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COMPUTER SIMULATION OF THE E.C.C.S. BUCKLING CURVE
USING A MONTE-CARLO METHOD

Abstract

The application of a Monte-Carlo simulation procedure to obtain the distribution
function of the maximum load of a hinged column with imperfections is discussed.
Buckling tests carried out by the E.C.C.S. on IPE 160 sections have been simulated.
Information concerning the column variables is obtained from the data-sheets of the
E.C.C.S. tests. The probability density function of each variable is derived or esti-
mated. A good agreement is found between the simulated buckling curve and the
experimental buckling curve.
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Computer simulation of the E.C.C.S.
buckling curve using a Monte-Carlo
method

1 Introduction

This paper describes a procedure for computer simulation of buckling tests, using a
Monte-Carlo method. The variation of the parameters which determine the load-
carrying capacity of a column is taken into account and the probability density-
function of the buckling load is derived.

In the past years, the European Convention for Constructional Steelwork (E.C.C.S.)
has carried out an extensive experimental programme on buckling of concentrically
loaded, hinged columns with imperfections. The results of these tests are discussed
in [1]. Most specimens tested were light-weight sections with flange thicknesses
e <20 (mm). The test series has been designed in such a way that a buckling curve
with a certain probability of failure could be derived. The buckling curve is defined
by means of characteristic stresses. According to the philosophy of the E.C.C.S., the
characteristic buckling stress o¢g is equal to

*
OcRr =l’}’l—k'S

where m is the mean value and s is the standard deviation of the buckling stresses;
k is a constant which depends on the type of probability density function (p.d.f.)
of o¢cpg.

The value of k must be chosen so that: prob. [6cg < ocg] is equal to 2.3%. If ocg
follows a Gaussian p.d.f. the value of k = 2.

Information concerning the type of p.d.f. of buckling stresses could be obtained
only through experiments at the time the E.C.C.S. tests were started.

The number of tests involved is large, however. The p.d.f. is estimated from the
results.

As shown in [1], the shape of the experimental buckling curve is determined mainly
by the test results on IPE 160 sections. The buckling curve is shown in (Fig. 1)
together with the significant test results. A statistical analysis of the buckling stresses
proved that the buckling stresses are Gaussian distributed and therefore

*
Ocg =m—2-§

Due to the great number of tests involved in the above-mentioned approach, it cannot
be extended easily to all the various sectional shapes and dimensions. Neither time
nor means are available to carry out these tests.

Theoretical solutions are sought, therefore which are able to predict the behaviour
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of an imperfect column with sufficient accuracy and which also take into account the
random nature of the imperfections and the mechanical properties. Two problems
can be recognized which must be solved.

1. To compute the buckling load of a concentrically loaded column, given certain
imperfections and mechanical properties.

2. To compute the probability density-function of the buckling loads or stresses,
given the imperfections and mechanical properties are random variables.

It is obvious that the first problem must be solved before the second problem can be
tackled. Batterman and Johnston [2]. Stiissi [3], as well as Beer and Schulz [4] have
discussed numerical methods for solving the case of a concentrically loaded column
with certain imperfections. These methods are used to carry out the computations
involved in the outlined procedure and they will be discussed briefly in chapter 3.
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This paper is concerned primarily with the solution of the second problem, however.
A Monte-Carlo simulation procedure is applied to derive the p.d.f. of the buckling
stresses. The results of the E.C.C.S.-tests on IPE specimens are analysed and used to
check the validity and accuracy of this kind of approach. Information concerning
the imperfections and mechanical properties of these sections has been obtained
from the data sheets which were established for each test specimen. The p.d.f.’s
of the column variables can be derived from this information. These functions are
used as input-sources for the Monte-Carlo simulation procedure.

Finally, a buckling curve is computed with known probability of failure. This
curve compares well with the experimental E.C.C.S. buckling curve derived from the
same specimens.

2 Computer simulation of buckling curves

The buckling load of a hinged column with imperfections can be described by the
following relation

PCR :f(o-yts O-y(:’ Oy, eOafO, A, E> /1)

where o, = yield stress in tension
o, = yield stress in compression
. = residual stress
e, = eccentricity
fo = amplitude of the initial curvature

[

A = area
E = Young’s modulus
A = slenderness-ratio

It should be emphasized that the variables which appear in this relation are random
variables. The number of variables can be reduced if o,, is assumed to be equal to
and that E is constant; the relation can then be written as

Pcr :f(o'y, G,,€0,f0, 4, A).

Proof of the influence of each variable on the scatter of the buckling load Py can be
obtained through correlation analysis of tests results, as shown by Loof for the
E.C.C.S. tests [5].

According to the criteria of the E.C.C.S., the characteristic buckling load is equal
to

Gyc’

Peg = Pcr—k-s

P¢r = characteristic value of the buckling load
Pz = mean value of the buckling load

s = standard deviation of the buckling load

k = constant such that prob [Pcg < Pog] = 2.3%



It is obvious that the value of k depends on the type of p.d.f. of Pcg. A value for Py
can be determined, without much difficulties, from experiments. A theoretical solu-
tion for P¢g, is much more difficult to obtain, however. Pcg is a function of a number of
random variables, consequently P.g follows a multi-dimensional probability density-
function. This function is not known generally nor can this function be derived from
information concerning the p.d.f.’s of the random variables, except in a few special
cases. A purely theoretical solution of the problem in question is not feasible there-
fore in most cases. Two approximate solutions, however, have been suggested; they
are discussed below and a new approach is described.

2.1 Method I

Various combinations of the variables are introduced into the formula for P.g. Each
combination leads to another buckling curve (varying 1). By comparing the computed
buckling curve with the experimental E.C.C.S. buckling curve, a combination of
variables can be estimated which fits the experimental curve most closely over the
whole range of slenderness-ratios. This method has been adopted and developed by
Beer and Schulz [4] .From a probabilistic point of view, this method is questionable
because a lower bound curve is approximated. There is no reason to assume that the
obtained solution is unique.

Extrapolation to other shapes and dimensions is realised by modifying the combina-
tion of the variables. No information concerning the scatter in the buckling loads is
obtained, however. This method is therefore not truly probabilistic.

