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In this paper some considerations are presented concerning the
problem of structural safety, a problem which has been dealt
with in several publications, but for which the finding of a
solution proves to be very difficult. This is mainly due to the
lack of sufficient quantitative information about the variables
concerned. For this reason the permissibility of the calculated
stresses, forces, etc. in structures can be judged only in a man-
ner whose accuracy is not comparable with the accuracy with
which information concerning strength, for example, is
obtained. .

Recognition of the fact that even with the usually adopted
factors of safety there remains a possibility of the occurrence
of an undesirable state of the structure (failure, excessive
deformation, etc.) leads to a statistical approach in which this
possibility in terms of probability is adopted as a criterion of
structural safety.

Since, as already stated, information on the quantities which
play a part in connection with safety is lacking, it is, however,
not possible to arrive at a complete solution in this way, at
least not for the present. Yet it does appear possible to compare
the usually adopted degrees of safety for various construction
materials. In addition, the statistical safety formula derived
here provides the possibility of obtaining, by graphical methods,
a clear and conveniently visualised concept of the permissibility
of load combinations.

1 The relation between some important factors determining structural safety

1.0 Introduction

In the design and construction of load-bearing structures it is not possible to make an
exact prediction of the magnitude of the loads that will actually occur or of the loads
at which the structure will become unserviceable. The actual loads and the actually
available strength will therefore in general differ from the assumed or calculated
values. On the one hand, this may result in a deficient safety of the structure or, on the
other hand, it may result in wasteful use of material. In dealing with the problem of
structural safety the consequences of the development of an undesirable state must
be weighed against the measures aimed at limiting the risk of this occurring. As a



result of specifying the magnitude of the design loads and permissible stresses, etc. a
certain reserve capacity is established in the design calculations of structures, so that
in general the above-mentioned uncertainties with regard to loads and strength will
not render the structure unfit for service. This margin is therefore conducive to safety,
but without the assignment of a quantitative significance to the degree of safety thus
provided. This will be further considered later on.

In this paper the concept of safety, which cannot itself be expressed in a numerical
value, will be evaluated in terms of the “‘probability of unserviceability”. In propor-
tion as this probability is greater, the safety will be less. In determining the permis-
sible stresses, etc. as adopted at present, the calculus of probabilities as such is as
yet seldom employed. In the present paper it will be endeavoured, with the aid of
probability calculus, to determine retrospectively the chance of unserviceability which
is evidently accepted for various materials by virtue of the regulations relating to
them. It emerges that, in the first place, there are a number of factors involved which
in the quantitative sense are not yet sufficiently known. Because of this the actual
probability of unserviceability cannot be determined; but if the values of a few
variables are estimated, then an approximate comparison between the various mate-
rials does become possible. A comparison of this kind is of importance in making a
choice of material, if the question is posed: is the probability of unserviceability
equally great for the various potentially suitable materials, or is this probability in
one case much greater than in another, although the regulations have constantly been
conformed to?

By collecting more data it will perhaps become possible to determine with greater
accuracy the actual chance of unserviceability in the various cases. It might then be-
come appropriate for the relevant authorities — e.g., building inspection depart-
ments — to lay down a minimum requirement as to structural safety. Such a require-
ment will perhaps vary for different kinds of structure, but will be the same for all
potentially suitable materials. It will then also be possible to obtain more safety than
the requisite minimum ; with different materials this may be associated with different
costs. Weighing this extra cost against the reduced risk may further affect the choice
of material.

In the present paper the first question to be considered is: What safety is provided
in present circumstances, and is this safety the same for different materials? Next, the
safety formula which is derived is given a graphical interpretation and some conclu-
sions are drawn therefrom.

1.1 The factor of safety as a criterion of structural safety

The factor of safety is often employed as a criterion of the safety of a structure. This

factor can be defined in various ways. For example:

a. the “stress factor of safety”, this being the factor by which the determinative
stress (or sometimes the force, bending moment, or the like) must be multiplied
in order to reach a limit that is considered to be inadmissible;



b. the “load factor of safety’, this being the factor by which the determinative
external loading must be multiplied in order to reach the undesirable state.

If there exists a linear relationship between the loading acting upon a structure and
the forces and stresses acting within it, these two safety factors will be equal. For
structures which are similar, are constructed of the same material and are intended
for the same purpose this factor of safety does indeed constitute a criterion of struc-
tural safety. In the case of structurally different structures, or in the case of struc-
turally comparable ones intended to serve different purposes, a higher value of the
safety factor will, however, not necessarily guarantee a higher degree of safety.

For a combination of loads, one of the load components, e.g., the dead weight,
may be much more accurately known than another, e.g., the live load. On the basis of
this consideration certain weights are assignable to these components. If unservice-
ability occurs at a load or a stress .S, while G represents that proportion of the load or
stress which is due to dead weight and P represents the proportion due to superim-
posed loading, then the relationship S > n (G+P) will no longer be valid, but in-
stead: S > n,G+n,P where in general n, > n,. (In these relationships the overall
factor of safety is represented by n, while n, and n, are factors of safety associated
with the actions of dead weight and of superimposed loads respectively).

Formulae of this form are already employed in various cases. The introduction of
this differentiation constitutes an advance on the method in which only one factor of
safety is used. In this way, by a correct choice of the factors n, and n,, it is possible
to express the different character of the loading components.

For equal values of n,, n, and the ratio m = P/G for two structures constructed of
different materials, however, the safety will not necessarily be the same for both,
because in one case the scatter in the material properties may be greater than in the
other. According as this scatter is greater, the safety will be less for otherwisz similar
conditions. Hence it follows that the magnitude of the safety factors employed does
not directly provide an indication of the degree of safety. In due course it will be seen
that the assignment of different factors to different load components does indeed
fit well into the system which makes use of probability calculus.

In order to be able to design with a sufficient degree of safety, certain values have
been adopted for the factors of safety. On the basis of the designer’s judgment and
with the backing of experience, a large number of significant influences are accommo-
dated in these commonly employed factors of safety. There is, however, no objective
criterion for determining their magnitude. Since the considerations underlying par-
ticular rules and methods of design are moreover often no longer known, or no longer
fully known, a transition to exceptional cases or to new construction materials and
forms of construction becomes very difficult.

