HERON contains contributions
based mainly on research work
performed in I.B.B.C. and
STEVIN and related to strength
of materials and structures and
materials science.

Jointly edited by:

STEVIN-LABORATORY

of the Department of

Civil Engineering of the
Technological University, Delft,
The Netherlands

and

I.B.B.C. INSTITUTE TNO

for Building Materials

and Building Structures,
Rijswijk (ZH), The Netherlands.

EDITORIAL STAFF:

F. K. Ligtenberg, editor in chief
M. Dragosavié

H. W. Loof

J. Strating

J. Witteveen

Secretariat:

L. van Zetten
P.O. Box 49
Delft, The Netherlands

HER®N

INVESTIGATION OF THE EFFECT OF

Contents

THE BOUNDARY CONDITIONS ON
THE LATERAL BUCKLING

PHENOMENON, TAKING ACCOUNT OF
CROSS SECTIONAL DEFORMATION

W

~N O W

Ir. D. Bartels
Ir. C. A. M. Bos
(1BBC)
Summary .
Introduction .
Principles of analysis .
Establishing the energy equation

Expressions for the deformations of the
web

Expression for the stresses .

Calculation of the lateral buckling load
Interpretation of the resuits of the analysis
Experimental verification

Concluding remarks .

vol. 19
1973
no. 1

o 2 L W

11
14
17
18
21
24



B



INVESTIGATION OF THE EFFECT OF THE BOUNDARY CONDITIONS
ON THE LATERAL BUCKLING PHENOMENON, TAKING ACCOUNT
OF CROSS SECTIONAL DEFORMATION

Summary

The lateral buckling load of beams can be calculated by the energy method. With
this method the effect of the deformation of the beam section on the lateral buckling
load can be taken into account, which is not possible with the usual method of
determining the lateral buckling load of beams.

Since the cross-sectional deformation for particular boundary conditions, depend-
ing on the length of the beam, may have a non-negligible influence on the lateral
buckling load, the effect of this deformation on the lateral buckling load was investi-
gated for various boundary conditions.

To this end, general expressions were established for the displacements of the
beam sections and for the stresses in the beam, which, in combination with Bryan’s
energy equation, lead to a solution of the problem.

The types of support considered here are: forked bearings, semi-forked bearings
and bearings by restraint of the bottom flange of the beam.

The results of the investigation were compared with those obtained with the usual
method of analysis which is based on non-deformable sections and forked bearings
and were verified with reference to a number of model tests.
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Notation

A
A to 4,
a
b
C, to Cq
E
e
G

cross-sectional area of a flange
constants in the displacement function
web thickness

flange width

constants in the displacement function
modulus of elasticity

flange thickness

shear modulus

depth of section

polar moment of inertia

torsional moment of inertia

moments of inertia about z-axis and y-axis
plate stiffness = Ea>/12(1 — u?)

span of beam

support moment

internal moment in beam

sum of support moments

load

shear force

uniformly distributed load

static moment

static moment of flange about neutral axis
work

strain energy

lateral displacement of beam

lateral displacement of top flange
lateral displacement of bottom flange
factor for unequal support moments M, = (1 +o)M
restraint parameter f = M,/ql*

energy increase of beam

energy increase of bottom flange
energy increase of top flange

energy increase of web

Poisson’s ratio

normal stress in direction x and y
shear stress

normal stress in bottom flange

normal stress in top flange



Investigation of the effect of the boundary
conditions on the lateral buckling
phenomenon, taking account of cross
sectional deformation

1 Introduction

The usual methods of analysis for the lateral buckling of beams (twist-bend buckling)
are based on the assumption that, apart from warping, no deformations of the cross
sections of a beam will occur [1]. Because of this assumption, only those types of
bearing can be introduced into the analysis which, except for warping, do not allow
any cross-sectional deformations to take place. The most familiar and, in terms of
analytical technique, the simplest bearing of this kind is the forked bearing.

