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Notations
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Q

Qmax
T

T,
AT
a

stress area

bolt force

total limit load of the bolts fitted at one side of a T-stub to column connection
total ultimate tensile load of the bolts fitted at one side of a T-stub to
column connection

internal dissipation of energy during an assumed plastic deflection

limit load of a construction in tension

plastic moment that causes a plastic hinge to form immediately adjacent to
the tensile strip of a T-stub and at a distance of 0.8 x the fillet radius from
the column web

plastic moment that causes a plastic hinge to form at the bolt line
theoretical yield moment of a beam to column connection obtained by
using design formulas

prying action between the flange plates of column and/or T-stubs
maximum value of the prying action

half of the design load of a T-stub to column connection

half of the ultimate tensile load applied to a T-stub to column connection
work done by the external loads during an assumed plastic deformation
distance between the center lines of adjacent bolt holes measured parallel
to the plane of the web of a column or T-stub

width of the flange plate which contributes to load transmission

bolt diameter '

distance from the location of M, to the bolt line

same as m but only for column flange design

same as m but only for T-stub flange design

yield moment per unit length of the flange

yield moment per unit length of the stiffening plate bolted parallel to the
flange

distance from the bolt line to the location of the prying action assumed at
the outer edge of the flange plate or at a distance equal to 1,25 xm, if it is
smaller

distance from the bolt line to the outer edge of the flange plate in the same
direction as n

same as n but for T-stub or column flange design, respectively
radius
thickness of the flange plate

yield stress of the material
tensile stress of the material

angle



A DESIGN METHOD FOR THE TENSION SIDE OF STATICALLY
LOADED, BOLTED BEAM-TO-COLUMN CONNECTIONS

Summary

In this paper a design method for the tension side of statically loaded, bolted beam-
to-column connections is developed based on the plastic behaviour of the flanges and
the bolts under the assumption that the plastification is large enough to allow the
adoption of the most favourable static equilibrium.

Until now bolted beam-to-column connections without stiffening plates welded
between the column flanges have been generally avoided.

The reason for this is that the deformations of the connection are considerable
and, until now, a formula which allows the determination of the stiffness and strength
of a column flange has been lacking.

This paper presents the derivation of an “effective” length formula for a column
flange in tension without stiffening plates between the flanges. The derivation is
based on the analysis of two different collapse mechanisms.

One mechanism occurs if bolt failure governs collapse. The other mechanism
corresponds to collapse resulting from the full plastification of the column flanges.

Tests are discussed that were performed to insure that the developed design rules
would lead to connections that would satisfy the limit state of deformations as given
in the Dutch regulations for constructional steel work (for both) serviceability and
ultimate limit states.

Samenvatting

In dit artikel wordt een ontwerpmethode ontwikkeld voor de trekzijde van niet
dynamisch belaste geboute balk-kolomverbindingen. De methode is gebaseerd op
het plastisch gedrag van de flenzen en de bouten, er van uitgaande dat een bezwijk-
mechanisme kan ontstaan en de laagste belasting uit een evenwichts- of arbeids-
beschouwing volgt.

Tot op dit moment wordt het toepassen van balk-kolomverbindingen zonder ge-
laste schotten tussen de kolomflenzen vermeden. De reden hiervoor is, dat de ver-
vormingen van de verbinding aanzienlijk zijn en verder dat een formule waarmee de
sterkte en stijftheid van een kolomflens kan worden berekend ontbreekt.

Dit artikel geeft de afleiding van een formule voor de medewerkende lengte van
een kolomflens aan de getrokken zijde van een geboute balk-kolomverbinding zonder
gelaste schotten tussen de flenzen.

De afleiding is gebaseerd op de bezwijkanalyse van twee verschillende bezwijk-
mechanismen.

Een mechanisme ontstaat als boutbreuk tot bezwijken leidt, het andere als de bout
zo sterk is dat de flenzen volledig vloeien. Proeven worden besproken die zijn uit-
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gevoerd om na te gaan of de ontwikkelde ontwerpregels verbindingen geven die
aan de sterkte- en stijfheidseisen volgens de T.G.B. 1972-Staal voldoen, zowel in het
gebruik als in het bezwijkstadium.
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A design method for the tension side of
statically loaded, bolted beam-to-column
connections

0 Introduction

Steel framework often contains connections with bolts loaded by tensile forces due
to external loads.
In the following figures some of these connections are shown.

| |
u u

| —

M=

Fig. 0.1. End plate connection in a beam.

L 1

Fig. 0.2. T-stub and end plate beam-to-column connection.

In the end plate connection of figure 0.1 the bolts near the lower flange are subjected
to tensile forces, while in figure 0.2 the upper flange is the tension side of the beam.

A less complicated and simplified connection, which shows the same behaviour
as the connection given in figure 0.2 is drawn in figure 0.3 (T-stub connection). An
applied load of 27 is to be transmitted. At first glance it might seen that each bolt in
this connection will transmit a load 27/2 =T.

In practice, the external load of this connection will bend the T-stub flange (see
figure 0.4). This deflection will cause the flanges to exert pressure on each other. The
result is that the bolts must not only transmit the external load 27 but also the
internal loads Q which develop due to the deflection of the flanges, as illustrated in
figure 0.5.
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Fig. 0.3. T-stub connection.
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Fig. 0.4. Bending of the T-stub flange.
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Fig. 0.5. Force distribution in the T-stub.

Contrary to the connection in figure 0.1, the planes (flange of the beam and web of
the column) containing the tensile forces in figure 0.2 are perpendicular to each
other.

This type of connections was usually avoided up till now because the deformations
of the column flanges result in large deformations of the structure. Moreover, no
design rules were available for this type of connections.

The deformations which occur on the tension side of a connection of the type
shown in figure 0.2 are illustrated in figure 0.6.

These deformations will also cause internal loads Q to develop.

The position of these loads depends on the stiffness ratio between the T-stub and
column flange.

L

Fig. 0.6. Bending of the column flange and T-stub flange at the tension side of a moment connection.
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The strength and the stiffness of the T-stub flange can be calculated when the
dimensions are known.

However, a formula which allows the determination of the stiffness and strength
of a column flange is lacking.

In this paper a theory is developed for the design of the tension side of statically
loaded, bolted beam-to-column connections based on the plastic behaviour of the
flanges and the bolts under the assumption that the plastification is large enough to
allow the adoption of the most favourable static equilibrium.

In chapter 1 a method of design of T-stub connections is given which takes into
account the internal loads Q (prying force).

A philosophy which shows that the design method of T-stubs can be applied also
to connections corresponding to figure 0.2 is described in chapter 2. An important
assumption in this philosophy is that the “effective”” length of the column flange is
known.

Chapter 3 describes the derivation of a formula for the effective length of a column
flange in tension. This formula can be applied to bolted beam-to-column connections.

The derivation of the “effective’ length formula is based on the analysis of two
different collapse mechanisms.

Mechanism (1) occurs if bolt failure governs collapse. Mechanism (2) corresponds
to collapse which results from failure of the flanges.

The derived formulas are in good agreement with test results even when the column
flanges are stiffened with additional plates, parallel to the column flanges.

Twenty-eight specimens were tested in order to compare the maximum strength
capacity of the connections with the calculated design values which follow from the
theory developed in chapter 1, 2 and 3 (for test specimens see figures 0.3 and 0.7).

1
T

2 -t 21
i

Fig. 0.7. Test specimen.

These tests are discussed in chapter 4.

Twenty-eight specimens of the type shown in figures 0.8 and 0.9 were used to verify
that the developed design rules lead to connections which satisfy the limit states of
deformations as given in the Dutch regulations for constructional steel work.
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Fig. 0.8. Test specimen used to check the limit ~ Fig. 0.9. Test specimen used to check the limit
states of deformation. states of deformation given in the
T.G.B. 1972-Staal.

These limit states of deformations are discussed in chapter 5 together with the condi-
tions derived for beam-to-column connections.
The tests are discussed in chapter 6.

1 A design method for T-stub connections

1.1 Introduction

The theory of the design method is based on the plastic behaviour of the T-stub
flanges and the bolts and on the assumption that the plastification is large enough
to allow the adoption of the most favourable static equilibrium. Furthermore it is
assumed that the plastic deformations in the flange plates and/or the bolts occur
before failure of the structure itself. Simple plastic hinges are thought to form even-
tually at the bolt and the web line with bending moments equal to

bt’a, bt*a

MI,=—4 and M;,=—4

e

The collapse mechanisms which can form are subdivided into mechanism A (bolt
failure is the determining factor) and mechanism B (the plastification of the flange
plate is the determining factor).

