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PREFACE

The post-war development of shell theory has resulted in a large extension of the field of
application — especially in the area of doubly curved shells.

The phantastic progress of thin metal shells in mechanical and aeronautical engineer-
ing is well-known. The large development in airplane techniques and missible projects has
partly been made possible by profound research in shell problems.

In building construction a similar trend can be traced. No longer was the application
restricted to the domes and the various types of cylindrical shells. One may also observe
the application of shell structures in a wider range of spans. And with it came the demand
Jfor spatial structures covering large areas unobstructed by columns. As many of these
shells were built of reinforced concrete the specific characteristics of this material also
played a role. As spans grew and the column-free areas became larger, the question of
the stability of the shell structure became of paramount significance. Asked for a stability-
criterion the reply was given to apply a somewhat higher factor of safety than is
applicable for steel. And this period is not yet closed!

The cases when the structural engineer was confronted with these problems became
more and more frequent, although knowledge and insight did not increase proportionally.
One has only have to be confronted with or to read the publications concerning shell
structures of the post-war period to find that the final problem ends (or rather starts)
with the question of the stability.

Reference is made to the general Report on the instability of prestressed shells by
Prof. Franco Levi, F.1.P. Congres Amsterdam (1955). And to the shell roof of the In-
dustry Palace at Paris, respectively to the north-light shells of the factories at Ooster-
hout (Holland). It may explain the urge felt by the authors to study the matter more
profoundly in order to gain more insight and to be better equipped.

Starting in 1963 they set out on two paths: a critical review of the basic theory respec-
tively a new approach of safety criteria for concrete shells. And the latter to be accom-
panied by research.

Chapter II and 111 are specimen of the path they first followed; it resulted in publica-
tions at Budapest (IASS, 1965) and at Leningrad (IASS, 1966). They based themselves
on the method followed by Von Kdrmdn and Tsien, thereby introducing different bound-
ary conditions and an elliptic shape of the snap-through area.

The new approach resulted in a critical review of the classic criteria. First of all it
meant the introduction of the non-linear property of concrete. Attention was therefor
essentially shifted to the critical strain thereby eliminating the fluctuating value of the
modulus of elasticity of concrete.

A new concept of the buckling problem is based on the observation of the configurations
of equilibrium in the vicinity of the critical stress. As soon as the stability-limit is reached
the shell must snap into another configuration. This is a procedure developed and published
by Koiter. If transferred into a strain criterion this comfiguration (indicated by a para-
bolae for a cylindrical shell) will present the boundary for the critical instability strain.



Another approach occupies itself with the buckling pattern of thin concrete shells. It
already was evident that a comparison of the instability behaviour between concrete and
thin steel cylindrical shells fails. The buckling pattern of thin steel cylinders does not
appear. To that end a dozen reinforced concrete cylindrical shells were tested. Due to the
rather large value of the ratio t/R the instability boundary was not reached and failure
apparently took place as a result of reaching the crushing strength. Nevertheless from
these investigations it appeared that the reinforcement in the shallow concrete shell
does not seem to be decisive for the behaviour. Nor do imperfections of the shape which
in the stability research of metal shells play an important role, have much influence in
practical application.

On account of the brittle failure observed and relying on preliminary conclusions that
it is the material concrete that is decisive in the stability behaviour, the next step was a
check on the stability boundary of cylindrical shells of plastic material. The investiga-
tions of four cylinders resulted in a fair coincidence with the mentioned strain boundary.

These observations will be the subject of a second publication. Finally the authors
endeavour to extend these concepts into the entire field of thin concrete shells, com-
promising the negative curvatures index ones (hyppars, etc.) as well.

A first incitative can be found under the heading of specific cases in this contribution.
There an attempt has been made to include the transition into singly curved phenomenae.

In the third publication will be included the results of the stability tests on doubly
curved thin concrete shells, which are already in the course of preparation.



Notations
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snap-through area
l
a*+6a’b*+b*
half long axis of elliptic snap-through-area
parameter of load distribution
parameter in buckling formula
coefficient of the edge-beam stiffness

parameters used in the calculation of the edge disturbance

dimension of edge-beam

B/t

half short axis of elliptic snap-through-area
radius at snap-through-area

g/E(t*/R}?), dimensionless load-factor
modulus of elasticity

Ef (f=b/R5)

rise of snap-through-area

angle

stress function

flt

dimension of edge-beam

Hjt

half of the angle of aperture

by/(\/R,t) (for the sphere c/\/Rt)
parameter (for the sphere being +/ 3/\/ Rt)
3,1416

radial load

radius in general

} parameters used in the calculation

principal radius of curvature

radius in general (chapter I)

ordinate in snap-through-area

stress

shell thickness

energy

strain energy due to stretching of the middle plane of the shell
strain energy due to bending

energy due to external loads

radial deflection

codrdinates of a point of the edge of the snap-through-area



THE STABILITY OF DOUBLY CURVED SHELLS HAVING
A POSITIVE CURVATURE INDEX

Summary

Post-war development of shell theory and research resulted in a large extension of the
field of application, especially in the area of doubly curved shells. It had its influence on
building construction as well. An application of shell structures in a wide range of spans
can be observed; with it came the demand for spatial structures covering areas unob-
structed by columns. Thus the question of the stability became of paramount importance.

In studying the matter the authors have reviewed the classic criteria. For the positive
curvature-index they introduced a somewhat different assumption for the shape of the
snap-through-area. Moreover the problem could be extended from the spherical dome
into an elliptic surface.

Furthermore the influence of the edge stiffness was studied, employing energy con-
siderations. Introducing a number of assumptions the authors could arrive at a first
approximation to be used in study and design. Thereby the degree of stiffness of the
edge-beam was varied. A numerical example is added.

This publication can be seen as a critical compilation of the contributions given (and
later published in the Proceedings) of the IASS Symposium at Budapest (1965) and at
the Congress of Leningrad (1966).



DE STABILITEIT VAN DUBBEL-GEKROMDE SCHALEN
MET EEN POSITIEVE KROMMINGSMAAT

Samenvatting

De na-oorlogse ontwikkeling van de theorie en het onderzoek van schalen heeft tot een
grote verbreiding van het veld van toepassing geleid, in het bijzonder ten aanzien van de
dubbel-gekromde schalen. Het had zijn invloed op de bouwconstructies. Een gevolg was
ook de toepassing voor schalen van grotere overspanningen. Daarbij aansluitend kwam
de vraag naar ruimtelijke constructies, die oppervlakkten waarin geen kolommen voor-
komen moeten overdekken. Aldus werd het vraagstuk van de stabiliteit van groot belang.

In hun studie hebben de schrijvers de klassieke maatstaven in beschouwing genomen.
Voor de positieve krommingsmaat werd een ietwat andere vorm van het doorslag-
gebied verondersteld. Bovendien kon het probleem van de doorslag van een bolschaal
ook worden betrokken op een elliptisch oppervlak.

Voorts werd de invloed van de randverstijving bestudeerd door gebruik te maken van
energie-overwegingen. Door het invoeren van een aantal aannamen konden de schrijvers
komen tot een eerste benadering, die dienst kan doen voor verdere studie en voor een
ontwerp. Daarbij werd de stijfheid van de randbalk variabel gesteld. Een rekenvoorbeeld
werd toegevoegd.