It has been established that, on this assumption, the calculated lateral buckling
loads for rolled beam sections differ very little from the actual correct value. How-
ever, for compound sections, particularly those of large depth and with thin webs,
this assumption results in too coarse an approximation. The lateral buckling load
calculated in this way is liable to be much too large because, besides warping, consid-
erable cross-sectional deformations may occur [2]. It will be investigated what effect
such deformations have upon the lateral buckling load of rolled sections in the case
where the bearings consist of forks, “semi”-forks or bottom flange restraints.

The standard of comparison adopted for this purpose is the lateral buckling load
of a beam with non-deformable sections supported in forked bearings and analysed
by the same method. Thus there are four different cases, which will now be considered
in more detail:

Forked bearings and non-deformable beam sections (corresponding to the usual method
of analysis):

By “non-deformable sections™ is meant that the cross-section of the beam in the
deflected position is unchanged (see Fig. 1.1). Warping of the section due to torsion
and shear force may occur, however. The forked bearing prevents lateral displacement
of the beam at the bearing and also prevents rotation of the beam about the longi-
tudinal axis.

Fig. 1.1
Forked bearing, non-deformable beam
sections.

I over a bearing II at mid-span



Rotations about axes perpendicular to the longitudinal axis of the beam, and
translational displacement in the direction of the longitudinal axis, can freely occur.

Forked bearings and deformable beam sections

This second case differs from the preceding one only in that the deformation of the
section in the span (the region between the supports) of the beam is now brought
into the analysis. At the bearings the deformation of the beam section is prevented
by the forked bearing arrangement (see Fig. 1.2).

Fig. 1.2
Forked bearing, deformable beam sections.

I over a bearing II at mid-span

Semi-forked bearings and deformable sections

This third case differs from the second in that now a limited amount of deformation
is possible also over the bearings. Since a semi-forked bearing prevents only the
lateral displacements of the two flanges and prevents rotation of the bottom flange.
Deformation of the beam web can occur at the bearings, together with simultaneous
rotation of the top flange. In this case therefore all the sections of the beam can
undergo deformation in the deflected position (see Fig. 1.3).

Fig. 1.3
Semi-forked bearing, deformable beam
sections.

I over a bearing II at mid-span

Bearings by restraint of the bottom flange, deformable sections

In this last case the bearings prevent only the lateral displacement and the rotation
of the bottom flange, whereas the top flange can undergo both lateral displacement
and rotation at the bearings. So in this case, too, all the sections of the beam have
undergone deformation in the deflected condition (see Fig. 1.4). Just as with the
forked bearings, rotations about the axes perpendicular to the longitudinal axis of
the beam, and translational displacement in the direction of that axis, are possible.

Warping of the end sections due to torsion and shear force is not restrained in
any of the above-mentioned cases. Since the deformations cannot be brought into
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the analysis if the sections are considered as a whole, the beam is conceived as being
composed of three parts. The flanges are regarded as members subject to flexural and
torsional loading, while the web is regarded as a plate subject to double bending
and torsion.

Fig. 1.4
Bottom flange restraint, deformable beam
sections.

I over a bearing II at mid-span.

2 Principles of analysis

The loading case adopted is that of a uniformly distributed load acting on the top
flange. This form of load application is a very unfavourable one with regard to
lateral stability and is moreover of frequent actual occurrence.

The analysis is based on the following assumptions:
— The material is completely elastic, i.e., Hooke’s law is unrestrictedly valid.
— The web of the beam section is sufficiently thin in relation to its depth to enable
the theories of plates to be applied to it.
The principal curvature of the beam at the instant of lateral buckling is small and
therefore negligible.
The beam has a thin-walled bisymmetrical I-shaped cross-section.
— The loading on the beam acts in the plane of the web and remains acting vertically
when the beam has deflected laterally.
There are no residual stresses in the beam section.
— The co-ordinate axes are assumed to be as indicated in Fig. 2.1.

%4% Fig. 2.1

y System of co-ordinates adopted.

|

|

In general, the lateral buckling load of a beam is taken as equal to the smallest load
for which, besides the undeformed state of equilibrium, a laterally deflected state of
equilibrium is also possible. The beam is then in neutral equilibrium.