The mechanisms are shown in figure 1.1.

In mechanism A, a prying force Q < Q,,,, (including Q = 0) can be present at the
end of the span n.

In mechanism B the prying force Q at the ends of the span n reaches its maximum
value and causes a plastic hinge to form at the bolt line in the flange plate.

8
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Fig. 1.1. Simplified models of collapse mechanisms with prying forces.



The force distribution, moment distribution and shear force distribution corre-
sponding to the two collapse mechanisms are given in figure 1.1.

where
Y B,* = the total ultimate tensile load of the bolts
B = the total bolt force
T = the tensile load applied to one half of the construction
Q = the prying force between the flange plate and the support. It is
assumed that this force acts on the ends of the span n
M, = the plastic moment that causes a plastic hinge to form immediately
adjacent to the tensile strip
M, = the plastic moment that causes a plastic hinge to form at the bolt
line.
* Due to the symmetry of the connection only one half will be considered.
Remark

The influence of the shear forces on the plastic moment has been neglected.

1.2 Collapse mechanism A (the bolt fracture is the determining factor)

There are two possibilities.

a. A plastic hinge is formed next to the tensile strip before the ultimate tensile load
of the bolt has been reached. At the end of the span n a force, Q, has developed,
which decreases the ultimate tensile load T, because T,=ZXB,— Q. There will
either be no plastic hinge at the bolt line or this hinge will have been formed
simultaneously with the rupture of the bolt.

10
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Fig. 1.2. Force distribution and moment distribution of collapse mechanism A, a.

T, = the ultimate tensile load of one side of the connection
B, = the total ultimate tensile load of the bolts fitted at one side of the
connection



M, = }bt*c, is the plastic moment that causes a plastic hinge to form
b = the width of the flange plate

t = thickness of the flange plate
o

. = yield stress.

Therefore, the following hold for collapse mechanism A:

T,=%B,—0 these two relations combined into one formula yield
T,xm—Qxn=M,
,,xm——(ZBu-—T,,)xn=Mp (1'1)

. The flange is heavy with respect to the rigidity of the bolt (figure 1.1 - collapse
mechanism A, b).

There will either be no plastic hinge next to the tensile strip (web of the T-section)
or this hinge will be formed simultaneously with the failure of the bolts, Q = 0.
Therefore, for this mechanism, it holds that:

T,xm<M,
which follows directly from (1-1), because
z“Bu = Tu

These two formulas are already included in the formula (1-1) with Q =0.

e n | m |
I ] 1
kTu
l ) '
=By M=3B,m

Fig. 1.3. Force distribution and the moment distribution of collapse mechanism A, b.

1.3 Collapse mechanism B (the flange plate is the determining factor)

If Q reaches its maximum value, then collapse mechanism B will come into being.
The prying force Q reaches its maximum value when a plastic hinge is formed at the

bolt line.

Oxn=M,

M,

Qmax =

11



Now formula (1-1) changes to:

Tuxm—%xn=M
n

T,xm = M,+M, (1-2)

N

fl) = Qmax-n

Fig. 1.4. Force distribution and moment distribution of collapse mechanism B.

In this case the flange plate is the determining factor. Now T, =XB—Q, but £B will
be equal to B, only in the optimum case.

2B is the bolt force immediately prior to the formation of a plastic hinge at the
bolt line. In other words, increasing the bolt diameter yields a larger £B,, but not a
larger T,.

Remarks

In summarizing, the next points are important. At constant T, and increasing Q the
ultimate tensile load of the bolts £B, must also increase (XB, = T,+ Q, a larger bolt
diameter is necessary) as a result of which the flange plate thickness may decrease.

T,xm—Q xn= M, = }bt’c,

If 0 =0, then T, =XB,, but the flange plate thickness is determined by
T,xm=M,

This gives the minimum allowable thickness of the flange plate using the smallest
bolt at a given T.
If one takes
M/
Q = Qmax = —1

n
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then T, xm = M,+ M, =2 x}bt*c, from which the minimum required thickness of
the flange plate may be computed for a given T using the largest bolt diameter.

The deformations immediately prior to collapse are the determining factors for the
ultimate load of the connection.

With a heavy flange plate, for example, the deflection of the flange plate in the
elastic stage might be larger than the elongation of the bolts.

In this stage a prying force can exist.

However, immediately prior to collapse, the elongation of the bolts is larger than
the deflection of the flange-plate.

So, at that moment, there is no prying force and the bolt force is equal to the external
load.

Assuming now that the adopted collapse mechanism at which 0 < 0 < Q,,,, really
occurs (in other words the plastic behaviour of flange plate and bolt is such that the
collapse mechanism adopts to this method of computation) then, adopting load
factor design, the following two conditions must be satisfied:

Txm—(ZB,~T)n< M, where (£B,—T)>0 else T=ZXB, (1-3)
Txm<M,+M, (1-4)

This means, in fact, that one is free to choose the desired collapse mechanism and
consequently plate thicknesses and bolt diameters within certain limits.

1.4 Adaptation to limit state design

The objection to formulas (1-3) and (1-4) is that on the one hand one uses the
ultimate load of the bolt and on the other hand the plastic moments of the plate in
the design.

It would be more correct to include the yield strength of the bolt too. For the high-
strength steel of the bolt it is not quite clear which strength should be taken.

The T.G.B. 1972-Staal (Dutch standards, Regulation for the calculation of build-
ing structures, Design of steel structures) has adopted limit state design.

The effects of the design loads (based on a load factor y = 1.5) should be such that
no limit state is exceeded. A limit state is defined as a condition where the structure
ceases to function properly, for example due to large deformations. It can be said
that the ultimate limit state of the T-stubs is reached when the mechanism with two
plastic hinges comes into being. The T.G.B. 1972-Staal considers as the limit state
of bolts in tension a tensile load equal to

F: = aeAs
where

A, = stress area of the bolt

o, = yield stress of the bolt material according to the standards.
when

o, (or oy ,) > 0,70, then o,=0,70,

o, = tensile stress of the bolt material.

13



The requirement o, < 0,70, is included to assure a sufficient margin of safety against
bolt fracture.

With a load factor y = 1,5, the safety factor against fracture of the bolts is at least
1,5/0,7 =2,14.

Formulas (1-3) and (1-4) are transformed into

T-m—(EB,—T)-n< M, if (ZB~T)>0 else T=2XB, (1-5)

if bolt fracture is the determining factor

T -m<M,+M, (1-6)
if the flange plate is the determining factor

T = half of the design load
YB, = the total limit load of the bolts fitted at one side of the T-stub
connection.

The formulas (1-5) and (1-6) can be applied directly to connections where the strips
introducing the tensile forces are in alignment. The plane of symmetry a—a shown in
figure 1.5 can be considered as being rigid.

However, the situation for the bolts is not the same as with a rigid base because
the bolts must now follow the deflections of two flange plates. Nevertheless the theory
is directly applicable.

For connections in which the planes containing the tensile forces are perpendicular
to each other (figure 0.7) the theory developed in this chapter can not be applied
directly.

In the next chapter, however, a philosophy will be discussed which allows the use
of formulas (1-5) and (1-6) for these connections also.

Fig. 1.5. The plane of symmetry a-a can be considered as rigid base.

2 A design method for T-stub flange to column connections

In a T-stub flange to column connection, the planes containing the tensile forces are
perpendicular to each other. Separated prying forces, Q; (T-stub flange) and Q,
(column flange), can not develop in this type of connections (figure 2.1).

14



Fig. 2.1. Impossible position of the prying forces.

Figure 0.6 shows that the deflections prohibit this. However, a system of four
symmetrical prying forces, each of magnitude 30, does develop. Examples of the
positions of these forces are shown in figures 2.2 and 2.3.

1
L . | %Q )0 |
! 1 ] [ <@ © !
I /20‘ + + ‘}éQ l | + + |
oyt S s B Sy S —_':: gt S i B A
! Joe + || + 40 | l 1% l
l i e —o !
I | i %0 }/ZQ ]
Fig. 2.2. Position of the prying forces Fig. 2.3. Position of the prying forces
when the T-stub flange has less when the T-stub flange is more
rigidity than the column flange. rigid than the column flange.