Deze publikatie kan worden opgevat als een kritische compilatie van de bijdragen
gegeven (en later gepubliceerd in de desbetreffende verhandelingen) ter gelegenheid
van het IASS-Symposium te Budapest (1965) en van het Congres te Leningrad (1966).
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The stability of doubly curved shells having
a positive curvature index

I Introduction

In an introduction to a subject on stability, the name of Euler — famous for his con-
cept — should not be omitted. He developed the behaviour of a bar under axial load
and even investigated it after the buckling load was exceeded. It took about one cen-
tury and a half before an extension into the domain of plates was effectuated, and only
in our age the investigation of the stability of shells took place. In the beginning it was
wholly confined to the behaviour of singly curved viz. cylindrical shells.

Itis a logical and comprehensive procedure to develop these stability considerations
in stages, each time stepping up a dimension. The sequence here indicated may in
short be named as: bar, plate, shell. Another also valuable order can in short be
termed as: bar, arch, shell. Nevertheless which sequence is followed, one is faced with
additional problems not only related to another dimension but greatly increasing the
mathematical analysis involved, especially for the three-dimensional shell elements.
In this respect the treatment has more and more departed from the usual analysis in
applied mechanics when design is concerned with the solution of problems of change
(deformation) under the action of forces, as well as the solution of problems of failure
of critical parts (sections) of the systems. It turned to the application of the energy-
method. In these cases of shells it was found the most adaptable method to apply in
regard to the increasing complexity of the problem.

Still another fundamental problem should be looked into.

If restricted to shallow spherical shells the present situation is rather succinctly. On
the basis of the linear theory Zoelly [1] developed in 1915 his buckling-formula for a
spherical dome. Experimental values range from about 10 to about 50% of the theo-
retical value. In large part this defect is thought to be due to regressive behaviour after
buckling affected by inherent initial imperfections of form. And also by imperfection
introduced by the elastic deformation of the partial shell together its edges prior to
buckling. Theoretical analysis has gone some way towards quantitative estimation
of these effects and some measure of agreement with the experimental values has been
achieved. In this respect the solution of Von Kdrmdn, Tsien, Mushtari and Feo-
dosjew should be mentioned.

Energy criterion

An effective starting point is the investigation into the stability of a state of equili-
brium. Such a state can only be stable if the potential energy is a minimum. In first
instance it will be considered for a small displacement and only the quadratic terms
will be involved. If the sum of these terms will always be positive, then the equilibrium
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is said to be stable. If the sum can also assume negative values then the equilibrium is
unstable. On the boundary of stability-problems the sum-total will be zero for an
appropriate value of the displacement. For this case a stress, the critical buckling-
stress can be calculated including the buckling shape. For shells when limiting to
quadratic terms, it means the neglect of the modification of the curvature radius due
to the deformation.

Now in short the application of the energy principles will be treated for the sequence
bar-plate-shell.

Bar

For a bar axially loaded by compression the increase of the elastic energy per unit-
length due to bending equals:

EI (dzw ?
2 \dx?
if the cross-section measures b.h. In this expression w denotes the lateral deflection

and E the modulus of elasticity. The increase of bending energy per unit of volume
of the bar can be expressed as:

e =

N
N

0_2
E.

Then can be written:
au = ]ff(dj_w_ 2.i = E<dz_w 222.
dv dx?) E dx?
Integrated for a cross-section:
2 2 2 2
E(M) [ 22dA = g(‘il;)
2 \dx?/ 4 2 \dx

and considered the total / the total strain energy will be:

EI'L [d*w\?
— | {—=) dx
2 "([)<de>

[N
N
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On the other hand there is work done by the external forces. In this case it is negative
since the displacement u and the force P have the same direction: T = —Pu. The
displacement u depends on the deflection w and since we need energy terms which are
quadratic, we should have the relation between u and w related to a term expressed
in w2,

In the deflected state (fig. 1) the element dx is measured on the curved axis. It makes
an angle dw/dx with the vertical and its vertical projection is:

dw [ dw 2
dXCOSIx“ = dx [1—7<a‘> +:|

The sum of these projections equals: /—uv.
Up to the second-order term

1 dW 2 1 1 dW 2 1 dW 2
= _1( &Y - (& . —1((E) 4x
[—v 6[|:1 2<dx> ]dx gdx Zg x) dx; whence U 2!) dx> dx.

| dx tan Y

>
_idx

dx 9

x
o
n
e

Fig. 1.

For details one is referred to Fliigge; or to Haas [9].
Thus the total energy needed to produce the deflection w 1s:

EI . (d®W\*, P l<dw>2
— ) —)dx—— | — ) dx
2 £<dx2> 2 !) dx

If this equation is zero, the value of the critical load P is found. Looking at the quo-
tient:
1 2 2
EI | <51—’§> dx
_ o \dx

1 2 ’
dw
[} <——> dx
o \ dx
the numerator as well as the denominator are quadratic in derivatives of w. Then the

quotient does not depend on the absolute magnitude of w, but on its distribution. We
want to find that special distribution w = w(x) which yield the smallest value of P: P,,.
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There are different ways of arriving at the smallest value. We may take the well-
known different equation:

2

d‘.
EISY 4 Pw =0,
dx
and solve it and discuss the solution; thereby considering the boundary conditions.
Another way is to assume a very general expression for w(x). Usually a Fourier
series is chosen of the form

w(x) = ) C,sin 17;1

which has to satisfy the boundary conditions. Then the coefficients are determined
so that P becomes a minimum. It is then found that C, = 0 for n > 1; and that C,
is arbitrary, while P becomes the equal to the Euler load:

2
p= F%”
It is an asset of the energy method that it allows finding approximate values of P, by
introducing some plausible functions w(x). Since this is not necessarily the one which
makes P a minimum, the approximate value of P is always higher than the correct
one. The P, is an upper bound solution. The choice of a function w(x) which ap-
proximates the real buckling form has the tendency to somewhat stiffer the system.
Therefore, the result is not on the safe side. However it usually comes close to the
correct one if the function w(x) is skilfully chosen.

The reason why this is mentioned somewhat at length is that for the problems to
be encountered in later chapters (on shells) this approach will be the only way to
arrive at a solution, which, as explained, should be observed with some caution.

Summarizing for a prismatic bar having hinges at both ends, the expression for the
increase of the potential energy equals:

I d2w\2 (dw 2
U = 1EIl — ) —30A| — dx
5)[2 <de> : dx) ]

This increase is always positive for
n’E*l

if o 2

o<a0

cr cr

For this critical stress the buckling form will be:

. TX
w = asin——

l

in which a denotes an arbitrary amplitude.
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If for the bar is taken a strip or a plate with cross-section 4 = bz, then we can write:

bt?
1= 5 and P = obt.

Consequently the expression for the potential energy will be:

1 2.\2 2
U= j(—l—Ebt3<d—w> - %abt<@> >dx
0 \24 dx? dx

With the critical stress o, = P,/bt it is now written as

nlEt?
1212

cr

Plate

For a flat rectangular plate loaded in its middle plane in the x-direction the increase
of energy due to the bending of the plate amounts to:

, EI <62w 62w>2
2 — 1t
1—v2\0ox?  9y?

per unit of surface.
If adapted to the plate-notations we write:

Et? ?*w 9w\’
i a\ A2 T a2
24(1 —v*)\ Ox dy
This refers to a plate fixed and supported at four sides. The available energy will be

— before buckling — diminished by the compressive stress o to an amount of
1ot(0w/0x)* per unit of surface. Thus the total energy will be

3 2 2 2 2
o= [l 5 o) Jo
24(1—vH\ox*  dy 0x
if integrated over the entire plate surface.