This lateral buckling load is calculated by means of the method of energy. To this
end, an expression for the energy of the beam in an adjacent state of equilibrium is
established. This energy can be expressed in displacements of, and stresses in, the
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beam section. The stresses can in turn be expressed in terms of the load, the dimen-
sions of the beam, and the co-ordinates in the system of coordinate axes adopted.
For the displacements of the beam section a suitable method of expression, in the
form of a trigonometric series, has been developed.
The constant coeflicients in this series must be so determined that the load becomes
a minimum. This minimum is the lateral buckling load which it is desired to determine.

3 Establishing the energy equation

Since the deformation of the web should be taken into account in the analysis, the
beam is conceived as composed of three parts. The flanges are regarded as bar-type
members loaded in bending and torsion, while the web is regarded as a plate subject
to double bending and torsion. As a result of this subdivision of the section it is
necessary to express the external loading of the beam in a system of internal stresses
in the section.

The internal strain energy AU is provided by the stresses which are produced in the
beam in consequence of the transition from the undeformed position to an adjacent
deformed position of the beam.

The external work AT is provided by the stresses already present in the beam in
consequence of the external loading at the instant of transition from the undeformed
position to an adjacent deformed position.

Bryan’s energy equation, which was derived for the instability of plates [3] can be
applied to the web of the beam. This equation is as follows:

ow \? ow ow ow \?
=1 _ v
ATEW*“ 2 i{nx<ax> +2nxy ax ay + ny(ay) }dF"I‘

K 82 82 2 62 62 62 2
+—j’[ —”§+VZ> —2(1-;0{»% . ——~W> HdF
2 Fl\0Ox Jy 0x* 0y 0x0y

where:
Am,, = AU—AT = increase in the energy of the web as a result of the de-
formation
Ed’® .
K = ——— =plate stiffness of the web
12(1—p%)

F = h-l = area of the plate

! = length of the beam

h and a = depth and thickness of the web respectively

w = deflection of the plate in relation to the undeformed position
ny, ny, n., = normal forces in the plate.

On substitution of:
1
2(1+w)

Ny=0,"a;N,=0,"0; Ny, =0

xy'a



Bryan’s equation becomes:

1 +h/2

A, —j [ (owi+owy+20,w w )dxdy+
0 —h/2

1 +h/2 3 L +h/2

+ = j [ Wit Wiy +2uw oW, y)dxdy—l-G j j w2, dxdy (3.1

0 —h/2

The subscripts ,x and ,xy denote partial differences with réépect to these quantities,
)

v and w, 62w
Ox 6xay

W =
For the flange the increase in energy on transition from the undeformed position to
an adjacent deformed position we can make use of the general energy equation for
bar-type members [4]:

l
=1 (j) I:Elyu”z +EIlp"*+ GKB'* — Pu'*+2Mu'" f— P (fj + ?) B? «—aWyﬁz] dz

X

An = increase in energy = AU—AT

P = an axial force in the member ; in this equation, compression is reckoned
as positive, whereas in the following calculations it is reckoned as
negative

W, = distributed load perpendicular to the beam

M = moment due to P, W, and the eccentricity of P

K = torsional moment of inertia, further designated as 7,

I, = polar moment of inertia

A = cross-sectional area

I' = warping stiffness; for one flange we may put I' =0

o = distance from the line of action of P to the shear centre

e = eccentricity of P in relation to the neutral axis

u = horizontal deflection

Z =2pol, — [y(x*+y*)dA4

A

B

I

<

= torsion angle
= moment of inertia in the weaker direction
a = distance from load application point to shear centre

<

The co-ordinate axes xyz in this equation are replaced by the axes zyx.
If each of the flanges is considered separately as a “bar-type” member, then we
can write by approximation for that member:



M =0

W, =0 (the external load is replaced by an equivalent system of internal
stresses; see Chapter 5)

P/A = o, = normal stress in the flange

r =0

Because of the symmetry of an I-section with respect to the x-axis in the system of
co-ordinate axes xyz, in which the equation has been established, we have:

Z=0

On substitution of the above the general energy equation for bar-type members
becomes:

1
An=1 g [ELu"*+GIB"*+0,Au* +0,1,p*] dx (3.2)

Since the flange and the web are joined together, it is evident that the horizontal
deflection “u” of the flange must be equal to the deflection “w” of the web at its
junction with the flange. Also, the angular rotation f of the flange must be equal to
the angular rotation of the deformed web at the web-to-flange junction. For the top

flange these conditions of connection can be written as follows:

=-3)
u=w, where w,=w =-3

ow h
B=w,, where w,, = W<y = — 5)

On substitution of these conditions into the general energy equation (3.2) we obtain
for the energy increase Am, of the top flange on transition from the undeformed
position to the adjacent deformed position:

1
Am, =4 [ [EIW} o+ GIw}, + 0 AWE  + Ol Wiy ] dx (3.3)
0

where:

I, moment of inertia about the y-axis
I, = torsional moment of inertia

I, = polar moment of inertia

A = cross-sectional area of flange

o,, = normal stress in top flange

w, = displacement of top flange

Il
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The subscripts ,x and ,y denote partial differences with respect to these quantities.
All the above-mentioned quantities refer to the top flange only.

In analogy with the above, the following equation for the energy increase Am, can
be established for the bottom flange:

l
Amy =% [ [ELWg o+ GLW; o+ 0 AW 40 1wy ] dx (3.4)
0

where:
o, = normal stress in bottom flange
w, = displacement of bottom flange

For the energy increase of the beam as a whole, on transition from the undeformed
position to an adjacent deformed position, we now have:

Arn = Ar,,+ An,+ Am, 3.5

This energy equation is generally-valid and can therefore be used for the analysis of
the four cases mentioned in the introduction, provided that for each case a suitable
mode of expression for the web deformation is employed.

4 Expressions for the deformations of the web

Forked bearings and non-deformable beam sections

Any arbitrary lateral displacement (to be referred to simply as ‘“‘displacement”
in the further treatment of the subject) of the web of a beam can be expressed as
follows:

w(x, y) = w(x) w(y) @1

For beams with non-deformable sections the displacement at the instant of lateral
buckling comprises a translation and a rotation (see Fig. 1.1). The following exact
relationship can be given to present these displacements in the y-direction:

w(y)=A,+A;"y

The bearings determine the course of the displacements in the x-direction. Since the
forked bearing prevents rotation and translation relatively to the x-axis, all displace-
ments of the web at such a bearing are zero. The course of the displacements in the
x-direction is approximated by the first term of a trigonometric series:

X

l

w(x) = A;sin
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Substitution of the expressions for w(y) and w(x) into equation (4.1) yields the follow-
ing expression for the displacement of the web:

w(x, y) = sin? (C4+Cs-y) (4.2)

Forked bearings and deformable beam sections

For beams with deformable sections we can start from the generally-valid equation
(4.1). From Fig. 1.2 it appears that in this case the course of the displacements of the
web in the y-direction can be expressed as follows:

W) = W)+ w(»)s (4.3)
where:
w(y), = displacement of the undeformed sections due to rotation and
translation
w(y), = displacement due to deformation of the web

For w(y), the same expression can therefore be used as in the case of non-deformable
sections:

W)= A;+A4,y

The displacement w(y), can be represented with fair approximation by the following
expression (see Fig. 4.1):

.2
+A6sm—Z—y

&y
h

ny

w(y), = A sin h

+ Ascos

My Fig. 4.1
=W(y)y  Deformation of the web.

By a suitable choice of the constants A,, A5 and A, the deflection curve w(y), can be
approximated with sufficient accuracy.

Since we are in this case, too, considering forked bearings, we can adopt for w(x)
the same expression as in the preceding case:

X

w(x) = A5 sin ]
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On substituting the expressions for w(x) and w(y) into (4.1) we obtain, for this case,
the following expression for the displacement of the web of the beam:

w(x, y) = sin <C4 4 Csy+Cosin ™Y

l

2ny
A + C7cos A + Cgsin A ) 4.4)

