,
the transverse reinforcement ratio and the longitudinal reinforcement ratio, the latter
being obtained by varying the amounts of prestressing and reinforcing steel. The
concrete cube strength was 50 N/mm?. All the beams had the same cross-section and
the same loading arrangement with a shear span to effective depth ration of 3.1.
A great number of strain measurements were performed on the longitudinal and
transverse reinforcement, on the top and the bottom face of the beam and at some
points on the cracks, so that not only information on the ultimate load state was
obtained, but the whole stress development and redistribution could be observed and
analysed. The development of the individual load-carrying components, such as
transverse reinforcement, compression zone, dowel action and aggregate interlock,
was analysed. The stress distribution in the compression flange is compared with
results of investigations on biaxially loaded concrete. Design methods are discussed
with reference to the test results.

In the third part, a special aspect of time dependent behaviour is considered,
namely the redistribution of forces from concrete to reinforcement in an axially
compressed reinforced concrete column. This phenomenon can be explained by the
influence of shrinkage and creep deformation of concrete.

Bonded reinforcement will partly restrain this deformation. As a result of this
restraint, the shrinkage forces and the axial load on the column will be carried by
the reinforcement. Thus the part of this load carried by the reinforcement will
increase in course of time, and the compressive stresses on the concrete section will
relax in course of time.

This mechanism also operates in the tensile zone of partially prestressed concrete
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beams when, under sustained load, compressive stresses are acting in the (reinforced)
tensile zone. In this tensile zone the redistribution of stresses causes a reduction of
the compressive stresses in the concrete. This phenomenon therefore influences the
cracking moment and the bending moment of decompression (or neutralisation) of
the stresses in the concrete at the centre of the reinforcement and prestressing steel.
This is explained in part 4. To check the results of existing design methods, used in
practice, with the real behaviour of axial compressed reinforced concrete columns
experiments are carried out.

In this report the tests are described and the results analysed. It must be realised
that in this case it was possible to calculate the time dependent redistribution of
stresses with the “real” values of Young’s modulus, creep and shrinkage. In practice
in the design calculation only the values can be used which are expected in the actual
structure. Therefore also the sensitivity of the design method and the effect of its
parameters on the result, in relationship to values obtained in practice, is of
importance.

The fourth part deals with another aspect of time dependent behaviour, these are
the time dependent deflections of concrete structures loaded in bending. They must
be considered in various types of structure, e.g. in floor slabs of buildings or canti-
levered bridges.

The prediction of these time dependent deflections is normally not very easy,
because of lack of information based on scientific studies and on experiments. In
this respect prestressed concrete structures cause no problems, however the behaviour
of uncracked homogeneous sections under the influence of creep and shrinkage of
concrete, and the relaxation of steel stressed, are relatively well-known. In reinforced
concrete structures, however, the cracked tensile zone complicates this behaviour.
Therefore the prediction of deflections is more difficult.

In partially prestressed concrete with a partly cracked tensile zone, the problems
of prestressing and cracking are mixed and therefore rather complex. In this report
the influences causing deformations of concrete structures will be qualitatively treated.
Experiments have shown what influences are important. The results of these experi-
ments will be analysed. Because of the complexity of the problem this report cannot
yet give design rules for the various types of concrete structures.



I The behaviour of partially prestressed
concrete beams loaded in pure bending

1.1 Introduction

In the Netherlands and many other countries the use of partially prestressed concrete
is not yet allowed. Some reasons for this can be mentioned:

1. A good design method was not available.

2. The discussion about cracking of prestressed structures under service loads is not
yet finished.

3. The knowledge in this field obtained by experiments was not sufficient.

In the mean time a new design method was developed at the Delft University of
Technology and experimentally tested in the Stevin Laboratory of this University.!)
For these tests two programs were carried out:

Program 1: Partially prestressed concrete (p.p.c.) loaded in pure bending,
Program 2: P.p.c. loaded in pure bending and loaded in bending plus shear.

The aim of this paper is to report on the design method and the tests in which the
variation of the reinforcement and the prestressing steel was studied.

This paper describes the tests on p.p.c. loaded in pure bending; the tests on p.p.c.
loaded in bending plus shear are described in the paper by J. Walraven.

1.2 Definitions

— Structures in partially prestressed concrete (p.p.c.):
“Prestressed concrete structures in which under certain circumstances tension or
limited cracking due to bending moments is allowed”.

- Prestressing force:
“The total normal force in a concrete section”

N = AS,'0"1+AS,,'0',,

— Reference force:
“The force at the elastic centre of gravity of both reinforcements (A, + 4,,), when
the concrete stress due to bending moments or tensile forces in that elastic centre
of gravity is zero”.

— Degree of prestressing:
“The quotient of the force on the prestressing steel when the 0,2% proof stress is
reached and the force in both reinforcements when the reinforcement yields or the
0,29, proof stress is reached. The symbol of the degree of prestressing is A”.

1) The contribution of CUR-Committee C 22 is gratefully acknowledged. 9
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— Decompression moment:
“The moment M, due to which the stress in the outmost “concrete fibre” of the
precompressed tension zone is zero”.

— Cracking moment:

“The moment M, due to which an accepted risk of cracking occurs”.

due to

Cracking Moment My 7\\_) o b
Oca "

due to Decompression |7/_’ Mo/

Moment Mgy

Fig. 1.1. Definition of M, and M, in a moment-curvature diagram.

1.3 The design method
This method is valid for class 1, 2 and 3 in Fig. 1.2.

3 4

Vv

,l L w < 0,Jmm|w <02mmfw <03mm

class |

M
perm.
+

long
duration

7
171271

w <0,Jmm|w =02mm{w =0,2mm|w <0,3mm

T

prestres.
concrete

partially prestressed concrete|

! [ reinforced concrete

Fig. 1.2. Classes of reinforced and prestressed concrete ac-
cording to CEB.

The design method developed at the Delft University of Technology makes use of
the reference force Fg,, in which the influence of relaxation, shrinkage and creep is
incorporated on basis of the Dischinger differential equation which is actually only
valid for a constant state of stress [43, 44]. Nevertheless, the Dischinger method is
still used here for the benefit of simplicity [I, 4].

_ M-
Fp,=Fpo-e "+< T ¢

+ -——8“°°‘EC> ‘%C(l—e"") D)

c e}

Where:
Fro= Asp(o'po —40)
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stresses forces

Fig. 1.3. Reference force Fgy.

n-w-&,
1+nwé

FRt = Nslt+Nspt

As = Asl+Asp
0y, = (Fre— Fro)/ 4
3 w,
Op = <1‘Rt+FR0 _>/As
Wy

In a cross-section affected only by the imaginary force Fg, all concrete stresses are

zero (Fig. 1.3).

Now a reference moment My, is defined in such a way that the concrete stresses
at the elastic centre of gravity of the reinforcing steel 4,4+ A4, are zero if the cross-

section is only affected by this imaginary moment Mp,.
This moment must be:

Mp, = Fg,e E—1
Gt:'z=0 + Gc2= fc
stresses Mo =Mp=AMo Mgy Mr = Mgy +AM,
Fig. 1.4. Fig. 1.5.
Reference moment Mg;. Stresses due to M,, Mp; and
M.
__Frlyite)
Tt T T T e
(4
0., = Fry,—e)
2 =T
Ace
Fri—Fpro
Oy =———F

A

s

Fig. 1.6.
Stresses due to /AM.
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FritFro—
o.pt = As P
As = Asl+Asp

_ (Fre—Fro)e + M(—e™")
K E - I .nwé E I nwé?
Using M, makes it easy to calculate the stresses in a cross-section due to a bending
moment in the linear elastic state, when the structure is not cracked or the bending
moment is smaller than M,

Otherwise it is possible to relate the decompression moment M, and the cracking
moment M, at Fy, by means of Mg,. Then we get:

Frire y,+y,l+e e+k’
M,y = Y SR . — 3
0T ET yo4no(y—e) M2y T na(y,—e) )
M, =M, +fcic(ﬂ (4)

Y2 t+no(y,—e)

The stresses and curvature due to a moment M in the linear elastic state, when the

structure is not cracked or the moment is smaller than M,, can be calculated by

superposition of the stresses and curvature of My, and of a moment AM = M — Mpg,.
The stresses and curvature due to a bending moment AM are:

_AM yitnao(y,;+e)
I, 1+nwé

Oy =

AM y,+nw(y,—e)
1, 1+nwé

Ocp =

AM ne

6. =—

S T T, 1+nwé

AM _1~+ nw
E ., 1+nwé

©)

In the linear elastic state, when the structure is cracked, the stresses can be calculated
with Fg, (Fig. 1.7). The depth of the compression zone h, can be calculated with
formula 6.

M_=Acxyx(h—hx+yx+k;) (6)
FRt Acx'yx_nAs(h“hx)

M| Fy, can be calculated with a certain bending moment M.

12



The true value of %, can be determined by trying some values of /4, in formula 6
and linear interpolation (Fig. 1.8).

R N

| Nsi
Al,zj Fat  Nep Nett | Foy ¥y, Ngp S|

Ap=—]

Ns-Frt
Fig. 1.7. Stresses when the structure is cracked. Fig. 1.8. Strains after cracking.
Mh,
Oc1 = N
Acxyx(h - hx + Yt k./x)
M Fro
Oy — - —

A=y k) A,

% =bep, +105L (7

A relation between the increase of the stress in the reinforcement and the crack
width, formulated at the E.T.H. (Federal Technological University) in Ziirich, will
be checked [3, 4].

This relation is:

if Ao, = 150 N/mm? then w,,,, < 0.15 mm
Aoy =200 N/mm? Wonay < 0.24 mm

max

Ao, = 240 N/mm? Wiax < 0.36 mm (8)

Where:
M Fre

T A(h—h Ay +K) A,

Os

The formula for crack width control in the Netherlands code V.B. 1974 part. E.508
will also be checked [5].

Dmax = Oa8AU <20+2,5£’ 10—5> mm (9)
0

Where: d = average diameter

A
o 100

Wy =

13



The failure moment can be calculated with:
Mu = Zu(Alfy_i'Ap'fO,Z) (10)

There, the size of the lever arm z, depends on the geometry of the cross-section.

1.4 The experiments [5]

In order to check the theory, 10 T-section beams were tested in program 1 and 9 beams
in program 2.
All the beams were statically loaded in a four point loading test (Fig. 1.9).

"HE-M 34

— T

INP 12 =1
) — R

120 ] INP24

Y 4 b N
|/ floor of the testing hall / V /;
t . Z i ’)
t % = { t 4

| hydraulic jack

INP12
Fig. 1.9. Testing frame.

The cross-sections of the beams of program 1 wete all the same, the degree of
prestressing A was varied: 0.64 < A < 1.00.

The amount of normal reinforcing steel varied between 0 and 452 mm?, whereas
the prestressing steel was the same for all beams and consisted in two 4’ strands (see
Appendix 1 Table 1).

450 .
l4 —i 408 Tiﬂ 448
IEj o [F | Jes
1145 || 160 || 145 115 ]l 120 [ 115
T o6 Ll -t
I QR40
270 QR |28
o (o 10 I @a
i!-im,, 40y, 5= (2 T e
L,EQL’L 110
150
Fig. 1.10. Fig. 1.11.
Cross-section of the beams Cross-section of the beams
of program 1. of program 2.
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The concrete quality was B 30 (average cube strength at 28 days was about 38
N/mm? (Appendix 1 Table 2)).

The cross-sections of the beams of program 2 were all the same, the degree of
prestressing was varied: 0 < 4 < 0.90.

The amount of normal reinforcing steel and of prestressing steel both varied
according to Table 1: The prestressing tendons were also 4"’ strands.

The concrete quality was B45 (average cube strength at 21 days more than 52
N/mm? (Table 2)).

Program 1 will be described here. Where there is a major difference between
program 1 and program 2 the value of program 2 will be added in parenthetes.

After 3(4) days of hardening of the concrete, the beams were prestressed. After
3(2) weeks the ducts were grouted. The tests were carried out after 4(3) weeks of
hardening.

One of the main problems was that of measuring the shrinkage and creep. Nor-
mally, shrinkage and creep tests were carried out under the same conditions as the
hardening conditions of the beams.

This was impossible in this case, because the testing equipment for shrinkage and
creep tests was installed in a special climate-controlled room which was too small for
the beams.

Therefore the beams hardened in the testing hall with an average temperature

4800

F;o 1500 750 750 ) 1500
5

21

101112 13
! RN SHa 15 116,07, s Yoo
1101‘7":r VAR

e
26 27,28 (29 ,30 31
L)

front side 175 175 175 175
38

» 1819 l 20 21

=
=
e = |

1

<I—225

1.12a upper side T

I I 175
321 120] S T
back side 20036 550 | 20 | FVAR

!
I

Y
22 23 |24 725 5
LR B, }35
j 3
bottom side lﬂil.”é 175,175

numbers of measurements

1-9 displacement transducers

10-25 strain gauges on concrete

25-33 strain gauges on reinforcement

34-36 dial gauges on concrete

37 dial gauge on reinforcement
1.12b 38-40 load cells

Fig. 1.12. Measuring scheme of programme 1.
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of 20°C and relative humidity of 40%;, but with considerable fluctuations in tempera-
ture and relative humidity.

In order to get the values of shrinkage and creep an indirect determination method
was used which will be described now: First, the strains at different levels of the
depth of the beams and the force in the strands were measured during the hardening
period by dial gauges and pressure gauges, respectively (Fig. 1.12 (1.13) nrs. 34-37
(44-46) and 39+40 (41 +42)).

Before grouting the ducts the force in the strands was changing as a result of
relaxation, shrinkage and creep. This was measured with the pressure gauges no.’s
(39+40 (41+42)).

After grouting, the force in the pressure gauges did not change any more because
the anchorage of the strands was taken over by bond.

The change in the force in the strands is identical with the change in curvature, so
that force F after grouting of the strands can be determined by extrapolation (Fig.
1.14), assuming that no significant relaxation has taken place.

] il 6512 s 02 [N
o —
4573 Ovfriy——rt
WO lophb |,
front side 307 225 1225 |
43
f
D= 4.5 6 7 8.9 10 11 1213
A+ttt ——
42
: 175
- T
1.13a upper side,_4x 130 360 mlno'_ 0 4x10
v | )
f | ]
l ] 1%-26 i 2740 I L
L 500 750 750 | 750 50 |
back side !
L R
!
W 184950 51 52 53 5455 56 -
}
! -y beams 1,2.4en5
o 790 _ 4x115_ 200,175 175,200 ,_ 4 x115 _ 790 .
I
— 4484950 51 52 535455 56 y
e e =9
57585960, ——f—+ B R [ beams 3,6,7,8en9
815 | 4x15 4175 4x 115 815 |
T

1.13b Sottom side

0
70
70

A 35 g ss

1.2en3 displacement transducers

47-56,4-13 strain gauges on concrete

14-40 strain gauges on stirrups

41-43 load cells

YA dial gauges on concrete

46 dial gauges on reinforcement
1.13¢ 57-64 strain measurement on reinforcement

Fig. 1.13. Measuring scheme of programme 2.
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Curvature K | force F

extrapolation

/’5’/‘_—__——

grouting  testing

time t

Fig. 1.14. Variation of curvature and force in the prestressing steel, with time, schematically.

The following were measured in the tests:

the load

the deflections

— the concrete and reinforcement strains
the crackwidth (Figs. 1.12 and 1.13).

|

With the stress-strain relation of the concrete, which was measured on the day of
testing, the stresses in the beams in the uncracked and the cracked stage could be
calculated and compared with the theoretical results.

The comparison of the results given in the appendix shows that the method
described in this paper is sufficiently accurate. It also emerged that the crack widths
can be very satistactorily calculated according to the Netherlands codes for concrete
(formula 9).

1.5 Conclusions

Cross-sections of partially prestressed concrete structures can be designed fairly
easily with the method described in this paper. It is based on the use of the reference
force Fy, in which all the time-dependent losses are taken into account.

The experiments have shown this method to be sufficiently accurate. The method
for crack control of the E.T.H. in Ziirich is very safe; the more complex Dutch
formula is also safe, but does describe the experimental results more accurately.

The calculation of the moment of failure given in this paper gives sate results.

It is also possible to use this method for limit state design.



2 Tests on partially prestressed T-beams

subjected to shear and bending

2.1 Introduction

To prevent shear failure in partially prestressed beams it is necessary, as in the case

of

a.
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reinforced and fully prestressed beams, to prevent every possible failure mode.
In principle, four modes of shear failure are distinguished:

Web shear failure.