2.2 Method II

Schor [6] and Carpena [1] assume that all variables are uncorrelated, and furthermore
that the function f(o,,0,, €, fo, 4, 1), can be linearized. A linear function is obtained
through a Taylor expansion of f

- - - s = 0 _
f(o'yao-w eO:fOsAs/I) ::f(o'y? Oy, eO’foaAai) + —L(O_y"o-y)_i_
do,

0 0 0 - 0 -
+-L(0,—6,) + L (eo—2o) + —L(fo—Jo) + L (A—A)+
aa,( ) aeo(o 0) afo(fo fo) 6A( )
a} So;y_&y)z a} (0,—6,.)2_'—

dc2 2! da2 2!

y
Disregarding all terms of the second order and higher, the expansion reduces to

- - - 7 = 0 _
f(o-ya Ops eOafO’ A’ }“) zf(o.y' () eO’fO’ A» j’) + # (O-y - O-y) +

y

0 0 0 = 0 —
+ L (6,—6,) + =L (eg—20) + —L(fo—Fo) + L (4—A).
aa,( ) aeo( 0—¢o) afo(fo o) 6A( )



The mean value of Pcg can be found by substituting (G, G,, &, fo, A) into this formula
PCR zf(gy 61'5 éO)an Z) /1)‘

The variance of Py, after squaring and summing, is equal to

2 2 2 2 2
B2 Y (2 Y (Y (2 o (220
da, do, Oe, fo 04
where s, = standard deviation of Py
s, = standard deviation of g,
s, = standard deviation of o,
s, = standard deviation of e,

s, = standard deviation of f,
s, = standard deviation of 4

It is now possible to compute the mean value of Pcx and the variance at each slender-
ness-ratio 4, provided function f(o,, 0,, €, fo, 4, ) can be solved. The mean values
and variances of each variable must also be known. The first derivatives of f can be
obtained analytically, by partial differentiation of f or graphically from curves show-
ing the dependance of f upon each variable. If furthermore is assumed that Pc
follows a Gaussian p.d.f., the desired buckling curve can be derived by computing
for each A the value (Pcg—2s,).

Essential in the above-mentioned approach are the assumptions that the variables
are uncorrelated and that function f can be linearized. The latter assumption must be
viewed with reserve and may lead to significant errors.

The described approach can be checked against the E.C.C.S. buckling curve. The
mean values and the variances of the variables can be obtained from the data-sheets
available for each test specimens. Comparison of the computed buckling curve and
the experimental buckling curve will show whether the linearization of f is allowed.

This method itself is basically a probabilistic approach and therefore in agreement
with the criteria of the E.C.C.S.

2.3 Method IIT

Carrying out a buckling test simply means loading a column, with a certain combina-
tion of imperfections and mechanical properties, until failure occurs. The values of
the imperfections and the mechanical properties of a particular column cannot be
predicted in advance.

Once a column has been selected for a test, however, these values can be measured.
If the mathematical model of such a column is sufficiently accurate, the buckling
load of this column can be computed instead of actually carrying out a buckling test.
This can be repeated for any number of columns. None of the columns are actually
tested, all buckling loads are computed, the tests are “simulated”. The simulation



method can be further generalized if it is recognized and acknowledged that the
values of the imperfections and the mechanical properties present in a column are
primarily due to chance. It is sufficient to know the distribution function of each
variable and the correlations between these variables, to carry out the simulation
procedure. One drawing from the population of each variable, giving proper attention
to the correlations between them, results in a combination of variables which can be
assigned to a hypothetical column; the buckling load Pcg of this hypothetical column
can then be computed. If this procedure is repeated a number of times, an equal
number of P.g values is obtained. The mean value as well as the variance of Pcg
can be determined and a p.d.f. can be fitted to the histogram of Pcg-values. By doing
this, the E.C.C.S. testing procedure is exactly simulated. It is very important of course,
to select proper values for each variable. This can be done correctly by deriving the
p.d.f.’s of the variables from representative data. A simulation procedure as described
above is called a “Monte-Carlo” method. This method is particularly suited for a
digital computer because numerous repeated computations are involved.

Drawing values from a particular p.d.f. can be done by generating random numbers
which follow the same distribution law as the variable in question. This method allows
for correlation of any kind to be introduced between the variables.

The validity of a Monte-Carlo simulation procedure will be tested by applying
it to the E.C.C.S. tests carried out on IPE 160 sections. The data-sheets of these
tests allow the derivation of most p.d.f.’s involved. The computed buckling curve
can be compared directly with the experimental buckling curve because the shape of
the latter curve is determined completely by the test results obtained on the IPE 160
specimens. Application of the discussed method to other sections simply means modi-
fying the p.d.f.’s of the variables so that they correspond to these sections.

No buckling tests have to be carried out, only simple measurements are necessary
to determine the representative values of the imperfections and the mechanical
properties. These measurements are less expensive, however.

The application of the Monte-Carlo simulation method to the E.C.C.S. buckling
tests on IPE 160 specimens is discussed in chapters 4, 5 and 6.

3 Numerical solutions for the buckling load of a column with imperfections

Most solutions for the buckling load of a column with imperfections are based on
numerically solving the equation which describes the state where in each point of a
column the external moment M,, is equal to the internal moment M; (Fig. 2)
2
Py= gL %Y
dx?

For a given value of P, the deflected shape of the column is assumed: y = f(x). The
external moments are computed and are assumed to be equal to the internal moments.

Next the shape of the column corresponding to these internal moments is determined.
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P is equal to the buckling load of the column if and only if the computed shape of
the deflection curve is identical to the assumed one. This is generally not the case
and therefore the computation of the deflected shape is repeated starting, however,
with the shape obtained in the first computation. It has been shown by various
authors that this procedure is rapidly converging and that a sufficiently accurate
value of P will be obtained after only a few iteration steps [3, 4].

Next consider the column shown in (Fig. 2). This column is identical to a column
with hinged ends and twice its length. A load P is applied to this column with an
eccentricity e, ; the column is assumed to have an initial curvature which is part of a
sinewave, the amplitude is f,.

Fig. 2

As a first approximation the deflected shape of this column is also assumed to be
a sinewave, the end-deflection of the column is equal to “a”. The column is divided
into a number of segments. The external bending moments are determined at the
ends of each segment. The deflections of the column are computed numerically, by
means of the reduced moment-area method and applying Simpson’s rule.

For each segment the angle of rotation is computed; the deflection at the top of
the column is equal to the sum of the products of the angles of rotation and the seg-
ment lengths. The computations are repeated until the computed shape is identical
to the assumed shape.

In this iteration process the computed column shape of each previous step is used
for the next step. The iteration is stopped if a certain degree of accuracy is obtained
between two successive shapes. It is not yet necessary, however, that the computed
end-deflection of the column is equal to the assumed end-deflection “‘@”. There are
two methods which can be used to bring those two deflections into agreement. In
the first method, the value of P is kept constant; the length of the column, however,
is varied until both deflections are equal. Next other values of “a” are adopted and
for each “a” a corresponding column length (or slenderness-ratio 1) is computed.
From these pairs of values (4, @), the maximum column length is determined for which
the given column will be in equilibrium under the load P (Fig. 3). Then the value of
P is varied and the computations are repeated. To each value of P there corresponds
a maximum column length 1 (or 4,,,). In the second method the length of the column
is kept constant, the value of P is varied until a value is found for which the assumed
deflection is equal to the computed deflection. Next “a” is varied and other values
of P are found. From the pairs of values (P, a) the collapse load of a column of given
length is determined (Fig. 4).
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The first method has been used by Beer and Schulz for their computations [4].
They were interested in determining complete buckling curves for each combination
of variables. The maximum length of a column, for any given value of P, is less
interesting for the Monte-Carlo simulation procedure because a column is never
tested by increasing the column length during the test until failure occurs. Therefore
the second method has been applied. For each column of given length and given
imperfections, the critical load P¢y is computed.

