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Preface

In many cases building structures are subjected to rapidly varying loads. Examples

are impact loads, vibrations caused by machinery or traffic and wind loads. In tall

or slender structures the importance of the dynamic phenomena caused by these

actions is relatively great. This has been the reason why in the Netherlands several

aspects of dynamic problems have been studied by the Institute TNO for Building

Materials and Building Structures with the financial support of the Netherlands

Committee for Concrete Research (CUR). Several reports have been published pre-

viously, viz.

CUR report no. 17 “Vibration problems in prestressed concrete” (in English)

CUR report no. 35 “Constructieve aspecten van tafelfundamenten voor roterende
machines (in Dutch)*

CUR report no. 57 “Dynamische problemen in de bouw” (in Dutch) **

CUR report no. 61 “Richtlijnen voor ontwerp en berekening machinefundamenten”
(in Dutch) ***

Summaries of these reports have been attached as an appendix to this report.

In assessing the importance of a vibration phenomenon, the stresses caused by it
and the amplitude of the movements are important parameters. Especially in the case
of resonance these may increase appreciably. The magnitude in that case is deter-
mined mainly by the damping. Thus far, sufficient data on damping were lacking.
A committee was set up to study this problem. Modern developments in measuring
technique made a new approach possible. The Committee was constituted as follows:

B. W. van der Vlugt, Chairman
W. Nijenhuis, Secretary

N. J. Cuperus

J. G. Hageman

H. van Koten

The research on damping was carried out by IBBC under the responsibility of
H. van Koten. The result is thought to be of wider than national interest. This is the
reason why an English translation is published in HERON.

Thanks are due to the Netherlands Committee for Concrete Research for financing
the work.

This article is based on CUR Report 75 ‘“Demping van bouwconstructies’ (in
Dutch).

* The structural consequences of dynamic influences upon table foundations of rotating machines.
** Dynamic problems associated with civil engineering structures.
*** Recommandations for the design and analysis of machine rotations.



STRUCTURAL DAMPING

Summary

The damping of building structures is determined by the dissipation of energy in the
material, by absorbtion of energy at the supports and to the free air or liquid.

The various causes of damping are treated in the respective sections of this report.

Several combinations of dampers are examined, so that the damping can be calcul-
ated for various kinds of structure. Some examples are included.

The increase in structural damping due to artificial dampers is discussed. Some
types of these dampers are described and examples given.

The influence of non-linear material properties is investigated theoretically.
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LIST OF SYMBOLS

amplitude

velocity

energy

coefficient

width

coefficient

damping constant
critical damping constant
drag coefficient
damping/diameter
factor for oil damping
modulus of elasticity
frequency

resonance frequency
surface

earth acceleration
height

length

Hertz

moment of inertia
spring constant

length

beam length

mass

= (h/5)-(e1/e)

force

magnification

radius of circle
damping constant to the frequency
time

volume

velocity

motion amplitude
distance

distance

exponent

exponent

= (/)5
exponent/log decrement
viscosity

Ns/m
Ns/m
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phase angle

density

stress

circular frequency

circular frequency at resonance

kg/m?3

N/m?
rad/s
rad/s



Structural damping

1 Introduction

Just as the vibrations of a string of a musical instrument die out after being struck,
the vibrations of a structure die out after it has been subjected to a sudden impulse.
This dying-out of vibrations, i.e., decreasing motion, results from the dissipation of
the energy that had been introduced into the structure by the impact.The sooner this
dying-out of the vibration ends, the more strongly the structure is damped.

This damping limits the motion of a structure when it is loaded periodically at its
natural frequency. This limitation of the motion, or dying-out of the vibration, has
a favourable effect on the stresses in many dynamically loaded structures. It is there-
fore important to know the value of the damping and, if possible, to increase this
value.

In this report the effect of damping will be described with the aid of simple dynamic
models. The damping behavious of several materials and structures will be discussed.
In some cases damping can be increased quite simply. Examples are presented in the
last chapter.

2 Damping of the single-degree-of-freedom system

Some simple experiments

As an illustration of vibration, some cantilevers were loaded by a pulse. The motions
resulting from the pulse were measured. The experimental rig is shown in Fig. 1.
The recordings are given in Fig. 2. The vibration is a measure for the damping; it can
be expressed as the ratio between two successive peak values of the amplitude
a,/a, = e~ * or by the envelope of the peak values. This envelope has approximately
the fofm of an exponential function (e™®). This and other methods demonstrating
damping are also mentioned in CUR report no. 57 “Dynamic problems in building”
page 45, lit. [1] (see also Fig. 9). From experiments on cantilevers made of wood,
concrete and steel a mean value was found of respectively:

Table 1. Values for the damping of the beams of Fig. 2.

damping symbol wood concrete steel
ratio a,/a; 0.79 0.81 0.97
exponent 0 92 33 13

log. decrement A 0.23 0.20 0.03

These values show how large the damping was in these simple examples.

For calculating these values we proceeded from a mathematical model from which
the behaviour of the structure can be derived approximately.

Schematically this model consists of a single-degree-of-freedom system with damp-
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Fig. 1. The experimental rig.

ing. The mathematical description enables us to determine some characteristic and
extreme values which may be instructive.

In order to clarity this repoit with simple formulas, a few calculations of the single-
degree-of-freedom system will now be presented.

The single-degree-of-freedom system

Mass will be devoted by m, the spring used by k and the damper by ¢ (see Fig. 3).
If a mass moves down through a distance x, the spring produces an upward force
k-x. The inertia force (Newton’s Law) also gives an upward force m(d®x/dr?).
The damping force acts in the opposite direction to the motion. This force may be



a. Beech wood
dimensions
0.72 % 0.05 x0.05 m3
Natural frequency
following the test
400 Hz (calculation
390 Hz).

b. Microconcrete
dimensions
0.72%0.03 X 0.05 m3.
Natural frequency
following the test
160 Hz (calculation
160 Hz).

c. Steel dimensions
0.72x0.02 X 0.04 m3.
Natural frequency
following the test
220 Hz (calculation
215 Hz).
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Fig. 2. The dying-out of vibration of a cantilever after a pulse.



constant, as for example a frictional force, but it may also be proportional to the
velocity c(dx/dz), or proportional to the square of the velocity c(dx/df)?, or to the
product of velocity and displacement c-x(dx/dz), etc.

A useful damper for building structures is the second one: ¢(dx/df). A damper is
characterized in that a force is necessary to achieve a displacement K = ¢(dx/d¢). This
displacement, however, is not restored without an external force. The energy needed
to produce the displacement is dissipated. The energy introduced into a spring will

be recovered.
force P

motion x
mass m

) 3
spring k p: damper ¢
p:

7777

Fig. 3. The single-degree-of-freedom system.

For equilibrium of the forces acting on the mass the equation is:

2
El—+cd~+kx— (6]
de? dt

if there is moreover an external force acting on the mass, then:

dx dx
~+cd~+ kx = )

The solution of (1) is:

X =a,e" +a,e
with
oy =—2%1~<—c+\/c2—4 km)
]. \/ 2
U =5 —c—Ve —4 km

If the damper ¢ has no significant influence, the expression under the root sign is
negative. The solution of (1) can be wiitten as:

—s—t -t

2m 2m
xX=xe sin wyt +Xe CoSs Wyt 3)

a)0=\/——— \/ (4)
m  4m?

(fo = wo/2m is the natural frequency of the system).

with

10



If mass m is slightly displaced from its equilibrium position, then at ¢ =0,

and

=0; so x;,=0

The equation of motion will then be:

c

-5t

2m
X =X,€ Cos wyt

This expression satisfactorily describes the free vibration as determined from the
experiments (Fig. 2a).

The peak values are found to occur for cos wyt ~ 1; hence ¢ = n2n/w,. The propor-
tion between two successive maxima is, since 7, 1 —t, = 21/w,:

2nc

A, +1 " 2m o

Ml )

c a
= =]|n—L
mamg An+1
mw a (6)
c= 9ln—"
an+ 1

A = the logarithmic decrement

The value ¢ = 2\/k_m was found to be a limit value in deriving equation (3).

When c¢ exceeds 2\/5, the motion of the mass is damped so heavily that the mass
slowly returns to the position of rest after undergoing a deflection. (See Fig. 4).

¢ =23/km is called the critical damping:
Cor = 2\//%
The ratio D = c¢/c,, is the damping rate. o
For slender structures, often D <1 (so ¢ <<2\/km).