This type of failure occurs when, within the region of the structural span not
affected by flexural cracks, the tensile strength of the concrete is reached, resulting
in a diagonal crack. In beams of normal proportions, it no shear reinforcement is
provided, failure may occur immediately upon the appearence of the shear crack.
In this respect partial prestressing would give an increase in strength in relation
to a reinforced beam, because the shear cracking load is delayed as a result of the
axial compressive stresses.

Web crushing failure.

This type of failure may occur in a structural member which is overreinforced in
shear; crushing in the inclined concrete struts appears before the yielding stress
in the stirrups is reached. This type of failure only occurs in thin webbed beams.
It can be demonstrated that a prestressing force has a positive influence on the
web crushing strength. In Fig. 2.1. a prestvertical cross-section of a beam with
vertical stirrups is considered. If the ultimate concrete compressive strength is
given as of, it can be calculated that the vertical component of the web compres-
sion forces is equal to

V,=af!, b, z-cotf-sin’0

The minimum value for this expression is obtained for 6 = 45°, being the inclination
in a non-prestressed element. Members subjected to an axial compression force
show smaller values; hence, partial prestressing leads to a higher web crushing
resistance. This subject is dealt with, interalia, in [12].

Vy=af; bz cot® sin®

Vu

Fig. 2.1. Forces in the case of web crushing.



c. Bond failure.
Bond failure may occur when the longitudinal reinforcement has been designed
regardless of the shear influence. Due to the inclined cracking in the shear region
the longitudinal reinforcement is subjected to an additional tensile force which
may lead to deficient bond when this phenomenon is not considered.

d. Bending shear failure.
This type of failure may occur in regions of the span where flexural cracks have
appeared. The failure development usually means an extension of diagonal cracks
originating from the flexural cracks from the lower part of the beam up to the
compression flange. The final collapse is caused either by crushing or splitting of
the concrete compression area above the crack, after yielding of the stirrup
reinforcement.
This failure type is the most important one and also the one most frequently
discussed.
The study of this failure type in partially prestressed beams is the subject of this
article.

2.2 Experimental investigation

Nine beams were tested, in which the effect of the following principal variables was
investigated; percentage of web reinforcement, percentage of longitudinal reinforce-
ment and average prestress in the concrete. The dimensions of all beams were the
same and are indicated in Fig. 2.2.

The series can be subdivided into three groups with different prestressing levels.
Beam 1 was not prestressed, beams 2-5 were prestressed in such a way that the flexural
cracking moment would correspond to M, . =22,5 kNm and the corresponding
shear force to Vy; ., = 30 kN, and beams 6-9 were so prestressed that M, ., = 34 kNm
and V., =45 kN.

350

I ]
 S— 1
i P s
103 - 120 J—
-y gravity line .
k stirrups vertical
240 215 Ac= 45495 mm?
17 A J=306.10° mm*
SPAll_Ast
@)
Lo gy
- 3250 -
500 750 75Qf,,T,,Z§Q,A_,.,_r__QO
| | o ® |
B a3
I_ 2250 _|

Fig. 2.2. Dimensions of the test beams.
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Within each group the amount of reinforcing steel was varied, while in each individual
beam the left (L) and right (R) side contained different amounts of stirrup reinforce-
ment.

Details of the mechanical and geometrical properties are listed in Table 2.1.
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Fig. 2.3. Scheme of parameter variation.

Fig. 2.3 gives a general survey of parameter variation and shows the combinations
of beams that have to be compared to study the effect of the parameter variation.
The Figs. 2.4a—c give the stress-strain relationships for the types of steel used.

After casting, the beams were covered with plastics sheets. The prestress in beams
2-9 was applied 5 days later, by either one or two 4'’ strands, tensioned from one
end, while the force in the steel at the other end was measured by a load cell. The
strands were anchored individually. The ducts were injected with cement grout 14
days after casting. The tests were carried out 21 days after casting.

2.3 Instrumentation and testing arrangement

The beams were all simply-supported over a span of 2250 mm and loaded with two
symmetrically positioned concentrated loads (Fig. 2.5).

The shear span was 750 mm for all beams, giving a shear span to effective depth
ratio of 3.1. The deflection was measured at three points by electrical transducers
(Fig. 2.6). The strain in each strirup was measured by either one or two strain gauges,
directly affixed to the stirrup surface. The longitudinal strain distribution at the top
of the beam was measured by 10 strain gauges on the surface of the concrete. The
strain of the longitudinal reinforcement was directly measured on the steel by 18
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Fig. 2.5. Beam during loading.

strain gauges. Details of the measurements are given in Fig. 2.6. The beams were all
loaded incrementally in steps of 20 kN. In interesting loading stages (first shear
crack, ultimate load), this step was reduced to 10 kN. After failure of the weaker
side of the beam the test was ended, in view of the fact that the other side was also
near to failure and no additional information was expected.

2.4 Crack development during loading
During loading four main ranges of crack development can be distinghuished.

1. The uncracked loading range.
The first cracks that develop follow the principal stress trajectories. Hence pres-
tressing leads to more flatly inclined cracks.

2. The inclined cracking range.
When both the transverse and the longitudinal reinforcement have been activated,
an anisotropic stress situation arises. New cracks appear, having a different
inclination. This inclination is influenced by the amounts of transverse and
longitudinal steel. A greater amount of transverse steel leads to more steeply
inclined cracks. A greater amount of longitudinal steel leads to flatter cracks.
For each beam at both sides the average crack inclination in the web between two
sections at distances 1d-2d has been determined, just before the onset of yielding.
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Fig. 2.6. System of measurements.

Only the cracks intersecting the web at mid-depth have been taken into account
The results are listed in Tables 2.2a and 2.2b.

Table 2.2-a. Measured average crack inclination before stirrup yielding, related to varying amounts
of stirrup reinforcement (other parameters constant)

beam crack incl. (degr.) transv. reinforcement (%)
1L-1R 40.3-45.3 0.66-0.95
2L-2R 36.7-39.6 0.81-0.95
3L-3R 31.3-41.5 0.52-0.66
4L -4R 36.5-38.3 0.39-0.52
SL-5R 32.7-44.8 0.30-0.39
6L-6R 36.1-36.0 0.76-0.95
7L-7TR 34.3-39.3 0.76-0.95
8L-8R 33.5-38.0 0.66-0.76
9L-9R 37.9-38.8 0.52-0.66
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Table 2.2-b. Measured average crack inclination before stirrup yielding, related to varying amounts
of longitudinal reinforcement, the other parameters being constant

beam crack incl. (degr.) long reinforcement (%5)
8R-6L 38.0-36.1 0.43-0.61
9R-8L 38.8-33.5 0.30-0.43
4R-3L 38.3-31.3 0.51-0.65
5R-4L 44.8-36.5 0.42-0.51
TR-6R 39.3-36.0 0.51-0.61
8R-7L 38.0-34.3 0.43-0.51

3. The stirrup yielding range.
Yielding of the stirrups dit not immediately lead to failure. Due to the fact that the
concrete compression flange had a considerable reserve capacity, the load could
be greatly increased (Table 2.3). No change in crack inclination was observed

in this range.

Table 2.3 Summary of test results

L
— T

shear force at

shear force at

shear force at

shear force at

flexural cracking  inclined cracking  first stirrup failure failure failure
specimen ¥V, 5 (kKN) Vips (kN) yielding (kN)  V,, (kN) place type
1 17 42.5 71.5 (L) 126 1 Fl
117.5 (R) (Fl)*

2 27 57.5 95 (L) 154 2 Fl
117.5 (R) (FDH

3 27 57.5 (L) 75 (L) 127 1 C
67.5 (R) 95 (R) (FD)

4 32 57.5 70 (L) 116 1,3 C
72.5 (R) ©

5 27 57.5 61.5 (L) 100 1,3 C
66.5 (R) ©

6 47 71.5 112.5 (L) 167 1,3 C
122.5 (R) ©

7 47 82.5 107.5 (L) 151 1 C
107.5 (R) ©

8 42 75 92.5 (L) 145 1 C
9% (R) ©

9 47 77.5 81 (L) 126 1 C
86.5 (R) (FD)

* In parentheses: expected failure type of the strongest beam-side

4. The ultimate loading range.
In all the beams yielding of the main reinforcement was reached. The crack
patterns of all beams in this stage are represented in Fig. 2.8.
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The failure mode, as was generally observed, is represented in Fig. 2.7.

T

Fig. 2.7. Generally observed failure mode.
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After reaching the compression flange, the inclined crack continued along the edge
of the flange, and passed the directly loaded area. In some of the beams the crack
continued in the lower part of the compression flange. At the other side of the loading
plate the compression zone was reduced and concrete compression failure occurred.
This failure mode is indicated as C(ombined) in Table 2.3.

Only beam 2 reached its ultimate load in consequence of “straight” flexural bending
failure, in the middle of the constant moment region.

2.5 Analysis of vertical equilibrium during the loading process

2.5.1 Analysis techniques

After inclined cracking has occurred, the shear force is transferred by four com-
ponents (Fig. 2.9).

Fig. 2.9. Components providing the internal equilibrium.

Viow = dowel action of the longitudinal reinforcement
V. = vertical component of aggregate interlock in crack plane
V.. = contribution of the transverse reinforcement across the crack

ws
V. = contribution of the uncracked compression area.

The determination of the dowel action has been based on a study by Baumann [22],
giving expressions for the dowel cracking load and the contribution of the dowel
action after a dowel crack is formed.

The contribution of aggregate interlock was determined by a method previously
used by Jungwirth [14], comparing the measured crack displacements with the result
of interlock tests carried out by Fenwick [20] and Houde/Mirza [21].

The contribution of the transverse reinforcement was determined directly from
measurements on the stirrup. A complication is that the stirrup stress is greater than
the measured strain multiplied by the steel elasticity modulus, this being due to bond
between stirrups and concrete.

The calculation has also been based on the technique of [14], taking these effects
into account. As a result of their pronounced yield range, it was possible to determine
the contribution of the stirrups after yielding with a fair degree of accuracy.

The contribution of the uncracked concrete compression zone was found by sub-
tracting the three above-mentioned contributions from the total external shear force.
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2.5.2  Results of analysis

For all the beams the distribution of forces over the single components was determined.
For the beams 1L, 3R, 8L, 9R the distribution is represented in Fig. 2.10.

These beams all contained the same transverse reinforcement, but different longi-
tudinal reinforcement ratios, and different prestressing levels; beam 1 was not pres-
tressed, beam 3 had an average level of prestressing, and beams 8 and 9 a high one.

It can be seen that aggregate interlock affects only the redistribution of forces during
the loading process, but does not contribute in general to the ultimate load resistance.
However, aggregate interlock plays an important part before the ultimate load stage
is reached, as the slope of the inclined cracks can only be influenced by the proportions
of transverse and main reinforcement by virtue of this phenomenon.

As can be expected, dowel action increased with increasing amount of longitudinal
reinforcement.

Due to the fact that aggregate interlock and dowel action are more pronounced
when the longitudinal reinforcement is higher, the increase in stirrup stress is less
steep (Fig. 2.11).

Vint (kN) | Vint.(kN)
20{ f : 120 !
1 1
100 1 100 1 1Veompr.
80 :Vcompr. 80 4 /0\{,
60 JU 60 1 4 < zdowel
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Fig. 2.10. Distribution of the shear force over the individual load carrying components for beams
1L, 3R, 8L, 9R.
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After yielding, the stirrup strain could pass through a considerable deformational
range before failure occurred. During this process the shear-carrying component of
the uncracked compression area increased substantially, absorbing almost the entire
load increase. Data conserning the distribution of forces in the other beams are given
in appendix A 2.

2.5.3  Some considerations concerning the shear-carrying capacity of the concrete
compression flange

In the ultimate load state the contribution of the concrete compression area varied
from 65 to 108 kN (beam 6). As was calculated from the deflection, only about
10 kN could have been carried by secondary bending of the flange.

For the analysis of the stress situation in the compression area the concrete failure
criteria experimentally stated by Kupfer [17] and Nelissen [18] were used. From these
criteria, giving combinations of ultimate principal stresses, with the aid of Mohr’s
circle, envelopes were derived, giving the ultimate shear stress as a function of the
normal compression stress (Fig. 2.12).

To obtain information about the stress situation in the compression flange, the
distribution of forces in the shear region of a beam is discussed on the basis of the
model, represented in Fig. 2.13, where a vertical section is considered.
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Fig. 2.13. Forces in the shear region.
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Flexural moment equilibrium is provided by forces in the compression flange and
in the tension flange. Vertical equilibrium is provided by the component of the com-
pression area (V,), the dowel action (V,,,), and the vertical component of the web
stresses R,,-sin 0. To maintain equilibrium, however, a horizontal component is
needed (R,), which can only be developed by the compression and tension flanges.
This leads to the conclusion that the compression area is partially unloaded, while
the tension flange is subjected to an additional load. This phenomenon can also be
observed by considering the strain measurements (Fig. 2.14).

1 V=875kN
2V=925kN
lV ‘LV 3 V=100 kN
S — o —
EoeRn
! i I it I Ny U
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b Jos les ) 3 L it =

Fig. 2.14. Strain measurements on longitudinal reinforcement (a) and compression flange (b)
(Beam 5).

Hence a favourable stress situation in the compression flange is obtained. Due to
the force 4R, the normal stresses remain in the region A (Fig. 2.12), where a relatively
large shear stress can be resisted, even if in the constant moment region the normal
compressive stresses reach almost the critical value at the end of zone B

<"_? = 1.0)
fcp

However, the great shear-bearing capacity of the compression flange cannot be
explained by the occurrence of this favourable stress situation alone. Only if that

Tomax acc.to fig 2.12
extlreme compr. fibre t~——>t

!

7 |

longitudinal stresses shear stresses

Fig. 2.15. Presumed normal- and shear stress distribution in the compression flange.
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part of the compression flange which is active in transferring shear extends over a
substantial portion of the width can satisfying agreement with the experimentally
found shear component be obtained.

When a shear stress distribution as indicated in Fig. 2.15 is presumed, nearly the
whole compression flange must have contributed to obtaining the calculated shear
resistance.

In the literature more data are found confirming these observations. Leonhardt
et al. [13] are led by their experiments to the conclusion that the effective flange width
in carrying shear is at least equal to twice the web width.

Thiirlimann et al. [2] basing themselves on their tests on partially prestressed con-
crete beams, also report a large reserve capacity of the compression flange.

Placas and Regan [15] report tests on simply supported T-beams with variable
flange width and constant longitudinal and transverse reinforcement.

An increase in strength was observed for flange widths up to about twice the web
width.

Cederwall et al. [16] report test series on partially prestressed beams with rectangular
cross-section and deduce statistical formulas to predict the average shear bearing
capacity of this type of beams. Comparing our own test results with these formulas
it is found that the T-beams have an excess capacity of 60%.

2.6 Discussion of design formulas with respect to the test results

Many formulas predicting the shear capacity are based on the addition principle. In
these methods the ultimate load-bearing capacity is based on the improved truss
analogy. For reinforced concrete structural elements the shear bearing capacity is
expressed as the sum of two terms;

Vi= Vet Vis (D

where V,, is the contribution of the web reinforcement and is calculated on the basis
of the Mérsch truss-analogy, assuming a crack angle of 45 deg., while V, is “the
contribution of the concrete” to the ultimate shear resistance.

This is visualised in Fig. 2.16a, giving the development of stirrup stress (solid line)
as a function of the shear force according to observations in numerous experiments.
The dotted line gives the theoretical relation between the stirrup stress and the shear
force according to the Morsch truss analogy. For the load V' the actual stirrup stress
corresponds to point A. In a perfectly functioning truss this stress would have resulted
in a contribution of the shear reinforcement V', corresponding to BC. The difference
between V and V,, (line AB) which is to be attributed to the shear resistance of the
compression zone, etc. is approximately constant after inclined cracking. The con-
tribution of the concrete V, in (1) is based on experimental observations.

In the case of prestressed concrete, however, the stirrup stresses develop later due
to the fact that inclined cracking is delayed by prestressing. Further on the line is
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Fig. 2.16a Fig. 2.16b

Fig. 2.16. Stirrup stress development as a function of the load for reinforced (a) and prestressed
concrete beams (b).

steeper that the line corresponding to the Morsch truss, which can be attributed to
the smaller amount of longitudinal steel in the case of prestressed beams. As a
result, the concrete contribution decreases after inclined cracking. The remaining
part at the onset of yielding is believed still to be greater than the concrete contribu-
tion in a non-prestressed beam. As the corresponding load was generally accepted as
the basis for the design formulation, a positive influence has been attributed to the
prestressing influence. This is expressed in an additional term V,

Vi=VutVetV,

where V, is a function of the prestressing force (the term V), has to be distinguished
from the term V;,, which has to be added in the case of inclined tendons to take
account of the vertical component of the prestressing force).