The situation shown in figure 2.2 will occur if the T-stub flange has less rigidity than
the column flange, while the situation illustrated in figure 2.3 will occur if the T-stub
flange is more rigid than the column flange.

The optimum situation develops when the T-stub flange has the same rigidity
as the column flange. Then the forces, $Q, develop at the corners of the T-stub flange
(see figure 2.4).

This means that the T-stub flange as well as the column flange has the force
distribution as given in figure 2.4.

n,m, mn
1 yZQ VZQ ﬁ . n 1 m .y

r %0 70 i 0 =B,

Fig. 2.4. Position of the prying forces when the T-stub flange and the column flange have the same
rigidity (optimum situation).
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The formulas applicable to both flange plates are:

T-m—(EB,~T)n<M,
(ZB,~T)>0 else T =232B, (1-5)

T m < M,+M, (1-6)

Assume that the above-mentioned formulas give a higher value of T for the T-stub
flange than for the column flange; in that case the column flange is the determining
factor.

At the moment that the column flange reaches its optimum situation (failure at
the highest obtainable T'), the T-stub flange will not yet have reached its optimum.

This means that the forces 10 given by the computation of the column flange are
not in the position shown in figure 2.4 but in the position shown in figure 2.3; the
stress in the T-stub flange has not yet reached the maximum value as will be evident
from the following.

The T-stub flange is subjected to an actual force T smaller than the computed
force T.

The optimum situation has been assumed, however, for the computation of the
T-stub flange with

T-m—(EB,~T)n=M, (2-1)
T-m=M,+M, 22
| n . m I
= 1

Fig. 2.5. Optimum design situation of the T-stub flange with possible moment distributions
corresponding to smaller values of T resulting from failure of the column flange.
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Assume now that formula (2-1) (mechanism A) governs. Then, mathematically
speaking, to satisfy equation (2-1) with a smaller T, »n has to be taken smaller in order
to keep the right hand side of the equation constant and/or the right-hand side of
equation (2-1) should be less than M.

Consequently, the stress must decrease.

The optimum design situation for the T-stub flange is shown in figure 2.5.

Possible moment distributions corresponding to smaller values of 7 resulting from
failure of the column flange are shown as dotted lines.

These moment distributions are not important for the computation because it is
assumed that the actual situation occurring in the T-stub flange will never be more
adverse for the bolt or the plate than the optimum computed situation will be.

In other words, the construction adjusts itself to the situation and is in danger only
if the smallest of the computed loads 7 is exceeded in the optimum.

The T-stub flange and the column flange can be computed separately with formulas
(2-1) and (2-2) and the smallest value for the load T given by this computation is the
design value.

It is necessary, however, to know the effective length of the column flange to be
able to compute the proper value of the load.

Remarks

In the equilibrium situation it is assumed that the prying force Q = XB,—T acts at
the extreme edge of the plate.

Undoubtedly there are limits for the value of n, the extent of which has not yet
been determined.

According to McGuire [2] the value n should be less than n < 1,25m.

3 The effective length of the column flange
3.1 Method of calculation

In this chapter, a method of calculation for the column flange is derived which is
identical to the method of calculation for the T-stub described in chapter 1.

With that in mind, tests have been performed. The testing of the specimens was
continued until collapse mechanisms as shown in figure 3.1 were observed.

As with the T-stubs, two different collapse mechanisms are possible for the column
flange; one occurs if bolt fracture is the determining factor, the other if the flange
plate collapses.

The assumed collapse mechanisms I and II are given in figure 3.2. These theoretical
mechanisms show a good resemblance with the mechanisms observed during the
tests.

If simple plastic theory is applied, thus assuming that the elastic deformations are
negligible, then mechanisms I and II are comparable with collapse mechanisms A
and B of the T-stub flanges shown in figure 1.1. In mechanism I a prying force
Q < Q. acts at the ends of the span n.

17



Fig. 3.1. Collapse mechanism of the column flange.

In mechanism II the prying force Q at the ends of the span n reaches the maximum
value and causes a plastic hinge to form at the bolt lines in the flange plate.

The force moment and shear force distribution of the two collapse mechanisms
bear a resemblance with the corresponding distributions of mechanisms A and B
shown in figure 1.1. As an example, the moment distributions of figure 1.1 are also
shown in figure 3.2. If M, and M, in figure 3.2, can be determined by limit analysis
of the collapse mechanisms, then the formulas

T-m—(EB,—-T)n< M, (1-5)
and
T-m< M,+M, (1-6)

can be applied for these mechanisms too.

3.2 Limit analysis of collapse mechanisms I and II
3.2.1 Collapse mechanism I (bolt fracture is the determining factor)

The mode of collapse of the flange plate is shown in figure 3.3. Because of symmetry
only one side is considered.

18
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Fig. 3.2. Two collapse mechanisms of the column flanges in bolted beam-to-column connections.
Notice the resemblance with the moment distributions as shown in figure 1.1.
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free edge ﬁc? = (plastic) deflection

O
|

L
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Fig. 3.3. Collapse mechanism I.

There are two unknowns in this figure, the angles o and .
The problem is to minimize the collapse load for the total family of mechanisms,
that is to say to find the values of o and f which give the smallest collapse load.
The internal dissipation of energy (AE) must be equal to the work done by the
external loads (AT), neglecting the elastic energy.

AE = AT 3-1)

Suppose that in figure 3.3 the center of the bolt holes are given a (plastic) deflection
Ad with respect to the line through the plastic hinge 1. Then the internal dissipation
of energy can be calculated as follows:

Yield line 1 (see figure 3.3)
The length of this yield line is: a+2m-tgo

. . AS
The rotation is: —
m

Thus
AE, = (a+2m-tgoc)-%?~~mp,

where m, is the yield moment per unit length of the plate.

Yield line 2 (see figure 3.3)
The length of this yield line is:

m+n'

2 sin 8

The rotation is:

m
—COS(p—u«
Cosa (ﬁ )

20



Thus
m+n’  cosa AS

AE, =2 sin # cos(f—a) m

tmy,

Yield line 3 (see figure 3.3)
The length of this yield line is:

m+n’
cosa

The rotation of yield line 3 follows from the rotation of yield line 1 and 2 as shown
in the adjacent figure.

(1)
XS oy (1) =rotation of yield line 1
® (2) =rotation of yield line 2
(2 (3) =rotation of yield line 3
Ad
3 _ m L (3) = As  sinf
sin f sin(90°—f+a) m cos (f—o)
Thus
A, oM sinp o
m cos(f—a)cosa P

The contribution of the bolt force to the internal dissipation of energy can be calcu-
lated as follows.

The increase of the bolt length follows from the adjacent figure.

I,ATs.n
T 3
A% As

m n

The increase of the bolt length due to a bolt force LB, (the design strength) is

Thus
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The total energy dissipated internally is:

cosa

4
Z AE; = [{a+2m~tgo¢+2(m+n)smﬁ “eos (F—2) )
, sin 8 ) A ﬁ .

The force Q causes only elastic deformations and therefore does not contribute to

the internal energy dissipation.
The work done by the external force T is equal to

AT =T- m—mt” A (3-3)

From equations (3-1), (3-2) and (3-3) it follows that
cos o

T-(m+n)= {a+2m tgo+2- (m+n)smﬁ ~cos(f—a) )

, sin f§ _
+2 (m+n)c_6—s(—ﬁ—_oc)cosoc}m +ZB n=

2 s a2

cos“a+sin”f "

= : ' : ZB,-
{a+2m tga+2(m+n)cosa-sinb’-cos(ﬂ— )} m,+ZB, n
(3-4)

It appears from equation (3-4) that minimizing the load T implies minimizing the

right hand side of the equation because (m+n) is a constant.
It is evident that in order to find a minimum collapse load, the following conditions

must be satisfied:

0 z AE;
i=1 -
7 0 (3-5)
and
4
0 z AE;
i=1 :
op 0 (3-6)

4
0 ) AE; . .
m i; ! 2m ~ | 2cosa —sina-coso-sinf-cos(f—

=——>—+2(m+n’) T 5 -
Ad-m Ju cos o cos“osin“f-cos”(f—oa)




—(coszcx-f-sinzﬁ)-{_SinO"Sinﬁ‘cos(ﬁ_“)—cosa‘Sinﬁ'sin(ﬁ-—a)- _1}] _

cos?a-sin?B-cos*(f—a)
2m cos’ (B—a)—2(m+n") { —cos 24 (sin®o+cos oc)+ 2sina-cosu-sin f-cos ﬁ}

cos?u-cos?(f—a)