Semi-forked bearings and deformable sections

In relation to the preceding case now only the boundary conditions differ, so that in
this case the course of the web deformation in the y-direction can likewise be repre-
sented by the expression:

w(y) = w(p)a+w(»),
and
2my

7Iy+A5cos I

w(y)=A,+A4, y+A,sin A

W + Agsin—=
The course of the displacements in the x-direction, i.e., w(x), is different from that
in the preceding case. Since the origin of the co-ordinate axes is located on the neutral
axis, however, it is merely necessary to add a constant term to the expression for
w(x), as obtained above, to give us the expression for the displacements in the x-
direction for the present case:

w(x) = A;+ A, sinn~—lx
As the end sections cannot undergo completely free displacements, a number of
subsidiary conditions will also have to be satisfied. The bottom flange does not
rotate, but is held in flat contact with the bearings by the pressure exerted by the load.
Proceeding from the assumption that the web is rigidly connected to the flange, it
follows that the tangent to the web at this rigid connection must be vertical. A
further condition to be satisfied is that the top flange cannot undergo lateral displace-
ment, which means that the web cannot undergo displacement at its junction with
the top flange either. These conditions can also be expressed as follows:

w(x,y) =0 for (x,»)=(0,+h/2) and (I, +h/2)
w(x,»)=0 for (x,y)=(0, +h/2) and (] +h/2)
w(x,y) =0 for (x,y)=(0,—h/2) and (I, —h/2)

Substitution of the expressions for w(x) and w(y), with these conditions, yields the
following expression for the displacement of the web in this case:

2r
+ C, sm—h—l} +

+ C, cos A + Cg smzz))) 4.5)

w(x,y) = + %(C2+2C3)y (C2+2C3)sm + Czcos 7

+ sm—-— <C4+C5y+C6 sin——

l h
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Bearings by restraint of the bottom flange, deformable sections

The expressions for w(x) and w(y) for the case “‘semi-forked bearings and deformable
sections” can be used in the present case also, except that in the subsidiary conditions
the requirement as to non-displacement of the top flange now does not apply, so
that only the following subsidiary conditions remain:

w(x,y) =0 for (x,y)=(0,+4/2) and (I, +~/2)
wy(x,y) =0 for (x,y)=(0,+h/2) and (I, +1/2)

In analogy with the preceding case we obtain the following expression for the
displacement of the web of the beam:

Wix, y) = =3 (C2+2C3)—Cy + F(Ca+2Co)y+Cysin Y +

h
+ C, cos%y + C, sinz%) + sin%C <C4+C5y+
+ Ce sinn—hy + C, cosn—hy + Cgsin 2Z—y> (4.6)

By imposing certain restrictions as to this displacement it is possible to derive from
this general expression for web displacement the expressions for the displacements in
the three preceding cases.

With the extra condition w(x, y) =0 for (x, y)= (0, —k/2) and (I, —h/2), which
results in substitution of C; = —n/2(C,+2C,), the expression (4.6) becomes the
expression (4.5).

If the constant part (4,) in the expression w(x) = A4+ A sin nx/l is equated to
zero, which means that C; = C, = C; =0, the expression (4.6) becomes the expression
(4.4).

If we additionally put w(y), =0, hence C¢ = C; = Cg =0, we arrive at expression
(4.2) again.

Summarising, it can be stated that from the general case of bearings by restraint
of the bottom flange in conjunction with deformable sections it is possible to derive
all the other cases by equating the appropriate coefficients to zero in the most com-
prehensive expression for the displacement of the web of the beam (4.6).

5 Expressions for the stresses

For determining the expressions for the stresses in the beam we shall start from the
general loading case of a uniformly distributed load ¢ acting on the top flange of the
beam, with end moments M and aM over the supports, as indicated in Fig. 5.1. The

14



M(&é%f%i&‘&##?am h h-2e
K A
fe X e
I T b,
Fig. 5.1 ) Fig. 5.2
Load arrangement considered. Notation for I-section beam.

notation for the dimensions of the section is as shown in Fig. 5.2. The moment that
occurs in the beam at a distance x from the support referred to is then:

M(x) = $qx(1=x)+ M [1 -3 (1—a)} (5.1)
The shear force Q as a function of x is given by the following expression:
M
0(x) = 44(1—=2x) = (1 -2) (52)

The normal stress o, in the beam thus becomes:

M .
o, = (;C) Y =%{%qx(l—x)+M|:1 —’_;(L—a)}} (5.3)
In the top flange (y = — h/2) this normal stress will be:
—h x
Oxt = 57 Igx(l—x)+M | 1 — 7(1——0() (5.3a)

In the bottom flange (y = + h/2) this normal stress will be:

0= 2’; {—;—qx(l—x)-FM [1 - )76(1 —OC)]} (5.3b)

The shear stress o, = ,, in the web of the beam is:

_ 008w _ o[ L afh’_
S R & [Sf+z<1‘y ﬂ

Where S| is the static moment of a flange with respect to the shear centre.
With equation (5.2) this equation becomes:
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_ql(l—2x)—2M(1—oc)[S_gy2:| (5.4)

v 2lal,
where
ah?