The test on which the term V, is based are, however, in the author’s opinion, not
fully representative of prestressed or partially prestressed beams. With the aim to get
shear failures in any case, a lot of tests have been carried out on fully or partially
reinforced beams without a compression flange (no reserve capacity) and unrealistic-
ally low transverse reinforcement ratios. As a result, shear failures soon occurred,
immediately after yielding of the stirrups. Hence the great reserve capacity which
practical prestressed and partially prestressed beams have at their disposal is not
taken into account.

The second type of design formulas is based on the plasticity principle, as formulated
by Braestrup [10], Nielsen and Braestrup [8-9], and Thiirlimann et al. [6-7]. Those
models have the advantage that they are no longer based on the stirrup yielding load,
but make use of the redistribution range after stirrup yielding (Fig. 2.16b, line SS).

The theoretical model developed by Thiirlimann has been adopted in the CEB-
model code [19] and is therefore compared with the present author’s own test results.

The basis of the model is a plastic truss in which the possible distribution of forces
is formulated as a lower bound criterion, considering admissible stress fields not
exceeding the plastic limit forces. Hence more solutions are available, which means
that the direction of the diagonal compressive struts can be chosen arbitrarily over a
great range of values.
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This range is restricted by kinematic conditions; a redistribution of forces is only
possible if sufficient aggregate interlock is available. As a result, the inclination of the
concrete compression struts may be choosen freely between the limits

0.5<tany £2.0

So the structural member is considered to develop into a plastic truss in which the
longitudinal forces are restricted to the upper and lower chords and the shear forces
to the web. The web resistance is therefore formulated as
Agyy .
Vs = 7‘0.9'd‘fswy~(coty+cotoc)-smoz
o = being the inclination of the transverse reinforcement, and

y = being the chosen inclination of the compression struts between the
mentioned limits.

As the longitudinal reinforcement has to endure a greater tensile force due to shear
action, the model can only be applied when an additional amount of longitudinal
steel, prescribed in the code, has been added.

The most economical choice for the inclination leads to y =30°. As has been
observed in the experiments, the full plastic truss action can be reached only after a
redistribution of stresses in the web. The loading range between inclined cracking and
full truss action is characterised as the “transition range”. In this range an additional
shear resistance may be taken into account:

if V, ;1 £ 0.60f,b,d then V, = 0.60f,,b,d (uncracked stage)

(2
if V, oy = 1.80f,b,,d then V, =0 (Full truss action)
09.f
Asw'o.zs.sY:/‘pBﬁ
080
uncrqckedl transition l truss _Lweb crushing
060
¢
[e)
0,40 Q 0

o O om1l
0,20 o REF: O [21]
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Fig. 2.17. Comparison of test results with CEB-model code (refined method).
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Fig. 2.18. Stirrup stress development as a function of the load as observed in the author’s own test
beams (idealised), indicating that the shear resistance was not completely exhausted when
yielding of the longitudinal reinforcement occurred.

For intermediate values (transition range) V. is determined by interpolation.

This means that all ranges that possibly can be passed through are present in the
formulation.

The results of the present author’s own experiments give values in the transition
range.

In Fig. 2.17a comparison is made between the design formula and a selection of
results of tests on partially prestressed concrete beams.

In this comparison the web crushing strength, presumed to be equal to 0.25f,,b,4d,
has been used as a reference value.

Considering the present author’s own tests it must be realised that, although the
stirrup strains passed through a considerable yielding range in fact the shear resistance
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of the element was not exhausted (Fig. 2.18); in each beam yielding of the main
reinforcement gave rise to failure. This means that the same ultimate load could have
been reached with a reduced transverse reinforcement. Therefore the value of the
additional term in the transition range (2) could seem to be too conservative. How-
ever, as an increase of this term leads to a reduction of the transverse reinforcement,
the crack width in the serviceability state could become the critical factor for design.
Fig. 2.19 represents the maximum measured crack widths in the serviceability limit
state, which is assumed to be equal to the ultimate load, divided by 1.7 .Fig. 2.20
gives the crack development as a function of the load for beams 4 and 6. From these
figures it can be concluded that an increase of the concrete contribution in the
design formula would probably not have the desired effect.

2.7 Conclusions

— After yielding of the transverse reinforcement the load could be increased con-
siderably, because of the high load-bearing capacity of the concrete compression
flange.

— Comparing the stress combination in the concrete compression flange with the
results of investigations on the properties of biaxially loaded concrete [Kupfer,
Nelissen] it can be concluded that nearly the whole compression flange must have
contributed to shear transfer.

— The development of stresses and deformations in the test beams did not proceed
so far that full plastic truss action could be reached.

The slope of the inclined cracks, and as a result the contribution of the stirrups to
shear transfer in this loading state, appeared to be influenced by the transverse-
and longitudinal reinforcement ratios and the prestressing stresses.

— The design principle as formulated by Thiirlimann, based on the mathematical
theory of plasticity with a transition range to be applied when full plastic truss
action is not yet reached, seems to be a physically correct and reliable method to
design partially prestressed beams with regard to bending-shear behaviour.
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3 The redistribution of stresses in axially
compressed reinforced concrete columns

3.1 Introduction

In the method of analysis for the limit states (cracking moment, admissible crack
width) of structures in partially prestressed concrete, which methods have been
developed by the author, the redistribution of compressive stresses due to creep and
shrinkage is taken into account. The magnitude of redistribution is, of course, very
important for the cracking load and the load at which the admissible crack width is
reached.

This method is based on Dischinger’s method but, more generally, developed for
sections loaded with eccentric compressive forces. In the preceding paper 1 this method
of analysis has been briefly described. In this method the introduction of a reference
value of the prestressing force is explained.

The description makes it clear that the method is relatively simple and takes into
account all the relevant parameters.

Because this method basically uses the results of the stress redistribution, it is im-
portant to know if this calculated redistribution of stresses is really in accordance
with the actual behaviour of the structure.

To check this, long-term loading tests on columns and prisms were carried out. In
these tests several parameters were varied, such as the magnitude of the compressive
stress and the percentage of bonded reinforcement. Both will influence the creep and
shrinkage behaviour of the concrete.

The concrete quality of the test specimen and the climate conditions were kept
constant during the tests. In this paper the tests are described and the results assessed
in comparison with methods of analysis.

3.2 Methods of analysis

Birkenmaier [33] published an interesting paper on methods for determining the
redistribution of stresses in concrete structures due to creep and shrinkage of concrete.
In this paper a comparison is given between the results of calculations with several
methods. Because that paper is not only up to date but also very clear and complete,
its conclusions will be summarised here as far as they are of interest for the analysis
of our experiments.

More information on these methods can be found in that paper.

3.2.1 Rate of creep methods

3.2.1.1 Dischinger’s method — axially compressed reinforced
concrete columns [33 page 18, 41]
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Dischinger’s method is interesting because it offers the possibility of arriving at
closed-form solutions obtained from differential equations. Although this method is
striktly speaking only valid for constant stress [43, 44] it is here used for the benefit
of its simplicity as a basis for more general methods for partially prestressed concrete
(compression and bending).

The following assumptions are made by Dischinger:

1. Plane sections remain plane

2. The reinforcement is fully bonded to the concrete.
Therefore always &, = ¢,

3. The development of shrinkage deformations in time is the same as the develop-
ment of creep deformations in time.
Therefore it is assumed:

P
—f—s—‘ = constant = - = &0
Ecct Py P

0

As will be shown later on, the experiments to be described here gave no support
to this assumption. The quotient &.,/¢, increased considerably in time. See
appendix A 3.7.

4. Young’s modulus is constant in time.
It is well known that this modulus increases with time.

With the given assumption we can write:

&

CS00 .E'cil (] _e_l])
@

o0

O = 0co — [Uéo +
— In which n =a- ¢,

nw

*= 1+nw

~ In which n = EJE,.
In principle, for £, the value E,, on loading has to be taken into consideration.
Because of the delay of shrinkage with regard to creep (increase of &,/¢, in time)
it may be better to use a higher value of E_, for example E, = 1,3E,,.

In this case the net area of the concrete section has to be taken into consideration.
All formulas are derived with this w value.
The total area of the section of a concrete column is therefore (4,+ A4,).
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Dischinger writes:

1
! ’ ’ !
Og—050 = — — (Gct - JCO)
w
or
1

CD E (act ;0)

!
8t &0 =
Because ¢, = ¢, and ¢ = &, We can write:
1 g ' E
’ ’ csoo e ]
8ct:gco—i__ c0+ (l_e )
o E, P

’ ’ 1 ;,‘SCO
& = &q0 T —-——I + — | 1—
ct c0 n &co 0., (

In this expression, in which we know the real values measured on test specimens, we
can also use the measured values of ./, instead of ¢, /o, (Fig. 3.1).

As can be seen in the formulas for &, the value of &, is only determined by the
value of # = «- @,. It means that not the relationship ¢,—¢ is important, but only the
¢, value under consideration, assuming that shrinkage and creep are concordant.

The value for the maximum deformation after stabilisation (g..,) can be written as

or

— oo

1—e

Eer = 8;0_'—(@00 0+8c‘soo) now- @
e

or with introduction of

_ nw
1+ no
’ ’ ’ ’ 1 —o -0 Poo
€coo :800+(@oo'8c0+£csoo)m(1_e )
It is possible to introduce into the rate of creep method a calculation method with
intervals. In that case the relationship of creep with time and shrinkage with time must
be known.

3.2.1.2 In Dischinger’s approach it is questionable whether the shrinkage shortening
has been correctly introduced into the derivation of the formulas.
In fact, a shrinkage force due to full restraint (without creep) is assumed.
At an interval d¢ this shrinkage force is

chs_dscst
dr — dt Ak
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This shrinkage force is released and then acts as a compressive force on the reinforced
concrete section.
Therefore

cs

do,, 1 dN, 1 dey,
dt ~ A(l+nw) dt l1+ne dt °©

In the derivation of his formula Dischinger has written:

de.
CS . E
de ¢

Therefore in our method a revised Dischinger formula is used:

e =g + 1 4 — zsoo E ( _ —11)
o te0 T B, 9o ¢ ,(1+nw)
With the introduction of the value o (see 3.2.1.1) the shrinkage term is written:

8/
(1—0) 82 E,
¢

0

0‘, __O_/ _ +_8csco E‘ (1_8—11-
ct — YcO (pw(1+nw) )

3.2.1.3 Trost’s method
The rate of creep method can also be used by introducing a reduction factor g.
In that case one can write for the stress distribution after stabilisation [33 page 25].

’ ' ’ 8,csoo nw: @y
o = — -E
Ocoo —0c0 [GCO + o, c] 1+nCl)(l+Q'(POO)

/ / 1 1

— & = Ehoy — by = — — (0 )=
s 00 s0 coo c0 w-E Ocop ™ cO

g
B nw- ECO

( Ocon — c())

1
I+no(l+e ¢,)

’ ’ ’ ’
Ecr = €co + ((poo “Eco + 8csoo)
or on introducing o
€

’ ’ ’ ’
cao = €co +((poo “Eco + 8csoo) 1T L

For ¢ we can write
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Trost proposes the following values for the reduction factor ¢ [33 page 40].

a. 0=05+ —Al— — calculation of redistribution of stresses
4f(t)
t 7 14 28 90 360 days
[ 1,4 1,2 1,0 0,75 0,5
0 0,68 0,71 0,75 0,83 1,0
b. 0=0,85 - relaxation of stresses.

3.2.1.4 Riisch’s method

Riisch developed with Jungwirth a method for the calculation of creep deformation,
based on Dischinger’s approach [33 page 26].

But in this method a delayed elastic deformation at release is introduced.

The equations used by Riisch are the same as those already discussed in 3.2.1.1.
Instead of the initial compressive stress a., Riisch introduces the values.

- , 1+now
A eo =90 7170

n =n(l+e,)
¢, is a factor related to the delayed elastic deformation.

A nw
T e

¢, is a factor related to the creep flow.

The original creep coefficient ¢, is the sum of ¢,+¢,, = ¢,.

Experiments and studies by Bdzarnt et al. [39] have shown that Riisch’s method,
adopted in the current C.E.B. recommendations, is questionable for concrete.

3.2.2 Effective modulus method

This method considers in fact only the end state of stress-equilibrium after stabiliza-
tion and does not take into account the changing state of stress [33 page 40, 38, 40].
The effective result is that creep resulting from stress reduction due to internal stress
redistribution is fully recovered.
Hence the total strain of the structure is underestimated by this method.
Shrinkage shortening is incorporated in the results on the assumption that shrinkage
strains can be calculated on the basis of the end deformation due to an assumed
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constant shrinkage stress-potential o, This tensile stress is applied to restraint-free
shrinkage.

’

o :__Scsoo.Eci)
cs 1+(POO

Young’s (elastic) modulus E,, of the concrete is assumed to be time-independent.
The elastic deformation at z =0 is

_No
(14+nw)E - A,

/ —
Eco =

In the calculation the effective load is increased by the shrinkage force.

L 3, 'EO
N' = N, 4 20 70, 4
T 1+,

To calculate time-dependent creep behaviour the effective modulus

E
E, =-—°
Ceff 1+¢00

is introduced.
As a result one finds:

, N'(l+e,)

beo = T4 n(l + ¢u)0]Ev - A,

1
8r,:oo = $(82‘0(1+nw)(1+(1000)+8;s00)

1+no(l+¢,
This formula is used in the effective modulus method.
The stress in the concrete can then be calculated with:

1
o (¢ —wE. ¢
e =7 +no(l+¢,) (o= Ecre

CSOO)

For comparison with Trost’s formula one can write for:

i+, &,
roo 2% 1 _ %csw
R l+no+nw- ¢, eo(l +n0) + l+no+nw: @,

With introduction of the ratio o:
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, 1+o¢, nw Ecsoo

Ecoo =T*——'—'3co+
—Oc—+nco-qooO E—+nco'<poo
VR l—a + l—a
— %c0 601+a'¢00 P 1‘|'OC'(POO cs
1—a

Erop = €00 F(Po " Ero+805) Tha g,

3.2.3 Comparison of the various methods of analysis
All the formulas for .., can be reduced to an equivalent form
1—oa

Erop = Epo (P " Eo T Epsoo) TToao,

— Dischinger’s method.
Pauw [18] explains that by expanding

1—e™*'?

oa~Q

in series it can be shown that the reduction factor ¢ can approximately be written as:

_ e (,  (ve)?
¢=05+-—7 (l 60 >

— Trost approximates with ¢ = 0,85.
— Effective modulus method gives the same result as Trost, but with ¢ = 1,0.

The values of ¢ are the lowest with Dischinger’s method and the highest with the
effective modulus method.

Therefore we can expect the total deformations calculated with Dischinger to give
the highest and those calculated with the effective modulus to give the lowest values.
As already mentioned, the effective modulus method probably underestimates the
total strain. From a practical point of view the three methods do not differ very much.

Fig. 3.1 gives the relationship between &,—w—e¢,, calculated with Dischinger’s
method with the assumptions ¢, = 2; &., =0,5x 1073 [37].

Calculations show that the differences between the three methods in this case are
small.
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Fig. 3.1. Dischinger method with ¢ =2; &’y =50 X 103,

3.2.4 Formulas
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|
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o+ oz b
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Effect. Mod. e = (0lo=0"Ee b [T 0

Remark

It will be noted that the Trost and Effective Modulus methods only give an estimation
of the total strain after stabilisation and not for other times.

3.3 The experiments

3.3.1 Specimens to be tested

The experiments were carried out with the following specimens:

3.3.1.1 Series K~ 12 columns
Columns — dimensions 150 x 150 x 1200 mm.
The columns were reinforced longitudinally with deformed bars, grade FeB 400.
Both the top and the bottom of the columns were provided with six stirrups @6
mm over 300 mm of the column height (Fig. 3.2). Concrete cover to the reinforcement
was 30 mm.
Longitudinal reinforcement of the columns.

K, K, K, K, K, K
Kio Ky Ky, Kis K4 Kis
unreinf. 46 48 4712 812 8716
0% 0,5%  0,9% 2% 4% 7%
i
|
]
|
I 46
1 Lp8
( 412
8 p12
1200 8016
400
Pini
I
i
|

jm'so

Fig. 3.2. Column reinforcement.
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3.3.1.2 Series P — 40 prisms
Prisms — dimensions 150 x 150 x 600 mm.
30 prisms were unreinforced.
10 prisms P, ... P5; Pyy ... Pys.
The longitudinal reinforcement of these prisms is the same as for the columns K
with the same subscript (e.g., 4@ 12 reinforcement of prisms P; and P,,).
The reinforced prisms were provided with stirrups over 150 mm length at the top
and the bottom.