For a plate /-b supported on all sides by means of hinges, if / is a multiple of b, or
if [ > b the critical stress will be (fig. 2):

n2Et?
3(1—v?)b?

Jcr
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Fig. 2.
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The deflection function belonging to it is:

. WX . Ty
w = asin——sin——

b b

Shell

For an axially loaded cylindrical shell (fig. 3) the stability due to compression will be
observed, assuming an axial symmetrical buckling-form having a radial displacement
w. The bending energy can be expressed in two terms, the first one being

E? <62w>2
24(1 —v*)\ ox?
and the second related to the specific elongation in the direction of the circumference.

This specific elongation in the direction of the circumference (ring) equals to w/r,
belonging to a radial displacement w.

If there are axial deformations as well, and in such way that the axial strain equals
v times the specific elongations in the direction of the circumference (ring) the energy-
increase will be the smallest, and can be expressed as

2
Ew
Yoe = $Ee* = ——
2

2r
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The decrease of the energy before buckling, will again be:

_l_o't i‘ﬁ ?
27 ox

Thus the total increase of the energy will be:

3 2.N\2 2
U= 2nrj[—————Et <M> + Et w? — %ot(a—w> }dx
24(1—v*)\ ox* 2r? 0x

The integral covers the whole surface; the term 2nr refers to the multiplier in the ring
direction. If the cylinder is not too short or in case the edges are adequately supported
the introduction of boundary conditions can be abandoned. It means that away from
the supports, the buckling pattern can be described by cos px/r with an arbitrary
wave number p.

The increase of energy is positive for

20,2
Et

P ENCILE

12(1—v)r p

having a minimum value:

Et
g =
r3(1—v?)
for a symmetrical buckling form. This value is also found for an unsymmetrical form
where w will be a function of both coordinates x and y. They can be described by

= Cos( px \cos(ny
“sin\ r Jsin\ r
in which p and »n are the wave numbers. For the derivation of the minimum use is
made of the relationship between both.

From the foregoing energy-equations for the shell respectively for the plate, and from
the subsequent expressions of the critical buckling stress there exists a striking dif-
ference between the flat plate and the shell. For the latter the critical stress appears to
be linear to the relation #/r, whereas for the plate the relation is quadratic to #/b; having
in mind that / is a function of b. Only for very small values of ¢/r the critical stress
will be below the proportional limit of the material. In common words it may be
stated that the buckling load of a cylindrical shell differs from that of a comparable
sized plate. The cause of the much higher critical stress apparently lies in the middle
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term of the expressions for the increase of energy due to the deformation of the middle
plane. A corresponding term lacks in the expression of the plate.

Thus term E#/2(w/r)* will always be present in the case of a closed shell of positive
curvature and also for a cylindrical shell being firmly supported at its ends. It indi-
cates the impossibility of such a closed surface to be subjected to an infinitesimal
displacement without a deformation of the surface itself. Indeed the cylinder is a
developable surface and therefore cannot be turned into a non-developable one.

In the case of a partial cylinder (fig. 4) the curved middle plane does not find suffi-
cient support at the free edges. Due to absence of restraint edges, finite deformation
of the edges will occur sooner and the restraint offered to the radial deformations will
be far less than for a complete cylinder; inextensional deformations will take place
and a relatively small buckling load may be expected.

Fig. 4.

The discussed property of a developable surface essentially is confined to an in-
finitesimale distortion of the shell. If displacements of finite magnitude are allowed,
it appears possible to choose these displacements in such a way that the deformed sur-
face will be developable. This is the case for a rhombic or diamond-shaped pattern
which has been observed during many tests on this walled cylinders. Examples are:
the result of maximum loading of a thin metal cylinder; a model made of paper in
which the mentioned pattern has been simulated by the applicance of large folds.

There are circumstances under which another buckling pattern, known as the
“concertina’, occurs. Although it fits into the general reasoning no special attention
will be given to it. This buckling pattern can be taken as a composition of approx-
imately flat plates intersecting at yield-lines which function as ribs.

For plates a lower energy-level is valid. In the parts adjacent to the ribs bending
will occur, which means an addition of bending-energy. The total potential energy
will depend on the buckling pattern in regard to size and shape. The rotational capa-
city of the intersecting planes at the rib will also play a role.

In Russian literature much attention is given to the study of the geometry of the
post-buckling pattern and to an approach which makes use of this study in order to
deduct the critical load.
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To this mechanical explanation mathematical observations should be added. If the
region of the infinitesimal deformations is exceeded the (middle) term related to the
membrane energy, will vanish. This can also be stated in another way: the buckling
occurs before the Euler load is reached. The latter belongs to the state of elasticity.
There appears to be another way out: a snap-through which consumes less energy.
The existance of configurations with a lower level of energy makes it understandable
that arbitrary disturbancies, for instance small deviations of the ideal shell form, will
result in a transition to such lower level.

A non-linear buckling-theory must be apply to these cases of finite deformations.
To try and obtain an exact and complete solution is hardly impossible. One should be
satisfied with approximations and trust that these will represent the reality sufficiently.
A wellknown method is the one developed by Von Kdrmdn and Tsien [2]. Making
use of the stress function of Aery they succeeded to derive (in 1941) two coupled
differential equations for shallow shells of the closed cylindrical type.

An approximated solution could be given by choosing a tractable function of the
deflection w having a number of free parameters in it. The result of the calculations is
shown in figure 5 where the difference in behaviour, the values of buckling in the
linear as well as in the non-linear regions can be observed. The stresses are presented
as a function of the axial strain; here the non-dimensional values of ¢/c., are plotted
against the values of ¢/e.,. o, and ¢, are the critical buckling stresses respectively
strains.

In the elastic region the behaviour is indicated by the straight line OA (a). After
buckling the relation as found from experiments is given by the line b. Initially this
line closely follows a. Then two courses may occur, indicated by b; and b,. Also the
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Fig. 5.
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finite deformation may already appear at D and then follow the line b,. Or when the
deviation appears at a later stage and then follows the lines b, or b,.

It is clear that the point A’ is never reached. After the snap-through the paths
followed can be indicated by curves A-B. Thereafter there will be an inclined curve
suggesting a somewhat stable behaviour.

Our interest goes chiefly to the minimum value which will be found somewhere on the
curve A-B, or at the point B. In 1954 Kempner [3] deduced a theoretical value of 0.3
for the ratio (¢/0.,)/(¢/.,). Later when computor-techniques developed and possibilities
were created to handle much more equations, a ratio of 0,1 was reached by Amroth
(1963); 11 free parameters were used. Later by carefully executed tests on aluminium
cylinders, a value of 0.1 was found as well. The result is that there is a reasonable
agreement between the theoretical approach and the experiments. The course of curve
A-B as well as the inclined branch after B do agree satisfactorily. Also Donnell and
Wan by introducing initial imperfections into the non-linear problems, could better
explain the apparent discrepancies between empirical and theoretical values.

When there exists initial imperfection, a snap-through buckle occurs earlier than
for the perfect cylinder. The emperical relation deviates at point D and begins to
follow curve b,. However the minimum value found, differs only a trifle from the one
which is found when the buckling occurs at a later stage.

Deviations from the exact shape may easily be of the order of the shell thickness.
This statement made by Fliigge, probably holds true for metal cylinders. For concrete
ones it generally will be less. As will be reported later on in this contribution the
deviations for concrete cylinders prove to be far less.