The computation of the deflected shape of a column is rather complicated because
the bending stiffness “EI,” of the column is not a constant but appears to be a func-
tion of the bending moment M and the load P. The column will yield over part of
the cross-section, if P is large or if the deflections are large. The bending stiffness
“EI.” will be reduced, due to this yielding. Residual stresses present in the column
cause premature yielding. The value of the yield stress and the dimensions of the
section will also affect the relations between M, P and EI. The bending moment is
not constant over the length of the column, and consequently the bending stiffness
EI varies over the column length. The relations between M, P and EI can be deter-
mined for each particular section if the stress-strain diagram, the distribution of o,
over the cross-section and the residual stress distribution are known. For a constant
value of P, an increasing part of the cross-section is assumed to yield, the corres-
ponding stress and strain distributions allow the values of the bending moment M
and the curvature to be computed. For an IPE 160 section these relations are shown
in (Fig. 5). The dimensions of this section are nominal, the stress-strain diagram is
assumed to be bi-linear and o, = 24.0 kgf/mm?. The residual stress is assumed to be
parabolically distributed in the flanges and constant in the web; the maximum
compressive residual stress is equal to 0.3¢,. On the vertical axis of figure 5 the ratio
B between the actual bending stiffness and the elastic bending stiffness is plotted; on
the horizontal axis the ratio M between the actual bending moment and the plastic
bending-moment is plotted. These curves provide the information necessary for the
computation of the buckling loads.

From the remarks above it can be observed that the column parameters can be
divided into two groups. The yield stress, residual stress and the dimensions affect

12
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the shape of the M —P — B relations while the eccentricity and the initial curvature
affect the deflected shape through the external bending moment.

All the column computations which will be discussed in a later chapter, have been
carried out under the following assumptions: the stress-strain diagram is bi-linear;
the yield stress is constant over the cross-section; the residual stress distribution is
parabolic in the flanges and constant in the web, the distribution is symmetric; the
initial curvature is half a sinewave and the eccentricity is constant over the length of
the column. Only weak-axis buckling is considered. It should be mentioned that the
computations involved in the Monte-Carlo simulation procedure are rather tedious
because for each column a new set of M —P — B relations must be determined.

The accuracy of the computer programme is checked by comparing the output

A a G
this programme Beer and Schulz?')

0.594 03 07 078
0310 03 06 05
1025 03 053 053
L132 03 07 047
1400 03 036 033
1725 03 026 028

1) These values are obtained from [4] p. 40, fig. 5 and [12] p. 115, fig. 5.6.
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with results obtained by Beer and Schulz on a similar column. This comparison is
shown in the table below. The column is a HEA 200; the initial curvature f, = //1000,
the maximum compressive residual stress is 0 or 0.5¢,, the column dimensions are
nominal. The slenderness-ratio and the critical stress are given as dimensionless
parameters

Z:&\/a—y and G ="CR
E

T oy

4 Column data

A considerable number of the E.C.C.S. buckling tests has been carried out on IPE
sections. These sections are responsible for the shape of the experimental buckling
curve as derived by the E.C.C.S. It is for this reason that these sections are chosen
for the Monte-Carlo simulation procedure.

The testing procedure, established by committee 8.1* of the E.C.C.S., demanded
that the following measurement be carried out on each test specimen

~

1. The dimensions of the specimen at 0, %/,
2. The initial curvature at 0, 4/,
3. Weighing of the specimen

Hlw

>

11
11

~

N N

B

2

The mechanical properties of each bar from which specimens were cut had to be
determined

4. Tensile tests
5. Stub-column test

These data had to be recorded on a standard data sheet.
In the next paragraphs the relations between the column variables and the measure-
ments are discussed.

4.1 Eccentricity

The dimensions of the sections are used to compute the eccentricity which is intro-
duced because the testing procedure requires that the load must be applied at the
center of the web of the specimen. The center of the web, however, does not neces-
sarily coincide with the center of gravity of the whole section.

The center of the web lies a distance (¢++a) from the right. The center of gravity
of the flange lies 45 from the right. The difference between the two distances is equal
to: (c+%a)—1b.

The center of gravity of the complete section is determined for the nominal area.

* Committee 8.1 on “Buckling tests”.
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The eccentricity of the web is computed from the following relation

ey = [c+3a—3b]

n
where Ap = area of a flange
A, = nominal area

If both flanges are considered separately e, is equal to

A A
=" 12 T Ar2 [(cy +

Ya,—%b)+(c,+%a, —%b
24 241 21) (2 292 22)]

n

The mean values of the dimensions, determined over the length of the column, are
introduced into this formula.

4.2  Initial curvature

The initial out-of straightness has been measured at five points along the length of a
specimen. A digital computer is used to find the best fit of a sinewave through the
points A, B, C, D and E. The amplitude f, of the sinewave is considered as the para-
meter of the initial curvature. The mean value of f; for both flanges is determined.

4.3 Area

The weight G of a specimen is used to compute the real area of the section. The
specific weight of steel is assumed to be

0 =7.85x10" ¢ kgf/mm?3

15



The area is equal to

G
ol

| =length

o = specific weight

G = weight of the specimen
A = area

4.4 Tensile tests

Tensile tests were executed on specimens taken from the flanges, according to Euro-
norm 2-57. The yield stress obtained from these tests is denoted a,,.

Additional tensile tests were carried out on strips taken from the flanges and the
web. This yield stress is denoted o,,. The figures below show how the specimens are
taken from the bar.

EURONORM STRIPS

4.5 Stub column test

Stub column tests were carried out on specimens with slenderness-ratios A =12, 15
and 20. The specimens were taken from the same length of bar from which specimens
were cut for the buckling tests. The yield stress obtained from these tests is called o,.

The individual column data are not reproduced in this paper because they are too
numerous. In the next chapter histograms of these data are given, however. The data
have been reduced according to the relations given in the previous paragraphs.

The IPE 160 sections studied in this investigation are coded 17, 18, 19, 20, 21 and
22 in Table A-1, page 30 of ref. [1]. The eccentricity and initial curvature parameters
are obtained from 150 columns; the yield stresses and areas are obtained from 189
columns.

5 Probability density functions of the column variables

The experimental data described in chapter 4 have been used to derive histograms
and cumulative histograms. Cumulative distribution functions are fitted to the cumu-
lative histograms. Throughout this chapter, the Kolmogorov-Smirnov test of signi-

16



ficance is applied to find the best fit [7], except for the initial curvature. The Kolmo-
gorov-Smirnov test concentrates on the deviations between the hypothesized cumu-
lative distribution function F(x) (C.D.F.) and the observed cumulative histogram
F'(x;) (C.H.).

