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Preface

The research on punching shear in reinforced concrete slabs was carried out by the
Institute TNO for Building Materials and Building Structures (IBBC-TNO) with the
financial support of the Netherlands Committee for Concrete Research (CUR).

The problem of punching shear around axially or eccentrically loaded inner
columns was studied first. That part of the research, sponsored by CUR Committee
A 18, was published in HERON, Vol. 20 (1974 No. 2). The formula derived in it has
been adopted in the Netherlands Code of Practice for Concrete.

Further research on punching shear is reported in the present publication. The
research was sponsored by CUR Committee A 25, which was entrusted with drawing
up a proposal for the calculation of punching shear resistance at edge and corner
columns, so as to supplement the Code of Practice.

Committee A 25 was constituted as follows:
J. Buijs, Chairman
M. Dragosavi¢, Secretary
J. Brakel
H. van Tongeren
G. Vlas
Ch. J. Vos, Mentor

The research on punching shear at edge and corner columns was carried out by
Ir. A. van den Beukel, assisted by Ir. M. Dragosavié, both on the staff of IBBC-TNO.
Thanks are due to the Netherlands Committee for Concrete Research for financing
this work.
The translation from the original report no. BI-75-87 (in Dutch) into English is
by Ir. C. van Amerongen, MICE.
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NOTATION

length of side of a square column section

shorter length of side of a rectangular column section

longer length of side of a rectangular column section

length of side of a rectangular column section in x-direction

length of side of a rectangular column section in y-direction

width of a beam

distance from axis of column to edge of slab

diameter of an (imaginary) round column

eccentricity of the column load in relation to the centroid of the column
section

eccentricity of the column load in relation to the centroid of the periphery
eccentricity of the centroid of the periphery (sectional area) with respect to
the axis of the column

average cylinder strength of the concrete

average cube strength of the concrete

splitting tensile strength of the concrete

design value of the tensile strength of the concrete

yield stress of the steel

effective depth of slab

perimeter (peripheral length)

area (in general)

column force to be transmitted

design value of the column force

punching shear force

principal moment of inertia of the periphery

external moment due to F

external moment due to F,,

shear force

section modulus for an extreme fibre of the periphery

geometry factor

eccentricity factor

moment coefficient (indicating what proportion (M) of the moment equili-
brates the vertical shear stresses)

stress (in general)

nominal shear stress at the periphery

maximum nominal shear stress at the periphery



PUNCHING SHEAR AT INNER, EDGE AND CORNER COLUMNS

Summary

This report describes how the punching shear force (failure load) of a slab around a
column can be calculated and also fills in the background to this analysis procedure.

The analysis for inner columns as well as for edge and corner columns starts from
a simple basic formula. The effect of the eccentricity of the column force to be trans-
mitted is taken into account by means of an eccentricity factor. This factor is in part
dependent on the geometry factor, numerical values of which are given in tables
relating to various cases. The whole analysis procedure is summarized in Chapter 3.7,
and the method is illustrated with reference to two worked examples in Chapter 4.






Punching shear at inner, edge and corner
columns

CHAPTER 1

INTRODUCTION

With regard to the failure of a slab around a column it is usual to distinguish between
two possible causes:

a. the cause may be that the moment resisting capacity of the slab is reached; in that
case yielding of the reinforcement occurs;

b. the shear force that has to be transmitted from the slab to the column may attain
the maximum that can be structurally resisted before yielding of the slab reinforce-
ment occurs; in that case the term punching shear is applicable.

By punching shear force is understood the force that causes the slab to fail in shear.

In HERON, Vol. 20 ““Punching shear” (1974, No. 2), it has already been indicated
how the shear resistance capacity or punching shear force of a slab at an inner column
can be calculated. On the basis of recent research it is now possible to give a method
of analysis applicable also to edge columns and corner columns. It has furthermore
been shown that a uniform method can be applied to inner as well as to edge and
corner columns. The results of these investigations are embodied in this report.

A more detailed account of the punching shear tests performed on edge and corner
columns is given in IBBC-TNO Report No. BI-75-55 ““Shear resistance capacity of
slabs on point-type supports’ dated 2 September 1975. The results of those tests are
given in condensed form in the appendix to the present report.



CHAPTER 2

FORMS OF FAILURE

Before indicating how a practical analysis of punching shear may be carried out il will
be helpful to examine some failure patterns.