3.3.1.3 Series P.S. — 12 prisms
Prisms — dimensions 100 x 100 x 300 mm.
Unreinforced — only used in series IV.

3.3.1.4 Series C — 98 cubes
Cubes — dimensions 150 x 150 x 150 mm.

3.3.2 Test series

The following experiments were performed on the specimens.

3.3.2.1 Series K, ... K5
These columns were loaded with a constant load between 175 kN and 240 kN.

At loading the strain for all the columns was 0,25 x 107 7.

Test were performed in a climate-controlled room of the Stevin Laboratory.

In a test frame, 16 columns (maximum height 4000 mm) can be kept under sustained
load, which can act centrically or eccentrically on the columns. The maximum load
is 600 kN for onc test rig.

The loads are held constant by using a system of stacked cup springs (Fig. 3.3).

A method has been developed to avoid hysteresis on applying the loads. During the
tests the relative humidity was held constant at 50% +3% and the temperature at
20°C+4°C.

The load was applied within 30 sec.

Strain measurements were carried out on the four sides of the columns (two
measurements on the concrete surface and two directly on the reinforcing bars).
Gauge length 400 mm.

The strains were measured at the following intervals after loading.
Days 1,2,5,9, 14, 20, 34, 56.

Months 3, 4, 6, 9 and 12.

Loading took place 14 days after casting the columns.

During this period the columns were cured in a room with a high value of relative
humidity (95%).

At the end of the test period the columns were unloaded and strain measurements
were carried out during 4 weeks.
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Fig. 3.3. Loading frame for column. Fig. 3.4. Creep rig.

3.32.2 Series Ky... K5

The test procedure for these columns was equal to series K, ... K5, with the excep-
tion of the strain at loading (0,4 x 10~ %), and therefore resulting in a constant load
on the columns ranging from 230 to 320 kN.

3.3.2.3 Series P

Loaded unreinforced specimen

8 prisms were tested according a standard creep test procedure to determine the rela-
tionships of the creep coefficient ¢, with time. The creep test equipment in the Stevin
Laboratory consists of 30 separate hydraulic test units, each with a capacity of 1000 kN
(Fig. 3.4). The loads are controlled by means of hydraulic jacks and are measured with
oil pressure strain gauges.

To keep the load constant, every test unit has a nitrogen gas accumulator with a
pre-pressure of 509 of the expected oil pressure in the hydraulic system. This in-
corporates a ‘“‘gas spring’ in the oil circuit, compensating for losses of pressure caused
by creep deformation of the concrete. The climatological conditions of the room are
controlled. The strains of the columns at the start of the tests were of the same magni-
tude as in the specimen series K (0,25 x 107 and 0,4 x 107 3),

Non-loaded unreinforced specimen
These specimens were placed upright in the climate-controlled room. The upper and

46



lower surfaces of these prisms were coated to simulate the same surface conditions
with regard to drying as in the loaded prisms.

At mid-height of these 10 prisms strain measurements on two sides were carried
out for one year with an accuracy of 0,001 mm. Gauge length 300 mm.

The weight of the prisms was measured to observe the drying process. Accuracy of
weight— + 1 gram.

These measurements started 14 days after casting at the start of the creep tests on
series K.

10 prisms were loaded to failure after the end of the time-dependent tests. During
these tests the stress-strain diagram was determined.

Non-loaded reinforced specimens P, ... Ps and P, ... Py5
These spcimens were tested as described at 3.3.2.3.2.

3.3.2.4 Series P.S.

These prisms were compressed to failure in a testing machine and the stress-strain
diagram was determined to calculate:

1. Young’s modulus at zero stress (secant modulus).

2. Ultimate compressive strength.

The strain velocity during the test was held constant at 3,33 x 107 3%, per second.
Prisms were tested 14 days (4), 28 days (4) and 6 month’s (3) after manufacture.

Remark

The results of these test showed a great scatter in the values of Young’s modulus.
Therefore it was decided to determine E,, from the results which were obtained during
the loading procedure of series K.

’ ’ ’
E _GCO ’ N _AS'SCO Ecs
c0 =™ T, c0 —
&co Ac
!
e _ N A
c0 — ’ cs
AL‘. éco Ac

3.3.2.5 Series C
The cubes were used to determine the compressive cube strength and splitting strength
of the concrete.

Cubes were tested at various ages.

days months
time 7 14 28 6 12
compressive str. 3x3*% 4x5% 4x5% I3x3¥41x5% 4x5%
tensile splitting str. - - 4x34+1x%x6 - -

* Number of specimens tested.
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3.3.3 Concreting — concrete quality

3.3.3.1 Concrete mix
The concrete mix contained 325 kg of class A Portland cement per m>, a water-
cement-ratio of 0,58 (190,5 kg water per m?), 1830 kg sand-gravel mix per m> with:
76% of weight > 1,4 mm grain size
249 of weight < 1,4 mm grain size.
The columns were cast horizontally and the concrete was compacted by vibrating on
a high-frequency vibrating table.

Three days after concreting the specimens were cured in a room with a temperature
of 20°C and a high relative humidity.

3

3.3.3.2 Pours
The specimens were concreted in four pours.

pour date

I 6-11-74 2 columns 246 prisms 24 cubes
11 13-11-74 2 columns 2+ 8 prisms 24 cubes
111 20-11-"74 2 columns 2+ 8 prisms 24 cubes
v 6- 8-’75 6 columns 246 prisms 26 cubes+ 12 prisms P.S.

During the installation of the first test series I, IT and III there was found to be too
much scatter in concrete quality between the three pours. Therefore it was decided
to cast the series K, ... K5 prisms and cubes from one batch and to accept the
difficulties of a large pour and a large number of specimens with many measurements
starting simultaneously.

To prepare this work and to gather information from the test in progress, pour
IV was concreted 9 months after the pours I, II and III.

3.3.3.3 Concrete quality

Information about concrete quality is given in appendix A 3.1.
This table gives the results of tests on

cube strength

prism strength

modulus of elasticity

tensile splitting strength.

3.33.4 Loss of weight — series P
Appendix A 3.2 gives the results of the measurements on the loss of weight of 22
prisms.

It shows that the mean loss of weight in one year is a value of 44,07 kg per m?
concrete with a variation coefficient of 8%,. That means that in one year 22%, of the
water in the concrete mix has evaporated.
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3.4 Experimental results

Appendix A 3.3

Mean values of strain measurements P, ... Ps and Py, ... P;5. 34 days, 91 days,
182 days and 364 after loading of the test specimen series K.

In the table the strain measurements are given.
The stresses in the concrete and reinforcement can be calculated with

The E, value is assumed at 210.000 N/mm?.

This calculation is based on the assumption that plane sections remain plane and
that in the measuring zone no bond stresses between the reinforcement and the
concrete develop and therefore the stresses in this zone are constant.

It means good bond is assumed to exist between reinforcement and concrete in the
top and bottom part of the column, resulting in introduction of all the compressive
stresses into the reinforcement caused by (reduced) shrinkage of the concrete.

The table shows that relatively high tensile stresses in the concrete are built up in
one year, especially in prisms with a high percentage of longitudinal reinforcement.

Appendix A 3.4

Mean values of strain measurements K, ... Ks; K, ... K;5. 0 days, 34 days, 91
days, 182 days and 364 days after loading.
In this table the stresses in the concrete and reinforcement are calculated, assuming:

1. plane sections remain plane
2. modulus of elasticity of the longitudinal reinforcement E; = 210.000 N/mm?

The concrete stress o, is calculated with

o N/_As'o-;s
TTA
o, = N é-8;'210.000 N/mm?
Eo="¢= ]\L — A5.510.000 N/mm?

e, Ag.e. A,
The table clearly shows the influences of the longitudinal reinforcement on the re-
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distribution of stresses in the columns and the reduction of the time-dependent
deformation.

This appendix also gives the strain measurements during 28 days after the unloading
of the specimen.

With the decrease of strain caused by unloading, “Young’s” modulus is calculated
in the same way as mentioned before.

The tensile stresses caused by the increased compression reinforcement were too
high for the columns K, K, K, and K.

These upright columns showed horizontal cracks.

For the remaining columns the tensile stresses in the concrete were calculated with
the remaining compressive deformation of the reinforcement (£, = 210.000 N/mm?).

The table shows that the maximum calculated tensile stress was nearly 3 N/mm?
(Ky).

In Fig. 3.5 and 3.6 some results are presented graphically.

Fig. 3.7 gives the relationship between deformation and time after unloading.

€L %10 © B
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Fig. 3.5. Strain versus time.
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Fig. 3.6. Stresses versus time.
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Fig. 3.7. Strain after unloading.

3.5 Analysis of experimental results

3.5.1 Behaviour on macro and micro scale

Creep and shrinkage of concrete are closely related to the conditions of humidity of
the concrete itself. Therefore knowledge of the real distribution of humidity over the
cross-section if very important. The time-dependent behaviour of a concrete structure
- behaviour on the macro scale — therefore also depends on the distribution of humi-
dity in the structure, already mentioned, and the time-dependent stresses and deforma-
tions of all the “fibres” involved.

Consider a fibre in a structural member (micro-scale); the moisture content of the
concrete of this fibre depends on:

1. The distance between this fibre and the surface of the structure.

2. The evaporation of moisture at this surface.
Influence of the relative humidity of the atmosphere and other atmospheric
conditions which influence the evaporation process (wind, temperature).

3. The porosity of the concrete between this fibre and the concrete surface.

4. The quality and humidity of the concrete in the fibres at a greater distance from
the surface of the structure than the fibre under consideration.

5. The time that has elapsed after casting up to the instant when the stress distribu-
tion is observed.
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All these factors affect the amount of moisture that is transported through the concrete
structure and therefore affect the rate of drying of the concrete at each fibre.

The differences in the drying process of the various fibres originally cause differences
between the strains at these fibres, but, because all these fibres are part of a solid
concrete structure, the restraint of each fibre causes stresses — stress distribution —
over the section of the structure.

Stresses and strains at all the fibres of a cross section, due to this influence of distri-
bution of humidity — the micro process — result in the observed deformations of a
structure as a whole — the macro process.

An interesting study of the micro process in relation to the macro behaviour has
been carried out at the Delft University of Technology. The results of that study
enable the macro behaviour to be calculated from the micro behaviour. It is men-
tioned because it is of considerable interest as a basis for the observations described
here. It will be published separately in due course [42].

Some results of the calculation of the distribution of moisture over the cross-
section of the columns of these tests are given for information.

Fig. 3.8 shows essentially the distribution of moisture over the cross-section of a
column (150 x 150 mm?) after 133 days curing in an atmosphere of 507 relative
humidity and a temperature of 20°C.

The diffusion coefficient in this calculation is 107 m?/sec.

Percentage of humidity

10

20

percentage of humidity at
t=133 days X

Fig. 3.8. Distribution of humidity after 133 days.

In Fig. 3.9 the concrete stresses in several fibres of the cross section are shown.
This calculation is based on the assumption of purely elastic behaviour. Creep and
crack formation, however, can also be taken into consideration.

Fig. 3.10 gives the calculated (macro) total shortening of a loaded and drying
column, resulting from the mentioned method and the measured total shortening of
a prism of pour K.

The three diagrams clearly show the relationship between the micro (calculated)
behaviour and the macro (observed) behaviour.
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Fig. 3.10. Strains versus time.

They make us realise that the shrinkage values and the creep values used in practice
are very rough estimates of the result of a rather complex process in the concrete.

The formulas of Dischinger, Trost and others must be seen in the same context.

Concrete quality (porosity), temperature, climate conditions, the shape and dimen-
sions of the cross-section, these all are factors of importance in the real time-dependent
behaviour of a structure. So it is necessary to be cautious with the conclusions drawn
from certain experiments, which are described here by way of example because these
conclusions in fact refer only to the results of these experiments.

Nevertheless it is of course necessary to give the designer of concrete structures
more simple, but adequate, design rules based on scientific studies. The results of
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these tests may therefore be of interest to see how macro behaviour can be determined
with only measured macro material properties.

3.5.2  Relationship

Total deformation — shrinkage — loss of weight due to evaporation. (See calculation
and Fig. 3.12 in Appendix A 3.6 and A 3.7).
In appendix A 3.7 the relative values of

’ !
c Ecs

€ loss of weight

; and _
€364  Ees36a loss of weight — 364

in percentages are given as a function of the time ¢.

Appendix A 3.6 clearly indicates that the loss of weight ratio at a given interval
is nearly the same as the total deformation ratio, but that the shrinkage ratio is lower
during the first month. The shrinkage ratio increases rapidly during the second and
third month. After three months the total deformation, the shrinkage and the loss
of weight obey the same laws in course of time. This conclusion can also be drawn
from appendix A 3.7.

This appendix shows that after three months the ratio &,,/¢, is nearly constant for
all the four pours observed.

It is of interest to mention that after 100 days the differences between the several
internal stresses rapidly increase (see Fig. 3.9). Therefore it can be assumed that the
internal state of stress in the concrete specimen greatly influences the macro deforma-
tion. During the first weeks considerable stress in the specimen is built up due to
restraint of shrinkage deformations. This stress system reduces the macro observed
shrinkage deformation of the specimen as a whole, because the tensile stresses on the
outside are in equilibrium with compressive stresses inside the column.

The tensile stresses reduce the shortening due to shrinkage. The shrinkage in the
interior of the column is small because the humidity is high.

Evidently the explanation of the macro behaviour is only possible with knowledge
of the internal system of stress distribution and moisture distribution.

The observations make it clear that the third assumption in Dischinger’s approach
(3.2.1.1) is not correct.

On a macro scale the shrinkage deformations take place when the large creep
deformations decrease i.e., do,/d¢ increases.

Shrinkage may therefore cause higher internal stresses than calculated with
Dischinger’s approach.

Dischinger assumes
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If no creep of concrete would take place in the period of shrinkage, we obtain
Tos = Ecson" Ec-

In reality shrinkage takes place in a period with lower values of d¢,/dz and higher
values of E..

Therefore in Dischinger’s approach we must write

cs

7. =(//-%fi‘°—-Ec with > 1

0

Perhaps it is correct to express the value of i as a function of the reinforcement ratio w.
A simple approach could be to use the value = (1 +nw).
In that case the term 1/(1+4nw) in Dischinger’s revised formula (3.2.1.2) can be
neglected.

Remark

From an investigation of shrinkage and creep data it appears that the scatter in the
results of time-dependent deformation is rather large for the same concrete quality,
as the following table shows.

feia feas €0 €, 364 = Eco loss of weight P64
specimens N/mm? N/mm? x107¢ x10-6 kg/m?
K, P, 17,8 224 270 963 41,4 2,47
Ky—P1y 17,2 21,1 399 1051 432 1,88

More research seems to be necessary to get information about the factors which
cause variation in shrinkage and creep values obtained for a constant concrete
strength.

1t can also be concluded that “concrete quality” can be defined in several ways. In
research projects relating to time-dependent behaviour a small amount of scatter of
shrinkage and creep deformations of the concete would be very important for better
interpretation of the results.

3.5.3 Formulas to calculate the shrinkage shortening of longitudinally reinforced
concrete specimens

To calculate the shrinkage shortening of reinforced members the formulas given
before (3.2) can be used with ¢,, =0. They can be written as follows — for = 00 —:

‘oohi I—e™ @, nw
Dischinger: =g | —— — 1o
gel €t = Eeson (nw‘qow> n T+ no

-
. Lo 1—e
revised Dischinger: &), = &, (—”—A——
(1+nw)nw- @,

55



;o 1 _
Trost: & = €500 <1+nw(1+g-¢w)> 0=0,85

Effective Modulus: &, = &, <m11_-|:?/;§)

These formulas can only be expected to give rough estimates of the measured values
of &,.

The micro process, described under 1, is very complex and therefore it is impossible
to calculate the restraint shrinkage deformation with these formulas very accurate.

In appendix A 3.3 the results of the calculations with the three methods are given
for t =364 days.

In the calculation are used:

- E, values, calculated for each column from the instantaneous deformations.
— &cs364 aNd @3¢, values, measured on the corresponding specimens.

The mean values of prisms P,—P,,, P,—P,,, etc. give the following results (after 364
days).

w
method 0 0,5% 0,9% 2% 4% 7,5%

Measured 319 277 245 231 169 127 x 106
Dischinger - 278 282% 244 180 132 x10-¢
Trost - 270 267 228 159 114 x10-¢
Effect. Mod. - 267 274* 220 150 109 x 10-¢

* caused by high E, values for K, in respect with K.

From the different shrinkage values of series P ... Ps and P,, ... P,5 (see A 3.5 and
A 3.6) a difference in deformations due to restraint of shrinkage is possible in both
series.