Summarising, it can be stated that:

— in general there exists a difference between the stress factor of safety and the load
factor of safety;

— by employing different factors for the different load components it is possible to
give expression to the accuracy with which they are known;



— the degree of safety associated with particular values of the stress or load factors
is dependent also on the material properties, so that in general these factors do not
provide a safety criterion; within certain limits they do, however, constitute a
basis for comparison;

— because of the obscurity of the origins of the usual factors of safety, a transition
to new cases is not objectively possible.

1.2 The probability of unserviceability

A more correct starting point for considerations relating to safety is the “probability
of unserviceability”. This concept involves only those factors which originate in the
loading and in the construction materials or structural members.

Serious errors of design or construction, drastic modifications in the purpose that
the structure must serve (resulting in changed loading conditions and requirements),
etc. are not amenable to mathematical treatment and will therefore not be taken into
consideration.

For every structure — or type of structure — it must be established at what stage it
becomes unserviceable. As a result of loading this may occur either because failure
develops or because the deformations become inadmissibly large. A “safe’” structure
is a structure for which it must be considered unlikely that the loads will attain such
magnitude as to render it unserviceable. There does, however, remain the probability
that this undesirable state will be attained; according as this probability is smaller,
the safety will be greater.

Having regard to the above-mentioned limiting stipulations, the chance of un-
serviceability is considered to be due to variations in the strength and in the loads.
Statistical analysis is concerned with such variable quantities. Characteristic thereof
are frequency distributions from which the probability of a particular value of the
variable being attained can be read. Often the actual frequency distributions are
approximated by theoretical distributions; the best known frequency distribution is
the so-called normal distribution or Gaussian curve. The probability with which a
particular value of the variable quantity will occur depends — besides the shape of the
distribution — upon the mean value and the standard deviation.

1.3 Definitions and notation

The following comments are presented with a view to providing a closer definition of
the concepts of “strength” and “loading”.

The external loads acting on a structure cause a force distribution pattern in that
structure. Usually the consequences of a load are translated, through the medium of
a calculation, into internal actions of forces (force, moment, stress, etc.). The mag-
nitude of these actions is then compared with that value thereof which would give
rise to a critical state (failure, yielding or the like).

In the following treatment of the subject the internal actions of forces will for the
sake of brevity be referred to as “forces”. Thus the magnitude of the action caused at

4



a particular point of the structure by the dead weight will be termed ‘the force G”’.
Similarly, “the force P is the action caused at a point of the structure by a variable
load.

Furthermore the magnitude of the force action at which a critical state develops will
be called “the strength S”.') The strength S varies for a set of similar members.
Members which are apparently identical or which differ so little from one another
that the difference is not manifested in the method of analysis are said to be
“similar’.

The strength can be determined from the test results for a number of structural
members or by calculation. In so doing it is assumed that the strength values ob-
tained from these tests and/or calculations are representative of the strength for
the cases that arise in an actual structure. In so far as tests are concerned, the material
employed, the manner of its preparation and use, etc. should therefore correspond as
closely as possible to reality, while a calculation should aim at the best possible
approximation of the actual strength.

In certain cases the strength may change during the service life of the structure, due
to corrosion, for instance, or suchlike causes. Such a change in strength will have to
be expressed in the calculations for determining the structural safety. In the present
paper this complication is dealt with for the material timber, whose long-term strength
is lower than the strength determined by means of short-term standard tests. Here, too,
it will be assumed that the frequency distribution of the strength at a particular age
of the structure can serve as a basis for calculating the probability of unserviceability.?)

The total force (or force action) Q in a structural member occurs as a result of the
total external loading upon the structure. For a particular structure this loading will
vary in magnitude and in location or distribution at various times. But even for
similar structures the loads are not identical. Nor are the forces Q which occur in
similar members of similar structures equal.

Of interest are the maximum values of Q which occur in a number of similar mem-
bzrs in a certain period of time. Together these maximum values form a frequency
distribution from which a mean value and a standard deviation are determinable
(see Fig. 1). In the further treatment of the subject the term “‘the force” will denote
the maximum force (or force action) in a structural member during the service life of
the structure. In this connection it should be noted that the frequency distribution of
the loading depends on the service life of the structure. The probability that a partic-

1)  Whether the attainment of a critical state in one member will render the entire structure unser-
viceable will depend on the number of members composing the structure, the manner in which they
are assembled, and the material properties.

2

) If, for example, during the service life of the structure the strength decreases linearly with time to
half the original strength, then it appears — on the assumption of a normal distribution and under
conditions which are otherwise similar to those of the examples to be discussed later on — that the
strength at three-quarters of the service life provides a good starting point for determining the
probability of failure.



ular heavy snow load will occur once in twenty years is, for example, higher than the
probability that it will occur once in ten years.
Summarising, the mean values of the variables S and Q are defined as follows:

S = the mean strength of similar structural members, as can be determined by
testing a sufficient number of members suitable for the purpose;

0 = the mean value of the force in a structural member. This mean value can be
found as the average of the maximum loads in a series of similar members oc-
curring once during a certain service time;

| Fig. 1. Diagram represent-
ing the frequency of the max-
#ﬁ imum value of a load Q oc-
0D curring on a number of
‘ similar structural members
‘ over a certain period of time.
‘ For a number n; of these
‘ members this maximum is
‘ located in the interval Q.
! On average the highest value
‘ of Q that can be expected to
! occuris @ ; from the frequen-
r—‘r_ ‘ cy distribution the prob-
1 ability of the occurrence of
- : s a maximum load in excess of
¢ —IL ‘ Q +ecs, in the period under
consideration follows from
the magnitude of c.

——— frequency

Qtcs,

Often the total force Q results from a number of components which can be defined in
the same way as Q. Thus for example:

G = the mean value of the force in a structural member, as a result of the permanent
(or dead) loading — averaged over similar structures — on the structure.

Similarly:
P = the mean value of the force in a structural member, as a result of the maximum

value — averaged over similar structures — of the variable (or live) loading on the
structure during the service life thereof.