The transmission of load from the slab to the column is associated with a complex
pattern of forces around the column. With increasing magnitude of the load, radial
and tangential cracks will generally develop at the surface of the slab; the stage of
failure is characterized by more or less conical shearing around the column. This
conical shape is found to occur most distinctly around an axially (concentrically)
loaded centre column: see Fig. 1. It is to be noted that this cone manifests itself both
when bending moment failure and when shear failure (as defined in Chapter 1) occurs.
At most, the difference is that in the case of pronounced bending moment failure a
number of the cracks are relatively wider (yield lines, radial and directly around the
column).

If the force acting in the column is eccentric, the conical shape associated with
failure is often not so readily recognizable at the surface of the slab. This is true also
of an edge column or corner column because in such cases there is almost invariably
eccentric loading. By way of illustration some photographs of test specimens after
failure, reproduced from the IBBC-TNO report referred to in Chapter 1, are given
in Fig. 2. These specimens correspond to the situation at an edge column. It should
be conceived that the semicircular edge, which served as the bearing in the tests,
corresponds to the line of zero bending moment in a slab supported by several col-
umns. The two specimens are alike as regards their dimensions, reinforcement and
quality of concrete. From that same report it also appears that both specimens
failed in shear. They differ, however, in the magnitude of the eccentricity e of the force
acting in the column. This difference manifested itself not only in a difference in the
failure load but also in distinctly different cracking patterns. The conical shape is
discernible in the side views of the specimens, but the orientation is reversed. This
is due to the fact that the column load produces bending moments in the slab which
are of opposite algebraic sign in these examples. It is further explained in Chapter 3.

Some cracking patterns at a corner column are illustrated in Fig. 3. Further
particulars concerning these specimens are given in the appendix.



Fig. 1. Failure pattern at an axially loaded inner column.



Fig. 2.
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slab/edge column test
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Fig. 3. Failure patterns of two slab/corner column test specimens.



CHAPTER 3

ANALYSIS

3.1 Tie-up with the conventional methods of analysis

In the shear design of beams it is usual to adopt a nominal shear stress 7 in the cal-
culations, defined by:

T
"= bh
T denotes the shear force in the beam cross-section concerned.

Taking this as the point of departure, and having regard to the problems associated
with a description of the actually quite complex state of stress concerned, a similar
procedure will be adopted for the present purpose.

In the analysis of punching shear a nominal vertical shear stress acting in a vertical
section through the slab at some distance from the column is considered (see Fig. 4).
This section is called the periphery; its length along the periphery is called the peri-
meter.

also tension in tangential
direction

ARy G IR
| || a 1] <
\H b ey - __ﬁ/
also compression in tan-
o gential direction
tF
a. Actual stress distribution b. Stress distribution assumed for the

analysis

Fig. 4. Stress distributions.

If there is no eccentricity of the column force in relation to the centroid of the
periphery, the shear stress is uniformly distributed along the latter. The nominal
shear stress is then:

— ['1
©T ok
where
F = the column force to be transmitted
p = the perimeter
h = the average effective depth of the slab

13



If the force F has an eccentricity e’ in relation to the centroid of the periphery, there
will also be a bending moment equal to M = Fe’. This moment was referred to at the
end of Chapter 2. The external moment M gives rise to a complex state of stress
(bending, shear, torsion) in the slab around the column. For the purpose of punching
shear analysis it will be presupposed that a certain fraction (< 1) of the external
moment produces only vertical shear stresses in the periphery. f is called the moment
coefficient. In analogy with the well-known formula

~

6=+

|
SIES

the maximum nominal shear stress is calculated from:

F  pFe
Tmax = I)—I:l + *«VV_. (1)
where
W = section modulus = I/u
I = principal moment of inertia (I, or I,/) of the periphery

u = distance from the extreme fibre of the periphery to the controid
thereof

In equation (1) the eccentricity e’ is assumed to be directed along one of both principal
axis.

The derivation of the moment coefficient involves some rather complicated expres-
sions and will therefore not be given here. Suffice it to mention that § is based on the
elastic stress distribution in a rectangular periphery and that it is dependent only on
the geometry of the perimeter. The section modulus W is likewise a geometric
quantity.