F'(x;) = i/n where x; is the i-th largest observed value in a random sample of
size n.

The following statistic is considered

D= m"ax [F'(x;)— F(x)]

i=1

D is, according to this formula, the largest of the absolute values of the differences
between the hypothesized C.D.F. and the observed C.H., evaluated at the observed
values in the sample. Critical values of D can be given at various levels of significance
which will result in either accepting or rejecting the hypothesized C.D.F. Let a be
the level of significance, then for large n, the critical statistic is equal to

«=0.10 D=122//n
«=0.05 D=136//n
o= 0.01 D =1.63/\/n

5.1  Eccentricity

The histogram of e, is shown in (Fig. 6). The eccentricity varies between 0 and 2.0 mm.

40
32
>
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w244
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Fig. 6 ECCENTRICITY eg mm
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The shape of the histogram suggests an asymmetrical p.d.f. Three C.D.F.’s are
hypothesized

a Gaussian C.D.F.
a Log-normal C.D.F.
a Gamma C.D.F.

In Fig. 7 the observed C.H. is shown together with the hypothesized C.D.F.’s. The
maximum values of D which can be derived from this figure are

Gaussian C.D.F. D = max [F'(x;)— F(x)] = 0.566 —0.420 = 0.146

i=1

Log-normal C.D.F. D = max [F'(x;)—F(x)] = 0.915—0.830 = 0.085

i=1

Gamma C.D.F. D = max[F'(x;)—F(x)] = 0.900—0.835 = 0.065

i=1

Foo
1.0
0.9 ot
. o~ -
¥
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/C- g
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/ y ) L
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HEEEEE
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Fig. 7

The critical values of D are

o =0.10 D = 1.22/,/150 = 0.100
o = 0.05 D =1.36/,/150 = 0.111
o = 0.01 D = 1.63/,/150 = 0.133
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The log-normal and the Gamma C.D.F. cannot be rejected at the 109 level of
significance. The Gamma-model is chosen for the eccentricity. The parameters of
this model are

m = 0.5949 mm . A =2.798
s = 0.4609 mm k =1.663

5.2 Initial curvature

The initial curvature parameters f, has been determined for each column length 1
involved in the simulation. It is assumed that f, follows a Gaussian distribution
function. In this case the Kolmogorov-Smirnov test is not used to check the validity
of this assumption but the more refined method of ““the moments™ is used instead.
This method is described in some detail in chapter 7. The following values are obtain-
ed for the critical parameters of this test.

[=1012 1=1380 1=1748 [=1932 1=2392 1=2944
m 0.68 1.13 1.47 1.65 1.95 2.78
s 0.29 0.30 0.50 0.25 0.35 0.49
Vi —1.40 —2.16 —4.91 —1.18 —0.60 1.84
Vs —0.98 0.65 4.81 0.38 —0.92 1.09

The hypothesized Gaussian distribution function should be rejected if V', >3 and
V, > 3. This is only the case for /=1748 mm (4 =95). The hypothesized p.d.f. is
accepted therefore for initial curvature. Fig. 8 shows the computed values of m.
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) . /* L /_/
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////#/ TRV
% l L mm
0 1012 1380 1748 1932 2392 2944
Fig. 8
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Also plotted are the values m+2s. It can be seen in this figure that the relations
(I, m) and (I, m+2s) can be approximated by straight lines. This indicates that the
initial curvature parameter can be described independent of the column length through
the value f,/l. This parameter is considered in this paper; (Fig. 9) shows the histo-
gram of fy/l. From (Fig. 8) the following values are determined for the Gaussian
model

m = 0.00085 / (mm)

s =0.00020 / (mm)

a0}

321

FREQUENCY

24

16

©

nrmoll L

(o] 024 048 072 0.96 12

Fig. 9

-3
INITIAL CURVATURE fc/L-10 mm

5.3 Area

The histogram of the area is given in (Fig. 10). The observed C.H. and the hypothesized
Gaussian C.D.F. are shown in (Fig. 11). Preliminary computations indicate that
hypothesizing an asymmetrical C.D.F. is not justified. The mean area is equal to
m = 2047.33 mm?. The standard deviation is equal to s= 81.15 mm?.

The parameters k£ and 4 of a Gamma C.D.F. are a function of m and s.

ZC-=m; 1/——lf=s
A A

Substitution of the measured values of m and s into these formula gives

k = 636.51
A =0.3109
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For large k-values the Gamma C.D.F. approaches a Gaussian C.D.F.
The latter is the only function, therefore, which has been investigated. The Kolmo-
gorov-Smirnov test gives the following results.

D = max [F'(x,)— F(x)] = 0.730—0.610 = 0.120

i=1
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The critical values of D are

o =0.10 D =1.22/,/189 = 0.089
o =0.05 D =1.22/,/189 = 0.099
o =0.01 D =1.22//189 =0.118
The Gaussian model cannot be rejected at the 19 level of significance, which is a

rather questionable result. The Gaussian model is accepted, however, for reasons of
convenience. The parameters of this model are

m = 2047.33 mm?

s = 81.15mm?

For the simulation procedure, the variation in the area is assumed to be a result of
the variation in the flange thickness alone. The height, width and web thickness are
assumed to be equal to the nominal values. The mean value and the standard devia-
tion of the flange thickness are obtained from the following formulae

A = (h—2e)a+2be = (160—2¢)5+2 x 8.2e = 800+ 154¢

mean value
A—800 .
154

8.1 mm

me
standard deviation

5, = A = 0.527 mm.
154

The parameters of the Gaussian model for the flange thickness, are
m=2_8.1 mm

s = 0.527 mm

5.4 Yield stress

The yield stress has been determined from three different tests.

Euronorm m = 29.12 kgf/mm? s = 2.04 kgf/mm?
Strips m = 27.85 kgf/mm? s = 3.17 kgf/mm?
Stub-column m = 31.48 kgf/mm? s = 2.65 kgf/mm”®
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The values obtained from the stub-column tests have been used in the simulation
procedure because these values are the best measure for the yield stress in compression.
This yield stress also determines the buckling load of a column. The histograms of the
three yield stresses are shown in (Fig. 12, 13 and 14). The shape of the histograms
suggests a symmetrical p.d.f. Fig. 15 shows the observed C.H. of the stub-column
yield stress together with the hypothesized Gaussian. C.D.F. The Kolmogorov-
Smirnov value D is equal to

D = max [F'(x,)— F(x)] = 0.840—0.750 = 0.090

i=1
The critical value D is
o =0.10 D= 1.22/\/189 = 0.089

o =0.05 D = 1.36/,/189 = 0.099
o =0.01 D =1.63/,/189 = 0.118

The Gaussian model for the yield stress cannot be rejected at the 109 level of signif-
icance. The parameters of this model are

m = 31.48 kgf/mm?
s = 2.65kgf/mm?
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5.5 Residual stress

The residual stresses provided most difficulties because no extensive residual stress-
measurements have been done on IPE 160 sections. The distribution of the residual
stresses is assumed to be parabolic in the flanges and constant in the web. As the
parameter of this type of distribution the maximum compressive o, at the tip of the
flange is chosen. Some stub-column tests were carried out in Belgium for which load-
deformation diagrams were recorded [8]. From these diagrams the maximum residual
stress can be estimated. Ten such diagrams are given. The maximum compressive
residual stress is determined as a fraction of the yield stress.