The various formulae derived are mostly evaluated for the case Q = G+ P.

1.4 Application of probability calculus; the statistical safety index f;, as a safety
criterion

According to the foregoing definitions, unserviceability of a structural member will
occur when the force in it exceeds the strength, i.e., when Q > S.

The critical point is reached when Q = S, i.e., when V' = S—Q = 0. The fre-
quency distributions of Q and S together determine the frequency distribution of V.
Now we make use of the following expressions:
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V=8-Q0 and s, = \/ssz+sj

(S and Q both apply to similar structural members; they are not correlated).

For a particular form of the frequency distribution of V' the probability of the
occurrence of a particular value of ¥ is again dependent on the mean value V'and on
the standard deviation s,. The probability of a value of ¥ < 0 is determined by the

following ratio:

vV_ 5-0 _ S—-G-P W
S \/sf—}-sfl \/s2s+s§+sf,

In the further treatment of the subject the value of f;, thus defined will be called the
statistical safety index.

It follows from the definition that this statistical safety index is the opposite of the
coefficient of variation of V. This is represented in Fig. 2. It must be clearly stated that
the value of £, can permissibly be associated with a probability only if the form of the
frequency distribution is known. This form is determined by the frequency distribu-
tions of the variable quantities S, G and P together, but these are not individually
known. Besides, the distribution of S is not necessarily the same for all materials, so
that the resultant frequency distribution of ¥ in different cases is not necessarily the
same either. Consequently, a particular value of f;, is not necessarily always associated

with the same probability.

Fig. 2. Frequency distribu-
tion of V= S—0Q. For a
particular shape of the fre-
quency distribution the mag-
nitude of £y, = V/s, is a cri-
terion for the probability of
a value V < 0.

> frequency

V<0

fus, =V

So long as the frequency distributions of V' for different kinds of similar structural
members do not differ too greatly from one another, however, f;; can be regarded as a
reasonable basis of comparison. These differences are not easily demonstrable, as
appears, for example, from Fig. 3. Statistically it is therefore very difficult to ascertain
whether any one particular theoretical distribution fits in better with a limited num-
ber of experimentally determined values than does another distribution, although the
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Vi ,/ 3. Distribution of the smallest balue in a
70 : // : - sample of size n = 1000 drawn from a
50 7 normally distributed population.
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type No. I, cf. Eq. (5.22a).
8. Logarithmico-normal distribution.

This figure has been copied from [3].
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latter may differ considerably from the former, particularly in the range of low prob-
abilities. Since adequate data concerning the actual frequency distribution are lacking,
more particularly also with regard to the loads, in the following treatment of the sub-
ject no assumption is made as to the shape of the frequency distributions of V, so that
the probability of unserviceability is not quantitatively determined. It is only assumed
that f,, may, for cases not differing too greatly from one another, be regarded as a
comparative number.?) In this way it can be roughly ascertained what values of f,
provide a degree of safety which corresponds to the safety that is at present required
through the medium of the existing regulations. Thus different values of f;, can be
found for the various construction materials; to what extent these indicate differen-
ces in safety cannot be established on the basis of the foregoing. However, for new
materials and forms of construction it would appear appropriate to seek a link-up
with the results obtained, so that thus a more objective procedure will be applied in
establishing permissible stresses and the like than has hitherto been the case.

) In this paper no choice is made as to the form of the frequency distribution. In some cases, how-
ever, the normal distribution is adduced as an example. For judging the structural safety the fre-
quency distribution of ¥ is significant. This distribution being composed of several variable quan-
tities will be more closely in agreement with the normal distribution than the distributions of those
quantities individually. Viewed in connection with the considerable uncertainties as to the external
loads that actually occur, and the schematizations and idealizations adopted in the calculations,
there would, for the present, not appear to be any point in making the problem more complicated
than it already is by speculating about the most likely probability distributions of loading and
strength separately.



1.5 Materials with time effects

Before it is attempted to determine the values of f;, it must be noted that in certain
cases there may exist an interaction between the strength of a member and the force
in it. For instance, it is known that for timber or concrete a load of long duration
is more dangerous than a short-term load of the same magnitude. Similarly, an alter-
nating load may be more dangerous than a static load on a steel member. Although
the susceptibility of the material to such influences is of prime importance, this prop-
erty manifests itself only as a direct consequence of the forces developed in the material.
The hazard due to a particular kind of loading should be expressed in the problem
of safety.

This will be dealt with for timber. The starting point is provided by the experi-
mentally determined relation between the force in a test specimen and the time that
elapses until the specimen fails under the effect of that force. This period of time is
longer according as the force, expressed as a percentage of the ultimate strength So
determined in a short-term standard test, is smaller (see Fig. 4).

Graphs of this type are to be found in various sets of regulations and manuals. In
Fig. 4 the hyperbolic relationship between the force and the logarithm of the dura-
tion of load is given, as derived by Woop [1]. A linear relationship is also presented,
which — on the basis of the known test results — could equally well be adopted [2].
The objection sometimes raised with regard to the linear relationship is that with
extrapolation the horizontal axis is intersected. However, in view of the actual service
life of structures, this objection is of no practical significance. It is generally consid-
ered that the long-term strength can be taken as 50 to 60% of the short-term strength:
a factor of 9/16 = 0.56 is often adopted, this being the value recommended by the
Forest Products Laboratory at Madison. It is furthermore apparent from Fig. 4
that a specimen which is loaded to a proportion of the short-term ultimate strength S,
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Fig. 4. Effect of duration of load.



—e.g., to o, Sy — will fail after a certain period of time, e.g., after # years. Here this
is interpreted as follows: the force o,S, has caused a strength reduction (1—a,)S,
after a length of time ¢. Linked to this interpretation is the assumption that a force P
will, during the same period #, cause a strength reduction

L ays, = 1

oSy o,

P %

If it is required that there must still be sufficient strength available at the time 7, it
will be necessary to introduce the residual strength S, into formula (1),%) which then
becomes:

7= S,—G-P )
St standard dev. of (S,—G—2P) 2)
where
- = l—o, ~ 1—o,=
§,=5,— 4G —-_"rp
o o

)

while o, and o, are the values of o from Fig. 4, associated with the total tims (through-
out the service life of the structure) during which the forces G and P respzctively act.
In calculating the standard deviation of (S,~G—P) it is now necessary to take account
of the fact that S, is dependent upon G and P.