The energy in the damper will be dissipated during the process of free vibration.

11
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Fig. 4. Non-periodic dying-out of vibration.

This is the potential energy of the mass in the extreme position. The energy required
to give mass m a displacement x, is:

Ide=£kxdx=%kx§
(0]

This energy has been lost (dissipated) when the mass is at rest again after the motion.
The energy dissipated (i.e., the work done) by the damper is:

X0 dx 0 dx 2
= —_ 1 — 1 2
A _([cdtdx jc(dt) dt = 1kx?

0

If a force P is acting on the mass, a motion due to that force must be added to the
above-mentioned motion. If the force acts continuously, e.g., an alternating force

P = P,sin wt ®)

then, after some time, the influence of the free vibrating mass will have disappeared
because of the damping. Then only the motion due to the alternating force is
perceptible:

This motion is expressed in a formula according to (2):

X = X; sinwt—Xx, coswt C)]
where :
k—mw?
=P (k—mw?)?*+c*w? (10a)
and

x, =P co (10b)
? 1(k—mcoz)2+c2w2

(If ¢ =0, then x, =0)
The time can be eliminated from expressions (8) and (9); a relation between P and x
is then found.

This, however, is not necessary because (8) and (9) are together the parameter

12



function of an ellipse. This ellipse is shown in Fig. 5. Motion x reaches its maxima or
0-value a little later than the force does.

There is a phase angle between force and displacement. This angle is @ = bg tg (x,/x,).

The phase angle is 90°, if k =mw?* or w = \/k/m. For small values of c/c.,, this
frequency corresponds to the natural frequency of the system. The ellipse in that case
has a vertical principal axis (x; = 0).

Motions x; and x, together represent the response of the single-degree-of-freedom
system to the alternating force. It is useful to consider these two motion components
in order to account for some of the phenomena occurring in the experiments.

Q
@
o
o
o
-
T ) 1

Q
slope k
t=0

— motion x

X2

the area of the ellipse is Axm Py x,

Fig. 5. The area of the ellipse is A ~ 7 P, x, the relation x, P.

The maximum amplitudes

The largest displacement of the mass is
x =/x?+x2
This is according to formulas (10a) and (10b).

Py

X =
V(k—mw?)? + 2w’

or in dimensionless form:

xk  Xq 1 < \/?)
—_— = — = Wy = -
Py Py » 4ctw? m

SRUEEE

This expression gives the well-known response diagram (Fig. 6). The influence of the
damping on the amplitude is clearly apparent at the resonant frequency.

13
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Fig. 6. Maximum displacement amplitude as a function of the frequency.

The maximum value is xk/P = Q = c,,/2¢ (magnification).
The width of the peak also gives information about the ratio c/c,,. xk/P = 0/2is
the value with the frequency

| _<£_>2 _pxoe
@ Cer Mo

The difference between the two positive roots of the quadratic equation in w/w, is
2¢/c,,. At the height xk/P = Q/\/2 (Fig. 6) 2¢/c,, is equal to w,; — w,/w,. This expression
has been used to determine the damping in some cases.

The in-phase part x,

Dimensionless:

-(2)

XX Do
X Po {1 ( w )2}2 4c*w?
'R —\ 53
k (O C5Wo

This function has been plotted in Fig. 7. x, increases when the frequency approaches
the resonance frequency and suddenly reverses at this frequency. The peak value is

situated at
2
<_“’_> =1+ 2¢ —=1+2D

cr
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The out-of-phase part x,

Dimensionless:
2cw

Xy Xy Cxr@Wo

k o ccz;a)(z)

Fig. 8 presents this function. The maximum value is

The work done per period by force P is:

2n/o dx 2n/o
A= | Pa dt = [ wPyx,sinwtcoswtdt+
0 0
2n/o

. . 2n
+ [ wPyx,sinowtsinwtdl = 0+30Pox, — = PoX,
0

In the case of resonance,

2
nP

A=—2=rncwyx3
cwy
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Only that part of the motion with a phase displacement of 90° with respect to the
force does work. This work is equal to the area of the ellipse in Fig. 5.
The energy dissipated through the damper is:

2n/o dx 2 2n/o
A= 6[ c<c§> dt = EE cw’(x, cos ot +x, sin wt)? dt =

2n
= lcw? P (xi+xH) = nea(x? +x2)
This energy is equal to the work done by the force; therefore
nPyx, = mea(x} + x3)

To summarize, the following relations between the dynamic motions of a single-
degree-of-freedom system and the damping are presented:

1. The dying-out after a pulse:

ma a
c= 0 n or

An+1 ¢ 2 a4

cr

In

2. The energy on dying-out:
© dx 2 . 2
= — = —k
A _([ Cc (dt) dt X0

16



3. The shape of the ellipse of motion for periodic loading:
2_ @ .
;:—-k_qnwz aﬁg.ﬁ

4. The phase angle between force and motion for periodic loading:

X2
¢ = arctan— or ¢ = arctan
Xy k—mw

2
m%+c% + kx = = damping factor

amplitude

1
L
[

ofx Q =magnification

— displacement

0

—= frequency

amplitude

— displacement
|
/
-1
/
/
I "
ay ®
|
)
’ 2]
I
>’ :
| 3]
|
I

little damping A =log.decrement

= €
@ -
EQ Eg
L] 33
o+ ok
8= 8=
%4 aa
we c=\Vkm 1"5‘5
T o

— time

half critical damping critical damping

0 7
Cer  2Vkm ping

Fig. 9. Different definitions of the damping.




5. The energy input for periodic loading:

nPicw
A =nPyx, = 0 = mea(x? +x2)
O (k=—mo?d)? + Ca? (xi+x2
Ifo= \/k/—m, then:
A= P}y or & _ @ _ 113%_ _ mPox,
o cee 2k 2kA T 24

6. The shape of the response diagram for periodic loading:

The various damping constants are reviewed in Fig. 9.

3 Material damping

A material loaded by a compressive or a tensile force will deform like the spring of a
single-degree-of-freedom system, but it will also behave more or less like a damper.
This appears from the deformation due to an alternating load.

If the force is harmonic

P = P sinwt

the deformation due to this force has a small phase angle

X = X, sin wt— x, cos wt

or
X = X, sin (wt— @)

The ellipse is once more found as a relation between deformation and force. The
steel cantilever in Fig. 2c was excited by an excitator to show this relation (Fig. 1).
The force-deformation diagrams have been measured for a number of frequencies
(Fig. 10).

The elliptical shape can be distinctly seen, specially at frequencies in the neigh-
bourhood of the resonant frequency. The ellipse is somewhat disturbed at 100 Hz.
This was caused by a beam in the mounting structure of the excitator; the beam
joined in the vibration. .

The diagrams show much resemblance with the single-degree-of-freedom system.
x, increases when the frequency approaches the resonant frequency and then suddenly
reverses; x, has a maximum for w = w,.

18



100 Hz 150 Hz 200 Hz

240 Hz 250 Hz 300 Hz 350 Hz

Fig. 10. Force-deformation diagrams for harmonic loading of steel cantilever shown in Fig. 2c.

The dynamic behaviour of the cantilever is satisfactorily described by the single-
degree-of-freedom system.

A problem is still whether the expression ¢/c,, can in fact be used to demonstrate
the damping of the material, since c,, varies with the mass or the spring constant
(stiffness):

Cer =2\/En—1 =ﬁ=2wmO
Wo

To obtain information on this point, a steel strip was rigidly clamped at one end and
attached to a mass m at the other end.

The damping of this structure is only the damping of the steel strip. With chang
mass m, c., changes without changing the damping. The arrangement is shown in
Fig. 11.

The dying-out of the vibration of the strip with a mass of 1 kg, and a mass of 4 kg,
is shown in Fig. 12. In both cases ¢/c,, = 0.00061.

19



Fig. 11. Steel strip with mass for the investigation of material damping.

The value of ¢, in the second case, however, is half that in the first test. The value
of ¢ has been halved, and so has the frequency w. The value ¢/mw, has remained
constant. The damping can be expressed in ¢/mw, or in ¢/c,,. This was found to be
an acceptable assumption also for concrete, see CUR-report no. 17, lit. [2].