A mean value & =0.204 and a standard deviation s =0.07 are computed from the
Belgian tests.

A value of o =0.61 is derived by Rokach. He performed a correlation analysis on
the IPE 160 test results [9]. This value of a, however, must also account for the effect
of the initial curvature. For the same sections Lenz arrives at a valus of o = 0.06 [10].

Young suggests a general formula for the maximum compressive residual stress in
I sections [11].

o, = 16.5|:1 _Aw :|
1-24,

A,, = web area
Ay = flange area
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For an IPE 160 a value of o = 0.238 is computed. Schulz proposes a value o =0.2
for this type of section [12].

The residual stress parameter o is assumed to be Gaussian distributed [13]. The
validity of this assumption cannot be tested due to lack of information. For the
simulation procedure, a mean value m = 0.20 and a standard deviation s =0.05 are
adopted.

5.6 Slenderness-ratio

No variation is assumed in the slenderness-ratio A. The length of each column has
been determined with sufficient accuracy and no variation is assumed in the width
of the column flanges.

For weak-axis bending, therefore, the radius of gyration is constant. The slender-
ness-ratio A can thus not be treated as a random variable.

5.7 Summary of the model parameters

Random variable Gamma C.D.F. Gaussian C.D.F.

A k m s
Eccentricity (mm) 2.798 1.663 - -
Initial curvature - - 0.00085/ 0.00020/
Area (mm?) - - 2047.33 81.15
Flange thickness (mm) - - 8.1 0.527
Yield stress (kgf/mm?) - - 31.48 2.65
Residual stress (kgf/mm?) - - 0.200, 0.050,

6 Generating random numbers

Random numbers with a Gaussian or uniform probability density function can be
generated directly on a digital computer. Standard procedures are generally available.
Values of the variables for which a Gaussian model is assumed, have been obtained
on a I.B.M. 1130 computer using the procedures RANDU and GAUSS. Generating
random numbers with a Gamma p.d.f. proved more difficult. No standard procedure
is available for the inversion of the incomplete Gamma function; therefore, a graphical
method is used. First the Gamma C.D.F. is computed and intervals of equal proba-
bility (2.5%) are determined.

Next random numbers with a uniform p.d.f. are generated and they are assigned
to these intervals. In this particular case, the random numbers lie between 0 and 10°;
they are assigned to each interval according to the following scheme

0- 2.500 interval 1 representative value x,
2501- 5.000 interval 2 representative value x,
5001- 7.500 interval 3 representative value x;

97501-100.000 interval 40 representative value x4q
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Each interval 7 is represented by a single value x;; x; is defined as the mean value of
the two boundary values of interval i. This is not correct. Theoretically x; should be
defined as the center of gravity of the area under the C.D.F. between the two boundary
values. The relatively large number of intervals, however, assures that the error will be
very small if the mean is considered instead of the center of gravity. The last interval
must be treated with special care, because x —o0. The largest observed value of the
eccentricity is chosen as the representative value of this interval. As an example of
the above-mentioned procedure, let a random number 11533 be generated. This
value corresponds to interval 5 and therefore to xs. This value of x is assigned to the
eccentricity. It is obvious that a Gamma p.d.f. can be approximated with increasing
accuracy by raising the number of intervals.

For each variable considered in the column simulation, a series of 1000 random
numbers has been generated. There is no need for a sophisticated procedure to com-
bine the variables because the variables are assumed to be uncorrelated. One must
beware, however, of sequential effects in the random numbers. A digital computer
generates random numbers according to a numerical procedure, very often the
Fibonacci-method is used. Consequently, each time the random number generator is
started, the same sequence of number appears. If the variables are combined according
to their rank-number, they will be strongly correlated: a large value of the yield stress
will be combined with a large value of the initial curvature, eccentricity etc. For this
reason more than the required random numbers have been generated and each
column variable has been selected at random from these numbers.

The combinations of variables obtained in this way are used as input for the com-
puter programme described briefly in chapter 3.

7 Results

Columns of various lengths have been examined. The corresponding slenderness-
ratios are A= 55, 75, 95, 105, 130 and 160. At each slenderness-ratio experimental
results are available which can be compared with the simulated buckling stresses.
Each group of experimental buckling stresses had a significant influence on the shape
and position of the experimental buckling curve.

A total number of 120 columns has been simulated on an I.B.M. 360/65 digital
computer; 20 columns at each slenderness-ratio.

The results of the computations are given in tables I through VI. The combinations
of variables which are assigned to each column are also given in these tables. Buckling
stresses are computed for the nominal area as well as for the real area. For each sec-
tion the real area is determined from the value of the flange thickness e. These
buckling stresses are also given in tables I through VI. Columns with a yield stress
less than the guaranteed value of 24 kgf/mm?, have not been included in the computa-
tions.

The probability density-function of the buckling stress is estimated at each
slenderness-ratio 4. Jaquet has shown that the experimental buckling stresses are
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Gaussian distributed [14]. He arrived at this conclusion by applying the method of
the central-moments to the test results. This method has been described in detail by
Fisher [15].

The same method is applied to check whether the simulated buckling stresses are
Gaussian distributed. A brief discussion of this method is given below. Consider a
variate x and a random sample of size n, drawn from the population of x. The sums
of powers of deviations from the mean are computed.

-

5, = Z(x—m): >k, = s3/(n—1)

53 = X(x—m)® > ky = ns/(n—1) (n—2)

54 = Z(x—m)* > kg = n[(n+1)s, —3(n—Ds3/n)/[(n—1) (n—2) (n—3)]

The two simplest measures of departure from normality are those dependent from
the statistics of the 3rd and 4th degree, defined as

g1 = ka,/kal2 ga = k4/k§

If the variate x is Gaussian distributed then g, and g, are also Gaussian distributed.
The sampling variances of g, and g, are

§2 = 6n(n—1)/(n—2)(n+1)(n+3)

§2 =24n(n—1)*/(n—3)(n—2)(n+3) (n+5)
Finally

are computed. For a perfectly Gaussian distributed variate x, the values of V; and
V, are equal to zero. For each symmetrical p.d.f. ¥; =0. A positive value of V;
indicates a positive skewness whereas a negative value of V, indicates a negative
skewness. V, is a coefficient of kurtosis (flatness).

A positive value of ¥, means that the p.d.f. is more filled out than a Gaussian p.d.f.
whereas a negative value of V, means that the p.d.f. is more pointed that a Gaussian
p.d.f.