3.2 Punching shear force

From various tests it has been found that (the design value of) the punching shear
force can be calculated by establishing the condition that at failure the maximum
nominal shear is just equal to (the design value of) the tensile strength f,,4 of the
concrete. The corresponding column force is the punching shear force F,, (# denotes
ultimate, ¢ denotes shear). Equation (1) then becomes:

—_ Ful Fu( ﬁe/ph
Joa =50 ok W
or
1
F, = phfccd S (2)
L 4+ Peph
w

14



The factor in parentheses is called the eccentricity factor «,. The expression for punch-
ing shear force is thus:

Fut = o‘t})hfctd (3)

1

pe’' ph
|+ 2P0
T w

with

3.3 Perimeter and periphery

It is evident that the perimeter p, i.e., the peripheral length, plays an important part
because both o, and f§ are dependent on p. From literature research and from experi-
mental investigations a reasonably good degree of agreement has been found to exist
between the punching shear force calculated from equation (3) and the experimentally
determined punching shear force, if the periphery is defined as follows.

The periphery is the vertical section through the slab with depth 4 situated at a
distance 14 from an (imaginary) round column and terminating at right angles to an
edge (if any) of the slab. This is illustrated in Fig. 5. If the column in question is
rectangular, it is conceived as replaced by a round column with the same circum-
ferential cross-sectional length as that of the original column. Hence the diameter of
the round column is expressed by:

2
d = E(u'—th)

where «, is the longer and a, the shorter side of the rectangular column. A further
requirement for applying this approximation is that the rectangular shape of the column
does not deviate too much from a square. If the ratio a,/a, exceeds a value of 2,

T“ -
Pl
e
| /
i AN " |
i T '
deh 1
| et
S

T

T]#

1

Fig. 5. Peripheral shapes; the periphery is designated by p.
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the analysis presented here can no longer be regarded as sufficiently accurate, for then
the load transmitting action will tend to concentrate at the two shorter column faces.

It may seem somewhat odd that the punching shear analysis is based on a (partly)
circular perimeter, whereas the moment coefficient  envisaged in 3.1 is based on a
rectangular perimeter. The reason is that, in the first place, the determination of this
coefficient is a very complicated procedure for a circular as opposed to a rectangular
perimeter and that, secondly, a rectangular perimeter at a distance 34 from the
column will, for fairly large slab thicknesses, result in some over-estimation of the
punching shear force, as experimental research has shown.

As already stated, the eccentricity e’ of the column load should be reckoned in
relation to the centroid of the periphery. Normally the eccentricity e in relation to
the axis of the column is adopted. If e, is the distance between the centroid of the
periphery and the (centroidal) axis of the column, then:

e =€—£'P

The eccentricity factor o, can now be written as:

R S €)

where the geometric factor « is equal to:

Bph(h+d)
=W ®
This latter factor is determined entirely by geometric quantities. In the IBBC-TNO
report already referred to, values of o for various cases have been calculated; they
are listed in tables given at the end of the present chapter. As a consequence of the
above-mentioned difference in periphery in so far as the calculation of p and f is
concerned, for a round column the value of  (in which f has been taken into account)
should be determined as though for a square column.

3.4 Maximum perimeter

In all the punching shear tests relating to edge and corner columns the face or faces
of the column always coincided with the edge or (for a corner column) edges of the
slab. It is, however, unlikely that an essentially different method of analysis will be
necessary in a case where the column is not at the actual edge of the slab but is in-
stead set back some distance from the edge. In this latter case the analysis is indeed
still valid, provided that the value adopted for the perimeter does not exceed the
circumference of a completely circular perimeter, i.e., always p < n(h+d).

16



3.5 Double eccentricity

So far it has tacitly been presupposed that the eccentricity e or ¢’ is directed along one
principal axis of inertia of the perimeter. In general, however, there may be eccentricity
in the directions of both the principal axes of inertia x’ and ' (see Fig. 6 and 7).
The eccentricity e, of the periphery, already referred to, is therefore always directed
along the x’'-axis. Bearing in mind that the calculation of the punching shear force
comprises in effect the calculation of the largest nominal shear stress at the periphery
by means of an algebraic summation of stresses, it follows, for given eccentricities e,
and e,, from the general expression for 7