The values calculated with the three methods considered do not differ very much
from the measured values, especially in the range with normal percentages of rein-
forcement (till 29).

The scatter in the calculated deformations in relation to the measured deformations
is too large to decide whether the results of one method are in better agreement than
those of another method.

It underlines the statement that the calculation methods do not take account of
the complex micro system and therefore give only rough estimates.

Generally speaking, the test results show the influence of longitudinal reinforce-
ment on the reduction of time-dependent deformations to be relatively small: 30%
reduction with 29 reinforcement (Fig. 3.11).
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Fig. 3.11. Influence of reinforcement on time dependent deformation.

3.5.4 Comparison of results of calculations with formulas and measured values

In appendix A 3.8 the measured (M )deformations are compared with the deformations
calculated with the three methods (Dischinger, Trost, Effective Modulus).

The deformations are calculated for several periods, and not only for the deforma-

tions after one year of creep and shrinkage assuming that to be the period after which
stabilization has taken place. As mentioned in 3.2, the theories have in fact only been
developed for the deformations over the period in which stabilization has taken place.

In the calculation the following values are used:

E, = values calculated with the use of measured deformations at loading —
14 days after concreting.

¢.s, = shrinkage values determined on the special test series P — creep and
shrinkage test.

¢, = creep values determined on the special test series P.

&.o = values measured at loading - 14 days after concreting.

o = 0,85 (Trost).

E; =210.000 N/mm?

n = EJE, (E, - calculated).

One has to realise that:

1.

Dischinger’s method is used with real values of ¢,,/@, obtained from creep and
shrinkage tests and not with ¢, /@,. Because ./, is not a constant value and
independent on time (assumed by Dischinger), the calculated values of the deforma-
tion at a given time are not the same as those calculated with the original Dischinger
formula.

In practical calculations one never has the opportunity to use the “real”” values
of E,, €., ¢, because these calculations are made before the structure is built.
In this case of comparison experiments, however, “real”” values can be used
although these values are obtained from other specimens. Therefore differences
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between the characteristics introduced in the calculations and these characteristics
for the concrete of the specimen considered may vary.

Subject to these restrictions, the results of measurements can be compared with those
of the calculations.

A comparison between measured and calculated stresses in concrete and reinforce-

ment is not given in the appendix, because there is a clear relationship between
strains and stresses.

On the other hand, it is more useful to compare measured values (deformations or

strains) with calculated ones than values which are both calculated.

The following conclusions can be drawn from the comparison:

1.

There is a remarkable scatter in the measured deformations. This can easily be
seen on comparing the results of several specimens with a low percentage of re-
inforcement.

The deformations calculated with three formulas do not differ very much from
the measured deformations.

On comparing the mean values of calculated deformations with the mean values
which are measured (see appendix A 3.9) it can be concluded that the difference
between the measured and the calculated values is the smallest for Dischinger’s
method (2-4%) and the largest for the Effective Modulus method (2-12%;). The
results, calculated with Trost’s method are 6-10%; below the measured values.
The calculated values are lower than the measurements, and therefore on the
unsafe side.

The cause of the differences is partly explained by the underestimation of shrinkage
in the deformations. As already mentioned, the assumption in the calculation of
a “stabilized” value of e.,/@, is not correct because the shrinkage shortening is
delayed with regard to the creep deformations. This means that de.,/dg, gives a
higher value than assumed.

Because lower values of the total deformation result in lower compressive stresses
in the reinforcement and therefore in higher compressive stresses in the concrete,
the results of the calculation methods are on the unsafe side.

Again these observations lead to the conclusion that higher values of stresses due to
restraint shrinkage must be introduced into the calculation.

a.
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Merely to show the results of introducing such higher values, the last calculations
(364 days) were also carried out with 1,2¢,5¢,. The calculated values are given in
appendix A 3.8.

The result of the increase of ¢, is that a smaller difference between calculated
and measured deformations is found.

Another alternative could be to introduce into Trost’s method a value ¢ as a
function of the reinforcement.



3.5.5 Calculations with values for E,, ¢.; and ¢, given in the recommendations

As already mentioned, it is in practice impossible to know at the time of designing a
concrete structure the real values of E_, ¢, and ¢, of the concrete which will be
used on the job.
Therefore it is important to know how values given in recommendations result in
values of expected deformations which are of the same order as the real ones.
Therefore calculations were carried out with the values of E,, ¢, and ¢, based
on the CEB-FIP recommendations (version Sept. 1977 — CEB-bulletin 117, 120).
To determine these values the characteristic concrete strength of the columns is to
be estimated at 30 N/mm?.
Relative humidity is taken as 50%.
Temperature as 20°C.
Dimensions of specimen 150 mm x 150 mm x 600 mm.

1. Value of E_,, — CEB-FIP Recommendations art. 2.5.2.
Since the recommendations give no value for 7, = 14 days, the value ¢, = 28 days
is used, being E,,5 = 32.000 N/mm?.

2. Creep factor
CEB-FIP Recommendations art. 2.5.4 give @364- 14y = 2,7. A more correct calcul-
ation can be carried out with appendix C of the Recommendations.
Introducing

¢, =04 ; p,=09

Q;=4,67; Br14=032; Br364=0,8
We find:

P364-14) = 0,4x0,944,67(0,8—-0,32) = 2,6

3. Shrinkage
CEB-FIP Recommendations art. 2.5.4 give &.364-14)=25x107°. The more
correct calculation with appendix C given:

82‘8(364—14) = 38 X 10_5(0,83—0,13) = 27 X 10_5

This calculation takes into account that the specimens were cured (relative
humidity 95%) before the tests started.

Results of the calculations with the three formulas (D, T, E) and introducing the
values of Ey, ¢,,,, and ¢, ,determined with the CEB-FIP recommendations, are given
in the last lines of appendix A 3.8.

In this case CEB-FIP are to be congratulated, because the differences between the
calculated and measured values are relatively small, if we take into account that the
calculations are based on expected characteristics of the concrete.

In the range of reinforcement percentages used in practice (0-2%) Dischinger’s
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method gives very small differences from the measured values for the series K —Kj
and a difference of 10% to 129 on the safe side for series K oK.

Again it is found that the differences found with the Effective Modulus theory are
the largest and with Dischinger’s method the smallest.

Of course, no conclusions can be drawn from one case, but the results of this
comparison are encouraging.

3.5.6 Deformations after unloading

Appendix A 3.4 gives the development of deformations after unloading of the re-
inforced columns.

Appendix A 3.5 gives these developments for the test prisms. The deformations of
the unreinforced columns on unloading were respectively: 81%, 629, 77% and 749,
of the deformations on loading. The scatter in this percentages is rather large.

The delayed elastic deformations after 28 days are respectively 199, 28%, 17%
and 20% of the deformations on loading.

The total deformation after 28 days is 100%;, 90%, 94%;, and 949 of the deforma-
tion on loading.

This shows that 28 days after unloading nearly the whole elastic deformation which
occurred on loading has recovered.

The reinforced concrete specimens that did not crack showed a behaviour similar
to that of the unreinforced ones.

Because only the elastic deformation on loading will be recovered, the tensile
stresses in the concrete caused by compressed reinforcement (due to shrinkage and
creep) are considerable.

Only with low percentages of reinforcement will the concrete not crack after
unloading. This in itself already well known behaviour can be of importance in
concrete structures in which unloading of compressed concrete can be expected.

3.6 Conclusions

Long-term tests were carried out on two series of longitudinally reinforced concrete
columns to determine the time-dependent deformation under centrically applied
sustained load along their axes. In these test the applied loads were of such magnitude
that the deformations on loading the columns of each series were more or less ¢équal.

The percentages of longitudinal reinforcement were 0, 0,5% 0,9%, 2%, 4% and 7%,

To compare the behaviour of the loaded columns with that of unloaded ones, two
series of prisms with the same longitudinal reinforcement were studied.

In these series the influence of shrinkage on the deformations of reinforced concrete
members could be observed.

In other tests the creep behaviour of the concrete and the strength of concrete at
different age was verified.

All the specimens were placed in a climate-controlled room at 20°C and 509,
relative humidity.
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The test results could be compared with the deformations calculated with three
theories: Dischinger’s, Trost’s and the Effective Modulus theory.
In this comparison the real characteristics of the concrete were introduced into the
calculation.

The results were also compared with a calculation based on values given in the
recent CEB-FIP recomrmendations.

The deformations in time of the columns under sustained load were influenced by the
magnitude of the longitudinal reinforcement. In one year the time-dependent de-
formation of reinforced concrete was reduced by about 509 when the longitudinal
reinforcement was equal to 7% of the concrete section. With a lower percentage of
reinforcement this reduction was smaller. The redistribution of stresses from concrete
to steel was so important that in one case with 7% reinforcement it was found that
tensile stresses had been introduced into the concrete at the end of one year.

The shrinkage of reinforced specimens was also reduced by the longitudinal re-
inforcement. When the percentage of this reinforcement was 7%, this reduction was
nearly 60% compared with the unreinforced specimens.

After unloading, the columns with a high percentage of longitudinal reinforcement
(4%, 7% and one of 2%,) showed transverse cracks.

The recovery of the shortening of the unreinforced specimens after one month was
nearly the same as the deformation on loading.

It is to be noted that the scatter in the characteristics of the concrete used which
were of importance for the observed phenomena was really large.

In one year the shrinkage varied from 0,30 x 10~ 310 0,34 x 1073 and in this period
the creep factor varied from 1,8 to 2,5. On loading, Young’s modulus varied from
22 to 32 x 10° N/mm? if calculated from the deformations on loading.

The test prisms showed values varying from 25 to 33 x10* N/mm?,

It can be concluded that it is very important to get better control of this phenomena
in tests on time-dependent behaviour.

During the tests the evaporation of water was also measured on the non-loaded
prisms.

In one year the evaporation of water was 44 kg/m? with a standard deviation of
3,3 kg/m? (22 specimens).

Observation of the increase of evaporation with shrinkage showed that in the first
months the shrinkage was delayed in relation to the rate of evaporation. The rate of
the total deformation of loaded columns as a function of time was very similar to
the rate of evaporation.

Comparison of the measured deformations with those calculated with the three
theories leads to the following conclusions.

Shrinkage

The mean value of the total deformation of the non-loaded reinforced concrete
specimens after one year, as calculated by Dischinger’s method was 6% larger than
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measured. Trost’s method gave a mean value 2% smaller than measured, and the
Effective Modulus theory 39, smaller. The shrinkage, creep and E, values measured
on the unreinforced specimens were used in these calculations.

Shrinkage and creep

The mean value of the total deformation of the loaded reinforced concrete columns
after one year was with Dischinger 3 to 4%, with Trost 5 to 10% and with the Effective
Modulus theory 7 to 129 smaller than measured.

These methods are therefore on the unsafe side. It may be necessary to introduce
a higher shrinkage value into the calculations to get more appropriate results.

Comparison of the predicted deformations by using recent CEB-FIP recommenda-
tions showed that for the series with the lowest level of deformations the test results
were very close to the predicted values for the percentages of reinforcement normally
used in practice. The series with the higher level of deformations showed calculated
values which were more than 109, higher than the observed values.

It can in general be concluded that Dischinger’s theory, which is used in our method
of analysis for partially prestressed concrete, shows close agreement between the
calculated deformations and the measured ones.

The following items are recommended for future research.

1. Study of the phenomena causing restraint shrinkage and creep by using the
knowledge obtained from research on the micro system, and introducing these
phenomena into the real system of a structure.

2. Research on the variation of time-dependent behaviour of several types of con-
cretes. Development of a method to diminish the magnitude of this variation in
laboratory projects.

3. It seems necessary to standardize the shrinkage and creep tests in order to compare
the results of different laboratories. Exclusion of several parameters such as
curing dimensions of the specimen, temperature, climatic conditions is necessary
to allow comparison of results. It would be useful if the standardisation of these
tests included measurements of the loss of weight of the non-loaded prisms (and,
after the test, of the loaded prisms) due to evaporation of water; evaluation of
test results also with the introduction of the ratio ¢.,/¢, as a function of time.
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4 Time dependant deflection of partially
prestressed concrete beams

4.1 Description of time-dependent behaviour in general

4.1.1 Plain concrete

Concrete shows time-dependent deformations due to shrinkage and creep. The
amount of shrinkage is influenced by several factors, of which the moisture content
of the concrete and moisture transport in the concrete may be mentioned.

When concrete dries rapidly, the shrinkage deformations are considerable over a
short period. This is the case in thin concrete structures under climatic conditions
with low relative humidity.

If the concrete structure is more massive, the drying of the concrete takes place
over a long period and therefore shrinkage proceeds at a slow rate. Due to differences
in moisture content in the concrete, shrinkage stresses are built up in the structure,
caused by partial restraint of shrinkage.

The amount of creep deformation is influenced by the compressive (or tensile)
stresses acting on the concrete and by the moisture conditions of the concrete, as is
shown in paper 3.

4.1.2 Reinforced concrete structures

In reinforced concrete structures the bonded reinforcement reduces the time-
dependent deformations of the concrete. The steel will undergo deformations only
if it is stressed. A shortening of the concrete and reinforcement in time causes com-
pressive stresses in the steel and — as a result — a reduction of compressive stresses in
the concrete (Fig. 4.1).

This “redistribution’ of stresses reduces the time-dependent overall deformations
compared with these deformations in unreinforced concrete. With the method origin-
ally proposed by Dischinger the change of a uniformly distributed concrete stress on
a section in time can be expressed by the formula described in paper 1.

=As
WA

G
C _r9‘<l= Geo 1€

reinf.
area As

concrete
areaAc

Yy
0 t t=time
N

Fig. 4.1, Stresses versus time.
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In paper 3 it is shown that Dischinger’s method predicts the redistribution of com-
pressive stresses in axially loaded columns very well (Fig. 4.1).
The revised Dischinger formula can be written as follows

' E .
do, = <o*co + &9"”> (1—¢) with a=-"2
¢ (1 +nw) 1+nw
Because
Ao, + Ao, =0 dog = _ZIJAG”

The deformation of the reinforcement as a function of time can be calculated with
the change Ao, over the period t=0to t=1.

1
e = = wE

'AO'C = €50~ &y
s

The total deformation of the reinforcement can therefore be calculated with

1
&t = €50 + EE’;AJC

With an increase 40, of the compressive stress in the concrete the elongation &5 Of
the reinforcement is reduced, and with an increase Ao, of the tensile stress in
the concrete the elongation ¢, will also increase in time.

4.1.3  Uncracked reinforced tendons under uniform distributed tensile stresses

If a tensile force N produces concrete stresses which belong to the linear elastic part
of the stress-strain diagram, at the time ¢ = 0, we can calculate the stresses in the steel
and concrete with the formula:

___ N
T (1+nw)A,

O-SO = nO-O

Over the period ¢ we have found:

b0 8y = A&y = — 4o,
s

64



Therefore we can write:

1 N : E — 20
A8s= _ < + Eeson . c>(1+e aq))

o E,\(1+nw)d, " (1+nw) ¢,

! . 1—e™
ABS=_<£So+scm ! )( ")

¢, l+nw nw

From this the following conclusions can be drawn; putting:

’
8C‘SOO

S0 g

(I+nw)ye,

4.1.3.1 &g > ey gives a time-dependent elongation if Ae, is negative. In this case the
value |e, + &, 1 positive.
This means that the elongation &, is larger than the shrinkage value |&,|.

4132 ey <eyn if el < i

4.1.3.3 ey=1¢y if |eg] = |&.

We can conclude that there is no time-dependent deformation of the un-
cracked tendon of the reinforced concrete tensile zone if the elongation of the steel
has the same value as the shrinkage shortening &,,.

A higher steel elongation causes an elongation in course of time. A lower steel
elongation causes a shortening in course of time.
Example
€ = —0,2x107% and —0,4x1073

CS0

¢, =25 n=238

Graph in Fig. 4.2
o =0...0,05

|&.s| has normally a value between 0,1 and 0,2 x 10~ 3,

Because the ultimate tensile strain has a value between 0,08 and 0,12 x 1073 it is
clear that if no cracks in the concrete occur, the value of ¢, must be smaller than the
ultimate strain and therefore in most cases |, will be larger than the ultimate strain
£50-

Therefore it can be concluded that in the cases of an uncracked reinforced tendon
a shortening of the tendon in course of time will be observed.

The shrinkage shortening of such a tendon is only partly reduced by the creep of
concrete under tension.
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Fig. 4.2. Example.

Fig. 4.2 shows that in most cases the values of &, are high. Therefore an important
reduction of these deformations by reinforcement is possible only under the following
conditions:

— a high percentage of bonded reinforcement

a low modulus of elasticity of the concrete (n = high)
a high creep factor

— a low shrinkage value of the concrete.