If the damping of an elementary part ¢, of a structure is assumed to be proportional
to ¢./wy, = R, the total damping is

¢c=0oVc, =aVRw,

V is the total volume of the structure and « is a factor determined by the amplitude
ratio of the mass. Schematising to a single-degree-of-freedom system, the vibrating
mass is

m =0,
The damping at resonance is

20
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b. m=4kg fo=6613Hz -5 =0,00061
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Fig. 12. Dying-out of vibration of experimental rig shown in Fig. 11 with m =1 kg and m =4 kg.

c c aVRw, R

Cer = 2mamg - 200V, 204

D=

In this expression, the dimensions of the structure are no longer present. For the same
value of R, the damping of a material increases if the density decreases. From the
test, and the expression c/c., = R/2¢,, it emerges that the damping of a rigid block
mounted on an elastic and damping material will be determined by the damping
c/c., of this supporting material, irrespective of the mass of the block.

The damping of a structure of any particular material, as well as that of a rigid
structure which rests on that material, are found to be equal to ¢/c.,. To determine the
damping of structures, or parts of structures, we compiled a list of values for c/c,,.

These values were partly determined from ‘“dying-out” tests and partly from
response ellipses.

21



material c/Cer remarks

steel 0.004

reinforced concrete 0.009 before and after cracking
prestressed concerte 0.009

pine wood 0.021

beech wood 0.025

natural rubber 0.03 for frequencies above 10 Hz
natural rubber with canvas 0.08 for frequencies above 1 Hz
aluminium 0.018

glass 0.06

masonry 0.04

The influence of strain

For increasing stresses, a more than proportional increase in deformation occurs in
many materials. The stress in steel at which this happens is called the limit of pro-
portionality. For many other materials, e.g., wood and concrete, no such a limit be
indicated because even at low stresses this limit of proportionality hardly exists.

These deviations from proportionality between stresses and strains can cause extra
damping. Due to these more than proportional increases in strain, the area of the
hysterisis loop (ellipse) increases. This increase in damping, or the increase in the area
of the force-deformation diagram, is distinctly manifest for steel at loads aboven the
yield stress. The results of the investigation of damping at increasing stress for some
metals are given in Fig. 13.

Alternating loading up to strains above the proportionality limit seldom occurs,
because it rapidly causes fatigue. Structures may be loaded dynamically with a rel-
atively small force, however, in such a way that alternation of the force in the natural
frequency causes magnification,so that the stressgis can increase up to the yield stress.
Because of yielding, the dampihg will be greater for this frequency than for other
frequencies. The increase in damping at strains in excess of the yielding strain is so
great that the amplitude hardly becomes greater that at which yielding occurs (see
Fig. 14).

-
o
<

-
£
l_\
g £ 108
5 i
55 108 ‘ v 0000
5: // y ﬁ‘-‘::"m load changes
22 ot ) 20
Eg 0 > ) 595
(=9 c ~\\ /
E o -9 /‘
W
8% 103 ?q“eé‘“ '(0(\/ e
/ 9 u® 1
\\)
T 102 o e xes o
10
4 6 8 10 2 4 6 8 102 2 A 6 8 103

——— stress (N/mm?2)

Fig. 13. Damping-energy measured for various metals as a function of stress.
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The magnification is in this case

The damping can then be expressed as:

c_ 1 _ 9
cc,_2Q—26V

This result has been obtained from calculations with a bilinear stress-strain diagram
(see Fig. 14).

If the initial strain is large, motions can occur which are considerably larger than
those at which yielding starts.

Fig. 15 shows the peak values of the response curves as functions of the loading for
different values of stiffness after yielding (k,, Fig. 15). The damping for the frequencies
at which this maximum occurs can be represented as
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Fig. 15. The maximum magnification of a mass on a bilinear spring.

4 Geometric damping

The energy of motion or stress in a structure can decrease not only by conversion of
the energy into heat, but also by its removal via the supports. This removal has the
same effect as material damping and is called geometric damping.

As an example for this damping, an alternating force P = P, sin wt is applied to
one end of a very long beam. The displacement x of the loaded end is found by
integration of the strains:

ZP M
x =-‘._osmwt
o EF

dz

z is the distance which the stress wave has travelled from the start of loading. If the
initial velocity of the stress is a m/s, then z=a-¢. The displacement thus becomes:

R .
P, sin wt
x=[-°

—adt = Poa
o EF

(1—coswt)

24



The displacement consists of a constant part Poa/EFw and a variable part Poa/EFw
which has been shifted 90° in phase with the force. This part does work and also acts
as a damper. The energy is removed. There is no motion in phase with the force.

In comparison with the single-degree-of-freedom, this is the situation in which the
damping force is in equilibrium with the load:

dx
Ca—t=P or cwxy =P,

In this case, x, = Pya/EFw, so that

This is the damping constant of a very long beam which is loaded at one end. The
beam is assumed to be considerably longer than the distance covered in one period
of the stress wave

2na
I>z=—
w

This length is of no practical significance, except at very high frequencies, and this
damping is of no importance for beams, but it does have significance for small struc-
tures connected to a large one, like a window to a building or a building to the earth.

Vibrations of a structure on a half-space

The damping of a structure on a half-space is mainly caused by dissipation of energy.
The dynamic behaviour of such a structure has been described in the literature (see
lit. [3], [4]). The results of the theoretical calculations show the damping of the
structure to be similar to that mentioned above for the long beam.

The spring force and damping force of the half-space depend on the shape of the
contact area and on the method of loading.

A description and derivation of the several formulas for spring constant and
damper are given in lit. [3]. The formulas used are given in the following table.

k ¢l
BF

— a F* |o

m zE\/F ~ —— =\

7";57/, Wkm 2 Nm

o

—— el ~ 9 b ~ O it B=6(1“4")I
2(1-v) (1+B)B ob*l
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vibrating load P

{volume 2 mass m

mass with {density p, . EF

contact surface F spring k=11EVF— ——damper ¢ = 55— = F VEp
7

with ¢ poissons ratio v

“~— elastic halfspace {modulus of elasticity £
density p

Fig. 16. Schematization of a mass on a halfspace.
In these formulas:

m = the mass on the half-space

F = the contact area

I = the rotational inertia of the mass

b = the width of the contact area

| = the length of the contact area

E = the modulus of elasticity of the half-space

G = E/2(1 +v) = the shear modulus of the half-space
v = Poissons ratio of the half-space

¢ = the density of the half-space

The damping is very large for small structures, as appears from the following
calculation:

EF
a
Wkm

c
cCl’
Where

a=+/ % (half-space with specific density o)
k~ EVF
m=g,Fh=9,V  (mass with density ¢, and volume V)

EFvg

o WNESEm 2 Vm 20Ny,

For a cube with edge length b:

F =b?
V==0b
c 1 /2
ccr * Q1

The damping for ¢ = g, is half the critical damping.
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For an average house, the following approximations are valid:

F =p?

V=050

o = 1800 kg/m?
0= 300 kg/m>
cc = %\/52 1,2

This damping is even greater than the critical damping. Small buildings will show no
magnification in the vertical direction.
This damping decreases if the building is higher. For height 4 and bases b x [, for

example,
ey [e®n_, /1 1\
cee Ny hbl ~ >N p\b
where
_ h o,
P—Bz
(see Fig. 17)

From these calculations it emerges that buildings and machine foundations are
considerably damped in the vertical direction.

1,5 \\
- 1,0 Vs
uluu \ P 4 S7e
/é B} ‘ \
T //5 ) \
0,5
[
— R
0 ] i
3 [ S 6 7 8 74
P

4]

_h P
Ry N

Fig. 17. The damping of a building in the vertical direction.

Rotational vibrations of a structure in a half-space

Approximate spring and damping constants for the “rocking” of a foundation, i.e.,
its rotation about a horizontal axis, can be indicated, as can also be indicated for its
vertical motion, lit. [3].

The spring constant is dependent of the length-width ratio /:5 of the rigid founda-
tion slab.

An approximation of this constant is:
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k=3 b

T 2(1—v)

The rotation takes place about an axis parallel to the side /. G is the modulus of shear
of the soil. k, has the dimension Nm, which is the moment needed for rotation
through one radian.

The critical damping is now:

oo = 2Tk,
where:
I = the rotational moment of inertia of the mass m

h* b2
I= "’(?Hﬁ)
m = g,blh

The damping constant is dependent on the ratio of the rotational moment of inertia
of the mass and the part of the half-space under the mass:

B 6(1—v)I
ob*l

¢ _ 0I5

¢ (1+BWB

The expression was found by adjustment of the motions of a single-degree-of-freedom
system to the accurately calculated motions of a mass on a half-space, lit. .3;.