The observed values of ¥, and V, determine whether the hypothesized Gaussian
p.d.f. is to be rejected. Jaquet suggests to reject the hypothesis if V; and V, are
greater than 3. For values greater than 2, the hypothesis should be reconsidered care-
fully.

The computed value of V; and V, are given in the tables below. The values have
been determined for the nominal area as well as for the real area.
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NOMINAL AREA

55 75 95 105 130 160
m 26.60 22.09 16.58 14.74 11.22 7.73
s 2.60 1.96 1.71 1.65 0.92 0.62
Vy — 1.44 — 091 — 0.22 0.88 0.08 —0.19
Ve 0.40 0.12 — 0.56 — 0.11 — 0.14 —1.13
REAL AREA

55 75 95 105 130 160
m 26.04 21.39 16.60 14.59 10.86 7.63
s 1.92 1.37 1.40 1.19 0.59 0.33
Vy — 1.80 0.43 — 0.05 0.29 — 0.14 —0.23
V, 0.45 1.07 0.14 0.05 1.77 —0.50

All values are shown to be less than 1.8, most of them being less than 1.0. There is
no reason to reject the hypothesis that the buckling stresses are Gaussian distributed.
Consequently the characteristic buckling stress ¢ can be computed as

*
Ocr =m—2s

The values of o at each slenderness-ratio are given in the next tables. The simulated
values and the corresponding experimental values of o¢p are given.

NOMINAL AREA

55 75 95 105 130 160
m 26.60 22.09 16.58 14.74 11.22 7.73
SIMULATION 2.60 1.96 1.71 1.65 0.92 0.62
m—2s 21.40 18.17 13.16 11.44 9.38 6.59
m 27.90 23.15 18.70 15.27 11.35 7.44
EXPERIMENT s 2.73 2.45 1.46 1.23 1.00 0.56
m—2s 22.40 18.29 15.78 12.81 9.35 6.32

REAL AREA
55 75 95 105 130 160
m 26.04 21.39 16.60 14.59 10.86 7.66
SIMULATION 1.92 1.37 1.40 1.19 0.59 0.33
m—2s 22.20 18.65 13.80 12.21 9.68 7.00
m 27.48 22.81 18.45 15.06 11.14 7.34
EXPERIMENT s 248 2.05 1.21 1.00 0.73 0.36
m—2s 22.52 18.71 16.03 13.06 9.68 6.62
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These results are also shown graphically in (Figs 16 and 17). A good agreement is
found between the simulated buckling stresses and the experimental buckling stresses
at slenderness-ratios A =55, 75, 130 and 160. At slenderness-ratios 4 =95 and 105
the simulated buckling stresses deviate significantly from the experimental buckling
stresses The maximum deviation is 17% (1 =95, nom. area).

The dotted lines, in (Figs. 16 and 17), correspond to a buckling curve fitted to the
simulated buckling stresses (real area).

The discrepancies between both curves at A =95 and A = 105 cannot be traced to
exceptionally large imperfections or unfavourable mechanical properties. Confidence
intervals have been determined for the means and the standard deviations. These
intervals are important because the means and the standard deviations are computed
from samples of limited size.
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Let m and s be the sample estimates, based on a random sample of size n; the con-
fidence interval of the mean is

"o . S — ro_ S
m =m—t-—<m<m=m+t—
n n

where m is the population mean and ¢ possesses a Student’s ¢ distribution with n—1
degrees of freedom.

The value of 7 is chosen to correspond to a 98%; confidence interval. The bounds of
this interval are given in the table below.
The confidence intervals of the simulated mean stress and the experimental mean
stress are shown in (Figs. 18 and 19).
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CONFIDENCE LIMITS OF THE MEAN 98%,

55 75 95 105 130 160

m 26.60 22.09 16.58 14.74 11.22 7.73

NOMINAL AREA m’ 28.12 23.20 17.55 15.68 11.74 8.08
m’ 25.08 20.98 15.61 13.80 10.70 7.38
m 26.04 21.39 16.60 14.59 10.86 7.66
REAL AREA m 27.16 22.17 17.39 15.26 11.19 7.84
m’ 24.92 20.61 15.81 13.92 10.53 7.48

It can be seen that the experimental mean stresses are almost systematically greater
than the simulated stresses, except at A =160. The confidence intervals, however,
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overlap slightly. The confidence interval of the mean stress obtained from the nominal
area is somewhat wider than the confidence interval which corresponds to the real
area. The reason is that dividing the buckling loads by the real area eliminates to
some extend the influence of the flange thickness. A small flange thickness corresponds
to a smaller buckling load but also to a smaller area, and vica-versa. Consequently,
the scatter in the buckling stresses will be reduced.

The confidence interval of the standard deviation s has been computed by observing
that the quantity X(x;—m)?*/s*> possesses a ¥? distribution with n—1 degrees of
freedom.

The confidence interval is given by
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2(x;—m)? —m)?
S/,=\/ Cry—m) <S<S,=J2(x, m)
73 71

¥, and ¥, are chosen such that they correspond to 5%, and 95%; confidence limits.
The computed values are given in the table below.

CONFIDENCE LIMITS OF THE STANDARD DEVIATION 90%;

55 75 95 105 130 160

s 2.60 1.96 1.71 1.65 0.92 0.62

NOMINAL AREA s’ 3.60 2.69 2.34 2.26 1.26 0.85
s” 2.05 1.56 1.36 1.31 0.73 0.49

s 1.92 1.37 1.40 1.19 0.59 0.33

REAL AREA s’ 2.66 1.88 1.92 1.63 0.81 0.45
s” 1.52 1.09 1.11 0.95 0.47 0.26

8 Conclusions

It has been demonstrated in this paper, that the distribution function of buckling
stresses can be derived theoretically. A buckling curve which corresponds to a con-
stant probability of failure can be determined from the distribution functions at the
various slenderness-ratios. The computed buckling curve is in reasonable agreement
with the experimental buckling curve. Deviations between the two curves are observed
at slenderness-ratios A =95 and A = 105. It has been pointed out by other investiga-
tions that the effect of imperfections and/or mechanical properties is most pronounced
at slenderness-ratios A = 90— 100 [2]. One of the assumptions in the discussed simula-
tion procedure is that all variables are uncorrelated. There is no reason to reject this
assumption except for the initial curvature and the residual stresses. It is believed that
some correlation exists between those two variables; consequently, the buckling
stresses may be affected unfavourably.