F pFe' pFe
b )
=i<1+ocx|e*“e"l +a l&y] )
ph h+d h+d

As before, the expression for the punching shear force is:

max *

Fu( = atphfctd (3)
where, however:

1
Iex—'e

o =

(6)

A

1+4o, — +a,
h+d h+d

The absolute value signs in the expression for «, are necessary if the given eccentricities
e, and e, are reckoned algebraically with respect to the x—y co-ordinate system.
Admittedly the section modulus W depends on the cases e, > e, and e, <e,, but
this is already taken into account in the values of a.

z‘?)\
c (d‘h)\ﬁ o,

Y

Fig. 6. Principal axes of inertia x’, y* of the periphery.
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The values of a as given in the tables at the end of this chapter actually relate to
the extreme fibres of the periphery which correspond to the smallest value of the
section modulus. If the punching force is calculated from a stress analysis at an
arbitrary point C of the periphery (Fig. 7), the requisite values of o, and «, are
deducible from:

Xc

Oyc = axAT
Xa

y!

_ C

Oyc = Uy ="
VB

These relationships are based on the fact that the section modulus increases linearly
with the distance to the origin of the x'—)’ co-ordinate system.

If it is not immediately evident which point of the perimeter is the determinative
one, the eccentricity factors should be calculated for a number of points. The lowest
value of o, will then of cours be determinative.

Fig. 7. Geometric quantities for eccentricity in two directions.

3.6 Maximum eccentricity factor

If the value |e—e,| alone is varied in the expression for o, there is found to be a
pronounced peak value (maximum) of F,, for e—e, =0. In the vicinity of this peak
value the punching shear force F,, is very sensitive to minor variations in the eccen-
tricity. Since the values of e and e, are never accurately known, it is necessary to
truncate the peak. For this reason the maximum value of «, to be adopted in the
calculations is taken as 0,9.

3.7 Procedure for calculating the punching shear force

Summarizing, the following procedure for calculating the punching shear force F,,
can now be established:

18



- Fut :O‘lphfctd

— A rectangular column with cross-sectional dimensions @, and a, is conceived as
replaced by a round column with a diameter:

2 :
d = E(a,-l—ab)

The calculation applies when: a, < 2a,,.

— The perimeter is:
for an inner column: p=mn(h+d)
for an edge column: p=in(h+d)+2c
for a corner column: p = in(h+d)+2c

— The eccentricity factor is:

1
Iex_ep|+a leyl

h+d "htd

o =
1+a,

where:
for an inner column:

e,=0
for an edge column:

_ h+ d)? = ¢?
p

p

for a corner column:

(h4+d)*+2c(h+d)—2c?
e, =142 »

The eccentricities ¢, and e, with respect to the centroid of the column are measured
along the principal axes of inertia of the periphery (see also Fig. 7).

— The maximum value of ¢ to be taken into account in the calculations is:
for an edge column:

c=4n(h+d)
for a corner column:
c=3n(h+d)

— The values of «, «, and «, for various cases are indicated within the accompanying
tables. Linear interpolation is permissible for intermediate values of the geometric

19



variables concerned. The tables have been established for a rectangular column;
for a round column the value of « is found by substitution of a,=a, =%nd or
a, = a, = }nd as stated at the end of 3.3. In this latter expression a, and a, are the
side lengths (cross-sectional dimensions) of the column perpendicular and parallel
to the edge of the slab respectively.

For a rectangular corner column with sides a, and a, it is permissible, as an approxi-
mation, to consider a square column with sides a = (a,+a,).

— It may occur that the punching shear force of an edge column or a corner column,
calculated by this procedure, is larger than the punching shear force of an identical
inner column having the same eccentricity e of the column force. This should be
checked, and the lower value thus found should be adopted as the punching shear
force of the edge column or corner column.

20



Table 1.