0.20

0.15
b
0.10 »,~—4—rotation
T \ ’
£1 1.0\ 0.\02\ 01

NS

0 1 2 4 S

—_— -g_
Fig. 18. The damping of a building in the horizontal direction (rocking).
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The damping c/c., can be calculated as a function of the ratio ¢/¢ and h/b=p.

B b2
6(1—v) lehl(?J“Ti

B= > =035%p@p?+1)  (v=03)
0 b*l 0

With this expression, c/c., can be calculated. Fig. 18 shows the value c/c., for
0:/0=0.1;0.2; 0.4 and 1.0.

5 Aerodynamic damping

Energy can be dissipated through the air in which an object vibrates. This is important
for objects with low density and large motions. Damping through air is called aero-
dynamic damping; it is proportional the velocity of the structure relative the velocity
of the air stream V, the density of air g, the area F and the drag coefficient Cp:

¢ =VFCp

For a high-voltage cable (with diameter D) in a strong wind (for example, V =30 m/
sec) this damping is important. Then:

¢ _oVDCy _ oVDCp
c  2wom nD?
0 2000, 4

for example, with:

o = 1.25kg/m? (air)
0, = 2500 kg/m? (steel +aluminium)

wo=1s"1

D =0.03m

Cp=1

ci: 1.25-30003 030
e 2.1-2500-2 F

Cables with a low natural frequency are damped considerably at high wind velocities.
This damping is appreciably less for buildings.
For example, for a square tall building:

o =125kg/m?
0; =200 kg/m?
wo=1s""

D =15m

V =20 m/s
Cp=1
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o _ 12520115 _ oo
Cor  2°1-200-152

This value is small, but it is of the same order of magnitude as the internal damping.

For aerodynamic as well as for hydrodynamic damping it should be noted that the
values given, which are partly derived from theoretical considerations, see lit. [5],
[6], [7] and [8], are only valid for laminar flow. In turbulent gas or liquid streams,
damping may deviate considerably from the given value. For example, in the case of
shedding of vortices along cylinders at high Reynolds-numbers the damping is negative
(instability) if the frequency approaches the Strouhal-frequency, lit. [9]. Calculation
of the response of such cylinders is complicated.

6 Hydrodynamic damping

The damping of a structure in a non-flowing fluid is dependent on the viscosity of
the fluid, the shape of the structure and the depth to which the structure is immersed
in the fluid. For structures of simple shape (cylinder and globe) there is a theory for

[ | '}

mass m per m —f—

=1

water mass mq that ——
participates in the
vibration, per m

Fig. 19.

calculating the damping, see lit. [5] and [6]. If follows from this theory that for a
vertical cylinder completely immersed in water the following approximation holds:

3 ho.10-%
c _ m, <fl_> \/2.2 210 4% (11)
Cer m+ma H rfO Cer

Where (see also Fig. 19):

m, = the vibrating water mass (m, ~ nr*-1000 kg/m’)
m = the mass of the cylinder
r = the radius of the cylinder
fo = the lowest natural frequency of the cylinder in water (in Hz)
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2.2 x 10~ % = a constant with dimension m?/s, and
¢, = the damping without water
h = the water depth
H = the length of the cylinder
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008 E[ i[ empty/
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0.0
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0.03 //

0 0.2 0.4 0.6 0.8 1.0

h
H

Fig. 20. The hydrodynamic damping of a tube.
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Fig. 21. The hydrodynamic damping of a wall.
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If the cylinder is not completely immersed, the damping will be less.
The results for such a cylinder are given in Fig. 20. A wall in water has similar
damping. Test results are given in Fig. 21. This damping can be approximated by the

formula:
c _ m, h 3\/—2_
cee m+m,\H fo

m, ~ 0.5h x 1000 kg/m?

Where

For damping in a flowing fluid should be added damping ¢ = @VFCp. This damping
is especially important in fluids. If a structure is partly immersed in a fluid, the damping

is reduced.
As an approximation the factor (h/H)* can be used, so

© oVFGy (hY
¢ 20,Vwo \H

cr

7 Combination of two different dampers

Many structures are damped by a combination of dampers, such as material-damping
in the structure itself, system-damping at the supports and aerodynamic damping by
wind.

It is often useful to schematise the structure as a system with two degrees of freedom.
Then the dampers can be introduced separately and the damping of the main part of
the structure can be calculated. To illustrate this, some structures will be schematised
as a two-degrees-of-freedom system.

P

!

x
.
|

X2
ko J. C2

Fig. 22. The two degrees of freedom system.
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1. A beam supported on spring:

[ ]

Em B

Fig. 23.

The beam supported on fixed hinges has as its lowest resonance frequency:

n [EI
fl——gl; P

This beam can be regarded as a one-degree-of-freedom system by concentrating a
mass in the middle and determining the spring constant from the deflection. Hence

this constant is

_48EI

k, 5

The mass can be found by making the resonance frequency of the system

1 [k
2\ my
equal to
T El
h 22N
Thus

1 48EI _n* EI

@Elsml_le u

or
48
my = — pul ~0.5ul
Y
M
Pcoswt
T 'y
S INAE] Mk
wy, wy
—w ky,cyq
m
: 2
>
T ky.co
o
Q x
Py
sT |
wp wh
— )

Fig. 24. Amplitudes for a two-degrees-of-freedom system with little damping.
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The mass m, is approximately half the mass of the beam. The middle of the beam
has the same dynamic response as the mass m; of the system.
For the beam on springs the two-degrees-of-freedom system is chosen with &, as
the spring constant of the supports. The mass #, has been found from m; +m, = ul.
Therefore

m, = ul — -i—gul ~0.5ul

The movements of the mass m, and m, under harmonic loading of the system are
given in Fig. 24. The resonance frequencies of this system can be calculated from the
equilibrium equations.

2. An example of a rectangular building founded on sand:
The lowest resonance frequency is associated with a mode of oscillation where, the
top of the building undergoes maximum displacement by bending of the building
and rotation of the foundation (see Fig. 25).

The damping of this structure is the material damping of the building together with
the aerodynamic damping and the system damping of the subsoil by rotation.

The-two-degrees-of-freedom system for this building is determined by the bending
of the building (as a spring) together with the corresponding mass and the rotational
stiffness of the foundation on sand as the second spring with the rotational inertia
as the mass.

The mass m, has been determined in the same way as in the first example.

The resonance frequency of the cantilever with length 4 is:

352 B 1 [k,

f = —_— = —
' onk? u o 2n N my
rotation bending
————>fe———»]
L 7 7 ™
3 [

ma
kg

Fig. 25. Schematization of a tall building as a two-degrees-of-freedom system.
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From the deflection of the top it follows that:

3EI
kl = 7[3‘“
Hence:
k, 3.52%EI
my Wt u
and
3EI
73
m, = ——— = 0.24uh ~ Luh
' 35021 HEL sl
h*u

The rotational spring has the stiffness:

_ G .,
ko, = Xl_—j)b I (see page 28)

Where:
G is the shear modulus of the subsoil
b and [ are the dimensions of the contact area of the foundation

The rotational inertia is:

Wb\

The spring constant k, and the mass m, of the two-degrees-of-freedom system, as
shown in Fig. 22, can be found from the equilibrium equations. For the mass at the
top of the building in the horizontal direction follows:

d’*w,

m, e + ky(w,—h) =0

For the rotation of the foundation:
d*e (w )
I— +kp—k (—L—9)=0
P U

These equations are transformed into those of the two-degrees-of-freedom system
if (Fig. 22):
I k

(ph=W2 m2=P k2=h—(;
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Summarizing:

3EI

my & juh kl:F
G bl
m, = tuh ky=—+—
2 T3l 2 2Al—v) 12

3. A comparable example is a vertical cylinder embedded in the soil.
In this case is again:

my ~ zuh ky =— my X 3uh

Now the spring constant of the part of the cylinder fixed in the soil is determined by
the stiffness of the cylinder and the modulus of elasticity of the soil:

ky ~ 1.5%@5)4
d \E

P
E, of the cylinder
E, of the soil

The spring constant k, in the system is:

ky = ﬂ ~ 1.5—EPIp (£g>%
h? dh* \E,

The damping of the system m,, k, is approximately:

4 2
2 ~02 V_E_&%s
Caer Ep Qp

The damped two-degrees-of-freedom system

To determine the damping the displacements are expressed in the spring and damping
constants.
The equations of motion are (see Fig. 22):

my

d*x, dx, dx2>
e [ -2 )+ ky(x,—x,) =P
ar 1<dt dr 1(x1—x5) 1

and

m
2 dt  dt

d*x dx dx dx
Et—zz_cl( ! 2>+Cz—d‘f— 11 =x)+kyx, =P,
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x; and x, can be calculated by substitution:

xl = )?le.