+

—2(m+n')(sin’a—cos’a)sin’f

+ 2 2
cos“o-cos(f—a)

cos’(f—a) — E%n— {sin’*(a— B) +cos 20}

= zm . = O 3'7
cos?a-cos*(f—a) (3-7)

4
- m ai; AL, — 2mn’) [ZSin/3'Cosﬁ-cosa-sinﬁ-cos(ﬁ—a)
As-m, OB cos?a-sin?f - cos*(f —a)

_ (COSZ““"Sillz[f)'Cos“'cosﬁ'cos(ﬂ“a)—Sinﬁ-sin(ﬁ_a):l ~
cos?a-sin®B-cos*(f—a) =
_ o 4 ) Si0B 08 {B=(B—a)} —cos’a-cos {(f+(F—c)}

cosa-sin’f-cos*(f—a)

sin®B-coso—cos’a-cos(2f—a)

=2m+m) cos o -sin’B-cos*(f —a) (3-8
In figure 3.3 it can be seen that

cosa-cos®(f—a) #0 and cosa-sin?B-cos*(f—a) # 0
will always be satisfied, then equation (3-7) can be reduced to

cos’(f—a) = ﬁﬂl— {sin®(e— ) +cos 20} (3-9)

and equation (3-8) can be reduced to

sin?B = cosa-cos (2B —a) = cosa-cos2f-cosa+coso-sin f-sina
1(1 —cos2B) = cos?a-cos2f+cos o sino-sin2f
1 = (cos®a+%)cos2f+4 sin 2x-sin 28

1cos2B+%cos2f+%cos2ocos2f+4sin2a-sin2f
1 =2cos2f+cos2(ax—f)
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cos2{a—pf)+2cos2f—1=0
1—2sin*(a—B)+2cos2f—1=0
sin®(x—f) = cos2p (3-10)

Substituting eq (3-10) into eq. (3-9) yields

cos’ (f—o) = E%i {cos2f+cos2a} =2 ﬁ%n— cos(o+ f)-cos(ax—pf)
Thus
cos(f—a) =2 m;—ln cos(ax+p) (3-11)
Rewriting (3-11) gives
ctgf =2 0 (3-12)
m+2n’

If the result of equation (3-12) is substituted into the numerator of equation (3-8)
and after some simplification the following result is obtained:

tgo = — m+2n’ (3-13)
VTIm?+12mn’ +4n'?"

By substituting eq. (3-13) into (3-12), § also can be expressed as a function of m and
n'. If equation (3-4) is rewritten as a function of tga only, equation (3-14) is obtained.

24,02
T-(m+n)= {a+21n-tga+2(m+n')-%z} mp+2f>’,'n (3-14)
where
_ 3m+2n
m+2n’

If the value of tga as expressed in equation (3-13) is substituted into equation (3-14)
it can be shown that equation (3-14) can be written as

T-(m+n) = {a+23Tm*+ 12mn’ +4n"*}-m ,+ 2B, n (3-15)
p

Figure 3.4 shows that for practical ratios of m and »’ 2\/7m2+ 12mn’ +4n'* can be
replaced by 5,5m+4n’. The resulting differences are given in percentages.
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A
o~
=
<t
+
- 18 m —
c A o,
€ ‘/' 1.5%
o~ ° = [ — 2V 7m2+12mn'+4n'2
F E = P
£ + ]
~ E 12m
> / ————— 5.5m+4n’
oo 0.7%
6m)|
0 n|
0 im 2m 3m -

Fig. 3.4. Differences between 2V T m2+12 mn’+4 n’® and 5,5 m+4 n” for practical ratios of m
and n’.

Therefore equation (3-15) can be transformed into
T-m—(EB,—T) n=(a+55m+4n")-m, (3-16)

where m,, is the yield moment per unit length of the plate.

From formula (1-5) (T-m—(ZB,—T)-n< M) and formula (3-16) it follows that
for collapse mechanism I of a column flange M, is equal to (a+5,5m+4n")-m,,.

Hence, the length (a+ 5,5m+4n’) of a column flange is comparable with the width
of a T-stub flange when collapse mechanism I is the mode of failure. Therefore
(a+5,5m+4n") can be considered as an effective length of the column flange. Because
the elastic energy due to the force Q is neglected, formula (3-16) includes a great
number of situations where Q varies between zero and Q...

The determination of the effective length of a column flange in tension as carried
out above corresponds best to the situation where Q =0 then XB, =T, hence T-m =
(a+5,5m+4n') m,.

The other situation where the prying force Q reaches its maximum value just prior
to the formation of a plastic hinge at the bolt line can produce another effective
length, as will be shown by a limit analysis of collapse mechanism II.

3.2.2 Collapse mechanism II (collapse of the column flange is the
determining factor)

For a mechanism II failure, the prying force Q reaches its maximum value and causes
the formation of a plastic hinge at the bolt line.

The mode of collapse of the flange plate is shown in figure 3.5. For reason of
symmetry only one side is considered.
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free edge A, =(plastic) deflection

Qma;
5 4 4 5 nt
n
3 1 3 SB; EBI
A\
fixed edge N\ \ m
TN A\ :B T T r v

-
2 ==\ _ line of symmetry "
——— =
-2

Fig. 3.5. Collapse mechanism II.

Again the unknowns in this figure are the angles « and f. The values of o and B
which produce the smallest collapse load are of interest.

The same procedure as used in paragraph 3.2.1 will solve this problem. The work
done by the external load 7 is equal to

AT =T-Ad (3-17)
if it is supposed that the centers of the bolt holes are given a (plastic) deflection AS.

The internal dissipation of energy is calculated as follows:

Yield line 1 (see figure 3.5)
The length of this yield line is: a

.. NS
The rotation is: —
m

Thus:
AS

AE, =a—-
L= AT e
where m,, is the yield moment per unit length of the plate.

Yield line 2 (see figure 3.5)
The length of this line is: a+2m-tg

.. NS
The rotation is: —
m

Thus:
AE, = (a +2m'tgcx)-%f—- m,
Yield line 3 (see figure 3.5)
The length of this yield line is:
m+n'

sin 8
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The rotation is

B Ad
m
cosa cos(f—a)
Thus:
m+n' cosa AS
AE; =2 sinf cos(f—a) m My

Yield line 4 (see figure 3.5)

The length of this yield line is: 2n’
The rotation is Ad/b, where b is given in the adjacent figure.

Thus:
n

AE4=2' b

Ad-m,
Yield line 5 (see figure 3.5)

The length of this yield line is: 2v/b%+n'2 = 21
The calculation of the rotation follows from the adjacent figures.

T
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x n bn' 1 PP
—_—_— = —— = — = —
b 1 l x bn
Hence:
. 2
AE5=2-{—“%+L ! }.M.mﬁ
m-cos(f—a) n' bn’'
c-cosa n'
—qz{m-cos(ﬂ—a)n—?} Ad-m,
¢ n'
c= {EBQ cos(,[f--oc)+c—6§ﬁ} ctgf
Thus:

’ ’

s
n cosa —-%}'A&ml,

AES =2 {ctgﬂ + ﬁ? gﬁﬁf— cos (ﬁj&y

Yield line 6 (see figure 3.5)

The length of this yield line is: 2m/cosa
The rotation of yield line 6 follows from the rotations of yield lines 2 and 3 as
shown in the adjacent figure:

(2) =rotation of yield line 2
(3) =rotation of yield line 3
(6) =rotation of yield line 6

3) (6) (6 AS sin f§

sin (90°—a) sin cos(f—a)
Thus:
.m Ad  sinf
cosa m cos(f—o)

AEs =2 m,

The bolts are subjected only to elastic deformations and do not contribute to the
internal dissipation of energy.

The total internal energy will be:
m+n’ cos o +n’ 4ot ﬁ+n/ cos o

m  sinfircos(f—a) b & m sin f-cos(f—a)

6 a
ZAEi=2{E+tga+

n sin 8
b + cosa-cos@j&j} Adm,

6 , .
a m+2n cosa R sin 8 .