Doubly curved shells

For the application of a non-linear theory of stability the buckling shape has been
formulated by a collection of curves indicated by the formulae

cos( px \cos( ny
w= . {—|) . [—
sin\ r /sin\ r

For an arbitrary choice of the buckling shape the amount of energy can be calculated
thereby including the quadratic terms, cubic ones, etc. if necessary.

As a starting point for the doubly curved shell positive curvature index, the classical
shape, the spherical shell was firstly chosen. The spherical dome loaded by a uniform
radial pressure g is characterized by a compressive stress in all normal cross-sections
of ¢ = gr/2t, in which r is the radius. In the linear form the buckling-problem has
been solved by Zoelly (1915), the critical stress being:

= ;_Ei, for v = 0.3 (steel) o, = 0.605E—t—
NETEE r

O-Cr

for v = 0.2 (concrete) g, = 0.58E %
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The relation between the pressure and the stress being:

. 20t
=4 o =2

My =7

the formulae for the buckling load can be written as:

der = 7ﬁiﬁ E<i>2
31—y \r

and again differentiating for steel and for concrete:
2
1.21E <i>
r
2
1.18E <’i>

£\2
v=20 qe = 1.16E<T>

Von Kdrmdn and Tsien in 1939 published the results of their non-linear studies and
came to a value of 0.36E(¢/r)*. By refining the theory Tsien found (1942) a coefficient
of 0.312; Muschlari (1950): 0.34 and Feodosjew (1954): 0.32.

Ebner [4] published (in 1962) a comprehensive review of the maximum and mini-
mum values of g.,. It is done for complete spheres having different radii and thicknesses ;
results from various theories as well as experimental researches were given. The values
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Fig. 6.
Max. and min. values of buckling stresses for spheres under external pressure, reported by Wolmir.
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run from 1.16E(z/r)? as a maximum to 0.16E(¢/r)* as a minimum; this resulting from
upper bound and lower bound theories as well as from experimental data. Wolmir [5]
reports on metal domes having an angle of aperture 6 of ~ 18° and thicknesses of
0.34 resp. 0.45 mm (fig. 6).

It is evident that the results cannot serve as a base for practical design and calcula-
tions of the buckling. For the doubly curved shells in general the situation is no better.
Nevertheless they are increasingly used.

Csonka suggested a formula employing the product of the principal radii of curva-
ture:

12
qer = oE ZZ
and the problem was to determine or to know the value of a. Experimental work by
Mehmel [6] and by Schmidt [7] lead to varying values. Schmidt tested eight aluminium
translation shells and arrived at an average value of & = 0.32; he varied the two prin-
cipal radii relation r,/r, from 10/3 to 5/3. For a spherical shell made of plexiglass
bearing on six supports Mehmel found a value of C = « = 0.52. A summary of the
values af o, listed by Schmidt, was again published in 1967 [9].

If comparison is made to the mentioned value of 1.16 for a dome, one should
be aware that here we deal with parts of a shell surface, against the full dome
mentioned before.

Moreover it should be clear that the application of the mentioned formula of
q., = aE(t*/r,r,) certainly has its limits. It has the disadvantage of predicting a zero
buckling load when one of the curvatures (1/r) becomes zero.

Il Stability of doubly curved shells having a positive curvature index

Buckling of a spherical dome

For the calculation of the buckling load the energy stored in the area of the snap-
through will be determined as a function of the diameter and the rise. Buckling will
occur when the difference between the internal energy and the work performed by the
external forces becomes a minimum.

For the non-linear part of the spherical dome a new buckling shape has been
chosen.

It will be axial-symmetrical and its formula is:

r\? qR? .

w is the radial deformation in the snap-through area (fig. 7). f denotes the rise and ¢ the
radius of the snap-through area.

The term gR?/2Et represents the membrane deflection due to the unit load g;
R being the radius of the dome.
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Fig. 7. Deflection of the snap-through-area.

On the pattern of deformation an edge disturbance has been superimposed so that
a uniform and continuous angular deformation dw/dr will occur. This angular
rotation has been calculated by means of the Geckeler’s approximation and we write:

oAl —
W, = ——f—e Mr=e)

o sin A(r—c) )

Accordingly the total deformation of the snap-through area will be:

2
()

and for the remainder part of the sphere:

: 2
} + (.]2}; — -{-ew_”) sin A(r—c¢); 3)

i s R?
Wy = — —f—e“(c Nsin A(c—r) + 4

o 2Er )

A stress-function is chosen and the stresses (g, and ¢,) can be calculated, including
the application of the boundary conditions.
The internal energy performed by the membrane stress will be defined by

= ! o2 ta?
U, = 5E i(ar +0g)2nrdr (5
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The internal energy performed by bending in the snap-through area amounts to

{(L @y + <@>2} 2nrdr 6)
r dr dr?

The energy due to the load ¢ during the snap-through (which may be called external
energy) is:

2

< gR
U, = W, — ———+ w, | 2nrdr 7
! J(; q( ' 4E:t 2> M

Thus the energy to be observed will be: U = U, +U,—U,.
From the application of the two minimum criteria:
ou ou
—67' =0 and —a-c— =0
follow two equations from which g as a function of f and as a function of ¢ can be
determined.
This calculation has to be done numerically. The result was a minimum value of
g for f = 16¢. Then the critical value of g can be expressed to be:

2

Et
qcr S 034}@‘“

This value coincides rather well with the value derived by Von Kdrmdn and Tsien [8].
The function of w used by them and the boundary condition of the snap-through
area differ from the assumption made by the authors. A similar difference exists with the
derivation given by Wolmir [5].
One should be aware of the fact that all the studies were confined to axial symmetry;
in regard to the shell and also in reference to the assumed buckling pattern. As a next
step an elliptic surface was considered; for the shell as well for the snap-through area.

The elliptic surface

For the deflection in the snap-through area is assumed the equation: (fig. 8)
x2 y2>
wy =fl1———>= 8
1=f < i ®

Again the assumption is made that the edge of this area is located in a flat plane.
The solution (w,,¢,) together with the particular solution (w,,,) including the
edge disturbance (w3, ¢5) must satisfy the equation
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Fig. 8. The snap-through area an elliptic surface; transformation of codrdinates.

The stress-function @, derived for the deflection w, is determined by the equation:

2 2 2 2 2 ~2
_I_AA¢1+{<6WI>_6w;ﬁw21}+~1_6wl+i0w71
E oxdy ox* oy R, 0y* R, ox*

As a boundary condition to @, it is assumed that the deformations in the tangential
directions u and v are zero at the edge of the snap-through area. .

For the boundary conditions of w again two requirements are needed. First w=0
for the circumference; secondly the first derivaties dw/dx and dw/dy, the angular rota-
tions should be continuous and similar (fig. 9).

For the membrane state of stresses the equation

governs the problem. If the load is divided in two parts, we can define:

N
= —ag and —~ = —(l—«
q R, (I=2)q

z|=z
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elliptic surface

For a dome (R, = R,) having an uniform load ¢, the value of « will be & = 0.5. In
the case of an arch with R, = o0:a = +1, and with R, = o0, o = 0.