I

4.1.4 Cracked reinforced concrete tendon

4.1.4.1 Assumed that there is a zone between two cracks in the tendon in which the
deformations of the concrete and reinforcement are equal. In this case two
zones can be distinguished in a portion of the tendon between two cracks (Fig. 4.3):

a. Transfer zone of tensile stresses into the concrete.
At the end of this zone there is a uniformly distributed tensile stress over the
section.

b. The zone (b) with uniformly distributed tensile stress over the section.

L e |
TRGT T

Fig. 4.3. Bond between cracks.

In this case we can use the above-mentioned approach of uncracked reinforced con-
crete with the introduction of a reduction factor c. In zone (b) this factor is 1. In
zone (a) the tensile stresses in the steel are higher than in zone (b). The shrinkage of
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concrete is only partly “resisted’”” by the reinforcement. Therefore the time-dependent
deformation of the steel is reduced. This gives a reduction factor < 1.

In relation to the case of an uncracked concrete tendon (4e, ,,) the deformation
(de,,.,) is reduced in this case. We can write as an approximation

Ag, .. = cde

S, Cr S,un

0,6 <c<0,9

4.1.4.2 Relative displacements between reinforcement and concrete. In this case it

is very difficult to calculate the time-dependent deformations of the tendon.
If the stresses in the reinforcement are no longer reduced in course of time, the ““tension
stiffness” of the concrete is zero. This means that the steel has an elongation
N/(A,* E,) at the end of this period.

If this situation is reached, the concrete is tensionless and will only shrink. Shrinkage
shortening can of course partly be reduced by the reinforcement. As a limit case it
can be assumed that shrinkage does not change the length of the (steel)tendon but
only widens the cracks; it means that there is no influence of tension stiffening. In a
cracked concrete tendon the shortening of the tendon due to shrinkage is reduced in
relation to an uncracked tendon. If one considers a large distance between two
cracks, a slightly reduced shortening of the tendon due to shrinkage will occur (small
tensile force and low percentage of reinforcement).

In the case of small distance between two cracks the shortening in course of time
can be zero, causing widening of cracks (large tensile force and high percentage of
reinforcement).

To demonstrate the various cases of behaviour in Fig. 4.4 the relationship is given
between the shortening of a concrete tendon and the shrinkage of concrete.

4.1.5 Reinforced concrete beam in bending

In this case there is an interaction between the reinforced concrete tendon in the
tensile zone and the compression zone of a beam.
Fig. 4.5 gives the moment — curvature relationship of a section of a concrete beam.

Influence of tension stiffening — short-term test.

Influence of shrinkage — uncracked tensile zone.

In this case there is no influence of the bending moment on the curvature caused
by shrinkage. The curvature is caused by the reduction of shrinkage shortening
due to the reinforcement in the tensile zone.

7. Influence of shrinkage — no tension stiffening.

1. Uncracked tensile zone — short-term test

2. Uncracked tensile zone — long-term test

3. Cracked tensile zone - no tension stiffening — short-term test
4. Cracked tensile zone - no tension stiffening — long-term test
5.

6.
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Because there is no tension stiffening the influence of shrinkage is independent
of the bending moment.

8. Influence of shrinkage — influence of tension stiffening.
Increase of the bending moment causes the tension stiffening to decrease. There-
fore in this case there is — indirectly — an influence of the bending moment on the

curvature caused by shrinkage.

shortening
reinforced
concrete

tendon O
—— .

N I R .

! e @

reinforced concrete / 4 e
tendon Va

shrinkage shortening
unreinforced concrete

.
Ecs

time
Fig. 4.4. Strain behaviour of various members.

1 =plain concrete
shortening = shrinkage

2 =reinforced uncracked concrete tendon
shortening reduced with respect to free shrinkage (influence of reinforcement)

3 = unreinforced cracked concrete tendon
no reinforcement ; shrinkage causes only widening of cracks
Therefore no shortening of the tendon as a whole is observed

4 = small tensile force; low percentage of reinforcement, cracked concrete
shortening is only a slightly reduced shrinkage

5 =high tensile force; high percentage of reinforcement, cracked concrete
no tension stiffening — no considerable shortening of the tendon in course of time

6 = observed relationship for a cracked reinforced tendon in experiments
In the first period no shortening, because new crackes in the concrete appear.
Later on, influence of deformations caused by shrinkage and improved bond behaviour.
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Fig. 4.5. Moment-curvature relationship.

4.1.5.1 Beam with a high percentage of reinforcement and adequate elongation of

the steel, but no reinforcement in the compression zone.

In Fig. 4.5 all influences in this case on curvature of a section in bending can be
clearly shown.

a.

M-i-diagram — short-term test, line 1-5.

At bending moment M = a, k = ab.

Due to long-term loading the influence of tension stiffening may decrease due to
bond creep and shrinkage, extra curvature x = bc.

Due to long-term loading the compression zone shortens due to creep — extra
curvature kK = cd.

Due to shrinkage the curvature increases with « = af, if there is no tension stiffening.
The tensile zone has a constant length. In this case, assuming there is no tension
stiffening, the curvature at bending moment M increases from k =ab to k = fd.
The time-dependent curvatures are very important, causing considerable deflec-
tions of the concrete elements.

4.1.5.2 Beam with a small percentage of reinforcement and an adequate elongation

o op

of the steel.
M-k-diagram — short-term test, line 1-5.
The influence of tension stiffening is not decreased in course of time k = ab.
Due to long-term loading the compression zone shortens. k =cd.
Due to shrinkage of concrete both compression zone and tensile zone are shorten-
ing and the curvature of the section by shrinkage is small.

In this case « is, during the time of testing, increased from k = ab to k =gb+cd. In
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comparison with case 4.1.5.1 the curvatures caused by time-dependent influences are
smaller.

4.1.6 Influence of prestress on the deformations

In prestressed concrete the amount of “‘reinforcement’ depends on the type of the
structure.

If the “reinforcement’ consists only of prestressing steel the percentage of reinforce-
ment is relatively small and the compressive force on the section is high. If the tensile
zone is cracked (P.P.C.) the additional tensile force caused by elongation of the
concrete and cracks in the tensile zone is small.

This case can be compared with 4.1.5.2. It means that the time-dependent deflec-
tions are reduced in comparison with case 4.1.5.1. If the P.P.C. beam has a low
magnitude of prestress and a high percentage of normal reinforcement the case is
more connected to 4.1.5.1.

This description of the time-dependent influences shows that it is not possible to
give general rules for the time-dependent deflections of partially prestressed concrete
with a cracked tensile zone, without introducing parameters, related with the amount
and the type of reinforcement.

Remark

1. Fully prestressed concrete (uncracked tensile zone) shows great flexural rigidity.
Also, the time-dependent deflections are small because there is no curvature due
to shrinkage (case 4) but only due to creep.

2. In partially prestressed concrete beams (P.P.C.) the tensile zone is cracked over
only a limited length because the prestressing force normally introduces compres-
sive stresses in the concrete which are not reduced sufficiently near the supports to
produce cracks under normal loads.

4.2 Information from literature

Study of the literature causes difficulties because the definition of partially prestressed
concrete (P.P.C.) as a concrete structure of Class III according to the CEB-FIP-
recommendations of 1970 is rather poor.

In fact, many combinations of P.P.C.-structures are possible, all of them belonging
to Class III structures.

The following methods of defining Class III structures can be mentioned:

Combinations of prestressing steel and normal (low-tensile) reinforcement.
Combinations of prestressed and non-prestressed high-tensile steel.

The magnitude of the average prestress in the concrete.

The “level” of prestressing, defined as:

_ A_sp Jo.z o
Asl 'fy +Asp .f0,2

B
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5. The “level” of prestressing ¥ defined as the total prestressing force at zero stress
in the tensile zone related to this prestressing force for Class I prestressed concrete

The list of possibilities clearly shows that if P.P.C. is considered, it is necessary
properly to define which type of Class III structures is envisaged.

Test by E. W. Bennett at Leeds University [25] carried out on T-beams in P.P.C.
with a prestress of 1,6 N/mm?, A = 0,86, = 0,50 showed that under sustained design
load (load factor 1.8) the following can be observed:

— in 300 days the deflection of the beams, by applying symmetrical concentrated
loads, increased to more than twice the initial value, while about 509 of the
additional deflections occurred within the first 20 days of loading;

— recovery after unloading was only 15% in nearly 30 days;

— in the course of 300 days the crack width in the tensile zone increased from 0,10
mm to 0,13 and 0,18 mm, i.e., 1309 to 180% of the original values.

These tests showed that in this case with a low prestress but a relatively high percen-
tage of reinforcement the tension stiffening is reduced under long-term loading so
that cracks, even small in width, do not close up after removal of the load.

The minimum prestress in the concrete for closure of the cracks on unloading was
nearly 2 N/mm?.

The following test data obtained by Bennett concerning the behaviour under
sustained loading call for mention:

loading

deflection (midspan) after 300 days

crack width sustained loading
beam at 0,55M,, at 0,55M,, M, deflection crack width
B1 12,6 mm 0,08 mm 3458 x 10* Nmm
S 15,0 mm 0,10 mm 33 mm 0,18 mm
B2 25,6 mm 0,16 mm 6070 x 10* Nmm
S 23,0 mm 0,11 mm 49 mm 0,13 mm
B4 24,7 mm 0,08 mm 6010 x 10* Nmm
S 24,0 mm 0,11 mm 54 mm 0,16 mm

* Index S beams tested under sustained loading
M, for these beams marginally higher than those of the other beams.

Cederwall [28] observed the time-dependent behaviour of reinforced concrete beams
and several beams with prestressed reinforcing bars.

No observations on the development of cracks, etc. are reported. Only the curva-
tures of the zone in which the cracks appeared were calculated.
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A lightweight P.P.C. beam was tested at the Federal Technological University
(E.T.H.) at Ziirich [27, 31].

In these beams with a concrete section of 116.500 mm? the compression zone was
reinforced with 505 mm?; the magnitude of prestress was 2,6 N/mm? and A = 0,43;
¥ =0,48.

The shrinkage of concrete during the test period (2 years) was 36 x 10~ >, and the
creep factor ¢ was 0,4 after 4 months and 1.05 after 2 years.

days after concreting

3 730
time-dependent deflection (midspan) 1,3 mm 8 mm
number of cracks in the zone of constant bending moments 34 35
maximum crack width 0,15 mm 0,18-0,20 mm
mean value of tensile strain in the cracked zone 0,9 x10-3 1,3%x10-3

Remark: Increase in tensile strain during the first 3 months.

In a subsequent report [31] the behaviour of the beam during the next three years
is discussed.

During this time the curvature of the beam increased by 2,3%;. This is in agreement
with the increase in total deflection by 2,6%. The width of the cracks in this beam
remained unchanged during the last three years and the neutral axis was displaced
downwards by about 5 mm (in the first two years by 80 mm).

In this beam a considerable amount of normal reinforcement was put into the
compression zone (0,45% of total beam cross-section). This reinforcement caused a
reduction of the deformation of the compression zone due to shrinkage (and creep).

The increase in the steel stress in the tensile zone after cracking was limited in the
calculation to 150 N/mm?, according the S.I.A. standard 162.

The strain, due to loading in the zone of tensile reinforcement, was nearly constant
(1,26—1,37 x 107 %),

In this case the tension-stiffening of the tensile zone was reduced. This resulted in
a nearly constant length of the tensile zone and a deflection caused by shrinkage and
creep of the compression zone.

Stevens [35] tested 24 pairs of reinforced concrete beams (0,2 x 0,385 m) with the
following variables:

strength of reinforcing steel

concrete cover

proportions of reinforcement — balanced and half balanced
environment — controlled and natural

Tests were continued for two years.
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Within the scope of this report the most important conclusions are:

During the first three months an increase in elongation at the level of the reinforce-
ment (“crack strain”) was observed.

After a period of one year an almost constant length of the tensile zone at the
centre of the reinforcement was observed.

When the time-dependent deflections were calculated with a maximum compressive
strain in the concrete allowing for creep and shrinkage, the relationship was:

gl = 2 (140,670) + 4l

this method gives an average calculated deflection to estimated deflection of 1.00
with a standard deviation of 0,08.

Calculation of tension stiffening effects from the measurements showed that on an
average the value of the tensile force, resisted by the concrete between the cracks
was reduced to about one-third of that developed just before cracking.

The deflection of beams in two years was more important in beams with a high
percentage of reinforcement in comparison with beams with a low percentage of
reinforcement.

A,/bh in % 2,3 1,4 1,1 0,8 0,6
type A E B-J F K
deflection in time in mm 2,03 1,85 1,14 (1,60) 1,3 (1,27)
direct deflection in mm 1,93 2,29 1,02 (2,72) 1,42 (1,58)
() — very high strength steel

These phenomena can be explained with the influence of tension stiffening given at
4.1.5.1 and 4.1.5.2.

Corley and Sozen [34] tested four small reinforced concrete beams (0,08 x0,18 m
and 0,08 x0,13 m) and compared the results of these tests with measured deflections
published by others. They propose a simple expression for the curvature caused by
the creep of concrete, assuming that during the time that creep strain occurs the steel
strain in the tensile zone does not change and the strain distribution remains linear.

A similar approach is proposed for the curvature caused by shrinkage, taking into
account — if necessary — the compression reinforcement. In the analysis of the results
of the deflections calculated with the given assumptions and the measured deflections
they write:

“Where important differences between measured and computed deflections do
exist the method on computation tends to overestimate the amount of deflection.
This trend is most apparent in beams with low percentages of steel ... Even when
only a part of the span was considered to be cracked the computed deflection for each
beam (referred to) was more than that measured . . .
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As previously noted, tension in concrete becomes more significant as the steel
percentage decreases”.

These phenomena can be explained with the model given in 4.1.5.1 and 4.1.5.2
where the influence of tension stiffening is described.

A perusal of the literature concerned with time-dependent behaviour gives only
rather scanty information. It can be concluded that the influence of time on the
behaviour of cracked P.P.C. beams with enough bonded reinforcement may be loss
off tension stiffening resulting in:

1. Widening of cracks in the tensile zone;
2. Increase in deflection of the beam at midspan.

Some tests indicate that with sufficient bonded reinforcement no increase in the
length of the reinforced tensile zone can be expected in course of time.

The description given of the expected behaviour of beams in P.P.C. with only a
small percentage of bonded reinforcement in the tensile zone shows that none of the
above mentioned experiments were carried out on such beams.

Experiments were accordingly carried out in the Stevin Laboratory with the follow-
ing aims [23, 32]:

1. to control the results of experiments on a beam with a large quantity of bonded
reinforcement;

2. to study the behaviour of P.P.C. beams with a cracked tensile zone and to compare
this behaviour with a beam of the same type but with an uncracked tensile zone.

4.3 The experiments

Two test series were carried out, each consisting of two beams. The cross-sections of
the four beams were the same. Information on the reinforcement of these four beams
is given in the table below.

prestr.
corce
start of
beam type tensile zone reinf. steel prestr. steel test
serie 1 1.1. P.P.C. uncracked 206 73 4% 109 kN
1.2. Reinf. cracked 206-1222
conc.
serie 2 2.1. P.P.C.- cracked 236 7 54% 65 kN
bonded
tendon
2.2. P.C.C.- cracked 206 7@ 4% 70 kN
unbonded
tendon
* strand
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The beams 2.1 and 2.2 were loaded above the cracking load in preliminary tests,
thus introducing cracks in the tensile zone. To have open cracks under the same
sustained load the prestressing force was reduced in comparison with beam 1.2.

Beams 1.1 and 1.2 were precast in a factory. The beams 2.1 and 2.2 were produced
in the laboratory.

The cross-section of the beams is given in Fig. 4.6.

The relevant data concerning material properties, deformations of the beams and
the stress distribution are compiled in the appendix A 4.1. Material properties are
summarized in Table A 4.1.

support casing

strand 794 S 'P‘O
beam 2.1 &_Xlgs‘ﬁ

Fig. 4.6. Cross-section of test-beam.

After concreting, prestressing and precracking (beams 2.1 and 2.2) the beams were
placed in a room with constant relative humidity (50% +2%) and temperature
(20°C+4°C).

The beams 1.1 and 1.2 were loaded with concrete tiles. The beams 2.1 and 2.2
were supported by pendulums connected with a steel frame and subjected to a four

. 6300 -
, |
| o | —
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]
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H | ] |
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Fig. 4.7. Testing frame.
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point loading. The beams stayed in the room with controlled climatological condi-
tions for more than one year.
During this time measurements were carried out on

— concrete strain at midspan

— deflection at midspan and quarter span
prestressing force in the tendon of beam 2.2
creep and shrinkage behaviour of testprisms.

|

After the long term test the beams were loaded to failure. The data, concerning the
test-results are compiled in the tables (A4.2, A4.3, A4.4, A4.5 and A4.6).