Values of « for a rectangular inner column

a +h

ab—f-h -

1,0 2,00 2,00

1,2 2,23 1,77

1,4 2,42 1,58

1,6 2,58 1,42

1,8 2,71 1,29

2,0 2,82 1,18

Table 2. Values of «, for an edge column with moment vector parallel to the edge

2¢
h+d
ax+-h+2c
2ay+h) 02 04 06 0,8 1,0 1,2 1,4 1,6

o> ep 0,4 0,38 0,31 0,30 0,29 0,30 0,31 0,32 0,34
0,5 0,57 0,47 045 0,44 045 047 049 0,51
0,6 0,78 0,65 0,61 0,61 0,62 0,64 0,67 0,69
0,7 099 0,82 0,78 0,77 0,79 0,81 0,85 0,88
0,8 1,20 099 094 093 0,95 098 1,02 1,06
0,9 1,40 1,16 1,09 1,08 1,11 1,14 1,19 1,24
1,0 1,58 1,31 1,23 1,22 1,25 1,29 1,34 1,40
1,1 1,75 1,45 1,36 1,36 1,38 1,43 1,49 1,55
1,2 1,90 1,57 1,48 1,47 1,50 1,55 1,62 1,68
1,3 2,04 1,69 1,59 1,58 1,61 1,67 1,73 1,81
1,4 2,17 1,79 1,69 1,68 1,71 1,77 1,84 1,92
1,5 2,28 1,89 1,78 1,77 1,81 1,87 1,94 2,02
e <e, 0,4 0,64 0,51 046 045 044 045 0,46 0,47
0,5 0,97 0,77 0,70 0,68 0,67 0,68 0,69 0,70
0,6 1,32 1,05 096 0,92 0,92 0,93 0,94 0,96
0,7 1,68 1,34 1,22 1,17 1,17 1,18 1,20 1,22
0,8 2,03 1,62 1,47 1,42 141 1,42 1,45 148
0,9 2,36 1,88 1,71 1,65 1,64 1,65 1,68 1,72
1,0 2,66 2,13 1,94 1,87 1,85 1,87 1,90 1,94
1,1 295 235 2,14 2,07 205 207 2,10 2,15
1,2 3,21 2,56 2,33 2,25 223 225 229 234
1,3 344 2,75 2,50 241 239 242 246 2,51
1,4 3,66 292 266 2,56 2,54 2,56 2,61 2,66
1,5 3,85 3,07 280 270 2,68 2,770 2,75 2,80
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Table 3. Values of «, for an edge column with moment vector perpendicular to the edge

2c
h+d
B ay+h
p a—x+h+20 02 04 06 08 1,0 1,2 >14
e,,.= 0 0,3 0,67 0,62 0,58 0,56 0,54 0,52 0,50
0,4 0,87 0,81 0,76 0,72 0,70 0,68 0,66
0,5 1,06 0,98 093 0,88 0,85 0,82 0,80
0,6 1,24 1,15 1,08 1,03 0,99 0,96 0,94
0,7 1,40 1,29 1,22 1,17 1,12 1,09 1,06
0,8 1,54 1,43 1,34 1,28 1,24 1,20 1,17
0,9 1,68 1,55 146 1,40 1,34 1,30 1,27
1,0 1,80 1,66 1,57 1,50 1,44 1,40 1,36

Table 4. Values of a, for a square corner column with moment vector perpendicular to bisectrix

2¢ ’
h+d

02 04 06 08 1,0 12 1,4 1,6 18

505 3,84 3,15 269 237 212 193 1,77 1,64

9,28 6,51 5,04 4,10 347 3,00 2,65 2,38 2,16

Table 5. Values of a, for a square corner column with moment vector parallel to bisectrix

2c
h+d

0,2 0,4 0,6 0,8 1,0 1,2 1,4 1,6 1,8

1,8 1,58 1,39 124 1,13 1,03 095 088 0,83




CHAPTER 4

WORKED EXAMPLES

Example 1

A junction of a floor slab with a corner column as illustrated in
Fig. 8 is characterized by the following data:

a =450 mm

h =178 mm (average effective depth)
h, =200 mm

¢ =31a =225 mm

The design values of the loads to be transmitted from the column E]t
to the slab are:

|

|
Lo d

t

Ty
T, =145kN 2 M
My, = 27 kNm g
_ Fig. 8.
Mgy = 0kNm Data concerning
example 1.

The concrete of the slab is of quality class B 17,5 (f, 4 = 1,1 N/mm?).

Check

Wether the shear resistance capacity of the slab is adequate.