The deflection of the membrane is calculated by determining the energy performed
by the load and by the membrane forces, both in the snap-through area:

1 1
1 - 2 2 _ b 201 N\2.2 p2.2 2
1 :E w,oqdA 2Et£(Nx + N%)dA 2Et;‘; {RI(1—)*q” +R3a"q")dA}

or w, = E%{Rf(l—-oc)z—kR%ocz} )

This under the assumption that the membrane forces do not vary in the snap-through
area (indicated as A).

In order to determine the angular rotation at the edge of this area the tangent
plane to w; = f (1 —x2Ja} —y?/b?) should be formulated. In a point (x,yoz,) of the
elliptic edge it will be, (figs. 8 and 9)

?(Y“J’o)'FW—Wo =0

2oy, HYo
2
ay 1

The vertical plane through the normal in the point (x,y,) of ellips is:

2

a )

D0 (3 —xg)=(y=y0) = 0
1Xo

Next the intersecting lines /, and /, of the tangent plane respectively the horizontal
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plane through the described normal can be determined by formulating the direction-
coeflicients, and the angle between these two lines can be derived:

x2 V2 1
~tgp = 2f<_2 + __9>
’ at bt

The boundary disturbance extends at two sides viz. along the inside as well along the
outside of the snap-through area. For both regions again the assumption is made that
its course will be according to the approximation of Geckeler:

_ V3

wy = Ae”*sin Ar  with ;
JRt

(10)

inserting for R the radius of curvature along the normal in the point (xy,).

For the further elaboration one is referred to the publication [10] where every step
has been shown. The expressions for w;, w, and w3 have been formulated and will be
substituted one by one in the comptability equation.

Also the shell forces belonging to the edge disturbance and acting in the direction
perpendicular to the normal as well as in the direction of the normal can be deter-
mined. From them the shell forces in the x- en y-direction can be formulated: N,, N y
and N,,. When the deflections and the normal forces in the snap-through area are
determined, the energy due to the normal forces (U,,), to the bending moments (U,)
and to the load (U,) can be formulated. Then the minimum criteria will be applied to
the expression U = U,+ U,— U, and the snap-through load together with the size
buckling area can be determined. Omitting the influence of the contraction (v = 0)
the expressions are:

U [ (NZ+ N} +2N2)dA4

m 2Et

o 2 2 2 2 2
S 2
2 4 ([ \ox oy* 0xdy

U, = [ qw,+3w,+ws)dA
A

To facilitate the calculations the following substitutions are introduced in order to
determine the minima 0U/df and dU/dc.
: Et?
f = (pt, Cc = T\/th, q = '})'EZ—

2

3
ou y((p—£>—7 q0(2(,9 —3p¥? * 1 +q) +

of 3) 1292 803 w3
2‘3/32‘; 2?4(W‘/3 3)(3p—2%?) and
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m

b

&

4 6 34 2
ou _ 2<llpz+,i7_gp+ <3"”\/3_3>_7_YL_9’\/3+3_T_=0
dc 12 32043 2 12 6 2

From the latter expression for each value of ¥, ¢ can be calculated. Substitution in

the other equation gives the value of y. In fig. 10 the results of these calculations are
shown for three cases.

1,0 \

! /
\\\ /,sphcrc R; =Ry (ot- 1/2)

o4 A N //

\ y=034 N~ | | e

\ X =027 \‘ ‘/,/,.cylindernl - o® (a =0 )

/
02 y=Or5 \\ - L_—
o | 2 3 4 5 P >

b
VR2t

Fig. 10. Buckling load as function of a signifigant dimension of the snap-through-area.

—_— e Y=

Specific cases

Related to shape there are two extrema, the spherical shell and the cylindrical shell.
The latter can also be taken as an arch.
For the sphere we write:

a,=b,=c¢; Ri=R,=R; A=4; x2+y2=R* and «=0.5

Again the expression for U = U,+ U,— U, is differentiated in respect to fand ¢
respectively. To facilitate the calculations the following substitions are made:

Et?

f= (pt, c = T\/Rl, q = '))'—IEE
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When the minimum criteria are applied (0U/df = 0, dU/dc = 0) the minimum value
appears to be:

Et*
qcr = 034 —Ii_l—’

a wellknown value. It proves that for R, = R, the buckling load is in dependent of a.
For the cylindrical shell we write:

a, =, by =0, yo = +¢, R, =0, R, =R and a = 0.

When beforehand the expression for U has been divided by a,, it becomes:

57'C Etf2 ._ﬁ 2 N q Et3/2f4R1/2 N EtS/ZfZ 3 ﬂ:quR N
R 16043 c* 2.33/4c2R1/2 2¢

2ECf* 4 gfiR

3¢ 32 ¢

Introducing the mentioned substitutions the minima will be:

3

oU 4/3\ 10m ¢ o 5 10) 4 ¢ 9¢
—=0; p(np — = )|="= Z(¢—¥YHQp—-V? + +-—=+ e
of y( ¢ 3 ) 9 W(q) )20 ) 3Py 3w 404393

ou 8\/3 10 ¢ 2 2 2¢ 4¢ 27¢*
—=0; ylnp — =) =—= T (p—¥HBp+ ¥ + o
dc y< ? 3 ) 9 svz(q) )¢ ) 3y w2 160y3- Pt

The minimum value appears to be:

Et?
qu = 0.161{‘2

When considered as a linear load, and for a cylinder:

t t
ey = acFE. O, = 0.16E7{«

Pogorelov [11] in his book on the geometrical methods of non-linear theories of shells
(Moscow 1967) gives a value of ¢, = 0.16Et/R for a cylindrical shell having a
relation R/t = 500—1300.

For an elliptic surface having

2
R, = 4R,, a, = 2b, and %0+y§=b2
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the expression for the total energy U and the two derivatives leading to the minima
can be written down. They are long expressions with many terms. In addition we have
introduced o = 4 which means that an equal division of the load is assumed in both
directions (x and y). Then follows a critical load:
Et*
q cr — 027};2“

In addition calculations have been executed for « = 0 and & = 1. They are shown as
a function of g¢,, (fig. 11). It appears that the choice of « has a small influence on the
magnitude of the critical load (fig. 12); it varies from ¢,, = 0.25 to 0.29E¢*/R 52

E
ﬁ-z— \J o=l
Z ;
\\ v o=l
o] oA = O I
\. \ /5
\ /
05 * \\ W
A\ 4
\\\\ V7,
) /%
Y= 0,29 \\\> )4,-/ 7 =027
¥= 0,25 N7 :
o I 2 3 4 5 6 7
by

T VR
Fig. 11. Buckling load of the elliptic surface R, = 4R, for different values of a.

In fig. 10 the minima of the coefficient y = ¢/(Et*/R,?) are plotted as function of
Y = b/\/ R,t representing a dimensionless function of a significant dimension of the
observed snap-through area. Thus combined in one figure are given the y,,, for the
cylinder (R, = o, a = 0), the sphere (R, = R,, « = %) and the elliptic surface
(R, = 4R,, o = }), and in this sequence they amount to: y = 0.16; 0.34 and 0.27.
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Fig. 12. The influence of the parameter « on the buckling load.

In figure 13 these minima are given as a function of R,/R;. Thus for R,/R; = 0 it
represents the cylinder with a radius R,; and for R,/R, = 1 it is the sphere. Between
these two extremes the values of the elliptic surface will be found. For R,/R, = 0.25
the calculated value equals y = 0.27. These three values are located on the curve 1.