Application of the described procedure to sections other than the IPE 160 is a
rather simple matter. The distribution functions of the variables are not expected to
change in character; the parameters of these functions will vary. These values can be
determined by relatively simple and inexpensive measurements. Once buckling curves
have been obtained for various sections, the usefullness of multiple column-curves
can be decided upon. Adoption of multiple column-curves can only be justified if
significant differences are shown to exist between probabilistic column curves. The
buckling curves which are derived by means of the discussed procedure, are in the
right format to be used as a “strength function” in load factor design. This is generally
not true for most theoretically derived buckling curves.
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TableI A4=355

Nr. L Oy €y fo a b e h a Pcr O0crr OcrN  Nr.
(mm) (kgf/  (mm) (mm) (mm) (mm) (mm) (mm) (kgf) (kgf)  (kef/
mm?) mm?) mm?)
1 506 3416 0.83 1.04 5 82 8.42 160 0.1260 56586 26.99  28.15 1
2 506 2336 055 088 5 82 839 160 0.2233 41971 2
3 506 27.85 128 1.07 5 82 7.18 160 0.2581 40659 21.34  20.23 3
4 506 31.67 044 081 5 82 8.74 160 0.1303 57751 2691  28.73 4
5 506 3485 050 090 5 82 8.04 160 0.2401 55752 27.35  27.74 5
6 506 3470 128 0.73 5 82 8.02 160 0.2374 52886 25.99  26.31 6
7 506 3124 023 072 5 82 7.85 160 0.1221 54492 27.13  27.11 7
8 506 3224 052 086 5 82 8.09 160 0.0944 55397 27.08  27.56 8
9 506 3029 064 095 5 82 7.67 160 0.1541 48787 24.63  24.27 9
10 506 30.15 142 0.79 5 82 8.16 160 0.2014 47209 22.95 2349 10
11 506 2934 042 1.19 5 82 8.00 160 0.1862 50294 24.75 2502 11
12 506 30.52 0.83 092 5 82 824 160 0.1584 51741 25.00 2574 12
13 506 31.04 021 081 5 82 7.81 160 0.2682 57418 28.67 28.57 13
14 506 36.19 0.61 0.65 5 82 8.31 160 0.2155 57917 27.85  28.81 14
15 506 3539 052 044 5 82 7.10 160 0.2002 53026 28.00 2638 15
16 506 3392 016 097 5 82 891 160 0.2225 57686 26.56  28.70 16
17 506 3178 0.16 1.06 5 82 9.01 160 0.2323 60876 27.83  30.29 17
18 506 3429 142 0.70 5 82 8.46 160 0.2295 50175 23.86 2496 18
19 506 30.83 058 0.69 5 82 935 160 0.1643 60453 26.99 3007 19
20 506 3201 0.69 063 5 82 6.95 160 0.1366 46680 24.96 2322 20
Table I A=75
Nr. L oy €y fo a b c h o Pcr Ocrr OCRN  Nr.
(mm) (kgf/  (mm) (mm) (mm) (mm) (mm) (mm) (kgf) (kgf/  (ksf/
mm?) mm?) mm?)
21 690 31.54 071 081 5 82 7.76 160  0.2020 42930 21.52 21.36 21
22 69 31.31  0.79 141 5 82 8.06 160 0.1430 42377 20.76  21.83 22
23 690 30.50 025 139 5 82 771 160 0.1715 42151 21.21 2097 23
24 690 31.68 0.19 0.76 5 82 827 160 0.2375 47276 22.80  23.52 24
25 690 29.55 025 0.88 5 82 8.17 160 0.1411 45540 22.13  22.66 25
26 690 3205 021 121 5 82 9.00 160 0.2321 49174 2249 2446 26
27 690 3124 055 093 5 82 9.17 160 0.2106 49090 22.19 2442 27
28 690 3242 079 1.12 5 82 8.15 160 0.1766 44073 21.45 21.93 28
29 690 3294 0.07 152 5 82 9.11 160 0.2801 48933 22.21  24.34 29
30 690 30.15 0.64 1.02 5 82 8.36 160 0.2211 43319 20.75 2155 30
31 690 3199 055 156 5 82 7.47 160 0.2497 39357 20.18 19.58 31
32 690 3052 0.88 146 5 82 6.98 160 0.2657 35125 18.73 17.48 32
33 690 2839 0.07 161 5 82 9.00 160 0.2192 44460 20.34  22.12 33
34 690 3089 0.07 1.64 5 82 8.77 160 0.1602 47407 22.04  23.59 34
35 690 2943 031 1.08 5 82 7.89 160 0.1887 40141 1992 1997 35
36 690 3127 029 155 5 82 8.45 160 0.1047 46621 22.19 23.19 36
37 690 29.13 027 084 5 82 7.83 160 0.1582 43848 21.86  21.81 37
38 690 3694 040 090 5 82 8.13 160 0.1993 50870 24.79 2531 38
39 690 28.18 0.83 1.16 5 82 830 160 0.2278 39861 19.80  19.83 39
40 690 29.36 027 1.08 5 82 8.86 160 0.2438 45613 21.07 22.69 40
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Table III 1=95
Nr. L oy € fo a b c h o4 Pcr ocrr O0crnN  Nr.
(mm) (kgf/ (mm) (mm) (mm) (mm) (mm) (mm) (kgf) (kgf/  (kaf/
mm?) mm?  mm?)
41 874 3454 058 128 5 82 7.82 160 0.1491 36172 18.05 18.00 41
42 874 39.03 128 1.75 5§ 82 7.64 160 0.2088 33020 16.71 16.43 42
43 874 34091 1.07 1.07 5 82 7.35 160 0.1561 33186 17.18 16.51 43
44 874  30.13 025 1.69 5 82 7.45 160 0.1909 31729 16.29 15.79 44
45 874  29.98 042 155 5 82 7.95 160 0.2631 32727 16.17 16.28 45
46 874 29.17 042 131 5 82 7.79 160 0.1729 33545 16.78 16.69 46
47 874 27.70 1.28 204 5 82 7.56 160 0.2701 26730 13.67 13.30 47
48 874 2822 0.14 1.63 5 82 8.65 160 0.2549 35072 16.45 17.45 48
49 874 30.73 128 182 5 82 7.04 160 0.1772 27868 14.79 13.86 49
50 874 2992 107 1.94 5 82 794 160 0.2870 29699 14.68 14.78 50
51 874 2845 0.6 1.61 5 82 7.2 160 0.1842 30554 1611 1520 51
52 874 3427 036 121 5 82 828 160 02690 37220 17.94 18.52 52
53 874 2617 009 140 5 82 877 160 0.1413 36645 17.04 1823 53
54 874 3066 023 080 5 82 809 160 0.1510 38397 18.77 19.10 54
55 874 2654 042 119 5 82 832 160 0.1983 33961 16.32 1690 55
56 874 3236 007 147 5 82 790 160 0.1831 36275 17.99 18.05 56
57 874 3487 107 1.60 5 82 734 160 02053 31289 1621 1557 57
58 874 3141 044 178 5 82 823 160 0.2651 33596 1625 1671 58
59 874 3259 1.64 145 5 82 741 160 02124 29532 1523  14.69 59
60 874 3046 014 070 5 82 804 160 0.1471 39469 19.37 19.64 60
Table IV 1=105
Nr. L oy €y fo a b c h a Pcr Ocrr OcrN  Nr.
(mm) (kgf/  (mm) (mm) (mm) (mm) (mm) (mm) (kgf) (kef/  (kef/
mm?) mm? mm?)
61 966 34.35 200 128 5 82 7.70 160 0.1532 27861 14.03 13.86 61
62 966 31.55 0.38 1.30 5 82 6.94 160 0.1567 27964 14.96 13.91 62
63 966 3340 046 124 5 82 8.69 160 0.1477 35256 16.49 17.54 63
64 966 31.93 0.58 183 5 82 873 160 0.2262 31934 14.89 1589 64
65 966 27.14 1.07 195 5 82 8.64 160 0.2422 28005 13.14 13.93 65
66 966  29.65 036 199 5 82 7.88 160 0.2458 28225 14.02 14.04 66
67 966 31.49 200 191 5 82 7.52 160 0.2368 24807 12.97 12.34 67
68 966 30.02 052 1.76 5 82 7.03 160 0.2153 25920 13.77 12.90 68
69 966 33.19 075 149 5 82 7.99 160 0.1813 30607 15.07 15.23 69
70 966 3570 0.07 1.51 5 82 829 160 0.1848 34468 16.60 17.15 70
71 966  29.59 142 222 5 82 740 160 0.2758 24003 12.38 11.94 71
72 966  30.77 075 128 5 82 8.49 160 0.1543 32212 15.28 16.03 72
73 966 33.94 0.50 2.18 5 82 8.41 160 0.2704 30570 14.59 15.21 73
74 966 3379 042 1.82 5 82 8.18 160 0.2239 31199 15.15 1552 74
75 966 3298 036 212 5 82 7.82 160 0.2649 28934 14.44 1440 75
76 966 3151 0.16 120 5 82 891 160 0.1434 36597 16.85 1821 76
77 966  32.03 029 209 5 82 8.29 160 0.2594 30308 14.59 15.08 77
78 966 2924 052 135 5 82 7.54 160 0.1629 28758 14.66 1431 78
79 966 31.08 025 1.66 5 82 7.18 160 0.2040 27797 14.59 13.83 79
80 966 3226 070 226 5 82 7.74 160 0.2825 29292 13.70  13.58 80