S=Sf+—8—

The share of the flanges in the transmission of the shear force is therefore neglected.

q
1144
1:dy dx
h G G
nea e fan
o 374 ‘30,.3&‘« jdy
- > dx
<-—T ‘*»_b
TN TT T VT woy o,
0 6 oy, 20y
Gy Gxy Gxy+ sx—xydx G+ dex "3y @
Fig. 5.3 Element of the beam Element of the web dx dy

From equilibrium of an element dx dy of the web of the beam the following
expression is obtained for the normal stress o, (see Fig. 5.3):

ég!dydx + 53&’dxdy =0
dy 0x

o= — | Z2ay = L[sy—tayI4c
0x al

z

Basing ourselves on the assumption that the load g acts on the top flange of the beam,
we obtain from this boundary condition (see Fig. 5.4):

y=0:ay=—2q—a and therefore C=—%
q q
"
Ft v 4 L
I
h 411 _;- - __t_
el )b
L Fig. 5.4
uﬁL H’ ?? Proofa,,=——qfory=0

2a
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The expression for the normal stress o, thus becomes:

0= o [Sy=hay'~1L] (5-5)

The expressions for the stresses derived above, together with expressions for the
beam displacements derived in Chapter 4, can now be substituted into the energy
equation.

6 Calculation of the lateral buckling load

The lateral buckling load is calculated by substituting the following functions into
the energy equation (3.5)

An = An,+Arn,+ Am,

— the displacements of the beam (equation 4.6) and the respective functions derived
therefrom;
— the stresses (equations 5.3, 5.3a, 5.3b, 5.4 and 5.5).

As a result of this substitution we obtain energy equations for all four cases, the
change in the energy quantity An being expressed in:

— the section properties a, A, S, L, I,, I,,, A:
for a given section these quantities can be converted into numerical values;
— the material quantities E, G, u:
these can be converted into numerical values for a given material;
— the section property and material quantity K:
for a given section and a given material this can be converted into a numerical
value;
— the co-ordinates x, y:
these are determined by the integration limits;
— the constants C; to Cg;
— the load gq.

The constants C; to Cg should now be so determined that the following two condi-
tions are satisfied:

Arn = 0 (neutrality of the equilibrium);
Arn = minimum (stable initial state):

0An

oC 0

n

17



As a result of partial differentiation with respect to the constants C; to Cg we obtain
eight homogeneous linear equations in C; to Cg from which the lateral buckling
load g can be solved [5, 6].

This independent set of equations can be satisfied only in two ways, namely:

a. All the constants C; to Cg are zero: this represents a trivial solution: the beam
remains in its original position, i.e., ¢ becomes zero.

b. The determinant of the equation written in the form of an 8 x 8 matrix must be
zero. The values of the coefficients C; to Cg then remain indeterminate.

From the matrix of coefficients for the case of restrained bottom flange and defor-
mable sections the other three matrices of coefficients can be determined by means of
supplementary conditions and by equating some of the constants to zero (analogy
with the expressions for w: see Chapter 4). All the matrices of coefficients are sym-
metric with respect to the principal diagonal. The matrix of coefficients for the most
general case of flange restraint (8 x 8 matrix) is given on page 27.

Here the matrix for the semi-forked bearing and deformable sections (7 X 7 matrix)
can be derived by omission of the first row and first column, by adding to the second
column —n/2 times the first column, and by adding to the third column —= times
the first column (corresponding to C; = —n/2(C, +2C;): see Chapter 4).

The matrix for the forked bearing with deformable sections (5 x5 matrix) is
obtained by omission of the first three rows and columns (corresponding to C; =
C, = C; =0: see Chapter 4).