It should be noted that the assumptions are R, < R; and also both radii to be
positive. The observed range extends from R,/R, =0 to R,/R, = 1; the areas
outside of it viz R,/R; < 0 and R,/R; > 1 are not included. It means that at this
stage hyperbolic paraboid shells are omitted from the stability considerations.
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Fig. 13. Buckling load as function of R,/R,.
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The coefficient y for R,/R; = 1, the sphere, is known and has already determined
by others e.g. by Von Kdrmdn and Tsien.

The criterion R,/R; = 0 may lead to the conception of the circular cylinder as well
as to the arch. It depends whether the x- or y-direction is observed (fig. 14). As has
announced in the foreword a further publication will deal with these extrema at large
as well as with the extension in the area of the doubly curved shells having a negative
curvature index.

Cylindrical shell

Arch

In concluding the authors like to point out that the method of calculation exposed
in this chapter proves to be very flexible in regard to the introduction or deletion of
terms. If for the sake of refinement of the results modifications or new terms are to be
included the result of them can be followed closely. Likewise when a term is deleted
the result can be traced clearly.

III The influence of the edge stiffness and of the angle of aperture

It may be well to reflect on the procedure followed so far. The load — deflection —
curve has a linear and a non-linear-part (fig. 15). For the buckled form a paraboloid of
revolution was chosen. A reasonable assumption is that the segment under considera-
tion will be bounded by a flat plane (r = ¢). The buckled form will push through it
and as a result the post-buckling form will mirror itself in reference to this plane.
Strains in the membrane are neglected. Furthermore a boundary disturbance at the
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circumference of the snap-through area is assumed, introduced as an angular rotation,
being equal and continuous along the circular edge.

Von Kdrmdn and Tsien assumed a different buckled form based on the deflections
of a circular plate restrained as the boundary. This assures a continuous course of
buckling shape (without knicks) unto the undisturbed part of the shell. However it
leads to a stress distribution in which there are discontinuities. Wolmir in his publi-
cation has chosen a similar form:

2\2
w=j"(l—zz>

For a complete sphere this rigid requirement for the edge of the snap-through-area
may be acceptable. However for a segment of a sphere it will not be possible to satisfy
this requirement.

In the following part an attempt is made to determine the influence of a partial
restraint along the edge of the considered segment. In order to cope with it the shape
of the snap-through-area has been built up of two parts: one part connected with a
knick to the remainder part of the shell: a discontinuity. Its shape corresponds to the
mirrored part of the shell segment. The other part is limited to the edge of the snap-
through-area and may be considered as an edge-disturbance-area. This splitting-up
makes it possible to result in a continuous connection with the edge-beam: a realistic
assumption as compared to the classical one (fig. 16). The rise (f) and diameter (2c)

edge disturbance
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of the buckled area are kept variable. Then the values of these variables for which the
load is a minimum are determined. This approach of the buckled form enables us to
follow the pattern of the snap-through phenomena as it develops.

The snap-through begins in a very small area. It will start from a small discrepancy
in the original shape of the sphere. This post-buckled shape will equal the original
shape and will be mirrored in regard to the flat plane through the circumference of
the buckled area (fig. 17). In this small area there will hardly be normal (membrane-)
forces. However, for this state of shell-stresses the energy of the internal forces does
not equal the energy exerted by the external forces and therefore the buckled area will
increase and the load on the shell proper, depending on the loading system, decreases.

~—~— — — -
—\ mirrored

N\

Due to the increment of the buckled area the angle of aperture increases and the
angular rotation along the edge as well. This rotation along the edge has to be re-
sisted by an edge disturbance.

Apparently the part of the energy of the internal forces generated by the edge dlS—
turbance will augment quicker when the buckled area increases. Finally, when the
“internal” energy equals the “external” one a state of equilibrium is reached and the
snap-through phenomenon will become stable. A rough approximation may clarify
this procedure.

The energy caused by the load on the buckled area is about U, = gfc?. Due to the
buckled form f ~ c?/R and therefore:

Fig. 17.

U, = _11?464

q

In accordance with the preceding, the “internal” energy should increase more
rapidly than the “external” one, when ¢ becomes larger. Thus the energy of the internal
forces must increase swifter than c*.

From what has been stated in regard to the mirrored form of buckling phenomenon,
the energy of the normal forces in the buckled area can be neglected. The work done
by the bending moments caused by a constant curvature of the buckled area is pro-
portional to ¢?.

Enlargement of the snap-through area can only be prevented by an increase of the
energy due to the edge disturbance. The angle of rotation of the edge is about f/c~¢/R.
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At a distance of the edge of 1/ = +/Rt/+/3 the deflection equals w = ¢/RA. Therefore
the stress o, will be 6, = Ew/R = Ec/AR?; all according to the Geckeler approxi-
mation. In terms of energy we write

o _ 1<££>2_£<L>2
E 2E\UR? 2 \IR?

The total internal energy generated for the whole area will be

oU _
ov

N

c

LA Y :
U= 7E j(;(o, +0,)2nrds

For o, = 0, the expression leads to:

2 2
U= 2nct£<<c—> = ncEt<L>
2 \UR? AR?

and will be proportional to ¢3.
The part of the energy equation which can call a halt to a further spreading comes
from the non-linear part. The strain of the surface can be expressed as:

Because of the large deflection can be written:

% ~ Aw,
and then
N~ 1Ep2e? < BAC B’ Bt ¢
ro 2R*)>  2R?* 2 R?

The total energy along the edge will be

E 2\2
U =~ ——t<c~2> 2mnc
8 \R

and thus is proportional to c>.

Apparently, this non-linear part of the edge disturbance is the only part that can
stop the spreading of the snap-through for sufficient large values of c.

Thus it appears to be important to determine these terms more accurate. However
this will lead to rather complicated mathematical analyses that only can be solved
by means of numerical calculations.
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In this approach an approximation is used; a more accurate calculation may be
developed later. The impression is that this will result in somewhat larger snap-
through areas.

The snap-through area will mostly start along an edge or an opening because in
many cases the edge-beam will not have sufficient stiffness to prevent rotation and
thus will not present the same energy as can be supplied by the remaining part of the
shell, where it is continuous. Specially in those cases where the edge-beam occupies an
important part of the edge of the snap-through area the relative stiffness of the
edge-beam will be of importance (fig. 18).

edge of the shell

snap-through
area

Fig. 18.

Resuming the critical load will be dependent on:

a. The measure of coincidence of the snap-through edge and the edge-beam.
b. The relative stiffness of the edge-beam.

In the next part of influence the angle of aperture and of the edge-beam stiffness
on the critical load will be investigated for a part of a sphere.

First the calculation as developed for a spherical shell will be restated and later
adapted to the introduction of an edge-beam.

The radial deformation of the snap-through area has been expressed:

1. Due to the membrane action:

- )

Y1 = 2k

2. Due to the snap-through phenomenon:

oes{-)
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3. Due to the edge disturbance:
wy = Be *¢ Vsini(c—r) for (r < c) 3)
thereby introducing a parameter B = f/cA.

Ifr =cthenisw, = wy =0.
The parameter A is similar to the one used in the approximation by Geckeler:

= @

For the sequence mentioned the angular rotation dw/dr at the edge r = c is:

dw,\
(&)=

dws\ _
< dr >C = —/B

The normal stresses shall now be determined using the equation of compatibility for
large deformations:

df1 d/ do 1/dw)> 1 dw
a;{; 5<’ W)} = ‘E{Z<HT> 3 ?17} ©
in which @ is a stress function: o, = d*®/dr?.