On working out formula (2), it becomes:

So—(1jo,)G—(ifa,)P

= — - = e (2
Vs A (o) ?s7 + (1 a,)’s,
Putting 1/o, = 7, and 1ja, = 1, this becomes:
S,—t,G—1t,P .
S = (2) -‘122 pzz )
N

In the further treatment of the subject it will be assumed that the structure has a ser-
vice life of 100 years, during which time the dead weight is always acting. The time
factor for the dead weight will thus be 7, = 1/o, = 16/9; for practical purposes a
value of 7, = 1.8 may, for example, be adopted. For the variable loads other values
may be adopted for the time factor, depending upon the length of time during which
these loads act. Values for this time factor can be read from Fig. 4.

4y Whether there is, with the normally permissible stresses and loads, still any question of such a
reduction in strength is doubted by some investigators; to be on the safe side, however, it is assumed

that it does occur.
5) The requirement as to the same safety is then really too severe, however, inasmuch as part of the

service life has already expired.
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2 The magnitude of the determinative factors in the statistical safety formula

In any attempt to use the foregoing theory for calculating permissible stresses, etc. in
the quantitative sense one comes up against the lack of sufficient data. It is one of
the advantages of the statistical approach that it provides a constant reminder of this
lack of knowledge, which is therefore something that can certainly not be used as an
argument against the theory.

In the following, an assessment will first be made of the coefficients of variation
that might be applicable to the forces G and P (see definition). Next, it will be con-
sidered what values of f;, would have to be taken into account in order to obtain
permissible stresses comparable to those at present adopted in the regulations. In so
doing it will be assumed that the regulations already embody the correct values to be
adopted for the design loads, these being therefore the average maximum values
throughout the service life of the structure.

2.1 The loads

On the assumption that, in establishing the loads to be taken into account according
to the regulations, it has been endeavoured to choose such loads in conformity with
the definitions given in the foregoing,®) the principal remaining unknowns are the
dispersions (amounts of scatter) in the various load components. The coefficient of
variation v is adopted as the measure of this dispersion. The dispersion in the forces
due to the dead weight of materials and structures is caused by the dispersion in the
specific gravity (or the bulk density) and by discrepancies between the actual dimen-
sions and those adopted in the design. From JOHNSON’s measurements on concrete
slabs [3] it emerges that the coefficient of variation of the thickness is 5.7% on an aver-
age, the actual slab thickness mostly being somewhat greater than the nominal
design thickness. In the following the safe value v, = 0.10 will be adopted for the
dead weight. Johnson has also collected data relating to the magnitude of the variable
loading on floors of residential buildings. From these data an average maximum
load of approx. 60 kg/m? (12.3 1b/ft?) (without impact factor) and a coefficient of
variation of approx. 309, could be deduced. However, the number of available data
and the period of time during which they were collected are not large enough to warrant
definite conclusions being drawn therefrom.

Johnson has collected Swedish and British data with regard to wind velocity. The
observed maximum annual velocity in Britain (gust wind) exhibits a coefficient of
variation ranging from 8 to 129 (over a 25-year period); the coefficient of variation
for the average maximum wind velocity has similar values. Observations at the
KNMI (Royal Netherlands Meteorological Institute) likewise present a similar disper-
sion in the maximum hourly averages of the annual wind velocity [4].

%) Although this starting point is disputable, this is perhaps less so than is commonly supposed.
After all, in defining the loads it has been explicitly stated that we are here concerned, not with the
mean (or average) loading on a structure, but with the mean value of the maximum values that can
be expected to occur during the service life of such structures.
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Fig. 5. The safety factor w from G = wS for different values of f,;, as a function of v; and v,,.

To what extent these data are to be regarded as representative of the variable floor
loading and wind loading, respectively, is an open question; it would appear very
useful to collect more data in this domain. Since it appears reasonable to suppose that
the variation in the variable loading is greater than the variation in dead weight,
though the magnitude itself is very doubtful, in the following treatment of the pro-
blem two values of the coefficient of variation will mostly be taken into account,
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Fig. 6. The safety factor w’ = 1/w from G = S/w’ for different values of fst> as a function of v,,
For v, a value of v, = 0.10 is chosen.

namely, v, = 0.20 and v, = 0.30, so that it is possible to obtain an impression of the
effect of this quantity. In the case of a normal distribution of the maximum values 7)
these values adopted for the coefficient of variation signify that, for example, 16 out
of 100 roofs designed for a snow load of 50 kg/m? will never be subjected to a snow

) In reality the frequency distribution of the loading will presumably not be entirely normal;
no statement as to the actual form of the distribution is made here.
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load of more than 40 and 35 kg/m? respectively, while on 16 other roofs the maximum
snow load during their service life will exceed 60 and 65 kg/m? respectively.

In conformity with the foregoing, one value of the coefficient of variation for dead
weight, namely, v, = 0.10, will accordingly be taken into account in the further treat-
ment of the subject, while two values will mostly be adopted for the variable loading,
namely, v, = 0.20 and v, = 0.30.

2.2 G and P expressed in S for different degrees of safety

With the aid of formula (1) it is possible to express G and P in the strength S. More
particularly, it can be ascertained what values of G are permissible for different de-
grees of safety — i.e., for different values of f;, —in the case where P = 0.

In Fig. 5 the values of w from G = w-S have been plotted for different values of
fu» g and v,; those values of w could be called the ‘requisite safety factor for the dead
loading’. In entirely similar fashion it would also be possible to plot the safety factor
for the live loading in Fig. 5, for which of course a value for v, would have to be
chosen. Since G and P are equivalent in formula (1), this safety factor would be
derivable also from Fig. 5. In the following this safety factor w from Fig. 5 will be
employed.

In Fig. 6 the reciprocal values 1/w have been plotted for the case where v, = 0.10;
these values are greater than 1, and can be compared with the usual coefficient by
which the strength has to be divided to get the permissible stress.