Y, AE; = 2{H+ m  sinf-cos(f—o) +igatcigf+ Eag&-cos(ﬁ—a)} Adm,

(3-18)



Equating the internal and external energy gives:

< a m+2n cosa sin
T Ao"z{H-I— m  sinf-cos(f—a) +tga+0tgﬂ+cosa-cos(ﬁ—a)

}-Aé'mp
(3-19)
As can be seen minimizing the load T implies minimizing the right hand side of the

equation (3-19). It is evident that in order to find a minimum collapse load, the
following conditions must be satisfied :

2y AE,

N (3-20)
6

03 AE,

Jialﬁ-_4 —0 (3-21)

6

1 .Oi; AE; _m+2n" —sina-sin B-cos(f—a)—coso-sin f+ —sin(f—a)  —1 +

AS-m, Ou m sin?f-cos*(f—a)
. -1 . . \

+ +sinfr—: > “{—sing-cos(f—a)—cosa-sin(f—oa) —1} =

cos“a cos“o-cos“(f—a) ’
_ m+2n" —sin’B(sin’o+ cos’a) 1

m sin?f cos*(f—o) cos’a

N 2sina-cosa-sin f-cos f+sin’B(sin’u—cos’a)

cos?acos®(f—a)

__ m+2n 1 N 1 +%sinZoc-sinZﬁ—{—sinzﬁ'—cos2oc B

m  cos’(f—a) cos’a cos?acos*(f —a)
_ _m+2n’ 1 +%+%cosZ(ﬁ——a)+%cos(2a—2ﬁ)—-%cos2a_O

m  cos*(f—a) cos?o cos?(f—u)
Thus:

6
1 .ai; AE; __m+2n 1 cos 2(B—a)+sin’o 0 (3-22)

AS-m, O m  cos’(f—a)  cos’au-cos*(f—o)
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6
oY AE,
L i=1

2n' -
! _mten -COs 0L —— i {cos f-cos(B—a)+
Aé-m, Of m sin“f cos“(f—a)
4sin B+ —sin(f—o)} — ‘12 + cosﬁ-cosoc‘cos(ﬁ-z—oc)—sinﬁ‘cosoc- —sin(f—
sin”f cos“a-cos (f—a)
_m+2n .cosza(sinzﬁ—coszﬁ)—zsina'cosac-sin/)’-cosﬁ_ 1 N
m sin?B-cos*(ff—o) sin’p

cos’u(cos’f+sin’p)
cos’a-cos*(f—o)
_ m+2n’ sin’f—cos*(f—«) N sin’—cos*(B—a) _

m  sin’B-cos’(B—a)  sin’f-cos*(f—o)

and
6
I ‘ i; AE; _ 2m+2n’ sin’f—cos’(B—a)
Aé-m, 0f m sin’f-cos*(f—a)

In figure 3.5 it can be seen that

cos’a-cos’(B—o) #0 and sin?f-cos®(B—a) # 0

will always be satisfied.
Then, from eq. (3-23) it follows that:

sin’f = cos*(f—a) — sin f = cos i+ cos a+sin B-sina
and from eq. (3-22):

m+2n" _ cos2(f—u)+sin’a _ 2sin’f—cos’a _ 2sin’p

= -1
m cos’a cos’u cos?a
m+n'  sin?p sin B
= —-—>cosq=—
m COoS™ o m+ n,
m

Substituting eq. (3-25) into eq. (3-24) yields:

sinff [1— 1 - sin”p =cosﬁ'~~sinﬁ_;
m+n" m+n’

m m
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1

cosf = (3-26)

oy [ MmEn
m

Now all the unknowns of the energy equation can be calculated.

When it is done and if the results are substituted into the energy equation the
following relationship is found.

T AS = 2-<ﬁ + ﬂiﬂ4>~m,,-A5
m  \/3m>+4n'm
and

T m=2 a+m m (3-27)

an' | "
\/HL
m

Figure 3.6 shows that equation (3-27) can be approximated by

Tm=2a+4m+1,250")-m, (3-28)
For practical m and n’ ratios the differences between

6m+8n’

4m+1,25n" and ———— are given in figure 3.6
4n’
3+ —
A
9m
6m+8n'
0.05% 0
P —— ot
== m
= 2%
- 6m -
c B
<|<le < 0.7% —————— 4m+1.25n"
|| <t v -
+ + c
£l e ° E
w < 3m
0 -
0 Tm 7m 3m > n

’

6m -+ 8n

Fig. 3.6. Differences between e and 4m--1,25x" for practical ratios of m and »’.
l/s +=
m
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3.2.3 The effective length

It follows from the above formula (3-28) that for collapse mechanism II of a
column flange the sum M,+M, of formula (1-6) T-m< M,+M, is equal to
2-(a+4m+1,250")m,,.

The contribution of M, to the total moment is caused by the prying force Q. It is
interesting to know the magnitude of M, because then an estimate of the value of
M, is obtained for Q varying between

Q=0 and Q=Qmax=y—l’
n
for collapse mechanism I.

The influence of Q on the total yield moment of collapse mechanism II will be
determined by an equilibrium analysis of that part of the column flange bounded
by yield lines 1 and 5 and the free edge of the plate. It is assumed that yield lines 1
and 5 do not transmit torsional moments and shear forces.

Then moment equilibrium requires that

Q-n=m, a+2m, b (see figure 3.7) (3-29)

Fig. 3.7. Moment equilibrium of a part of the column flange.

It is already known that

P
’ ’ 2 !
b= motgo+ M A2 (man) 2T
sin J3mZ+4n'm V3m+4n’
_m*+2mn’ +(m+n)2- Jm?+mn’
V3m2+4n'm
Thus
: 2 ’ ’ 2 ’
Qmax'n={a+2‘m +2mn +(m+n)2\/m +mn }'mp (3“30)
V3m®+4n'm
This equation can be approximated by
Qiax ' = (a+4m+2,5n") m, (3-31)
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as shown in figure 3.8 where the difference between

m*+2mn’ +(m + 12N m? +mn’
V3m? v dn'm

2

and 4m+2,5x1 is given for practical ratios of m and #’.

)
< 12
£ m
o~ / 3%
+
+ / ) m2+2mn'+(m+n')2Vm2+mn'
> - A V3m2+4n'm
—~|| E n 8m Z
clle v « a
E : S+ 0.6 % & —_—— 4m+2.50'
it s
g 2 4m
o~
+
o~
£
o~ i
m 2m 3m n

2 , "V 2
Fig. 3.8. Differences between 2. 2 )2V 2mn

- and 44-2,5n" for practical ratios
of m and n’. Vi3m+-an'm

From formula (1-6)
T'm< M,+M,;
eq. (3-28)
T-m=2a+4m+1.25n")-m,
and eq. (3-39)
Omax'n = (a+4m+2,5n")-m,

it follows that M, is equal to (a+4m)-m, for collapse mechanism II.

It appears from this obtained value of M, and from the value determined with
collapse mechanism I that the effective length of the column flange which determines
the magnitude of M, depends on the value of the prying force 0.

The foregoing analysis yields the boundary values between which M » varies when
Q varies between Q =0 and Q = Q,.,

for 0 =0 M, = (a+5,5m+4n")-m, (see page 25)
for Q = Qmax Mp = (a+4m).m[1
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Now a decision must be made about the value of the effective length which should be
adopted for design purposes.

If M,=(a+5,5m+4n")-m, is chosen, then the safety factor against bolt failure
is too small if O should approach its maximum value.

If M, = (a+4m)-m, is chosen then the safety factor against bolt failure is too large
in the situation where Q =0.

To simplify the theory a uniform value of M, is desirable, therefore

M, = (a+4m+1,251) m, (3-32)

has been chosen.

The advantage of this value is that test results show that satisfactory results are
obtained for design purposes.

An additional advantage is that in the case of collapse mechanism II the value of
the sum of M, and M, is equal to (2a+ 8m+2,5n")-m,, and therefore M, is also
equal to (a+4m+1,251")-m,,.

Now the column flange can be considered as a T-stub flange with an effective length
equal to (a+4m+1,251").

The equilibrium equations can be written as:

T-m—(B,—T) n=(a+4m+1,251")-m, (3-33)
T-m=2(a+4m+1,251")m, (3-34)

3.3 The influence of stiffening plates

The tests have shown that the deflections of a column flange in tension may be
considerable.

I
:
Al
— L
Ul [ |
|

Fig. 3.9. Test specimen with stiffening plates.
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Because the beam to column connection and the column flange in particular often
determine the rigidity and strength of the whole structure a method is sought to
stiffen or strengthen this flange.

Tests were executed with stiffening plates as shown in figure 3.9. Adopting the
proposed design rules, which means that the column flange is considered as a T-stub
with a length equal to a+4m+1,25x', the calculation can be simple.