From this last-mentioned matrix the 2 x 2 matrix for the forked bearing with non-
deformable sections is obtained by omission also of the last three rows and columns
(corresponding to Cy = C,; = Cg =0: see Chapter 4).

From the matrix as a whole it appears that the effect of the support moments on
the lateral buckling load is determined by the sum of the support moments M, = (1 +
M.

7 Interpretation of the results of the analysis

A uniformly distributed load applied to the top flange is a very unfavourable method
of loading on a beam with regard to the risk of lateral buckling; besides, it is of
frequent occurrence. For this reason this type of loading has been chosen as the
starting point for the present analysis. Other methods of loading can be considered
by adapting the expressions for the stresses to such load types. With reference to a
specific example (rolled steel section IPE 600: see Fig. 7.1) the lateral buckling load
has been calculated with regard to the following four types of bearing, for the various
values of the sum of the support moments M(1+«) = BgI*, with B as the restraint
parameter:

— Forked bearings and non-deformable sections.
— Forked bearings and deformable sections.

18



— Semi-forked bearings and deformable sections.
— Bearings by bottom flange restraint, deformable sections.

It should once again be pointed out that this analysis is based on the following
assumptions:

— Hooke’s law is of unrestricted validity;
— there are no residual stresses in the section.

A

“r
e= 0.012) m
—»la0=0012m
h=06 m
Fig. 7.1
C——— Y Worked example IPE 600.

Forked bearings and non-deformable sections

This case is a first approximation of the ordinary case of lateral buckling. As can be
expected, the results of this analysis are in good agreement with those obtained by
the usual methods. Since the energy method constitutes the basis of this analysis
and since we have contented ourselves with a first approximation of the deflection
curve, the calculated values are somewhat too large (order of magnitude 1%).

Forked bearings and deformable sections (see Fig. 7.2)

The calculated lateral buckling loads for this case hardly differ from those obtained
in the preceding case. It is evident that, even though the differences are small, the
lateral buckling load in this case is certainly smaller than in the preceding one. This
reduction of the lateral buckling load, caused by the deformation of the beam
section, is not more than 4% in the region covered by the analysis. The greatest reduc-
tion will be found to occur in deep beams of short span. The said value of 4% relates
to an IPE 600 section with a span of 6.00 m and restraint parameter = —0,15.
For an INP 600 section with the same span this reduction is less, this being due to
the greater thickness of the web of this section. The effect of the deformation of the
beam section is slight for beams consisting of IPE or INP sections, so that for rolled
beams with forked bearings the assumption of non-deformability of the section is
justified. For compound beams with very deep webs, on the other hand, such effect
can indeed be considerable [2], so that in this latter case the cross-sectional deforma-
tion must be taken into account in the analysis.
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Fig. 7.2 Reduction of the lateral buckling load due to the effect of cross-sectional deformation in
the mid-span region (forked bearings, deformable beam sections IPE 600).

Semi-forked bearings and deformable sections

It emerges that the restricted deformation of the beam section over the supports can
considerably reduce the lateral buckling load. Even from this analysis it is evident
how important the type of bearing of the beam may be with regard to lateral buckling
stability.

Bearings by bottom flange restraint, deformable sections

The reduction of the lateral buckling load by the deformation of the beam section
over the supports can be very considerable, especially for deep beams and short
spans (see Fig. 7.3). From this diagram it appears that for short beams the lateral

—pB =0
B =0.05
B =0.10
B =015 ——
0
i
—
10°% ~
¢
40° /
/ /
60 °/o //j
80°/ IPE 600 .
Fig. 7.3
100°, Reduction of the lateral buckling load due to the effect
4 8 12 16 20 of cross-sectional deformation in the mid-span region
and over the supports, for IPE 600 (bottom flange res-
—= span £ (m) traint, deformable beam sections).
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buckling load can decrease very greatly and that this decrease becomes more pro-
nounced with decreasing values of the restraint parameter f, thus, for IPE 600 with
a span /=8.00 m and = —0.15 it is more than 50%,.

From the analysis of a large number of sections [5, 6] (not given here) it further
appears that for sections having a thin deep web the lateral buckling load reduction
is greater than for those with thicker or less deep webs.