From Fig. 5 the great influence of the coefficient of variation v, is clearly apparent;
low dispersion in the strength makes possible the application of large forces!

From formula (1) there also emerge combinations of G and P for different values of
fues gy v, and v, These combinations can be plotted in an orthogonal co-ordinate
system with axes G and P, both expressed in S (see Fig. 7). In this diagram the values
on the G-axis and P-axis are different, this being due to the higher value assumed for
the coefficient of variation v, in the case of P. In Figs. 8 and 9 a number of such
curves have been plotted, calculated from formula (1), for the chosen values of v, and
v, and for various values of vy and f,,. All the combinations of values for G and P

located on one curve are associated with one

o and the same value of f;, and therefore present
) vy = 010 ‘\ the same risk of failure. These diagrams may
088 :2?2 also be employed for assessing the usual values
& of the statistical safety index for various con-
o \\\Q\ o \ struction materials, as will appear from the
. N following.
0.6 N \\V%e \
NPAY
023 \\\ I
N\
0.5 04 065 08 _ _ _
— Fig. 7. G and P expressed in § for various values of fg.
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2.3 The value of f,, for various materials

2.3.1 Steel

The permissible stresses for steel are often linked to the yield point. For the widely
used steel grade Fe 37 the yield point is usually taken as being 2400 kg/cm?; the
mean actual value is higher, however. For instance, from 1350 tests performed in the
works laboratory of a structural steelwork firm a mean value of 2910 kg/cm? was
found, the coefficient of variation being 119%.

r 0.85 R\

068 N

: °

7
)y 4

N\
AN

"025 045 065 085

045 l\ NG

)
N
02§ EANANAN

NI

025 045 065 085

—_—p

025 04§ 065 085 02§ 043 065 085

—_—

Fig. 8. G-P diagrams for various values of fs¢ in case
of different values of v,. For v, the value of v, = 0.20
is chosen.
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The coefficient of variation of the strength of structures is likely to be higher than
that of the tensile strength of the material. In the case of rolled steel sections, for
example, there are, in addition to the variations in the material properties, also the
deviations from the nominal dimensions, and these deviations likewise manifest them-
selves in the coefficient of variation.

According to the Netherlands Standard N 1055, the permissible stress for this
steel is 1400 kg/cm? or, under certain conditions, 1600 kg/cm?. If the mean yield

N\ N\
045 kie \Q§\\”§ \\\ly\)
RN AN N

025 04§ 0.6 0.8S 02§ 048 065 0.

1
]
~ 5
a
o
o
P
o
o
o
o
o
i)
P

045 < N
° N
v \\ N
5, N
: HIAN N\,

02§

028 045 065 085 025 045 065 085 065 085
—p —p e P
i%]
| 0.85
068
045
L &
K[
< Q2
0.28 \
LN N Fig. 9. G-P diagrams for various values of f, in case of
025 045 065 08§ different values of v,. For v, the value of v, = 0.30 is

—F chosen.
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strength is situated between S= 2600 kg/cm? and S = 2900 kg/cm?, then w will range
between w = 0.54 and w = 0.48 for ;s = 1400 kg/cm? and between w = 0.62

and w = 0.55 for o

permiss

= 1600 kg/cm?.

Since G,+G, < Opermiss OF alternatively, G+P = constant, the boundary lines in
the G-P-diagram are linear, while the intercepts on the axes are equal. This is plotted
in Fig. 10, where are also very approximately indicated the limits within which the

Fig. 10.
Values of w for the
usually adopted

steel stresses.

Fig. 11.
Comparison  of
Fig. 10 with the
G-P diagrams of
Figsf8 and 9.

(V)

|

0.45

0.85

il

&

o
il T permiss

! 1
= 1600 kg/cm?

permiss =

= 1400 kg/cm?

N
R
&
&r
N
&y
@
g

s O
§ <
&

v, = 0.20 (fig. 8)
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ratio G/P will range in normal structures. By superimposing Fig. 10 upon the graphs in
Figs. 8 and 9 it is possible to read what values of f;, will be associated with the usual
permissible stresses. The results of some cases are plotted in Fig. 11; the values ob-
tained are given in Table 1, and they are presented in graph form in Fig. 12.

Table 1. Values of f;, for steel

o St
permiss

(kg/cm?) v, v, = 0.20 v, = 0.30

1400 0.10 4.5t03.5 4.5t02.7
0.15 3.2t02.6 3.2t02.2
0.20 2.5t02.2 2.5to 1.8

1600 0.10 3.9t02.7 3.7t0 2.1
0.15 2.8to 2.1 2.7to0 1.7
0.20 2.2t0 1.7 2.2to 1.6
v, = 020 v, = 030

.
g

A e

- 0 = 1400 kg/em?

permiss

T T

[ TTITT e 00t

0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20 0.25

v, ————

Fig. 12. Values of f; for steel.

The higher permissible stress is associated with the lowest values of f;,. On the as-
sumption that the permissible stress of 1400 kg/cm? is associated with a value
v, & 15%, then f,, will be between 2.5 and 3.4 for v, = 0.20, and between 2.1 and

3.4 for v, = 0.30.
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It can be assumed that, thanks to the greater amount of care that is required in the
execution of the structure if the higher permissible stress (0 ermiss = 1600 kg/cm?) is
adopted, a smaller variation in strength will be achieved, e.g., v, ~ 0.12. This results
in values of f;, between 2.2 and 3.5 for v, = 0.20, and between 1.8 and 3.4 for v, =
= 0.30.

For structures with relatively small permanent loads the values of f,, are lowest;
the degree of safety is therefore lowest for such structures. It is notable that with the
choice that has been made here with regard to v, the adoption of the lower permissible
Stress (Gpermiss = 1400 kg/em?) is still the safest course. If, in addition to a difference
in the coefficient of variation, there might also be supposed to exist a difference in the
mean strength S between the “ordinary” and the “carefully executed” structures,
then the values of f;; could approach each other more closely.