After the tests under sustained load the four beams were loaded till failure with a
four point loading test. Testframe see Fig. 4.7. Crack distribution in beam 2.1 and
2.2 see Fig. 4.8. Testresults in table A4.7.

Fig. 4.8. Crack distribution.

4.4 Analysis of experimental results

4.4.1 Deflections at mispan under short term loading

Beam 1.1 1.2 2.1 2.2

1.9 mm 5.0 mm 2.2 mm 2.3 mm

The rigidity of beam 1.1 with an uncracked tensile zone is higher than that of beam
2.1 and 2.2 with a cracked tensile zone. The differences between the deflections of the
beams 2.1 (grouted duct) and 2.2 (ungrouted duct) are very small. It can be concluded
that — as already known — the rigidity of concrete beams with an uncracked tensile
zone is large in comparison with beams with tension cracks.

Due to cracking of a part of the tensile zone the rigidity of a beam with the same
cross-section is decreased by 30%-40%. This decrease is relatively small because only
a part of the tensile zone of the beams 2.1 and 2.2 is cracked and the crack width is
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small. The rigidity of the reinforced concrete beam (1.2) is decreased by more as 507
in relation to beam 1.1.

This is so because the tension stiffening of the tensile zone beam 1.2 is only of
minor importance. The tensile force in the reinforcement must be built up to carry
the sustained load. Therefore considerable elongation of the reinforcement is
necessary.

4.4.2 Increase in deflection at mispan under sustained load

beam 1.1 1.2 2.1 2.2
increase in deflection 0,5 mm 5,9 mm 1,9 mm 2,6 mm
time 361 days 361 days 681 days 524 days
52

| 5 T CS ] |

! (Dr——t— . Ec].a-s.BE , 1=
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| @D+ |

| © @ |

, B+ i Ecg- -2
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Fig. 4.9. Measurements of concrete strains at midspan.

The increase in deflection of beam 1.1 was very small, being only 209 of that measured
in the short-term loading test. This low value can be explained by the nearly uniform
distributed (compressive) stresses in the cross-sections.

The increase in deflection of beam 2.1 (grouted duct) is 85% of that measured in
short-term loading and that of beam 2.2 is 115%. This difference in increase of deflec-
tion between beam 2.1 and 2.2 shows the influence of the grouted duct. The height
(length) of the cracks in beam 2.1 was smaller in relation to that in beam 2.2, because
in the latter case there were only two 6 mm diameter bonded bars across the cracks.
Therefore the compressive stresses at the top of beam 2.2 were higher, causing more
creep shortening of the concrete.

The increase in deflection of beam 1.2 was considerable, but in relation to the short-
term deflection it was “only”” 120%, assuming no tension stiffening.

The deflection of this beam can be calculated with the formulae

— 1 2
Omia = $Xmials

A
mid 7 oo h

With &/, = 0,365 x 1073, A =250 mm and /, = 5000 mm, we find — assuming

C= 0’9_5mid = 5,1 mm.
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Fig. 4.10. Strain distribution in beams 1.1 and 1.2.

This value shows that only a small part of the time-dependent deflection of this
beam is caused by loss of tension stiffening of the tensile zone and creep of the com-
pression zone.

4.4.3 Deformation of the tensile zone under sustained load

beam 1.1 1.2 2.1 2.2
deformation -30,6x107° — 78x107° —153x10"° —13,8x10°°
shrinkage (prisms)  —36,5x107° —36,5x10"° —320x10"° —28,1x10"°

In all cases a shortening of the tensile zone was found. This shortening was lowest
in the reinforced concrete beam (1.2) causing widening of cracks (Fig. 4.10).

The number of cracks (45) with a spacing of nearly 100 mm on a reinforcing bar
of @22 makes it clear that tension stiffening could only be of minor importance. That
in this case a shortening of the tensile zone occurred can partly be explained by the
influence of the bond of the two small diameter bars and bond slip of the main bar
allowing the surrounding concrete to shrink. The difference in shortening of beams
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Fig. 4.11. Strain distribution in beams 2.1 and 2.2.

2.1 and 2.2 in relation to beam 1.1 can be explained by the influence of the stress
distribution over the cross-section (Fig. 4.11).

Due to higher compressive stresses, caused by the prestressing force, the creep
deformations in the bottom of beam 1.1 are of greater importance than those in beams
2.1 and 2.2

The reduction of the tensile zone shortening of beams 2.1 and 2.2 with regard to
the shrinkage deformations measured on prisms, over the same period, is due to the
influence of tensile stresses in the concrete between two cracks and to that of bonded
reinforcement.

Assuming ¢ to be 2, n to be 6 and A4, =90 x 100 = 9000 mm?* we obtain for |&| a
value between 0,14 and 0,16 x10™ % or, “translated” into steel stresses, a value
between 29 and 34 N/mm?. Beam 1.2 — reinforced concrete — had a steel stress in
the cracks of approx. 170 N/mm?, i.e., a relatively high value of concrete strain
between two cracks.

Therefore more cracks were developed in course of time, causing a relaxing of
tension stiffening. Beams 2.1 and 2.2 underwent an increase in steel stress (after
reaching zero stress in the concrete of the tensile zone) of 10 to 15 N/mm?.
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Therefore no extra cracks appeared as time went by. This effect resulted in shorten-
ing of the tensile zone.

4.5 Summary of experimental results

The experimental results can be summarized as follows:

1. With low percentages of reinforcement, tension stiffening in the short-term test is
likely to be considerable. This effect is also considerable in a long term test. There-
fore the shrinkage shortening of the cracked tensile zone will be greater than the
crack widening due to shrinkage of concrete between the cracks. The time-
dependent deflections are reduced in comparison with a beam with a normal
percentage of reinforcement.

2. The phenomenon mentioned in 1. is enhanced by the effect of prestressing,
because the prestressing force “increases” the shrinkage shortening force.

3. In P.P.C. beams with straight tendons in the tensile zone this zone is cracked
only in the part of the beam with high bending moments.

In statically determinate beams the parts of the beams near the supports are
uncracked.

Therefore the overall flexural stiffness off the P.P.C. beam is only slightly reduced
in relation tof the stiffness of the P.P.C. beam with an uncracked tensile zone.
From this point of view the influence of prestressing on deflections (and time-
dependent deflections) is also favourable, especially if the increase in steel stress
(after the bending moment with zero stress at the bottom of the concrete) is
limited to 150 N/mm? or less.

4. The failure load of beams, prestressed with unbonded tendons, can be consider-
ably reduced if the reinforcement has not enough uniform distributed elongation
before failure.

5. The influence of time-dependent deformations over the depth of a beam is such
that Bernoulli’s law “‘plane sections remain plane” is not adequate.

This can be concluded from the strain measurements on beams 2.1 and 2.2.

4.6 Conclusions

1. Generally speaking, the tests have shown that the behaviour of the tendons in
practice was indeed as expected.

2. It is not easy to predict the real values of the time-dependent deflection of P.P.C.
beams. The test series has not given enough information for establishing design
rules.

3. It can be assumed that, generally speaking, the prestress reduces the time-depen-
dent deformations in relation to normally reinforced concrete.

4. The chosen type of beam, the magnitude of the prestressing force and the load
made it possible to compare the test results with one another. Agreement between
these beams and many practical solutions is not particularly good.
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5.

It is of no use to continue the tests without more knowledge of the time-dependent
behaviour of a cracked and uncracked concrete “tendon’. With tests on concrete
“tendons” a new theory for this behaviour, which has yet to be developed, can
be checked.

The new experiments could be as follows:

L.

Tensile tests on symmetrical reinforced concrete columns of square cross-section
with variable percentages of reinforcement.

Creep tests on these columns with a cracked concrete section and observation of
the time-dependent deformations of the steel and concrete near the cracks.
Relaxation tests on such columns with a cracked concrete section and the same
observation mentioned in 2.
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6 Notation

Symbols

cross-section
Young’s modulus
prestressing force
moment of inertia
bending moment
or,;i flexural cracking moment
w1 ultimate flexural moment
normal force
shear force
distance
width of flange
width of web
concrete cover
total depth of beam
excentricity of the reinforcement
strength
effective depth of beam
ratio E /E,
height of kern
distance of stirrups
distance from center of gravity of concrete
crack width
inner lever arm
effective equivalent initial reinforcement ratio
strain
coefficient — see below
coefficient — see below
curvature
degree of prestressing
stress
creep coefficient
reinforcement ratio A /A,

€9 A a3 I e ® I N TR @ & = o SN VZEE&N"HN’&

Ao stress loss in prestressing steel
0 reduction factor in creep calculations
o} diameter of reinforcing bar
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Indices

compression

concrete

concrete shrinkage

initial (just before testing)
longitudinal normal reinforcing steel
average value

prestressing steel

cracking

steel

time

ultimate

refers to uncracked part of concrete section
yield

reference

0,2% limit strain

cracked

uncracked

at zero time

at infinite time

upper surface of concrete

bottom surface of concrete

refers to compression — or shortening
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Fig. 1.15. Crack widths of the beams due to 4o (prog. 1).
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Fig. 1.16. Crack widths of the beams due to 4o (prog. 2).
Example of a calculation Beam nr. 9 programme 1.
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Fig. 1.17. Cross-section and loading scheme.
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Main data:
— Cross-section: d = 350 mm
y, =217 mm y; =133 mm
A, = 77850 mm?
W =395-10° mm® W’'=642-10° mm?3
I, =856-10° mm*
k =83 mm k' =51 mm

— Concrete: compression strength: f, = 0.8 x39.5 = 31.6 N/mm?, used 30 N/mm?
tensile strength: fe=15%x3 = 4.5 N/mm?, for bending.
The other data are given in Table 2 and in Fig. 1.17.

Ge (N/mm*)

304

20+

E=32600

0 1 175 2 3
€¢(%ho)

Fig. 1.18. Stress-strain relation of the concrete.

- Reinforcement: 4, =402 mm?

f, =425 N/mm?

G (N/mmb)
800
d=16mm 560 N/mm*
| w2
400 23,5 oo
0 5 10 15 20 25

€ (*ha)

Fig. 1.19. Stress-strain relation of the normal reinforcing steel.
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— Prestressing: A, = 186 mm?”

fO,Z = 1830 N/mm2

G (N/mm)

2007 N /mrd|
29 %

2000 4
1830 ‘fO,Z

1600 4

1/2" strand
1200 A

800 4

4004

0 5 10 15 20 25 30
€ (%)

Fig. 1.20. Stress-strain relation of the prestressing steel.

A. Calculation of the uncracked stage

1. Dead load: g =25x%0.07785=1.95 kN/m’
M, =§x1.95 x4,5% = 4,93 kNm
2. Infered data: M, =1.5xP (see Fig. 1.9)
e =217-40 =177 mm
4 =3.85
ny =7.64 (after 3 days) n,s = 6.36 (after 28 days)
o, =0.52%w,=0.24%w=0.7%
nyo =0.0581 ny50 = 0.0483
nyof = 0.2235 n,50f = 0.1861
0,0 =900 N/mm? (measured)
relaxation Ao =1.39-1072-900 = 12.5 N/mm?
- 0—'2i32523§'06 =0.3763 > ¢ ™" = 0.6864
1—e™"=0.3136
Mye | oo Ee _493:10°177 oy oo
I, ?, 856 x 10°

= —1.73 N/mm?*

Al.S



3. Reference force: Fro = 186-(900—12.5) = 165100 N

formula 1: Fp, = 165100-0.6864—1.73-—737—8;—590.3136 =
= 102300 N
3.85
formula 2: Mg, = 102300 177-m = 24.46 kNm

The stresses due to My, are:

102300-310
230 = T = 2
Oct 77850177 2.30 N/mm
. 102300-40 .
92 = + 77g50-177 ~ T 0-30 N/mm
00 g, = (102300~ 165100)/(186+402) = —106.7 N/mm?
0.52 .
o, = (1023004165100~ }/558 = +780.8 Njmm
(102300 — 165100)- 177
Are = +

32600-856-10°-0.2235

N 4.93-10°-0.3136 B
32600-856-10°-0.2235-3.85

=—1.72-10"° mm™!

228

4. Decompression Moment: M, = 102300'217-2—1mm = 23.10 kNm
formula 3
: 856-10°-0.1861
5. Cracking M t: =23, e T T =43,
racking Momen M, =23.10+4.5 31740.0483-40 ﬂ3 97 kNm
formula 4

The stresses due to M, are the stresses due to

o Mec+AM, with MA = M,— My,

AM = 13.97—24.46 = 19.51 kNm

19.51-10°-(133+0.0483-310)
856-10°-1.1861

O-Cl = —2.10 -

450
= —2.30—2.84 = —5.14 N/mm>

19.51-10°+(217+0.0483-40)
856-10°%-1.1861

= +0.30+4.20 = +4.50 N/mm?

0., = +0.30 +

Al.6



19.51-10°-6.36-177 _

o, = —106.7 + A
856-10°-1.1861
= —106.7421.6 = —85.1 N/mm”®
g, = +780.8+21.6= +802,4 N/mm*

The measured value of M, is 43.7+4.93 = 48.63 kNm.

102300+4.5-1.0483-77850

pa— . _6 =
1721077+ 33660~ 77850- (217 + 0.0483 - 40)

%

= —0.88-10"°  mm™*
Measured is the curvature due to the moment

AM =43.97—4.93 = 39.04 kNm

39.04-10°-1.0483

%= =1.22-10"°  mm™"*
32600-856-10 -1.1861

The difference between the theoretical curvature and
the measured curvature 4x =2.10-10"! mm™1!,

The reason for the difference in curvature is that be-
tween fabrication of the beam and starting the measure-
ment the beam have already a curvature due to dead
load, prestressing, relaxation, shrinkage and creep. For
comparison of the results of tests and theory, this

difference has to be taken into account.

B. Calculations of the cracked stage

6. Crackwidth control:

formula 6:

formula 7: o, =

In this example, the crackwidth is calculated for a
chosen value of the depth of the concrete compression
zone.

Take 4, = 80 mm — 4., = 36000 mm?>
y, = 40 mm
k, = 13.3 mm

h, =80 mm due to a moment M,,:

M., = 102300- 36000-40-283.3

The stress in 4, due to this moment is:

72-10° 165100

_ 2
5882833 58— T1o1:2N/mm




formula 8:

formula 9:

7. Yield moment:

Al.8

1412

The stress in 4, due to M| is:
o,=—106.7—1.5= —108.2 N/mm?
The increase of the stress in 4; from M, to M,, is:

Ao =151.2— —108.2 = 259.4 N/mm?2

Using the E.T.H. relation between 4o and w,,,,:

= ~0.42 mm.

w,

max

Using the Dutch standards w,,,, = 0.19 mm.

The measured crackwidth due to 4o =259.4 N/mm?
is ~0.16 mm including a possible fault of 0.05 mm
(Fig. 14). The reasonable difference between the theo-
retical and measured crackwidth has two main reasons:

1. Tension stiffening: the (measured) average strain of
the reinforcement differs from the strain of the
reinforcement in a crack.

2. Measuring faults: in measuring of the crackwidth.
Due to M = 72 kNm the stresses in the concrete are:
.10° .
- —72—}9—§0— = —14.12 N!mm?
36-10°-40-283.3

Oc1 =

In the prestressing steel:
o,=151.24887.5 = +-1038.7 N/mm?
The curvature is:

x=—1.72-10"° + 14.12

32600-80

M, is reached as o, = 425 N/mm?
then o, = 425+887.5 = 1312.5 N/mm?

Ny=Agf,+Aspfo,, = 402-425+186-1312.5 =
414975 N.

If A, < 80 mm:

N, = 414975 ~ Lh.bo., = 262.5h.0.,

= +3.69:-10"° mm™!

The strain of the concrete at the level of the centre of
gravity of the reinforcement

g
Zos _ ¢

E

c,s
c

is not the same as the strain of the reinforcement



220
72.Br

8. The ultimate stage:

formula 10:

Due to M =72 kNm:
, h—hx  14.12 310—-80

fes =%l T 33600 g0 L2

&g = 2%5(—)% =0.71%,

Ifeg = 2—140%5(% = 2.02%, then

£y = (2.02+1.25—0.72)%, = 2.55%,
AL he 5559

bt = h, BT 310—h,

&., is so great that the relation between ¢ and ¢ is not
longer linear. Therefore a semi-parabolic relation is
used.