In Fig. 7.4 the difference in lateral buckling load between the beam on forked
bearings and the beam on bearings by bottom flange restraint is represented for a
specific case, namely, IPE 600 and f# = 0. From this diagram for the lateral buckling
load it clearly emerges that the influence of bottom flange restraint is very great for
small values of the length of the beam and that the influence of the type of bearing
on the lateral buckling load diminishes with increasing length.

— _ l

3

ql 1

P — 60 . \ _
VEL, 6Ty

T \( forked bearings

| 40 1 AN |

bottom flange| | ‘

———— span 1(m)

Fig. 7.4 Effect of the length of the beam on the lateral buckling load for IPE 600 beams with forked
bearings and bottom flange restraint.

8 Experimental verification

Some model tests were carried out by the Institute TNO for Buildings Materials and
Building Structures (TNO-IBBC) with a view to ascertaining whether the method of
analysis for determining the lateral buckling load, as developed in Chapter 3, yields
results that are in agreement with reality [7]. These tests were performed in two series.
The first series comprised three tests on 1:5 scale model beams of an IPE 270 section
(tests Nos. 1.1, 1.2 and 1.3); the second comprised eight tests on 1:10 scale model
beams of an IPE 600 section (tests Nos. 2.11 to 2.38). All the model beams were
loaded by uniformly distributed load on the top flange, simulated by point loads,
which continued to act in the vertical direction during failure of the beams (gravity
loading) (see Figs. 8.1 to 8.6).
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Fig. 8.1
Test arrangement.

Fig. 8.2

Beam which has failed by
lateral buckling over sup-
ports (test 2.11).

Fig. 8.3
Model test with forked
bearings.
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ig. 8.4 Semi-forked bearings (test 1.2). Fig. 8.6 Laterally buckled beam (test 2.11).

ig. 8.5 Beam just before and after failure (test 2.37).
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The results of the tests are summarised in tabular form on page 25 and call for

the following comments:

— The test results obtained with the beams continuous over several supports are all
above the theoretical value. This must be attributed to the fact that the analysis
neglects the lateral support which occurs over the bearings if the lateral buckling
load of the adjacent span is larger than that of the span considered. The results will
be better if all the spans of the beam become critical simultaneously.

— The lateral buckling load found in the tests does not fall short of the theoretical
value by more than about 10%.

— The correctness of the method of analysis for bisymmetrical steel beams, as des-
cribed in the present publication, is confirmed by the tests.

9 Concluding remarks

In the foregoing it has been shown that the effect of cross-sectional deformation of a
beam on the lateral buckling stability can be calculated with the aid of the energy
method. From a worked example relating to a rolled steel section (IPE 600) susceptible
to lateral buckling (Fig. 7.1, 7.2, 7.3 and 7.4) it appears that only the deformations
of the beam section over the supports significantly affect the lateral buckling stability
of the beam. For long spans this effect diminishes, and for short spans it may become
very great (see Fig. 7.4).

From a large number of calculations for rolled sections ‘it emerges that cross-
sectional deformation in the span of the beam always has little effect on lateral
buckling stability and can therefore be neglected if forked bearings are used. The
deformation of the beam section over the supports, on the other hand, has a consid-
erable effect on the lateral buckling load in all cases with short spans and should
then therefore be taken into account in the analysis.

The method of analysis presented here is, however, too complex for practical use
and therefore difficult to apply. In order nevertheless to allow for the hazard of
lateral buckling instability in short beams with bearings by bottom flange restraint,
a simple rule of calculation [8] has been derived from a large number of calculations
performed for rolled sections.

Since the results of these calculations are rather dependent on the particular section
concerned, this simple rule constitutes a lower bound approximation which gives
safe results in all cases and thus provides a conservative estimate of the critical
lateral buckling load in many cases.

This rule of calculation has been included in the new Netherlands Building Code,
Part: Steel Construction, NEN 3851, and is as follows:

If

be |2 Ea’®
I< 5:1— 7 then: g puckt. = 0,21(14_5)_”!_

In Fig. 7.4 this rule of calculation is indicated by a broken line.
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