From the foregoing it can provisionally be inferred that for normal steel structures
the statistical index is between 1.8 and 3.5. The large difference between these lower
and upper limiting values is in part due to the fact that the current regulations take no
account of the difference in character between dead and live loading.

2.3.2 Reinforced concrete

The strength of reinforced concrete beams with normal percentages of reinforcement
and of rectangular cross-section can be calculated from:

Wo0
Mu=<uoae<1—c#bd2 N
o-u
where:
cross-sectional area of tensile reinforcement
W, = A/bd =

cross-sectional area of concrete

yield point of the reinforcement

¢ = coefficient associated with the stress distribution in the compressive zone: for a
parabolic distribution: ¢ = 9/16

o, = compressive strength of the concrete in the compressive zone

For the design of beams in accordance with Netherlands Standard NEN 1009 with
grade QR-24 reinforcement the yield point to be adopted in this formula is ¢, =
= 2400 kg/cm?. Since this is a guaranteed yield point, the mean actual value &,
will be higher, e.g., 10 to 15% higher.®) Furthermore, a value equal to 0.6 times the
cube strength must be substituted for ¢’, in the formula. This factor of 0.6 takes
account of the change from cube strength to prism strength (for which the factor is
approx. 0.85), as well as the combined effect of continued hardening and sustained

8) This percentage will depend also on the cross-sectional area of the bars and will be higher for
thin bars.

19



loading (factor approx. 0.9) and a reduction of the mean value to a 57, lower limiting
value (factor approx. 0.8).

All this means that the mean actual strength S differs from the calculated strength
M, in relation to which the permissibility of the loads applied to the structure is
judged. Let &, be the mean yield point of the steel and &’,, the mean cube strength of
the concrete; then the mean strength of the beam, including the strength reduction
due to sustained loading (i.e., loading of long duration), will be:

5= w056<1 o M—> bd?
16 0.9 % 0.855

while the calculated strength is:

68
5 Wo 7= —77%
M, = w, % 4 9. 1.1to 1.15 bd?
1.1t 1.15 16 0.9 x 0.85 x 0.855,,

On combining the two above expressions, we obtain:

S

Mﬂ:l.]l to 1.17

According tot NEN 1009 it is necessary to allow a safety factor of 1.8 with respect to
M, ie.:

us

M

u

> 1.8G+1.8P, so that:
S>Q2to2.)G+(R2to2.1)P

In the same way as has been done for steel the associated limiting lines can now be
plotted ; this has been done in Fig. 13.

P | <
Fig. 13. G-P } 68

diagram according
0.43 AN

to NEN 1009. 45 \

N\

028 045 065

— P

Fig. 14. G-P diagrams according to C.E.B. Recommendations.

10 068

l l |
\ v, = 0.10 v, = 045 v, = 0.20 \ v, = o,1<|) 3 020
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025 \
N N

02§ 045  06S 02§ 045 065 02§ 045 065 02§ 045 0.65
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A different procedure is followed in the “Practical Recommendations” of the
Comité Européen du Béton (CEB). On the one hand, it involves the useof so-called
characteristic values for the strengths and loads, while, on the other, it introduces
factors of safety which likewise relate to the strengths and loads.

For establishing the characteristic values, 5% probability limits are applied, which
means in effect that the value substituted for the strength is the mean value minus
1.64 times the standard deviation; this applies both to steel and to concrete. Further-
more, a safety factor y is introduced, which has the value y, = 1.15 for steel and which
varies between y, = 1.40 and y, = 1.60 for concrete, depending on the greater or less
amount of care bestowed on concrete making and workmanship.

As regards loads, the mean value is adopted for the dead weight, while the charac-
teristic value of the live (or superimposed) load is 1.15 times the value laid down in
the regulations. Finally, an enhancement factor for the loads is introduced; in gen-
eral its value is 1.40.

With the aid of the previously employed formula the following expression is now
obtained for the design strength S,:

r @o0(1—1.64vy) 7 °)

a.(1—1.64v,,) 9 1.15
S, = w, — - . -
1.15 16 0.85(1—1.64v,) 0,
- Vb

where &', is the mean cube strength. This value can again be compared with the
mean actual strength S, as already referred to in the foregoing. For the ratio S,/S the
following expression is obtained:

|9 (1=1.640,)06,/1.15

_1—1.64v, 16 (1—1.640,)0.855,./7,
115 9 oG,

S,
S

16 0.9 x 0.855,

This ratio has been evaluated for steel with a characteristic yield point of 2400 kg/cm?
and a coefficient of variation v,, = 0.10, so that — since 2400 = (1 —1.64v,,)G, — the
mean yield point is &, = 2870 kg/cm?. Furthermore, some combinations have been
chosen for concrete, namely:

v, = 0.1; Yy = 1.4,
v, = 0.15; v, = 1.5 and
v, = 0.20; y, = 1.6

%) In the Recommendations it is stated that the values of y; are based on complete loading at an
age of 28 days, while attention is called to the compensation of the diminishing strength in conse-

quence of dead load and continued hardening. For this reason no time factor is introduced with
regard to the strength of the concrete.
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Finally, the ratio for each of these combinations has been calculated for three con-
crete strengths, namely: &', = 160, 225 and 300 kg/cm?.

According to the Recommendations it must moreover be shown that 1.4(G+1.15P)
< S, or, alternatively, if S,/S = r, then: 1.4G+1.61P < r* S, ar-

With the aid of the ratio »r = S,/S which has just been calculated it is now possible
to plot the values of G and P again, as has been done in Fig. 14. These graphs were
compared with those in Figs. 8 and 9, from which values of £, were read, which have
been plotted in Fig. 15. It appears that for v, = 0.20 particularly the CEB method
gives a narrow band in the diagram, this being caused by the difference in the treat-
ment of G and P. For v, = 0.30 the band in Fig. 15 is much wider because the slopes
in Figs. 14 and 9 are not in good agreement with each other.

Similar reasoning is applicable to the Dutch Code of Practice for Reinforced
Concrete (GBV 1962); because of the equal treatment of G and P, however, no good
agreement with Figs. 8 and 9 is obtained, so that a wider band results in Fig. 15.