The value of M, is not affected by the presence of the stiffening plates because the
resisting bending moment is supposed to act at the line of the web.

It is assumed furthermore that no shear forces are present between the stiffening
plates and the column flange, hence

M}, = (a+4m+1,25n")-(m,, +m,,)

where m,,, is the yield moment per unit length of the column flange and m,, is the
yield moment per unit length of the stiffening plate.

Using this value of M, the design of connections with stiffening plates reduces to a
simple design method and the previously derived formulas can be applied

T-m—(£B,—T)n< M, (1-5)
and
Tm< M,+M, (1-6)

Whether the use of the simple design rules for stiffened column flanges is correct
requires an analytical and/or experimental justification. Starting from collapse
mechanism I, as shown in figure 3.3, the yield moments of yield lines 2 and 3 are
increased with the yield moment of the stiffening plate.

As an illustration the collapse mode and the energy equation of mechanism I are
given see figure 3.10 for the mode of collapse.

Fig. 3.10. The mode of collapse of mechanism I of the column flange with stiffening plates.
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The energy equation of collapse mechanism I of the column flange with stiffening
plates (bolt failure is the determining factor) is:

m+n . . cosa
T-——Ad6 = 2 2 ——
- [{a+ mtgo+ (m+n)smﬁ-cos(ﬁ——oc) +
; ’ Sinﬁ
+2(m+n)cosa-cos(ﬁ~a)}m”1+

+ {2(m+n’) mﬁﬂ}_ﬁ ~———} m,,ﬁ-ZE,-n]'%é

asoc-cos_(ﬁ—oc)

The test results show a satisfactory agreement with the proposed design rules,
therefore a thorough analytical analysis has not been carried out.

The same considerations apply to mechanism II.

The energy equation and the mode of collapse of mechanism IT are given as an illustra-
tion only. See figure 3.11 for the mode of collapse.

—\
Y Ap——

Fig. 3.11. The mode of collapse of mechanism II of the column flange with stiffening plates.

The energy equation of collapse mechanism II of the column flange with stiffening
plates (collapse of the flange is the determining factor) is:

a m+2n’ cos o sin p
ToAS — [2 {;n_ N S F s =3 + tga+ctgf + m} My +
4 ' cosa 2sin f§
— 42 o w °
+ {m +2ctgf + m sin f-cos(f—a) +cosa-cos(ﬁ—°‘)}mﬂ] ’
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Summarizing: Column flanges in tension with or without stiffening plates can be
designed as T-stub flanges with an effective length equal to (a+4m+1,251").
The design formulas are:

T-m—(ZB,~T)'n < (a+4m+1251)-m,,

with ZB,—~T>0 else 7T =3B, (3-35)

(bolt failure is the determining factor)

T m< (a+4m+1250") - {m,, + (m,, +m,,)} (3.36)
(collapse of the column flange is the determining factor).
where

my,; = yield moment per unit length of the column flange
m,, = yield moment per unit length of the stiffening plate
2B, = the total design strength of the bolts fitted at one side of the column.

a, m and n' are parameters as given in the adjacent figure 3.12.

n §1,25 m

Fig. 3.12. Parameters of equations (3-35) and (3-36).

The smallest value of 7" obtained from the above mentioned formulas is the design
strength of a column flange in tension.

The formulas show that it can be important to stiffen the flange if the collapse
mechanism of the structure is governed by the collapse of the column flange. If, on
the other hand, these calculations show that bolt fracture governs the structural
collapse a bolt with a larger T must be chosen.
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4 Test results

4.1 Tests to check T-stub design

Four tests were executed to check the theory developed for the design of T-stubs
(see figure 4.1).

Fig. 4.1. Tests pecimen with equipment to
measure the bolt forces.

In all test specimens failure due to the formation of mechanism A was observed.
In the experiments, therefore, bolt fracture was the determining factor; a calculation
predicts the same result.
The test results are summarized in table 1.

Table I
32
TIT 132
2T 4—: e 2T
32
TT %32
ratio
between
. fracture
plate 2xXB,= calculated fracture load and
test  thickness o, 1,4x 2B, 2T(y=1,5) load calculated safety
no. inmm N/mm?* kN kN kN load factor ~mechanism
1 17 357 485 371,4 560 1,51 2,26 A
2 20 364 470,6 417,4 635 1,52 2,28 A
3 25 282 504,2 472,4 656 1,39 2,08 A
4 32 272 474,8 474,8 658 1,39 2,08 A




Table I shows that the safety factor against failure is sufficient (y > 2).

4.2 Tests to check the effective length
Nineteen tests were executed to check the theory developed for the design of column
flanges in tension.

A typical specimen is shown in figure 0.7 and figure 4.2.

i o :
Fig. 4.2. Tests pecimen with equipment to measure the deforma-
tions of the flanges.

b

The T-stub flanges used have a thickness # = 32 mm and a bolt distance @ = 80 mm.
The thickness of the T-stub flange is such that only elastic deformations occur.
The part of the specimen which represents the column is manufactured from Euro-

pean sections.

The dimensions of the specimens and the test results are summarized in table II.

If it is determined experimentally that the mode of failure is that of collapse
mechanism I, (bolt failure), then this test result can be directly used to check the
design viz the safety factor.

For collapse mechanism II, however, (yielding of the column flange) direct failure
will not be observed and the load-deformation diagram must be used to obtain an
indication of the real collapse load.

For all cases where collapse of the column flange is the determining factor such
diagrams are given in figure 4.3.

The calculated values of the collapse loads are indicated in these diagrams. A
typical example of a load-deformation diagram of a test specimen which fails by bolt
fracture is given in figure 4.4 (specimen 21).

The following remarks can be made with respect to table II.

Tests 5 through 12 were performed to insure the validity of the developed theory.

The bolt of these test specimens were tightened up to the preload. Tests 13 and 14
were executed to investigate the influence of tightening while tests 15 through 19
were executed to justify the assumptions made in the design of stiffened column
flanges.
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Table 1T

t
+L b
4 [ i
S5 I I
1 s 2x XB;= highest 2T collapse
test 2x0.7x  test calculated safety mechanism -
no. 2B, load with formula factor remarks
standard m n n ty o, (3-35) (3-36)
section (X ) (X X} e00
HE mm mm mm mm N/mm? kN kN kN kN
5 140 A 33 24.5 24.5 8 260 490 220 244 122 - 1I
6 140 A 23 34.5 28.75@ 8 260 490 300 307 156 - 1T
7 160 A 33 32 32 8.5 267 490 300 280 147 - II
8 160 B 33 31 31 12.5 288 512 600 336 342 2.67 I bolt failure
9 160 B 23 41 28.75@ 12.5 288 512 600 382 437 2.35 1 bolt failure
10 160 M 29 35 32 23 270 484 660 484 1310 2.04 I bolt failure
11 200 B 33 48.5 28.5 15 300 512 560 387 558 2.17 I bolt failure
12 240 B 26 72 32 17 300 476 679 467 914 2.18 I bolt failure
13 140 A 33 24.5 24.5 8 260 490 220 244 122 - 1I
14 140 A 33 24.5 24.5 8 260 490 180 244 122 - II
15 160A 33 32 32 8.5 267 490 330 219 243 216 I en }gf,‘vd
16* 160 A 33 32 32 8.5 267 490 410 279 362 2.21 I bolt failure
17* 160 A 33 32 32 9.5 307 498 452 299 426 2.26 I bolt failure
18%* 160 A 33 32 32 9.5 307 498 458 299 426 2.29 I bolt failure
19* 160 A 33 32 32 9.5 307 498 458 299 426 2.29 I bolt failure
20 200 B 33 48.5 28.5 14.5 210 507 535 333 365 2.41 I bolt failure
21 200 B 33 48.5 28.5 14.5 210 507 458 333 365 2.06 1 bolt failure
22 200 B 33 48.5 28.5 14.5 210 463 495 313 365 2.38 1 bolt failure
23 200 B 33 48.5 28.5 14.5 210 463 570 313 365 2.73 1 bolt failure
* With stiffening plates ®: n< 1.25 m (according to McGuire — Steel structures)
@0 : actual thickness
test length ¢ o, 000 (3-35) T-m—(EB,—T)n< 2a-+4m+1,25n0)m
no. mm mm  N/mm? A N »
ZB,—T>0 else T=2B,;
15 250 10 250 (3-36) T-m< (a+4m—+1,251") X (2my, +m )
16 250 15 250 where
17 180 15 250 m,, = yield moment per unit length of the column flange
18 250 15 250 and
19 350 15 250 m,,, = yield moment per unit length of the stiffening plate

Figure 4.3a shows that the stiffness of the connection increases with the tightening
of the bolts.
Figure 4.5 shows that the presence of stiffening plates increases the strength and

stiffness of the connection considerably.