Solution
Perimeter

p=inth+d)+2c

4 4-450

d= ;a =—"= 573 mm (= diameter of imaginary round column)

p=4n(178+573)+2-225 = 1040 mm
Eccentricities

‘N2 _ 2
¢, = %\/,2(h+a’,) +2c(h+d)—2c
p
1784 573)%+2-225(17 —2-2252
:%\/2( +573)" + ]3;1()8+573) =272 mm

23



e, =—2="""=186mm(<e
T, 145 (<&
Value of a
2¢ 2:225
h+d  178+3573 0,60
From Table 4:
o, = 5,04

Eccentricity factor

o = - = 0,634
lex_ep] !
Lo 7% 145040077
h+d

Punching shear force

Fy =, phfuq = 0,634-1040-178-1,1:1073 = 129 kN

Punching shear force of an identical inner column
p=n(h+d)=n(178+573)=2359 mm e,=0 o=2,00 (Table 1)
o, = 1 = ! = 0,669
L+ 142,005
h+d ’

178 +573.
F,, (inner column) = &, phf,.q = 0,669-2359-178-1,1-107 % = 309 kN

This value is not determinative.

Conclusion

The punching shear force F,,(= 129 kN) is less than the design value T; of the column
force to be transmitted. The design calculations will therefore have to be revised.

Possibilities for modifying the design

F,, can be increased in various ways. Some of these are indicated below. Combina-
tions are also possible.
a. Using a better quality for the slab, e.g., B 22,5 (f.,g = 1,3 N/mm?). Then:

Fp=0,634-1040-178-1,3-1073 = 152 kN (> T}).

24



b. Increasing the thickness of the slab. With 4, =240 mm and 4 =218 mm follows:
p=1071 mm, e, =291 mm, o, = 5,27, «, = 0,588, so that:
F,,=0,588-1071-218-1,1- 1073 =151 kN (>T)).

c. Increasing the perimeter by keeping the edges of the slab some distance away
from the faces of the column. Suppose that the edge is 35 mm from the column
faces. Then: ¢ =225+35 =260 mm, p =1110 mm, e, =261 mm, a, =4,61, 0, =
0,685 and
F,,=0,685-1110:178-1,1-1073 = 149 kN (> T).

d. Increasing the dimensions of the column. Suppose @ = 630 mm. Then: p = 1400
mm, e, =348 mm, «, =484, o, =0,556 and F, =0,556-1400-178-1,1-107° =
152 kN (> Ty).

Another possible solution could consist in installing special punching shear re-
inforcement. The effectiveness of such reinforcement has not yet been conclusively
demonstrated, however.

Example 2

A junction of a floor slab with an edge column as illustrated in
Fig. 9 is characterized by the following data:

d = 600 mm
h =222 mm (average effective depth)
h, =250 mm
¢ =830 mm

The design values of the loads to be transmitted from the column
slab are:

T, =731kN
M,, = 148,95 kNm
Mg, = 54,10 kNm

The concrete of the slab is of quality class B 45 (f,,q =2 N/mm?). Data concerning
example 2.

‘h=222

Calculate

The punching shear force F,, in order to check that F, > Tj.

Solution

Perimeter

p =*n(h+d)+2c with the condition ¢ < in(h+d).

In(h+d) = 1n(222+ 600) = 645,5 mm; this is less than the given value of 830 mm so
that ¢ = 645,5 should be adopted. Then:

P = $m(2224600)+2-645,5 = 2582 mm

25



Eccentricities

o — L(h+d)?=c* _ 1(222 +600)* — 645,5>

= — ]
o » 7583 31 mm (!)
ex=M‘1§=1;48_9_§9=204mm(>ep)
T, 731
= Moy 5400,
Ty 731
Values of «

These are obtained from tables 2 and 3, substituting:

a, = a, = ;nd =%n+600 = 471 mm

The value ¢ = 645,5 mm should be introduced for the edge distance; an imaginary
edge is in fact adopted in the calculation (see Fig. 10).

@
o
el
(7
& >
HE
©
g

E co-ordinates

5 Ty

6455 . 41 A 442 0

B 0 |41

C | 417 | 140

Fig. 10. Geometric quantities, example 2.