Comments

A few values of v, have been chosen for the dispersion (scatter) in the concrete
strength ¢’,;. Ultimately, however, we are concerned with the dispersion of the rein-
forced concrete beam, but this is something that is but little affected by the concrete
quality, as is apparent from formula (4). From this same formula it also follows that
a greater variation v, hardly entails a greater variation in the strength of the beam,
this being almost entirely determined by the variation in the steel strength. This would
mean that in Fig. 15 only the values of f;; at v, & v, =~ 0.10-0.15 are of importance.

In this connection it is to be noted that deviations in the position of the reinforce-
ment likewise cause dispersion in the strength of the beam; this has not been taken
into account.

v, = 0.20 v, = 030
5 &
r . %‘é o
N N\
Ba
\N‘ N
3 N N
{ N
N { TS
i S
2 == A
) w— N
R S~
< C.EB.-rec. ~< C.EB.-rec.
1 % NEN 1009 NEN 1009
0.05 0.10 0.15 0.20 0.25 0.05 0.10 0.15 0.20
— Y — Y

Fig. 15. Values of f;; for reinforced concrete.
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Finally, it is pointed out that similar considerations could be established for other
reinforced concrete structural members, such as columns. It would be interesting to
ascertain whether, in such cases, corresponding values of £, would be obtained for
the various members.

2.3.3 Prestressed concrete

According to the rules applicable in Holland '°), the following recommendation or
requirement is formulated for obtaining adequate safety against failure:

M, > 1.75M,+2.25M,

For warehouses the requirements must be established as a result of due consultation;
“as a rule” the safety required for such structures will not have to exceed:

M, = 1.75M,+2.75M,

In these expressions M, is the failure moment, M, is the moment due to dead load,
and M, is the moment due to live load.

The failure moment M, is allowed to be determined on the basis of tests or by cal-
culation. In such calculation the ultimate tensile strength of the prestressing steel
plays a part. This steel is supplied in various grades, with tensile strength increments
of 5 kg/mm?. In the provisional directives for the testing of high-tensile steel for
prestressed concrete it is specified that the tensile strength must not be lower than
the stated value and must not exceed this value by more than 20 kg/mm?. The
dispersion in the steel strength will therefore be small, while the difference between
the actual and the stated value will likewise not be large. The coefficient of variation of
the strength of the prestressed concrete will presumably to a great extent be deter-
mined by that of the steel, but is perhaps somewhat greater because the quality of the
concrete, the dimensions, etc. also play a part.

At the FIP congress in Berlin in 1958 it was proposed that the followin‘g formula be
used:

M, > 1.9M,+2.6M,

Here again the failure moment M|, is determined by calculation, but the values adopted
for the steel and concrete strength in the calculation are obtained from tests. Out of
a series of twenty relevant test results the mean value of the ten lowest is introduced
into this calculation. The actual mean strength will therefore be higher; this corre-
sponds roughly to 1.10 times the value adopted in the calculation.

For S = M,, G = M, and P = M, the STUVO formula gives:

S > 1.75G+2.25P or (for warehouses) S > 1.75G+2.75P

10)  Recommendations of the ¢Studievereniging tot Ontwikkeling van het Voorgespannen Beton”
(STUVO): RVB 1952.
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Adopting S = 1.10M, and P = M, the FIP formula gives:

S > 2.10G +2.85P

v 065 —

0.43 |-

AN Fig. 16. G-P diagram for prestressed concrete.
0.25 0.45 065
—_— P
STUVO
~—-—-— id.; special for warehouses
———— F.LP.-1958

In Fig. 16 the straight lines associated with these requirements have again been plotted
in the G-P-diagram. It is clearly apparent that now a difference in dispersion be-
tween G and P has indeed been taken into account. In the diagram it is indicated
within what limits of the ratio of G and P the prestressed concrete structures might
generally be located. The STUVO formula for normal structures is compared with

‘gs. 8 and 9 in the manner as has been explained with reference to steel. A notable
feature here is the better agreement with the theory of safety; the direction of the
straight lines is almost identical with the direction in the diagrams for v, = 10%;
v, = 20% and for v, = 150; v, = 30%,. For the warehouse floors the steeper slope
of the straight line in Fig. 16 is indicative of an even higher assumed value of v,
than v, = 309 as here introduced. Finally, it should be noted that the FIP for-
mula results in higher values of f;, than does the formula indicated in the Dutch
rules for prestressed concrete (RVB 1962).

The values obtained for f,, have been stated in Table 2 and plotted in Fig. 17; the
uncertainty as to the value of f;, which is employed is much less than in the case of
steel, thanks to the load factor method of design introduced here. If the coefficient
of variation v, is taken as 0.13-0.16, then f;, = 2.9-3.4.

Table 2. Values of f;, for prestressed concrete

Jst
Vg v, = 209, v, = 30%
10% 4.2 to 4.3 4.0 to 3.5
15% 3.0 to 3.2 29 to 2.8
20%; 2.3 to 24 ca. 2.3
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v, = 0.30
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4 J i
3
2
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0.05 0.10 015 0.20 0.25 0.05 0.10 0.15 0.20 0.25
——-——-»Z —_—
Fig. 17. Values of f,; for prestressed concrete.
2.3.4 Timber

For determining the permissible stresses for timber it is common practice to employ
formulae in which, in addition to the mean strength, the standard deviation also
occurs. In all cases the stress which is considered permissible for an unlimited length
of time is calculated; for loads of shorter duration this permissible stress is allowed
to be increased. In calculating the permanently permissible stress it is necessary to
take account of time effects as described in 1.5. In the usual formulae this is done by
introducing the reduction factor 9/16. The two formulae employed here are: '!)