Xy, = fzeim
P, =P
})2 — pzeimt

The solution of the equations is obtained after some rearrangement:

{Pl(—mza)2+k1+k2)+P2k2}2+{P1(c,+c2)(o+chlw}2
{(_m1w2+k1)(—mzwz+k1+kz)_kf“0102w2}2+{c1w(_m2w2—k1+kz)+(c1+Cz)w(—m1w2+k1)}2

2
[x]° =

{Pik, +P2(—m1w2+k,)}2+{Plclw+chlw}2 ‘
{(—mla)Z+kl)(—-mzwz+k1+k2)—kf—c1c2w2}2+{c1a)(—m2w2—k,+k2)+(c1+cz)w(—m1w2+k1)}2

IX2|2 =

This response is illustrated schematically in Fig. 24.

m
‘X1

k1
L

If the damping is small, the maximum amplitude is found at the resonance frequen-
cies of the undamped system. These follow from the zero values of the denominator
asc; =c, =0.
Hence:
(—my0®+k) (=m0’ +k,+ky)—k3=0

The values of w as functions of m,/m, and k,/k, can be read from Fig. 26.
If the damping is small, the amplitudes x, and x, for the resonance frequencies

w,) are:
(@, Po(=mawd 4+ ky +ky) 4 Pok,

¢ 0y(—mywg —ky+ky)+(cy +¢,)o,(—myop +ky)
2
P1+P2 (1 _ m]éwb>
1

2\2 2\ 2
m mw
1 1

1x4l,.,
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and
Pk, +P2(—m1a)§+k1)
¢ oy(—mymp —k; + k2)+(ci 4 c)wy(—mywp + k)

mw2> myw?\?
Pol1——22) 4 p (1 - 2%
2\ 2 2\ 2

m,wy m;wy

cLw +cmp( 1 ——=
1b< k1> 2b< k1>

Using these approximate formulas, the maximum amplitudes can be calculated.
The damping can be written as:

[%2],., ~

c I xy .
_c: =30 " ax,. (see Fig. 9)
For x, with P, =0:
1 1
xst Pl <k—1 + k2>
1 1
Pili—++— 2\ 2 2\ 2
o \k Tk =%<i N i) {clwb<m1wb> +c2wb<1 _ M) }
Cor 2x4,., ky k, ky k,
Where:
— 2% Ky
clcr:2\/k1m1 =El 1= F
1 1
and
: 2k Ky
Crer = 2\/kzmz = ?0’22 Wy = m—zz

can be written as:
5 2\ 2
c k ¢, [w ¢, k,w w
_=<1+_1>{~J_<._b> +_2_2_b< ____g)}
Cor ky/ (€1or \Oy Coer k1 0y w7

(4
Cier chr

]

The damping of the system is composed of the sum of the functions of the individual
dampers.

Coefficients 4 and B are given in Fig. 27 as functions of k,/k, and m,/m,. With
the aid of this diagram, the magnification of m, at the lowest natural frequency can
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be easily determined. In this way a possibility has been created to combine two dampers
into one.

For example: the influence of the damping and rotation of a foundation of a build-
ing on the damping of the whole structure can be estimated in this way.

Similarly, for x,, with P; =0:

and

5
c_CG ko) 1 6 @ 4G, p G2
2\ 2
< Cl)b> Cyer 2 Cler Caer

The values for 4’ and B’ are plotted in Fig. 28.

8 Artificial damping of structures

Introduction

In the foregoing, various natural sources of damping of structures have been discussed.
Besides these types of damping that are always present, a structure can also be damped
by arrangements specially introduced for the purpose. This happens by the application
of forces generated by the movement of the structure and directed counter to the
vibration. An example of this is the introduction of suspended chains which oscillate
with the movements of the structure and beat against the structure (see “‘the impact
damper”). Another example which has been very fully treated in the literature is that
of the added mass-spring system. In that case, a second mass on springs is fixed to
the structure that is schematized to a single-degree-of-freedom system.

This second mass is damped through constructed (viscous) dampers. The damping
and the movement of this added mass are used to give the structure itself more
damping. Some of these “artificial”” dampers will be described below.

Specially made viscous dampers, e.g. shock absorbers, are often used for such
artificial damping.

Viscous dampers

A well-known example of these dampers is the car shock absorber. The shock
absorber derives its damping action from its internal construction, where oil is forced
through a narrow opening, taking time to get through it. The shock absorber can be
compressed at a constant speed by an applied force. This force per m/s is the damping
constant ¢ of the damper. A schematic section through such a damper is shown in
Fig. 29. Shock absorbers for cars develop a damping force that is not constant over
the whole stroke of the damper. This force has been plotted in Fig. 30. Usual values
for the damping value ¢ of car shock absorbers are:
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¢ = 1000 Ns/m to ¢ = 3000 Ns/m

Special forms of construction for building structures are possible.

Auxiliary masses

In some cases a structure clearly behaves as a single-degree-of-freedom system, for
instance a chimney, can be extended to a two-degrees-of-freedom system by the addi-
tion of a mass at the top. By providing the second mass with well chosen springs and
dampers, the main structure (chimney) can be strongly damped. For designing an
auxiliary mass-spring system to damp a structure, the formulas for the response of

high-pressure chamber

opening

piston

s low-pressure chamber

Fig. 29. Section through adjustable shock absorber (KONI) for motorcar.
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the two-degrees-of-freedom system must be further analyzed. For this analysis, two
cases are to be distinguished:

1. The system m,—k, is the schematization of the structure (c, = 0) and my—k, is
the auxiliary mass-spring system with the damper c¢,(P, =0). This system
my—ky;—c; should be so designed that the amplitude x, remains as small as
possible.

2. The system m;—k, is the schematization of the structure (suppose ¢, = 0) and
m,—k,—c, is the auxiliary system (P, = 0).

5000 I

T~ adjustment
4000 =
/ _— \ 6 half periods

// \\\/ 4 half periods
3000 2 half periods

// /"\\ )4: non-adjusted
A
/| — \
2000 e e
o 1000 / \
5w
38
—~1 0 -40 -30 -20 -10 0 10 20 30 40|
z l ——= displacement (mm)
x
- I 4._1/
Tw |
58 _
;E 1000

stroke of piston
- : -

Fig. 30. Force-displacement diagram for shock absorber (KONI).

The values of x; and x, can immediately be calculated for these two cases from the
formulas given on page 38. It appears that the formula for the response consists of
the quotient of two expressions with a real (in-phase) part and an imaginary (90°
out-of-phase) part.

. 2
a‘+b
x= 40 pence |x|* = +

c+id +d?

2

(page 38)

If the frequency w is so chosen that a/c = b/d, then x = a/c; it is therefore independent
of the imaginary (damping) part. This proves to be possible for two values of w.
The amplitude x(a/c) cannot become smaller through adaptation of the damping.
The response curve for one of these cases has been given as an illustration in
Fig. 31. The damping can best be so chosen for the smallest amplitude that the
tangent to the response curve is horizontal at the lowest frequency for which x = a/c.
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Fig. 31. Response of a structure with auxiliary mass.

This value of the damper is given for the two cases in Fig. 32 and 33. The magnifica-
tion of the vibration for case 1 is given in Fig. 34. For designing an auxiliary mass the
condition can be stated that the amplitudes at the two frequencies for which x = a/c
are as small as possible. This results in a relationship between m,, k,, m, and k,
namely for the first case:

m,
ky _ m,
ky, m. \2 (see Fig. 32)
(+5)
m,

and for the second case:

my
& . (see Fig. 33)
ky m,
my

If these conditions are satisfied and the damping has been suitably chosen, the ampli-
tude of the main structure will have its maximum magnitude:
First case:

—_

X m
L= \/1+2—2'

X2st my

Second case:

X k, \/ k,
=(14+—) /2(1+=
X1st < k2> < ky
These formulas are given in Figs. 35 and 36.
The design of an auxiliary mass according to the first case, namely by adding a

damped mass-spring system to the structure, has several applications such as oil-
dampers and impact-dampers.
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The oil-damper

A damper that has been applied to some chimneys is the oil-damper. Such a damper
is mounted at the top of a chimney. It consists of a big tank with oil and, in it,
horizontally installed plates. The oil will not or hardly shift upon movement of the
chimney, but the plates will. The frictional forces between the oil and the plates
provide the required damping. This damping is proportional to the viscosity of the
oil, the quantity of oil and plates, and the velocity of the movement.