For the x-direction:

ay+h+2c 4714222426455
2a,+h)  2471+222)

2 2-6455
h+d  222+600

From table 2:

=1,43

1,57

axA = 1,94
Hence for point C:
te=oa, = 1,044 _ 183
XA 42

The co-ordinates relate to the x'—)’ co-ordinate system with its origin at the cen-
troid of the perimeter.
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For the y-direction:

a+h 471+222 B
a,+h+2c 471+222+42-6455
2¢

ixa = 7

From table 3:

%5 = 0,58
For point C:
tye = 1,52 = 0,58 100 = 0,20
VB 411
Eccentricity factors «,
For point A:
1 1
o, = = = 0,643
t 1+ocA|ex—ep' 14194 204431
“ h+d 2224600
For point B:
P S L = 0,950
TP 1 S S
h+d 2224600
For point C:
"= 1
=
lex—epl ley
1+ —=—2 + o Y
“h+d  htd
- ! = 0,649
141,83 204+ 31 0.20 74

225+600 T " 3235600

The lowest of these values is determinative; therefore o, = 0,643

Punching shear force
F, =o,phf,q=0,643:2582:222-2-107% = 737 kN

The punching shear force (= shear resistance capacity) is bigger than the design
value of the shear force.
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Punching shear force of an indentical inner column
p=mn(h+d) = n(222+600) =2582mm ¢,=0 e=+/e;+e; =217 mm
o = 2,00 (tabel 1) «, = ! = ! = 0,654
Lra S 142,002
h+d ’

222+600
F,, (inner column) = o, phf, 4 = 0,654:2582-222-2-1073 =750 kN

This value is not determinative.
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APPENDIX

TEST RESULTS

The experimental research which was carried out under the terms of reference of
CUR Committee A 25 “Punching shear” comprised the testing of nine edge and six
corner columns. These investigations should be regarded as continuing the research
described in HERON, Vol. 20 “‘Punching shear”. Here merely the principal data are
presented (Table 6).

Table 6. Data and test results for edge and corner columns

1 2 3 4 5 6 7 8 9 10 11 12 13 14
fet w, my p e e Fu  Fu Fise Frest
type nr. (N/mm?) (%) (kN) (mm) (mm) (mm) « a (kN) (kN) (kN) Fumin
edge 2,57 09 3,21 226 o 208 1,58 0,763 (13,1) 10,4 10,7 1,03
column 2,60 0,9 3,21 226 60 20,8 1,00 0,730 (12,7) 10,4 11,7 1,13

2,60 0,9 3,21 226 120 20,8 1,00 0423 (89 64 7,7 120
2,60 1,2 4,26 226 0o 208 1,58 0,763 13,2 (13,8) 13,0 0,98
2,60 1,2 4,26 226 60 20,8 1,00 0,730 12,7 (13,8) 13,5 1,06
2,42 1,2 426 226 120 20,8 1,00 0,423 83 (8,5 83 1,00

V00NN A W=

2,42 1,5 490 226 0 208 1,58 0,763 12,3 (15,9) 15,1 1,23
2,42 1,5 4,90 226 60 20,8 1,00 0,730 11,8 (159 14,2 1,20
2,63 1,5 4,90 226 120 0,516 9,0 (998 89 099
0,9
0,9
0,9
1,8
1,8
15 2,67 1,8 586 143 180 38,9 3,24 0,188 2,1 (49 44 210

This table calls for the following comment.

Column 3. For obtaining the best possible prediction of the test result, in equation
(3) not the design value f,4 but the splitting tensile strength f,, has been sub-
stituted, calculated from f,, = 1+40,05f,,,, where f,, is the average cube strength
on 40 mm cubes.

Column 4. The slab is reinforced with a top and a bottom orthogonal mesh, the
same percentage of steel being provided in each direction in each mesh.

Column 5. m, is the failure moment (determined by yielding of the steel) of the slab
per unit width, calculated from

m, =20 2105620 /Lo
100 100

<
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Columns 6, 8, 9 and 10. The values have been calculated in accordance with, or
have been taken from chapter 3.7.

Column 7. The bending moment vector at the edge columns is parallel to the edge;
at the corner columns the moment vector is perpendicular to the bisectrix of the
angle enclosed by the edges at the corner.

Columns 11 and 12. F,, is the punching shear force, calculated in accordance with
equation (3), but with f,, as the tensile strength of the concrete. F,, is the calcul-
ated column force at which bending moment failure occurs in the slab. The
calculation of F,,, not given here, was necessary in order to obtain an indication
of the determinative failure criterion. A value in parentheses in columns 11 and
12 of the table means that the failure criterion in question is not determinative.

Column 13. F,, is the failure load measured during the test.
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