It is also obvious from the results of tests 17 through 19 that the length of the
stiffening plate has only a small influence on the collapse load.
The large deformations of the column flange causes bending of the bolts which
introduces additional tensile stresses in these bolts.
If this occurs in the threaded part of the bolt, the collapse load may decrease. To
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examine the influence of this bending effect, tests 20 through 23 were executed.

In test specimens 21 and 22 the threaded part of the bolt was on the non-rigid
side (flange side), while in specimens 20 and 23 the threaded part of the bolt was
situated on the T-stub side.

27 2T
kN kN
[ A
400 400
300 300
//
: /
200 200
/_1_3_/__/_14 / calculated 27 =156 kN
L~ ——alculated 2T=122kN /
I
100 A 100
0 - 0
1 2 3 mm 1 2 3 mm
a. load - deformation diagrams b. load -deformation diagram
specimens 5; 13 and 14 specimen 6
5 is tightened up to the preload
13 is tightened with handwrenches
14 is non-tightened
(influence of tightening)
27 2T
kN kN
A |
400 400
o
300 300

e calculated 2T =243 kN

/
200 200

calculated 2T =147 kN
100 /

100
0 > 0 —
1 . 3 mm 1 2 3 mm
c. load-deformation diagram d. load -deformation diagram
specimen 7 specimen 15

Fig. 4.3. Load-deformation diagrams of test specimens where collapse of the column flange is the
determining factor (collapse mechanism II).
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Despite of the clear influence of the bending stresses all specimens have a sufficient
safety factor.

4.3 Tests to check T-stub flange to column connection design

Five tests were executed to check the philosophy that the design method of T-stubs
can be applied also to connections where either the T-stubs or the column flange
can collapse.

The test results and specimen dimensions are summarized in table IIL.

Table I11
calculated 2T
T-stub column fl. A
plate 2xXB,=
thickness mech. mech. mech. mech. =2x0,7x
test T-stub A B I IT X 2B, fracture safety determ.
no. test specimen mm kN kN kN kN kN load factor mech.
24 17 371.4 516 472 914 485 595 240 A
25 20 423 728 471 914 482 653 231 A
26 25 456 881 464 914 471 650 214 A
27 20 453 728 542 1310 542 680 225 A
28 25 479 881 517 1310 517 709 222 A

The test specimens were made of the same material as test specimens 10 and 12.
The T-stubs were made of the same plate material as specimens 1 through 4.

The test results, summarized in table III, can therefore be compared with the cal-
culated values 2T of table I and II when collapse of the flange is the determining
factor.

If, however, fracture of the bolts is the determining factor, the calculated value
of 2T must be adjusted because different bolts were used with another actual fracture
load. Table III shows that the column flanges were rigid with respect to the T-stub
flanges. The plastic deformations of specimen 12 together with the deformations of
specimen 24 and 26 as shown in figures 4.6a, 4.7a and 4.8a, clearly indicate that the
philosophy developed in chapter 2 is applicable.

The adjacent figures 4.6b, 4.7b and 4.8b give the position of the prying force 0.

Because the discussed theories are based on the existence of a prying force 0
which causes an increase of the bolt force, the bolt forces of several test specimens
were measured.

When the applied load of each bolt is plotted against the measured bolt tension a
diagram as shown in figures 4.9 and 4.10 is obtained.

These figures clearly show the presence of a prying force Q.
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Fig. 4.6a. Plastic deformations of specimen 24. Fig. 4.6b. The location of prying force Q
specimen 24.

i i .
Fig. 4.7a. Plastic deformations of specimen 26. Fig. 4.7b. The location of prying force Q
specimen 26.
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Fig. 4.8a. Plastic deformations of specimen 12. Fig. 4.8b. The location of prying force Q
specimen 12.
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Fig. 4.9. Bolt tension versus
applied load.

Fig. 4.10. Bolt tension versus
applied load.
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5 Deformations

The theories developed in the preceding pages are based on the limitations imposed
by the strength of the materials of the connection. However, the deformations of
the connections (the rotations) are also important in determining the behaviour of
the structure as a whole.

These rotations have to be studied in the serviceability limit state as well as in the
limit state of collapse.

Theoretically, three limitations on the rotations can be introduced.

1. In the serviceability limit state, the rotations should not be too large. Large
rotations cause large deformations in the structure and these deformations may
become the determining factor.

2. 1If the theory of plasticity is used and if the connections are made in redundant
systems, then a necessary requirement is that in the limit state of collapse the
rotations are large enough to allow the formation of plastic hinges in other parts
of the structure.

3. When the ultimate design load is reached, the rotation of the connections should
not be too large, because otherwise the overall deformation of the structure will
be so large that one has to conclude that the structure has collapsed already
before reaching the ultimate load of the connection. Bakker [1] has worked out
these three limitations on the deformations as allowed in the T.G.B. Staal and
according to the deformation capacity necessary to apply the theory of plasticity.

My allowable rotation
in the serviceability limit state

R :rotationcapacity

S : allowable rotation before
collapse

Myt:Llimit design moment

Myt

Fig. 5.1. Limitations on the rotations of beam-to-column connections.
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He developed a graph which shows these limitations. An example of such a graph
is given in figure 5.1.

The point G represents the maximum allowable rotation in the serviceability limit
state (limitation 1). The line R—R’ gives the minimum required rotation before
collapse (limitation 2) and the point S represents the maximum rotation before
reaching the limit design load (limitation 3). A moment-rotation diagram of a
connection must pass through the shaded areas in order to satisfy these limitations.

Only diagram, a, in figure 5.1 fulfils these requirements.

To check the moment-rotation behaviour of connections designed according for-
mulas (3-35) and (3-36), twenty-three bolted moment connections were tested as
shown in figure 6.1 and 6.2.

6 Tests to check the deformation limitations

6.1 Introduction

Twenty-three bolted moment connections were tested as shown in figure 6.1 and 6.2.
In this chapter these test results are discussed in order to demonstrate that the

Fig. 6.1. Overall view of the test set up.

jack
E&{ — tensile bars loadcell

beam | testspecimen

frame

l co(umn /
\ oil pump

Fig. 6.2. Testing scheme.
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requirements of the moment-rotation diagrams are satisfied if the test specimens
are designed in accordance with formulas (3-35) and (3-36).

The connections are designed in such a way that collapse of the column flanges is
the determining factor. Ten specimens have column sections HE 200 A and beam
sections IPE 300.

The other thirteen specimens have column sections HE 300 A and beam sections
IPE 400.

The differences between the various connections and also the test results are given
in the tables IV and V.

In the next a brief description of the test specimens is given.

Specimen: Description:

1 and 3 through 7
11 and 13 through 18
8,12, 19 and 23 T-stub connections without web connectors
2 and 22 end plate connections not extended beyond the tension flange
9, 10, 20 and 21 end plate connections.

} T-stub connections with web connectors of steel angles.

The flange of test specimens 5, 7, 8, 10, 12, 14, 15, 19, 21 and 22 are stiffened with
bolted plates parallel to the flanges while specimens 6 and 16 have stiffening plates
welded between the flanges.

The bolts of specimens 3 and 13 are tightened up to the preload. The other bolts
of the specimens are tightened with hand wrenches.

6.2 Explanation to the results mentioned in table IV and V

For each specimen the moment-rotation diagram is determined.

The yield moments corresponding to the limit states of deformation as discussed in
chapter 5 are obtained by assuming that the points G and/or S (of figure 5.1) lie on
the corresponding moment-rotation diagram.

To do so it is necessary to adopt a hypothetical beam length, as shown in [1].
In this case this length has been chosen to be 30 or 40 times the height of the beam.

For the yield stress of the beam the theoretical value of o, = 240 N/mm? has been
used.

For other parts of the specimen the actual yield stress has been determined. The
values obtained from the moment-rotation diagram can now be compared with the
theoretical yield moment of the connection (M,,) calculated according to the plate
buckling formulas of the T.G.B. 1972-Staal as well as with the theoretical yield
moment of the connection (M,,) calculated using formula (3-36) given in chapter 3.