The energy A dissipated per period is:

A =m,xin%

Where:
m, = the mass of the oil
x, = the amplitude of the movement
w = the circular frequency of the movement
e = a factor dependent on the plate spacing 2y, and viscosity v
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Fig. 37. Oil-damper mounted on smoke stack.

=={1— mass of oil m,

%2)’0

| L Db——mass of chimney m;

Fig. 38. Principle of an oil-damper.
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Fig. 39. Constant e for an oil-damper as
a function of x.

This factor is given in Fig. 39 as a function of

()
v)’o

Where:
y =
¥y, = the spacing of the plates

the viscosity of the oil used, in m?/s

From the value of A we obtain for the damping of a one-mass-spring system with

A = newyx5 (see page 16):

A

mywqe
=t

CcC =
T

With ¢, = 2m,w, we obtain

c _my e
C My 2w

Where:
m, = the mass of the oil

m, = the mass of the system

fo = the natural frequency of the system

e = the factor given in Fig. 39
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An oil-damper can be designed with the aid of this expression and that for the auxiliary
mass-spring-system. The maximum amplitude follows from:

Xmax 1 7_'5 m,
Xt 2 c e my
Cor

This formula is comparable with that for the auxiliary mass. Fig. 37 gives an example
of such a damper.

The impact damper

A damper which is often of simple construction is the “impact damper”. The harmonic
movements of a (light) structure are influenced by the force exerted by a freely suspend-
ed or rolling mass.

f

rtical channels

Fig. 40. Example of a chain-damper.
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This may be a chain or a steel ball in a tank or a simple pendulum. Fig. 40 gives
an example of a such a damper.

The theory for these dampers is rather complicated and approximative. Their
damping action is of course dependent on the relation between the mass m, that is
damped and the mass of the damper m,. Since m,/m, = u, then, with suitably chosen
dimensions of the impact space and the frequencies, ¢/c,, is approximately equal to

"y
m
£ e (see Fig. 35)
Cer my
1+ —
m;

With m, = 0.1m,, ¢/c,, is therefore approximation 0.1/1.1 = 0.09.

Fig. 43 presents the test results of a chain as a damper. The natural frequency of the
damper o, = 1.2\/g/1 must be 3 to 4 times the excitation frequency to achieve good
impact between structure and chain. This determines the length / of the chain.

With the help of Fig. 43, the mass and oscillation space can be established. For an
impact damper comprising a ball in a tank the damping is also approximately:

my

c m,
Cer 1 ml
m,

The free space of the ball must be 20 to 50 times the static amplitude of the mass-
spring system, see lit. [12].

9 Non-viscous damping

In the foregoing chapters we have always based ourselves on a damping force that is
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proportional to the velocity c¢(dx/d¢). This damping corresponds to that of a damper
with a viscous liquid. There are, however, also other damping forces, for example,
the frictional or Coulomb damping.

The damping force is then constant and directed counter to the movement. Also
non-linear forms such as ¢(dx/d7)? and c(dx/d#)x occur.

Fig. 44 gives some damping forces as a function of time. These damping forces will
influence the movements of a vibrating structure, ard they will not be completely

harmonic. In many cases, however, a viscous damper will suffice (see lit. [13], page
362).

10 Examples

Although the damping of a number of simple structures can be defined with the
formulas given, it will be difficult in many cases to indicate the damping without
measurement. Particularly with heavily damped structures, the damping cannot be
well defined without measurement. However, those cases are often less interesting as
regards vibrations.

The cause of damping in slightly damped strucures can mostly be adequately
indicated; it can be calculated with the formulas given. To get an impression of the
accuracy of those calculations, we shall now give a number of examples of calculated
and measured damping.
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Fig. 44. Viscous and other types of damping.

Material damping

The damping which is always present is the material damping. For convenience, the
table given on page 22 is repeated below.

material c/cer remarks

steel 0.004

reinforced concrete 0.009 before and after cracking
prestressed concrete 0.009

pine wood 0.021

beech wood 0.025

natural rubber 0.03 for frequencies above 10 Hz
natural rubber with canvas 0.08 for frequencies above 1 Hz
aluminium 0.018

glass 0.06

masonry 0.04

Geometric damping

Parts of buildings composed of materials as given in the table, will have as much or
more damping than the material alone. At the supports or attachments the energy
can be removed (geometric damping), so that extra damping is available.

The following structural components were tested for damping:
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A window-pane

The response of a pane to an impact load is given in Fig. 45. The damping was found
to be:

[

=0.09

cr'

This value is greater than the material damping; some energy is removed at the sup-
ports. The pane tested was carefully fixed in its frame, so that energy dissipation was
limited, however.

€
@
7, E
3
>
£
o
° o
/ -
location of
recorder /
1.40 ———= time
e

Fig. 45. Window-pane.

A masonry wall

The response to an impact load of a masonry wall, 22 cm thick, plastered and without
cracks is given in Fig. 46. The damping is:

 —0.043

cr

This value is also close to the material damping. The wall was founded on a heavy
concrete slab and connected to an uncracked masonry wall.

wooden floor

6 /

f= / |

location of —_—
recorder \
masonry ~J o
wall
0 masonry — time
wall

Lconcrete floor

movement

Fig. 46. Dying-out of vibration of wall-masonry.
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A concrete floor on cellar walls
The response of a wide concrete slab fixed to cellar walls is given in Fig. 47. The
damping is approx.:

4

= 0,055

cr

location of
recorder

;

0.2

movement

25

/ —— time

Fig. 47. Movements of concrete floor.

This value is considerably higher than the material damping. The energy can be
removed via the materials piled on the floor and through the cellar walls. A rough
estimate of the energy transport to the cellar walls supported by the ground can be
made with a two-mass-spring system. It is, however, by no means, simple to find a
good schematization of this case. One possibility is shown in Fig. 48, where the system
my, ky is the schematization of the built-in (fixed) slab. The two-mass-spring system
my, ki, m, and k, represents the rotatably supported slab. The spring k, and the
damper c; indicate the degree of fixity (restraint). If k%, =0, then the lowest natural
frequency is that of the rotatably supported slab. If k, = oo, then the scheme for the
built-in slab remains.
The ratio of the natural frequency of the rotatably supported slab and the built-in
slab is
w, 9.87

In Fig. 26, therefore, w, = 0.44w,.
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Fig. 48.

Besides (statically)

1. 1_5

ki " ky  k
so that

ko =%k,

From these two values, and Fig. 26, it follows that m/m, =~ 10.
The spring k5 and the damper ¢, must now be estimated. If it is assumed that the
static deflection is half that of the simply supported slab, then:

1 125

—+
ky ky+ky k

therefore:
k,+ k5 =0.67k,
Then (Fig. 26) w,/w, =0.6.
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The damping ¢; of the cellar wall against the ground is taken as ¢/c,, = 0.5. From
Fig. 27 follows:

L4ty

Cer Cier Cacr

= 0.22x0.009+0.15% 0.5 = 0.002+0.075 = 0.077

Ca

The damping of the cellar wall here has a considerable share in the total damping
of the floor.

A timber floor
The response of a timber floor to an impact load is given in Fig. 49. The damping is:

€ =014

CCI‘

This damping will be caused by friction between the various parts of which the floor
consists. The material damping of wood is much smaller.

—— movement

—» time

Fig. 49. Wooden floor.

A high-tension power cable
The accelerations of a cable with a diameter of 32 mm were measured at a wind velocity
of 10 m/s. A part of the recorded movements is shown in Fig. 50. At these
accelerations, many (high) frequencies are found to occur. The damping associated
with the lowest natural frequency of the calbe was determined from the decrease in
autocorrelation.

The damping was approximately:

¢ —005

cr
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10s ’

Fig. 50. Movements of high-voltage cable in wind.