Table V. A=130

Nr. L oy ey fo a b c h a Pcr OcrRr OCRN Nr.
(mm) (kgf/ (mm) (mm) (mm) (mm) (mm) (mm) (kgf) (kgf/  (kaf/
mm?) mm?) mm?)
81 1196 34.67 009 171 5 82 8.65 160 0.2334 24992 11.72  12.43 81
82 1196 33.53 071 275 5 82 730 160 0.1932 19399 10.08 9.65 82
83 1196 31.73 0.64 129 5 82 7.93 160 0.2405 22183 10.98 11.04 83
84 1196 29.27 1.07 163 5 82 843 160 0.1752 22378 10.67  11.33 84
85 1196 31.44 094 184 5 82 7.74 160 0.0975 21288 10.69  10.59 85
86 1196 3295 071 290 5 82 8.50 160 0.2073 22198 10.53  11.04 86
87 1196 31.15 023 237 5 82 8.08 160 0.2045 21985 10.75 10.94 87
88 1196 33.99 094 223 5 82 8.58 160 0.1393 23315 10.99 11.60 88
89 1196 33.51 044 244 5 82 8.42 160 0.1116 23390 11.16  11.64 89
90 1196 32.37 1.00 1.10 5 82 8.65 160 0.2213 24011 11.26 11.95 90
91 1196 33.22 023 108 5 82 8.75 160 0.1686 26259 12.23 13.06 91
92 1196 36.06 040 237 5 82 8.20 160 0.2034 22833 11.07 11.36 92
93 1196 27.63 0.07 306 5 82 8.04 160 0.1756 20820 10.22 10.36 93
94 1196 34.44 019 220 5 82 7.22 160 0.1854 20545 10.75 10.22 94
95 1196 29.99 0.58 170 5 82 7.85 160 0.2327 21292 10.60 10.59 95
96 1196 35.48 071 251 5 82 8.35 160 0.2174 22511 10.79 11.20 96
97 1196 32.35 046 225 5 82 9.24 160 0.1897 25153 11.36 12.56 97
98 1196 31.21 064 137 5 82 8.42 160 0.2495 23322 11.12  11.60 98
99 1196 29.41 0.38 278 5 82 9.05 160 0.1467 23773 10.84 11.83 g9
100 1196 26.95 0.61 3.11 5 82 7.97 160 0.2815 19144 9.44 9.52 100
Table VI 1 =160
Nr. L oy € fo a b c h o4 Pcr OcrRr OcRN  Nr.
(mm) (kgf/  (mm) (mm) (mm) (mm) (mm) (mm) (kef) (kef/  (kgf/
mm?) mm?) mm?)
101 1472 35.37 0.03 222 5 82 826 160 0.1567 16683 8.05 8.30 101
102 1472 30.26 009 120 5 82 6.98 160 0.1977 14276 7.61 7.10 102
103 1472 3243 128 1.8 5 82 8.73 160 0.1762 16641 7.76 8.28 103
104 1472 33.95 027 174 5 82 8.76 160 0.2422 17512 8.15 8.71 104
105 1472 34.80 0.61 267 5 82 7.09 160 0.1957 13707 7.25 6.82 105
106 1472 32.33 042 228 5 82 8.44 160 0.1368 16573 7.89 8.25 106
107 1472 29.21 003 196 5 82 7.56 160 0.2153 14980 7.63 7.45 107
108 1472 33.37 050 1.82 5 82 8.65 160 0.2313 17055 8.00 8.4% 108
109 1472 31.57 1.64 075 5 82 8.03 160 0.1848 15609 7.66 7.77 109
110 1472 29.10 031 213 5 82 833 160 0.1758 16221 7.79 8.07 110
111 1472 36.58 033 219 5 82 7.97 160 0.2043 15886 7.84 7.90 111
112 1472 3279 0.75 207 5§ 82 7.48 160 0.2704 14326 7.34 7.13 112
113 1472 33.64 0.03 123 5 82 8.44 160 0.2239 17297 8.24 8.61 113
114 1472 33.82 0.64 321 5 82 7.16 160 0.1649 13626 7.16 6.78 114
115 1472 3335 1.07 324 5 82 8.38 160 0.1934 15519 7.42 7.72 115
116 1472 32.21 128 3.14 5 82 7.36 160 0.1594 13589 7.03 6.76 116
117 1472 33.06 0.88 228 5 82 7.80 160 0.1129 15139 7.56 7.53 117
118 1472 2794 042 189 5 82 7.57 160 0.2040 14696 7.48 7.31 118
119 1472 2747 0.64 132 5 82 827 160 0.1825 16205 7.81 8.06 119
120 1472 31.63 0.09 240 5 82 7.77 160 0.2985 15029 7.53 7.48 120
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