The latter value of M,, is obtained by multiplying the limit state load, of the
column flange in tension 27, by the center distance of the beam flanges. For the
specimens with an end plate connection not extended beyond the tension flange
(2 and 22), the distance between the center of the bolts in tension and the compressed
beam flange is used.
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It is assumed that the bolts and that part of the end plate which is symmetrical
about the tension flange of the beam can be treated as an equivalent T-stub connec-
tion and can be designed according to the methods proposed previously for T-stub
connections.

This assumption is made in agreement with a suggestion of W. McGuire [2]. A
possible objection to this method can be that the limit state load 27 should be multi-
plied by the center distance of the T-stubs instead of by the center distance of the
flanges. In that case, the values of M,, will increase by about 8% with respect to the
previous mentioned values.

Another questionable assumption is that the bending moment carried by the web
connectors is neglected. The tests revealed this bending moment to be present. A
correct method to take this bending moment into account has not yet been found.

The design formulas (3-35) and (3-36) are on the safe side if the calculated values of
M, are smaller than the values obtained from the moment-rotation diagrams. This
implies that the calculated limit state of collapse is reached before the limit state of
deformations.

The tests of tables IV and V show formula (3-36) to be correct in all cases where
the beam span in a braced frame is equal to 30 times the beam height (with the
exception of specimen 12).

In the cases however where the beam span is 40 times the beam height, formula
(3-36) does not always holds true.

This means that the proposed design method is not applicable for beams with
spans larger than 30 times the beam height.

For longer spans a test must be executed to determine the limit states of deformation.

In the tables IV and V buckling results are also mentioned because these results
were obtained simultaneously; they will not be discussed here however. Figure 6.3
shows why test specimen 12 of table V did not reach the expected yield moment.

The tension side of the connection was fabricated as two separated T-stubs, each
of which connects half of the beam flange.

The T-stub webs yielded due to the reduced stiffness and due to the effect of
prying force Q.

Fig. 6.3. The plastic deformations of specimen 12 of table V.
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Table IV

Column: HE200A
0,=262 N/mm?*
all bending moments are given in kNm

Beam: IPE 300

Bolts: M20-10.9
EI =17600 kNm?
M,= 150,7 kNm (o, = 240 N/mm?)

yield moment corresponding

highest  to the limit states of M,; calculated with
test test deformations obtained from  buckling formulas remarks (buckling
no. specimen load moment-rotation diagram and formula (3-36) observed)
G G S buckling formula
beam beam TGB (3-36)
span span 1972
9m 12 m Staal
END PLATE CONNECTIONS
2 ! 98 64 33 90 55 52 Bk
T
9 143 127 87 125 75 66 138 **
10 % : 152 160 123 150 75 112 122 %%
T-STUB CONNECTION WITHOUT WEB CONNECTORS
T
8 L | 149 129 94 200 67 114
T-STUB CONNECTION WITH WEB CONNECTORS
1 w 167 129 9 150 76 67 150%*
3 159 176 136 160* 76 67 130 %%
bolts in tension are
4 145 116 85 155% 76 67 bolts M16 10.9
5 144 140 105 250%* 76 114 132%%
6 180 227 168 190*
7 192 173 130 200* 76 114 167 %%*

* yalues obtained by extrapolation

*¥ connection moment where web buckling is observed

*** web buckling observed after testing



Table V (for continuation see page 52)

Column: HE300A
6, =265,5 N/mm?
t; = 14 mm

all bending moments are given in kNm

Beam: IPE 400

Bolts: M22 10.9
ElI =48600 kNm?
M,= 313,9 kNm (¢, =240 N/mm?)

»

yield moment corresponding

to the limit state of
deformations obtained from
moment-rotation diagram

M, calculated with

buckling formulas remarks (buckling
of T.G.B. 1972 and observed)
formula (3-36)

highest
test test
no. specimen load
G
beam
span
12m

G S
beam

span

16 m

buckling formula
T.G.B. (3-36)
1972

Staal

END PLATE CONNECTIONS

20 | 246 230 160 245 190 172
1|

219**

21 i 296 279 208 280 190

,;:
22 ! 206 237 165 220%* 145 160 kokk
1 i

12 270 188 116 265 154 258 270
j T-stubs separated
J i
19 g ‘] 300 314 235 340* 154 258 ook
1
23 } 255 237 163 280* 204 170
1

* values obtained by extrapolation
** connection moment where web buckling is observed
*** web buckling observed after testing
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Table V (continuation)

Column: HE300A Beam: IPE 400 Bolts: M22-10.9
0, =265,5 N/mm?* EI =48600 kNm?
t; = 14 mm M,= 313,9 kNm (o, =240 N/mm?)

all bending moments are given in kNm

yield moment corresponding M, calculated with

highest  to the limit state of buckling formulas remarks (buckling
test test deformations obtained from of T.G.B. 1972 and observed)
no. specimen load moment-rotation diagram formula (3-36)
G G S buckling formula
beam beam T.G.B. (3-36)
span span 1972
12m 16 m Staal

T-STUB CONNECTION WITH WEB CONNECTORS

11 300 272 197 350* 204 170 294 **

13 306 318 233 350* 204 170 Hkek

14 333 360 280 400* 204 258 327 **

15 340 282 219 450%* 204 258 327 %%

16 420 398 275 450% stiffening plates
between flanges
width of column

17 270 240 163 325%* 204 144 flange reduced
n=35 mm
270 %**
column flange

18 259 282 210 340* 199 87 thickness made
10 mm

* yalues obtained by extrapolation
** connection moment where web buckling is observed
*** web buckling observed after testing
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Figures 6.4, 6.5 and 6.6 give an impression of the large deformations which the
test specimens endured.

. PROEFSTUK 2

Fig. 6.4. The plastic deformations of test speci- Fig. 6.5. The plastic deformations of test speci-
men 2 of ta le I'V. men 7 of table 1V,

Fig. 6.6. The plastic deformations of test specimen 20 of table V (Plooi = web buckling).

An example of a moment-rotation diagram is given in figure 6.7. This diagram
corresponds to test specimen 1 (see table IV).

The shaded areas are constructed in agreement with the design requirements given
in the report of Bakker [1] by using the bending moment M, calculated with formula
(3-36).

The yield moment which corresponds to the limit state of deformation (where the
point G lies on the diagram), is also plotted in order to show how the values of tables
IV and V were obtained.

6.3  Additional tests

The moment connections discussed in the above paragraph are composed of over-
sized T-stubs and end plates and therefore the test results do not give a realistic
impression of the rotations which can occur when all parts of the connection are
designed efficiently.

For that reason four additional tests were executed, as shown in figures 6.8 and 6.9.
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Fig. 6.7. Moment rotation diagram of test specimen 1 of tabel IV.

The frames are tested at actual size.

These tests show the behaviour of a steel frame loaded to failure with an increasing
uniformly distributed load.

The connections in the frame are designed according the theories discussed in this
paper.

The types of connections are shown in figure 6.10 through 6.16. Adjacent to these
figures the moment-rotation diagrams with the limitations on the rotations are given
for a beam span equal to 30 times the beam height.

These figures show also that the connections allow large deformations. The results
obtained show that the design theory for T-stubs and column flanges in tension
discussed herein is correct. When the beam span is smaller than or equal to 30 times
the beam height the connections designed in accordance with this theory do not reach
the limit state of deformations before reaching the limit state of collapse.
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Fig. 6.8. Overall view of test set up of the steel frames.
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Fig. 6.9. Test set up of the steel frames.
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Fig. 6.12a.

Fig. 6.13a.
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Fig. 6.14a.

Fig. 6.15a.
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Concluding remarks

The tension side of statically loaded, bolted beam-to-column connections can be
designed with formula (3-35) and (3-36).

Formula (3-35) gives the design load if bolt failure governs collapse.

Formula (3-36) gives the design load if collapse of the flange of the T-stub or the
column is the determining factor (stiffened or not stiffened).

T-stub flange and column flange can be designed independent of each other.
For T-stub design the effective length a+4m+1,25n" can not exceed the width
of the T-stub flange.

The application of stiffening plates bolted parallel to the flanges is only significant
in the case where collapse of the flanges is the determining factor.

Moment connections designed with the above-mentioned formulas and applied
to beams in braced frames with spans smaller than or equal to 30 times the beam
height fulfil the deformation requirements as stated in the T.G.B. 1972-Staal.
The compression side should be checked separately.
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