The natural frequency of the cable can be estimated with the formula

62

fo=f

where
L = the distance between the supports

In this case, L equalled 300 m; f, was 0.2 Hz (w, = 1.3 sec™!). According to the for-
mula on page 29, the damping is:

c _ QI’DCID)Z__: 1.25-10:0.032- 1.1 _ o oo,
Cor 20)0@1”7 :z-zn-0.2-2500-%-0.0322

High buildings

Besides the investigations on the structural components mentioned above, a number
of measurements were done on high buildings, masts, etc. Some results are given
below.

The motions in the wind direction of a building with a concrete frame were measured.
The external dimensions of the building are:

width 33 m (see Fig. 51)
length 79 m
height 104 m

The lowest natural frequency was 0.48 Hz. The damping was found to be

€ —0.021

ccr
for motion parallel to the short sides and

¢ —0.036

cr

for motion parallel to the long sides.
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Fig. 51. Building of Erasmus University, medical faculty, Rotterdam.

The mass was u =305 kg/m>. The wind velocity at which the measurements were
made was 18 m/s.
For calculating the damping, three causes of damping are considered:

1. material damping of concrete
2. geometric damping of the foundation
3. aerodynamic damping.
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The material damping is taken as

£ —0.030

cr

in view of the construction using prefabricated elements.
The geometric damping follows from Fig. 18; ¢/c,, = 0.01. The aerodynamic damping
is, according to the equation on page 29:

¢ _ oVDC,  1.25-18:79-12

The material damping and the geometric damping must be combined to a two-mass-
spring system.

The structure above the foundation is schematized as a one-mass-spring system
with a mass m,; = tm and spring constant k, = 3EI/h>.(Calculated from the movement
of the top of the building).

In the schematized system the rotational stiffness of the foundation will be the
second spring and the rotational inertia of the building the second mass. To this
spring and mass corresponds the rotation as a movement. For adjustment of the
horizontal displacement of the top of the building it is necessary to divide by A°:

_ I _ MGk +5b?)

R h? e

m;

k, is determined by the spring stiffness of the pile foundation and was in this case
found to be the cause of a movement at the top that was 25%; of the total movement:

1
my zm

w675
m, Im
k, 025

The damping of m, can be determined from:

A and B follow from Fig. 27:

£ —05x% 0.030+0.25 x0.010 = 0.015+40.0025 = 0.0175

cr

62



Together with the aerodynamic damping,

£ 00177

cr

In the longitudinal direction of the building a damping of 0.036 was measured. In
that direction, the geometric damping follows from Fig. 18, with 4/b = 104/79 = 1.32:

C2

=0.12

Coer

The ratio of the stiffness of the foundation and the structure in the longitudinal
direction was found to be k,/k, =0.15. Then

[4

=0.75x0.03040.08 x0.12 = 0.022+0.010 = 0.032

cr

The damping in the longitudinal directions is increased more particularly by the
geometric damping.

A steel-framed building
Dimensions of the building:

width 50 m (see Fig. 52)
length 80 m
height 330 m

The lowest natural frequency was 0.147 Hz. The mass was 160 kg/m?3. The damping

was determined as

€ —0.0055

cr

for a wind velocity of 18 m/s. In this case:

" _0.75

m;

k,

E =0.10

‘L~ 0.004 (steel)

lcr

2 _0.001 (Fig. 18)
clcr
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From Fig. 27:

A =0.85
B =0.04
c

= 0.85x0.004 +0.04 x 0.001 = 0.0034 +0.00004 = 0.0034

cr

The aerodynamic damping is:

¢ _ eVDCy _  125118:80-12 oo
¢ 20o0,DB_ 2-21-0.147-160-80-50

The calculated total damping is thus 0.0052.

Fig. 52. John Hancock building, Chicago.

A pylon of a high-voltage cable (see Fig. 53)

The damping of a high-voltage pylon was measured as 0.008. Measuring was done at
a wind velocity of 6 m/s. The mass consists of a lattice structure with a total height

of 61 m.

The spring stiffness of the foundation (piles) is so great in comparison with that
of the mass that the geometric damping has no effect on the mass damping. The total
damping is the sum of material and aerodynamic damping. For the material:
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4

= 0.004

cr

The aerodynamic damping per m height of about ten 50 mm x 50 mm x 7 mm rolled
steel angle sections is:

< _ 1.25-6-10-0.05-2 — 0.004
c 2-27-1-7800-10-0.05°

cr

The total damping is therefore:

£ —0.00440.004 = 0.008

CCI'

_

-L\( anomometer
accelerometers L !

.3 34

r

61.35

52

Fig. 53. Pylon for high-voltage cable.
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Hydrodynamic damping

As an example of hydrodynamic damping, the damping is calculated for a steel tube
in water. Measuring was done on an open steel tube with a diameter of 3.60 m and
a wallthickness of 4 cm. The tube had a length of 36 m above the fixed section,
20 m of which was under water. The natural frequency was 0.68 Hz:

m, = n-1.82-1000 = 10200 kg/m’

m =2-1-1.8-0.04-7800+m, (water in the tube) =

3500+ 10200 = 13700 kg/m’

c _ 10200 <20>3 \/ 22:107% ¢
¢, 13700+ 10200 \36 1.8%:0.68 c.,
= 0.00073 +0.004 = 0,0047

¢ —o0014

CCI'

was measured, which is considerably more than the calculated value.
The difference was caused by the damping due to the flow velocity of the water

and the geometric damping. The flow velocity at the time of measurement was 2 m/s.
The damping caused by flow is, with Cp = 0.6:

C
Cer

10200-2-4-0.6 .<20

3
——| —] =0.0064
2137004 -7-4%-27-0.68 36)

P
m .
3.6

|

=7 =

H

w|
™

20

Y
£
I

measured moment-curve

Fig. 54. Steel tube in water.
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S _ 0.004740.0064 = 0.0111

The damping caused by energy transport can be found with the formulas in 7.1,
example 3.
According to those formulas the ratio between the mass m, and m, is:

ky _ h? _2D<£>*_2~3.6<2.1-10“>*_l1
36 \ 2-10° )

The geometric damping according to formula (26) is:

2\ % 4+
2 _oo2 (ﬂ Q_§> ~02 <EE> =0.035
chr E Ql E

According to Fig. 25, 4 =0.15; B=0.60:
ZC— =0.15-0.0111+0.60-0.035 = 0.0017 +0.021 = 0.023

Summary of examples

calculated damping

measured

structure material  geometric aerodynamic total damping
window pane 0.06 0.03 * - 0.09 0.09
concrete floor on cellar walls 0.002 0.075 - 0.077 0.055
concrete floor on cantilevers and columns 0.009 - - 0.009 -
masonry wall 0.04 - - 0.04 0.043
wooden floor 0.021 0.12 * - 0.141 0.14
high-tension cable 0.004 - 0.042 0.046 0.05
building with concrete frame
(H =100 m) short side 0.015 0.0025 0.0004 0.018 0.021

long side 0.022 0.010 0.0004 0.032 0.036
building with steel frame
(H =330) 0.0034 0.00004  0.0018 0.0052  0.0055
mast with high-voltage cable 0.004 - 0.004 0.008 0.008
steel pipe in water (H =40 m) 0.0007 0.021 0.0010 0.023 0.014

* not calculated
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APPENDIX

Summaries

VIBRATION PROBLEMS IN PRESTRESSED CONCRETE
(CUR report no. 17)

Vibration problems are more likely to arise in connection with prestressed concrete
structures than with reinforced concrete structures. The natural frequencies of the
former class of structures, which are often of slender proportions, are relatively low,
and mechanical causes (as, for instance, live loads with frequencies of 1-5 cycles per
second) are liable to set up vibrations corresponding to these frequencies. The prestress
furthermore prevents the formation of cracks in the concrete, so that an oscillatory
motion, once it has started, will not be damped out so rapidly as in the case of re-
inforced concrete.

A comprehensive theory is available for the study of these vibration phenomena.
In the present Report the essentials of this theory are given in a brief survey, which
is intended as an introduction to the relevant literature. This theory can, however,
be applied only if sufficient information is available regarding the material properties
of prestressed concrete. From the existing literature and from some tests carried out
it was inferred that the mass per cm? is 2.55-10 ¢ kg sec?/cm (the kilogramme is the
unit of force) and that the dynamic modulus of elasticity is Eg,, = 370.000 kg/cm?.