Then is found ¢, =0.78%,, o.; =22.0 N/mm? and

h, =72.8 mm. M, =414.975-0.282 = 117.0 kNm.

0.78-1073 e

Ax =2.10-10"® mm ~*
=11.09-10"® mm ™!

Xy

z, = ~310—20 =290 mm (estimated)
Ag fu+Agy fo,, =402-4254186-1830 = 511230 N
M,=0.29-511.23 = 148.3 kNm.

This moment is less than the real moment of failure.
el = 2.5%, is reached if 4, =62 mm and the concrete
will fail.

Then ¢, = 9.5%, and &g, = 13.77,,.

With the stress-strain relation of the reinforcement and
prestressing steel the real values of ¢, and o, can be
taken into account.

Then N, =%-62-450-30 = 558000 N

z, =310—3:62=286.7 mm
M, =558-0.2867 = 160.0 kKNm

Al9



. -3
20 4031076 mm!

" 62
9. The deflection: The stiffness in the uncracked stage is:
1.1861
— . .10% - = =31.57-10'* N 2
E_I, = 32600-856-10 10483 31.57-10 mm
The stiffness in the cracked stage is:
E.l, = M.=M, _ 5 40-102 N/mm?
Eyl,o
EL 4.27
M
My X failure
——— — end of the test
—— Theoretical
——— Experimentical
Experimental 0-point
Theoretical 0-point
Ky Ky Ko o

Fig. 1.21. M-k-diagram (theoretical and measured).

Bl M, E.l, _ 117.0-31.57-10'2
ctl1 — - E N =
Mot (Mo — 1) Eelo  4397+73.03:4.27

EI,
=10.39-10'2 Nmm?

A sufficient approximation of the deflection can be
found if E I; is taken into account for the whole
length of the beam.

Then:

_ 23My I7
max T 216E.1,

For M., = M,: 0. = 24.3 mm

0

Measured is Omax = 22.4 mm

It is possible that these results will show little differences with the results in Table 2,
because Table 2 is calculated with the real beam sizes.

Al.10
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Fig. 2.24

Fig. 2.25

Fig. 2.26

A2.2
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Fig. 2.27

Fig. 2.28

Fig. 2.29
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Cube strength — Youngs modulus — Series Py, P.S. and C Values in N/mm?

pour and date

1 I III v
6-11-74 13-11-74 20-11-74 6-8-75
Cube strength (C)
7 days after concreting 22,6 23,1 18,4 19,6

14 days after concreting 28,4 30,4 25,1 25,9

28 days after concreting 36,0 35,7 28,8 30,7
182 days after concreting 44,0 45,8 39,7 37,0
365 days after concreting 41,5 44,7 39,1 39,9
Prism strength (P and P.S)

14 days 17,8 19,3 15,1 17,2

28 days 22,4 23,4 19,7 21,1
Youngs modulus (P.S)

14 days 28,2102 30,5 x 10 28,1 x10% 25,5 %103

28 days 29,7 x10® 32,4 %103 29,9 x10® 29,3 x103
182 days 32,8 X102
Tensile splitting strength (C)

28 days 27,3 32,7 33,1 39,6

Series P

Loss of weight in time in kg/m?® by evaporation of water Prism’s 150 x 150 X 600 mm
days after loading of columns* 7 33 91 182 364
P, pour 1 9,4 18,5 27,7 35,0 41,4
P, 10,2 20,1 30,9 39,8 47,9
A 9,7 19,5 29,4 37,9 45,5
B 9,2 18,1 27,4 35,2 47,1
P, pour II 8,0 16,1 24,6 32,1 38,9
P, 8,5 16,9 25,7 33,3 40,1
C 9,0 17,8 27,1 34,9 41,9
D 8,7 17,4 26,3 33,9 38,4
P, pour III 12,4 23,1 33,7 42,9 51,3
P, 12,5 22,6 334 43,0 50,1
E 10,6 20,0 29,9 38,4 46,3
F 10,8 20,8 30,8 39,6 47,1
Py pour IV 6,3 17,0 27,7 35,0 43,2
Py 6,6 17,1 27,3 34,2 42,2
P 6,3 17,4 28,2 35,2 42,8
Py 6,9 17,9 28,7 35,7 43,8
Py, 6,9 18,0 29,0 36,6 44,8
Py; 6,5 17,8 28,8 36,0 44,0
G 6,7 17,9 29,1 36,8 45,2
H 6,5 17,2 28,0 35,2 43,4
1 6,2 16,6 27,0 31,1 42,5
J 6,0 16,2 26,6 33,8 41,7
mean value 8,36 18,36 28,51 36,16 44,07
standard deviation 2,05 1,91 2,24 3,07 3,32
variation coeff. 249, 10% 8% 8% 8%

* During the time between demoulding and loading the specimen were stored in a curing room
(95% RH).
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Relationship. Creep — shrinkage — loss of weight due to evaporation of water. To
determine whether the relationships between creep, shrinkage, loss of weight and time

is the same for the three values the relative proportion between

’ ’
g & AW,
__ft__; _Jest and —_
4 364

€364 364
In Fig. 3.12 this relationship is presented graphically.

is given.
%o
100 4 Ecst .
RS | g
75 4
Columns
50 (1-4)
(2-5)
25 4 I (loss weight )y _(3-6)
’:._.»/1 (loss weight )sq,
';l
0 T T L} T T T T L] v
133 182 252 364
days

9 21 34 56 9
Fig. 3.12
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Values of &', measured and calculated with 3 methods. &', values in 1072,

Kl K2 KS K4 Ks Kll K12 K13 K14 Kl5
Loading 0 days

Measured 261 251 257 247 242 401 402 403 403 399

9 days after loading
Measured 458 466 446 416 382 749 719 627 604 558
Dischinger 463 443 437 396 361 709 698 665 615 561
Trost 461 441 432 389 353 706 693 656 603 548
Eff. modulus 460 438 429 386 355 704 692 660 598 543

14 days after loading
Measured 492 498 494 452 396 791 782 677 627 575
Dischinger 498 470 462 427 385 772 759 717 655 589
Trost 496 468 457 418 375 768 751 715 638 572
Eff. modulus 495 465 429 414 376 765 750 708 631 566

21 days after loading
Measured 544 544 534 484 435 857 843 729 669 604
Dischinger 571 511 499 455 407 841 824 772 696 619
Trost 568 507 492 443 394 835 814 755 674 598
Eff. modulus 566 504 488 438 394 832 811 757 666 589

34 days after loading
Measured 618 608 592 544 482 932 924 883 726 649
Dischinger 617 574 556 510 448 913 892 830 739 650
Trost 613 569 546 492 429 906 880 808 711 623
Eff. modulus 611 564 541 485 427 902 876 808 700 612

91 days after loading
Measured 811 780 752 631 594 1170 1130 970 867 751
Dischinger 858 740 704 625 530 1150 1110 1010 871 740
Trost 846 729 685 591 497 1130 1090 974 823 697
Eff. modulus 841 722 675 578 490 1120 1080 968 804 680

182 days after loading
Measured 975 939 886 731 673 1320 1270 1060 939 797
Dischinger 1010 868 816 705 585 1300 1250 1120 948 791
Trost 997 851 787 658 541 1270 1220 1070 888 739
Eff. modulus 989 841 773 639 530 1270 1200 1060 863 717

271 days after loading
Measured 1050 995 938 774 698 1410 1370 1130 994 839
Dischinger 1090 918 860 737 608 1390 1340 1190 993 819
Trost 1070 898 826 686 561 1370 1300 1130 924 761
Eff. modulus 1060 887 810 666 548 1350 1280 1110 896 736

364 days after loading
Measured 1120 1040 978 824 728 1470 1420 1170 1010 856
Dischinger 1140 969 904 773 631 1460 1400 1240 1020 842
Trost 1110 946 865 716 580 1420 1360 1170 953 779
Eff. modulus 1100 934 848 692 565 1420 1340 1150 922 753

Values calculated with 1,2¢’ ;0

364 days after loading
Measured 1120 1040 978 824 723 1470 1420 1170 1010 856
Dischinger 1195 1021 948 805 654 1516 1460 1294 1060 872
Trost 1163 996 905 744 600 1485 1417 1221 988 824
Eff. modulus 1153 986 886 719 583 1474 1398 1200 955 779

Values calculated with E’, = 32000 N/mm?; @4, = 2,6 and &’,g35, =270 X 106

Measured 1120 1040 978 824 728 1470 1420 1170 1010 856
Dischinger 1100 1050 940 790 650 1610 1550 1380 1170 970
Trost 1080 1020 880 730 590 1520 1490 1300 1080 890
Eff. modulus 1070 1000 860 700 570 1560 1470 1270 1040 850
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Mean values of measured and calculated deformation of loaded columns

, ,
Ept— € pt=0__

difference between measured and calculated
deformations in %,

time after & pasa— € pi=o
loading in days measured in % Dischinger Trost Eff. E modulus
9 days 29 —3,6 —6,6 — 7,4

14 days 34 —2,0 —5,5 — 13
21 days 41 —1,6 —5,5 — 6,7
34 days 50 —1,6 —5,5 — 6,7
91 days 71 —2,3 —7,6 — 9,6

182 days 86 —3,1 —9,0 —11,2

271 days 94 —3,7 —9,7 —12,3

364 days 100 —33 —9,6 —12,1

A39

Table A.4.1.

Concrete strength — Creep and shrinkage values
Beams 2.1 and 2.2

1.1.  Concrete compressive strength in N/mm? Testcubes 150 mm?

after
days 7 28 month 3 6 12
beam 2.1 38,7 48,0 53,3 54,8 58,9
beam 2.2 37,5 47,0 49,5 53,4 53,6
beam 1.1 - 53,2 - - 59,3
and 1.2
Concrete mix 325 kg Cement per m?
water-cement ratio 0,46
1.2.  Shrinkage &'

RH 50% +2%

Temp 20°C +4°C

Values in 10-3, after
days 7 28 month 3 6 12
beam 2.1 0,06 0,12 0,21 0,26 0,31
beam 2.2 0,05 0,12 0,20 0,26 0,30

1.3.  Creep [ Constant compressive stress 9,5 N/mm?

RH 50% +2%

Temp 20°C +4°C
days 7 28 month 3 6 12
beam 2.1 0,49 0,80 1,27 1,58 2,12
beam 2.2 0,37 0,78 1,43 1,85 2,09

ot i 10-2
beam 2.1 0,122 0,150 0,165 0,165 0,146
beam 2.2 0,135 0,154 0,140 0,141 0,144
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Table A.4.2. Cracks in the tensile zone

shrinkage shortening cracks in the bending moment

beam duration of sustained loading over that period tensile zone at midspan
1.1 361 days 0,365 <1072 no 15.0 kNm
1.2 361 days 0,365 x 103 45 15.8 kNm
2.1 686 days 0,320 x 103 17 15.5 kNm
2.2 524 days 0,281 x 103 6 15.5 kNm

Table A.4.3. Beam 1.1 — Pretensioned

Deformations measured from start of prestressing till start of measurements under sustained load.

Shrinkage ¢, = — 5,0 x107®

g = —15,7 x107°

g2 =+ 3,3 x107?

Kmid = 0,84 x 10-¢ 1/mm

51nid = 1,87 mm
Stresses at start of measurements ¢’ = +1,0 N/mm? ¢’ = —6,7 N/mm?* F=108,8 kN
(Fig. 4.11).

Development of deformations under constant load. M = 14,94 kNm

time & s & o &g Kmid Omid VLS
days X 10-5 x10-5 x 1075 x107¢ 1/mm mm 106 mm?
0 0 0 0 0 0
18 — 9,0 —13,0 — 4,8 0,36 0,69 1,9
75 —21,7 —27,7 —15,7 0,53 0,95 1,8
166 —29,8 —35,8 —22,7 0,59 0,85 1.4
229 —31,7 —38,0 —26,3 0,53 0,76 1,4
286 —35,5 —42,5 —28,5 0,50 0,68 ,
361 —36,5 —42,0 —30,6 0,42 0,48 1,1

Beam loaded with tiles — loading frame supported by rollers.

—= €y

Graphical display ¢, &, and &, on Fig. 4.11.

Table A.4.4. Beam 1.2 - reinforced concrete

Deformations measured from start of prestressing beam 1.1 till start of measurements under sustained
load.

Shrinkage: ¢’,;, = — 5,0 x10°%
g = —19,3 x1075
£ =165 %1075
Kmid = 1,59 x 106 1/mm
(Smid = 5,02 mm
Stresses at start of measurements o’,; = —4 N/mm? o, =178 N/mm? (Fig. 4.10)

A4.2



Development of deformations under ccnstant load. M = 14,94 kNm

time & o Eo1 € Kmid Omia Sk

c2

days x10-5 x 1075 x10-5 x107¢ 1/mm mm X 108

mm?

0 0 0 0 0 0 -

18 — 9,0 —15,5 —0,2 0,68 2,30 34
75 —21,7 —31,7 —4,0 1,23 4,25 3,5
166 —29,8 —40,3 —6,0 1,53 5,32 3,5
229 —31,7 —43,3 —6,8 1,63 5,58 3,4
286 —35,5 —45,7 —7,2 1,71 5,84 3,4
361 —36,5 —47.,8 —-7,8 1,74 5,93 3,4

Beam loaded with tiles — loading frame, supported by rollers.
Graphical display &, &, and ¢, on Fig. 4.11.

Table A4.5. Beam 2.1 — Grouted duct — bounded tendon.

Deformations measured from prestressing till start of measurements under sustained load.

Shrinkage: ¢’,;, = — 3,1 X103
£q = —12,5 x10-5
€ =— 1,7 x10-5
Kmid = — 0,39 %1076 1/mm
Omida = + 0,40 mm
Stresses at start of measurements 0’ = —1,6 N/mm? 0’52 =0 (cracked) F=64,6 kN

Development of deformations under constant load. M = 15,48 kNm (14,80 kNm)

flx
time &g £ £ K f x 108
days x107? x 1078 X103 x107¢ I/mm mm mm?

0 0 0 0 0 0 -

7 — 4,5 — 4,7 + 0,5 0,23 0,64 2,8
18 - 1,7 —10,0 — 0,3 0,43 1,07 2,5
35 —11,7 —14,8 - 1,8 0,58 1,51 2,6
72 —16,2 —20,8 — 53 0,69 1,69 2,4

beam replaced in new loading frame, therefore discontinuity in deflexion values d,, possible

114 —20,5 —23,8 — 8,5 0,68 2,02 3,0
150 —22,7 —26,3 —10.5 0,71 2,22 3,1
240 —24,0 —27,2 —12,8 0,64 1,91 3,0
317 —27.4 —28,7 —14,0 0,65 2,00 3,1
394 —28,9 —29,8 —14,7 0,68 2,05 3,0
533 —29,2 —30,7 —14,2 0,73 1,86 2,5
686 —32,0 —31,3 —15,3 0,71 1,93 2,7

Graphical display of relationship ¢, €., and &', on Fig. 4.11.
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Table A4.6. Beam 2.2 — non grouted duct — unbonded tendon.

Deformations measured from prestressing till start of measurements under sustained load.

Shrinkage: ¢, = — 4,2 x107°
gq = —11,3 x107®
€ =— 5,2 xX107®
Kmia= 0,27 x107¢ 1/mm

Smia = + 0,65 mm

Stresses at start of measurements 0’1 = —3,9 N/mm? 0’2 = 0 (cracked) F=69,9 kKN

Development of deformations under constant load. M =15,48 kNm.

time Epp £ & K f flk F

days x 1075 x10-° x 105 x107% 1/mm mm X 10 mm? kN
0 0 0 0 0 0 - 69,9
10 - 39 - 170 — 0,2 0,33 0,97 2,9

31 — 8,6 —14,2 — 1,0 0,59 1,51 2,6

45 —11,0 —17,2 — 23 0,66 1,68 2,5

73 —14,6 —20,8 — 4,0 1,02 1,87 1,8 67,7

155 —20,8 —27,3 — 83 1,12 2,03 1,8 66,6

243 —23,8 —30,0 —10,5 1,14 2,00 1,8 65,8

279 —23,2 —29,2 —10,0 1,13 1,87 1,7 65,5

370 —26,1 —324 —12,2 1,17 2,62 1.4

524 —28,1 —33,9 —13,8 1,16 2,55 2,2

Graphical display ¢,,, €., and ¢, on Fig. 4.11.

Table A4.7.
M’Lb
beam ultimate bending moment type of failure
1.1 56,9 kINm rupture compression zone
1.2 46,4 kNm yielding of reinforcement
2.1 54,4 kKNm yielding of reinforcement
2.2 39,8 kNm rupture of normal reinforcement
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