Substitution of w; leads to the known expressions:

—qR 4R

O =, and o, = 5 )]
Substitution of the formula for w, gives:
Ef 4< f o1 ) A, r?
by, = ———r"|=—— )+ —A,lnr+A 8
2 162" \¢ R 4 ? ) ®)

Aj; is an arbitrary constant.
The constants A; and A, can be determined from the boundary conditions:

r=c g,=0

r=20 o, # 0
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Then the stresses will be:
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4 \¢> R c?

For the mirrored form f = ¢*/R, 6,, = 0,, = 0.
Introducing the formula for w; in the equation:

G f1dfdoN]_ _pf1fdwy 1w
ara;rdr - 2r\ dr R dr

which can be written as:
df1 do d*¢ 1 /dw)*> 1 dw
— =t = —E{—|—) +— —
drr dr dr 2r\ dr R dr

d 1 /dw)* 1 dw
ar (oot o) = ‘E{5<37> TR F}

does not lead to a solution in a closed formula. Integrals of the type

(€)

or as:

¢ —AMc—r)

i

0

sinA(c—r)dr

occur. These integrals can only be determined numerically.
An approximate solution of the equation of compatibility can be written intro-
ducing the parameter A:

2 .
6, = e _ EA<£A—K - L>e_’1(”“”sin/l(c—r)

a4 2¢2 R
_1de B (dwt_
Ora = rdr 2\dr/) —
EA /IAV 1 —l(c—r)( . A, ) 2
= — | ———e sinA(c—r) —cosA(c—r);" +
2/1c<2c2 R> ! ( ) ( )}
E 2 —2i(c=r) f: 2
- T(AB) e {sinA(c—r) — cosA(c—r)} (10
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The first term in the expression for o,, is rather small compared with the second one
and is neglected in the following computations.

If A = 0 then ¢,, = 0 (no edge disturbance).

Ifr = ¢, 0,, = 0,, = 0in the case that:

This may be described as an edge disturbance without having membrane stresses at
the edge. In this case the angular rotation along the edge of the snap-through area
is zero. Thus the edge will be completely restraint. The angular rotation is cal-
culated from:

df1 d/ do _ ol (w1 dw
dr (R dr\"dr ) e 2r\dr ) "R drf,..

Substitution of ¢, = d*¢/dr? leads to:

EA( 1 S A 1 Al A 1 /dw\> 1 dw
—L =2 — =+ —=|=——}=—E<{—|— ) +— —
2 (¢*R 2¢c R 202\¢? ¢ 2r\dr R dr)r=c

This can be approximated to:

AA 1 1 /dw)*> 1 /[/dw
‘EM<2—C - f) =~k {z(v) * f(ﬁ)}

Introducing for A the expression a,(c/AR) it will be possible to have a stiffness
coefficient fluctuating from 0 < o, < 2, viz. from free to very rigid.
For

C
A = alm (11)

The result is:

(50),. = {3 1)) = s

The two roots are: —,a(c/R) and (o, —F)c/R.
For 0 < o; < 2(dw/dr) it fluctuates between 0 and —2¢/R.
From the formula (3) for w;:

ws = Be " sinA(c—r)
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the angular rotation is

()

see eq. (5).
In this case the result is:

dws,
dr

|

B = = A

N
P

From this equality could be deducted that A and B only vary with c. However, the
angular rotation dw/dr and also B change as f varies.

c f c?

RY¥¢ IR
Differention shows that

0A oy 0A

2~ R ™

Energy criterion

(12)

The energies of the internal and the external forces will be determined. For the nor-
mal forces the internal energy amounts to:

U

m

= % [ (e} +a))2nrdr
o

For the three types of radial deformation this integral should be worked out:

Term

2 2
Ors + Ops
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2
RA 11 1
20,,0,,+20,,0 - = {A(-Z- Ac)-/fR (1-%>}
_ mqRAcA® - 1
8 24c
3n 71\ A 5
20,,0,,+20,,0,, ——EfAl 5 —— |i—| -1+ )+
oo 2 s <2 R){Z)tc( 2110)

The energy due to bending can be determined from:

E*S (/1 dw d?w
= + 2nrd
Us 24 !)'{(r dr> <di‘2>} e

For the three types of deformation follows:

Term Part of U,
Wy 0
n Eff?
) + ? cz
nEt? 23, 1
8nfBA Et 1
2wy + Jcr 24 <1 ;w>

The “external’ energy equals:
U, =q [ Gwi+wy+ws)2nrdr
0

There will be a stable state of equilibrium, when the expression
U=U0,+U,-U, (13)

becomes a minimum.
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This minimum follows from the equations

ou ou (14)

When applying these two conditions the load ¢ and the rise f can be determined for

a given radius c¢ of the snap-through area.
The minimum value of ¢ that follows from dg/dc = 0 will give rise to the critical

load.
The two equations (14) become:

2 3
U _ - sE c2<4f4 o’ 2f>+ LA {“1 (1—3>+
of 24 ¢t R R? 8  Ax*lac? ic
2 - /
_3_a1_<1_2>+2_f6_2_(1_i>}_nqm_@5_1 g(l_i)+
Ric Ac AR AC 24c Ac 2Ac
3 2
_L(l_l>} 3nEtoc1{2foc,< 1+5) 3 o
RA? ic 2 223 2 2ic) 2
} (15)

OB
R\ ¢ R 2¢ 24 2
99=0=7W2<—2f2+zc_>+1,g f{ saff2<1 1s>+

¢? R? 8 12 4c° 5¢

+3oz1f<1 _i>_ 1 (1 _2>}+@qm§f2(1 _i>_3 nEto
ARc* 3¢/ AR Je 202¢3 3ic) 2 A°
(2Bl G D st
¢ 2¢3 2¢ Re Ac ¢z R 204 3¢
1 6 162 8 2 2
—42<1 >H+*1~4 { 3f f“‘;ﬂ‘f(%2 —f> + n‘;‘”( (16)
Rc Ac 24 c Ric R A A°R

Three symbols are substituted by writing:

f = ot

c = Y’\/Rt )
__Er?

q R—Z
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If the equation (15)

0 o 24

v = 0 is multiplied by R3

or nEt
and the equation (16)

o 3/2

W _ g py 2R

dc nEt’?

the two equations will read

3/4
@328¥3 4 3144 o3 +16.3"*- 02 o> +
| P 2314y

+¢2{—42q/5—35/4-af912<1 - ﬁ) + 36.3‘/4afw<1 — -273/@}36.3”40{1 Y’Z}
+¢{14‘[’7+2.31/4a12‘1’4<1 - ﬁ>+z.4.3‘/4a1w4<1 — i.3%97>+16‘1f~”}+
—24))45'1’5—4.3”20(1))'}’3{oc,éb(l - ﬁ) - 3%3”.31/4% - ﬁ)} +
+8a19’5<1 + 5—2><1 - 3]714?>—|—2.3”4af9’6 <3 - 57%;) =0 (15a)

and

18 15
4 3 1/4 ¢4 _ _ 1/4 .2 I
) {——14 -3 5a1<1 5.31/451’) 6.3 "a; <5 31/“‘”)}4—

68 4
3 5/4, 2y2 1/4 2
+d) {3 061'1” <7—W>+363 O(]YI <1—31/4l11>}+

+<p2{14w7—3”4- w‘*af(l — —2—~> — 12.31/4-oc1‘1’4<1 - qu) — 16&”3} +

31/4(]/ 31/4—
24 4 5( ~ 1 1 5/4 28 2w
FO s (24 J‘_3 PR 42297 = 0 (16a)

By inserting the values of ¥ in the equation dU/dc = 0 it is possible to calculate & for
different values of a.