It was not possible, however, to obtain an adequate insight into the phenomenon
of damping from information given in the literature nor from a few simple tests.
For this reason an exhaustive investigation into the phenomena associated with
damping was undertaken. In this connection a series of tests was carried out, in which
with the aid of steel columns a small simple prestressed concrete beam was incorpor-
ated into a portal-frame type of structure. By changing the columns it was possible
to obtain several different portals, so that one and the same prestressed concrete beam
could thereby be made to vibrate according to many different frequencies and modes.

From the observed shapes of the deflection curves and from the displacements it
was possible for each case to obtain an equation expressing that the energy added to
the system was distributed over three types of internal damping in the beam and two
types of damping in the support or clamped connections. From a fairly large number
of such equations (viz., 15 and 11 for two different beams respectively) it could be
inferred that the angle of lag between stress and strain in prestressed concrete is
approximately constant (= 0.018 rad) and independent of the frequency. This means
that the resonance factor (if there is only internal damping) is likewise independent
of the frequency and has a value of approximately 55.

Naturally, in many cases the supports etc. will absorb so much energy that deflec-
tions amounting to 55 times the static deflections are not reached by a long way. In
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this connection Chapter VII of this Report gives some examples of how it could be
investigated whether vibration problems are liable to occur in a given prestressed
concrete structure. The constructional possibilities for combating and obviating
objectionable or dangerous vibrations are discussed in Chapter VIIL In conclusion,
a number of simple worked examples are given.

THE STRUCTURAL CONSEQUENCES OF DYNAMIC INFLUENCES
UPON TABLE FOUNDATIONS OF ROTATING MACHINES
(CUR report no. 35, in Dutch) .

In this report it has been endeavoured to gain insight into the influences exercised
upon the vibration behaviour of a machine foundation by the dimensions of the
various structural components. The investigation is based on a table-type foundation
on which the machine is mounted on a top slab supported by columns which in turn
stand on a bottom slab.

This investigation is important because, on account of the continually increasing
size of turbo-generators and suchlike machines, it is becoming progressively impossible
to build “rigid” foundations in which hardly any natural frequencies below the normal
running speed of the machine occur. Hence it is necessary for the designer to have an
insight into the vibration behaviour.

First, the behaviour of a flat frame was investigated by means of calculations and
experiments. In these investigations the cross-sectional dimensions were varied be-
tween very slender and very stout while, in addition, either an extra heavy bottom
slab or a heavy top slab was employed. These calculations showed that the various
natural frequencies can easily be estimated on the basis of a schematisation to a one-
mass or two-mass spring system. A conclusion of practical importance was, further-
more, that a heavy bottom slab had no demonstrably favourable effect upon the
vibration behaviour.

On studying a three-dimensional foundation it was found to be possible to deduce
the behaviour of the foundation as a whole from the behaviour of the transverse
frames. On account of the interconnection of the various transverse frames by the
longitudinal frames the number of natural frequencies is considerably increased.

As a result of the investigation, the designer can gain insight into the vibration
behaviour of a foundation so that he can judge the effect of modifications to the
transverse or longitudinal frames upon that behaviour. Hence the structural design
can, more than was formerly possible, be carried out in a purposive manner. Of course,
once a foundation has been provisionally designed with the aid of approximate
calculations, the structure as a whole can then be analysed with an electronic
computer. In addition to the natural frequencies, it is necessary also to determine the
amplitudes in order to be able to ascertain whether a natural frequency is likely to
be dangerous. For this purpose it is necessary to start from an assumed damping
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effect, because as yet not enough is known about damping to enable the amplitude
associated with resonance to be accurately calculated.

From the investigation it emerged that it is highly desirable that the mechanical
engineers should make available to the foundation designer more reliable data con-
cerning the machine. In this way it is possible to avoid having to impose excessively
severe requirements upon the foundation.

In certain circumstances the fact that, in consequence of a fault in the balancing of
the machine, a flexible foundation will start vibrating more noticeably may provide
an early warning of defects in the machine.

DYNAMIC PROBLEMS ASSOCIATED WITH CIVIL ENGINEERING
STRUCTURES
(CUR report no. 57, in Dutch)

Dynamic loads acting on civil engineering structures will often not be of a periodic
character. An obvious example of this is wind loading. The design of structures subject
to non-periodic loads calls for a different technique from that adopted in design
calculations for periodic loading conditions. In the present report this technique is
briefly outlined, and applications thereof to impact loads and arbitrarily varying loads
are indicated.

Besides this short theoretical treatment of the subject, a number of frequently
encountered loading conditions are examined. These are subdivided as follows:

— periodic loads;
— impact loads;
— arbitrarily varying loads.

The types of loading indicated relate to

for periodic loads:

— piston-operated machinery;

- rotary machinery;

— rotary printing presses;

— church bells;

- walking, dancing and jumping;
— wind or water currents;

for impact loads:

- falling objects;
slamming doors;

gas explosion;

vessels berthing;
bumping against a wall;

I
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for arbitrarily varying loads (random loading):
— wave action;

- gusts of wind;

eddies;

traffic;

subsoil movements.

The calculation of the response to these types of loading for simple structures is
presented.

Finally, the behaviour of the materials steel and concrete under alternating loads
is dealt with, and the limits for movements of buildings, both with regard to the users
and with regard to the structure itself, are indicated.

RECOMMENDATIONS FOR THE DESIGN AND ANALYSIS OF
MACHINE FOUNDATIONS ‘
(CUR report no. 61, in Dutch)

In 1967, Hoogovens (Royal Netherlands Blastfurnaces and Steelworks), IJmuiden,
set up a study committee which was entrusted with drawing up a set of recommenda-
tions for the design of foundation structures for machinery. These recommendations,
which were completed in 1972, have been examined and adopted by CUR Committee
A 20 “Dynamic problems in construction’.

The recommendations are concerned with the following subjects:

Sect. I  Notation, units, definitions

This section comprises all the symbols used in the dynamic calculations with the
associated units in accordance with the S.I. system and with definitions of their
meanings. Furthermore the concepts of dynamic forces, damping, stress, elasticity
and fatigue are explained. The subscripts required in conjunction with the symbols
are indicated, as also the co-ordinate system with the sign conventions. Finally, the
various types of loading are defined.

It is intended that all who are concerned with the design and construction of a
foundation should base themselves on the information given in this section. This will
ensure that they all speak the same language, as it were.

Sect. Il Data to be provided by the supplier of the machine

This section comprises a number of forms to be completed by the machinery supplier.
This information will of course have to be supplemented with drawings and diagrams.
The required data are subdivided as follows:

— general data;

— permanent loads;
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— periodically varying loads for;
unbalanced machines;
balanced rotary machines;
- impact loads (separate form for forge hammers);
- temporary loads;
— heat evolution;
— supplementary information, including wishes as to choice of materials;
— criteria specified by the machinery supplier (see also section IV).
For dealing with cases where, for example, the unbalanced forces exerted by rotary
machines are not stated by the supplier this section gives appropriate values that the
foundation designer can adopt.

Sect. Il Structural data to be provided

This section bases itself on the principle that the machine foundation is designed by
a specialised designer. Of course, all essential information must be made available to
him, namely:
- general information;
- soil conditions;
- data relating to piled and/or shallow foundation structure;
— additional loads;
— data on sources of disturbance in the vicinity;
- data on sensitive equipment in the vicinity;
- supplementary information, including wishes as to choice of materials;
— criteria specified by the construction department (see also Section IV).
In this section, too, appropriate design values are given, e.g., with regard to the
resilient properties of piles. These are based on empirical data.

It may occur that there is no separate designer for the machine foundation and that,
instead, the building together with the machine foundation is dealt with by one and
the same designer. In that case the present section can serve as a check-list.

Sect. IV Criteria to be satisfied by the foundation

In Sections II and I1I it is stated that both the machinery supplier and the construction
department can specify certain criteria. In order to arrive at a practical approach with
regard to this, criteria are laid down in Section IV. Only in cases where it is desired
to depart from these need this can be stated on the relevant form envisaged in Section
IT or III.

Ciriteria are established or elucidated for the following subjects:

— strength;

— vibrations (displacement amplitude as a function of the disturbance frequency);

- rigidity;

— experimental verification (amplitudes, rigidity).
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Sect. V. Construction

This section gives practical hints and suggestions, both for the machinery supplier
and for the foundation designer, with regard to:

structural foundation to support the actual machine foundation;

choice of material,;

choice of foundation type;

connection of machine to foundation.
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