If the corresponding values of i, @ and o are substituted in the equation dU/df = 0,
various values of y can be determined.
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Fig. 19. The critical load g,, as a function of the radius of the snap-through are.

The results of the calculations are shown in fig. 19. From it can be concluded that
the snap-through area increases as the value of «; (or the rotational stiffness of the
edge-beam) decreases.

When the load is increased to a critical value a snap-through area will appear in
the vicinity of the edge. It will extend till ¢ reaches the value for which there exists a
stable equilibrium and ¢, is a minimum. In the case that the edge-beam has little
rotational stiffness, then this value of g, will be relatively small.

Therefore shells with a shallow edge-beam and a rise f less than 20¢ — resulting in a
value of o, between 0 < o; < 0,50 — will have a critical load less than ¢,, = 0.1Et*/R?,
as can be deducted from fig. 19. This fact explains the small values of g, resulting
from some experiments. f = 20z for «y = 1.

If — on the other hand — there is a very stiff edge-beam, the value of o, will be large
and the critical load may come to ¢, = 0.32Et?/R*. For shells with a small rise
(e.g. f < 20¢) a large part of the edge of the snap-through area will coincide with the
edge-beam.

In this case the rotational stiffness of the edge-beam must be comparable with that
of the edge in a continuous shell, so that «; = 1. Then according to fig. 19,

Et?
Qer = 0.2 F
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Substituting edge-beam of similar stiffness

The dimensions of such an edge-beam can be calculated. A beam with a circular
curved axis having a rectangular cross-section B x H subjected to a torsional moment
m along the circumference will have an angle of rotation:

mR?sin®3  12mR%sin9
Py = = 3 (18)
EI EBH

if § equals half the angle of aperture (fig. 20).

Fig. 20.

The slope of the shell due to a moment m can be calculated by equating “internal”

and “external” energies:
c 2 2 2
R I
dr /¢ 0 dr? Et\dr?

2 2
RE[[ e’ AC<3——>+ alzc 2[1 5 (Ae—3) — oclc<1 —£>+
a,c?| 24 R? ic) s8R |* 2R ARZ\" e

2(] — l)}il = Eﬁ —{6Ac—4+4oc1(/1c 3)=3a,(Ac+2)}
AR

AC 24
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Because Ac > 1 to approximate to:

Et*/3 2
m~ ——A@—4uo, +u
32R ( 1 1)

According to this formula:

Et?
o =0, m=33R

Et?
o, =1, m= —_3.7RA

Et?
oy = 2, m = 4—6'R“

This result will be approximated in accordance with eq. (6):

Et?
m = —ﬁA for (Ps = }.A
Hence
4
0. = /13Rm B /3 3Rm z4\/Rtm

Er* Rt Ei*  Ef

If the approximation of Geckeler is applied the value of ¢, equals:

2.6(/Rt
s = m, seee.g [13
[ g- [13]
For
B = bt,
H = ht, and

@y = @ (thus o; = 1) and applying the formula (18):
o) = 12mR%sin9

" Er'bh?
The resultis:

JNRE 12R?sin’9

E¢3 Et*bh®

3/2
bh? = 3(%-) sin29

or
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T W

. B Fig. 21.

Using this formula, the edge-beam dimensions can be determined (fig. 21). If b = &
(or B = H) values for current relations of R/t are given in a table, rounded off in
integers. When using this table it should be kept in mind that it has been derivated
fora;, =1

9 =10° = 30° 9 = 60° 9 = 90°
R/t = 100 B=H=3t 5t 7t 7t
R/t = 500 6t 101 121 13
R/t = 1000 7t 12 16 17

Numerical example

For a spherical shell having a radius of curvature R = 1000 cm, a thickness r = 10 cm
and half the angle of aperture of 30° and a value of o; equals 1, B x H will be: 5¢ x 5¢.
In that case the edge-beam needs to have a cross-section of 50 x 50 cm.

For a rectangular cross-section the equivalent of bh> = (5¢)* = 625¢* should be
chosen, for instance: 2¢ x (6.8¢)> or 4t x (5.4t)* resulting in 20 x 68 cm resp. 40 x 54 cm.

Predicting the value of the critical load

The critical load can be predicted from fig. 19, if o is expressed in terms of the dimen-
sions of the edge-beam and the shell (fig. 20). From (5) and (11) follow:

@, = AL = 0517% = ¢, sind ~ o9
Hence
=%
o =g

@, is the angular rotation of the shell edge due to the edge disturbance. The angular
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Fig. 22.

rotation of the shell edge and the edge beam together equals 29: ¢+ ¢, = 29, as a
result of the geometry of the mirroring effect (fig. 22).

Moreover one should be aware of the fact that in the derivation the final snap-
through area and the area of the shell are taken to coincide.

Thus from (18) and (19):

4Rt 29

* Er® 4JRt  12R%in’9
+

Et? EBH®

and

2
0= for a, <2 21
! | 4 3R rsin’ P @

BH?®

With the aid of this formula and using fig. 19 it will be possible to predict the critical
load for a given shell.

As a numerical example is chosen the shell roof of the church St. Felix and Regula
at Ziirich (Switzerland) [14]. The shape of this shell is not quite a sphere; somewhat
nearer to an ellipsoid.

However, the deviation is small and as was exposed in the preceding chapter II
the difference in critical load will then be negligible.

The dimensions are approximately 2a, = 2400 cm, 2b, = 1700 cm, f = 160 cm.
From this a minimum radius of 2200 cm on the basis of a circular vertical cross-
section of the shell is determined.
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t =8cm and E=@9=275
t 8

9 =20°

B = H = 30 cm, approximately 4¢

Substituted in formula (21):

2
T 32/2 T s T
3><< o) 8tsin?20° +e.
1+ -
30°

Indeed this value of «; is very small; it proves that the edge-beam does not appreciably
resist to rotation. Furthermore, the rise of the shell is such that the circumference of
the snap-through area coincides with the curved edge-beam.

From fig. 19 follows

2
g, ~ 0.055 2

RZ

A test, carried out by Torroja-Schubiger [14] on a model resulted in a value of

22

Et

In addition: Rt = \/ 2200.8 ~ 133 cm. The corresponding radius ¢ will be:
c = 6\/Rt = 6.133 ~ 800 cm. The short axis of the ellips is 11700 = 850 cm. After
buckling it was found that the circumference of the snap-through area followed the
edge-beam. This shows a fair agreement, taking into account the introduced approxi-
mations and simplifications.

Influence of crack formation

For concrete shells there is another phenomenon that may diminish the critical load.
If cracks are so situated that they can influence the critical load, g,, can be much less
than hitherto described.

Tests made by Khaidukov [15] on doubly curved shells having rectangular edges
gave rise to a crack pattern of concentric ellipses. The double curvature was far re-
mote from the spherical shell, the ratio R,/R, being about 16, so that the concept of
a cylindrical shell in order to investigate buckling seems more appropriate.

The influence of cracking on the critical load of spherical shells has not been investi-
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gated, although it is apparent that doubly curved shells of positive Gaussian curva-
ture index will behave differently towards cracks than the single-curved ones. There
exists a need for research into this subject.
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