CSIRO, Melbourne:
G 9 S,—2.33s,, 2 1-2.330, -

T 16 125 16 1.25

and
TRADA, London:

G 9 S,—1.96s, 9 1—196v, 3
~ 16 .33 16 1.33 0

If the reduction factor were exactly 9/16, then, for example, the “safety factor”
according to the CSIRO formula would have the following value:

1-2.330,,
125

11) - For more detailed information see [5].
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As pointed out in 1.5, it is not likely that this factor is indeed so precise. If the actual
factor is, say, between 0.50 and 0.60, the safety factor obtained with the CSIRO

formula is:

9jte _ 1-2.33,
0.50 10 0.60 ~  1.25

These values can be compared with the values of w in Fig. 5. In Fig. 18 some curves
from Fig. 5 have again been drawn and are compared with the values obtained from
the CSIRO and, in similar fashion, from the TRADA formulae. The values here
adopted for the actual reduction factor are 0.50,0.55 and 0.60.'?) In Fig. 19 is indicated
at what values of f;, the CSIRO and TRADA formulae yield the same results as the
formula presented in this paper.

As the coefficient of variation of the strength of timber is mostly between 15 and
20%, the value of f,, is between 2.5 and 3.2; the area in question is shown shaded
in Fig. 19.13)

s 1.0 —————

|

0.8 S,

\\ N
N
o]?‘i : “t\\ 8

0.6 \ A Vi

=2

’ R

0.5 | time factor t,=

o
o

5

1
fact =-. =1.
time factor ¢, 555 1.82
: 1
time factor !”:5".'55:1'767 -
0.4} X ,
e CUTVES from fig. 5 N . = = .
_____ CSIRO Fig. 18. G-P diagrams for timber ac-
—_—————— TRADA cording to various regulations com-
pared with Fig. 5.
0.05 0.10 045 0.20 Ry

— V.

12)  The time factor for dead load will then therefore be 7, = 1/0.50 = 2, 1, = 1/0.55 = 1.82 and
t, = 1/0.60 = 1.67 (see 1.5). ¢

13) The results obtained have been used in determining the permissible loads on timber connec-
tions [6]. o

26



Fig. 19. Values of f, for timber. =3
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Fig. 20. Diagrams summarizing the values of
[t for various construction materials. =
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2.4 Summary and conclusions

In this chapter the safety formula presented in Chapter | has been further elaborated.
For different values of the statistical safety index f,, it is possible to express G and P
in the strength S. In Fig. 5 values of the “safety factor’” w can be read from G = w-S
for different values of the coefficients of variation v, and v, and of f,,. After having
made a choice as to probable values of v, and v, it was considered what values of
Js are attained in the case of some construction materials. The results are summarized
in Fig. 20. The great influence of the coefficient of variation v, on the available safety
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is clearly manifested : adopting the currently valid permissible stresses, for each mate-
rial a substantially higher degree of safety is obtained if the manufacture of the ma-
terial, or the construction of the structure, is such that a low coefficient of variation
v, results. Conversely, this leads to the conclusion that a low value of v, — obtained
by careful control of the construction material — can result in higher permissible
stresses, etc. while retaining the same degree of safety. Indeed, this conclusion already
emerges quite clearly from Fig. 5.

The “height” of the bands in Fig. 20 is due largely to the fact that — in contrast
with what has here been assumed — currently valid regulations often make no dis-
tinction between stresses caused by permanent (dead) load and those caused by
variable (live) load.

Attention must be called to the region indicated for timber in Fig. 20, which region
has been derived in a manner different from that adopted for other materials, namely,
by comparison of standard formulae with the formula derived here. Since the standard
formulae already contain the coefficient of variation v,, the influence of v, upon f, is
no longer very great; the uncertainty is now caused by the lack of certainty as to the
accuracy of the time factor. The standard formulae are valid for the dead loads G,
and so the magnitude of v, plays no part here; the region is the same in both cases
envisaged in Fig. 20. Finally, it must be pointed out for this material that the safety
theory has been applied to the residual strength S, available after expiry of the ser-
vice life; actually the value of f;, is therefore a little higher, and the safety greater,
than is found by means of the procedure adopted here.

3 Stress regions

3.1 Graphical interpretation of the formula for the statistical safety index

In the foregoing, with reference to the definition formula of the statistical safety in-
dex, values of G and P were expressed in the strength S. These values have already
been plotted in graph form in Figs. 7, 8 and 9. In the following, these graphs will be
further elaborated. The definition formula of the statistical safety index was:

S-G-P
fstzj ... (1)
NS
Since s, = v;°S, s, =1v,-G and s, = v, P, we obtain:
(5—G—P)* = f2W2S§*+v2G*+v,P?) . . . . ..o (9

With the aid of this formula it can be investigated what combinations of G and P
are permissible in particular cases. In a graph with co-ordinate axes G and P these
permissible combinations — in conjunction with particular, fixed values of the other
quantities — result in a hyperbola, as indicated in Fig. 21. Only the inner branch
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P if these are simultaneously present

ditto if P may be absent
Fig. 21. Hyperbola according to

formula (4). Fig. 22. Hyperbolas associated with +3 and —S.

(nearest the origin) of this hyperbola is of significance to the present purpose. Points
located on this curve represent combinations of G and P for which the probability of
exceeding S is just so low as corresponds to the value adopted for f;,. On the other
hand, points located on the other branch represent combinations of G and P for
which the probability of not exceeding the strength is just equally low; these latter
values of G and P will therefore very probably cause the structure to fail.

In accordance with the convention of assigning algebraic signs to stresses, etc., the
strength S will likewise be given a sign. Thus, in the further treatment of the subject,
a tensile strength will be considered positive, and a compressive strength will be con-
sidered negative. For a material having positive and negative strength of equal
magnitude it is possible, in the same manner as discussed with reference to Fig. 21,
to draw two hyperbolas associated with +S and — S respectively (see Fig. 22). The
two inner branches of these hyperbolas enclose the region within which the per-
missible combinations of G and P are located. As the live loading P is not always
present, it is necessary to reckon with G being present alone; hence the horizontal
boundaries to the region between the hyperbolas, as indicated in Fig. 22.

Point A (in Fig. 22), located outside these horizontal boundaries, will, in the ab-
sence of P, give a value G which in combination with P = 0 is not permissible. Thus
in Fig. 22 there remains the cross-hatched (heavily shaded) region within which the
permissible combinations of G and P are located. Since it has been assumed that + S
and —§ are of equal magnitude, this is a symmetrical diagram. In certain cases, e.g.,
with struts subject to buckling loads, the compressive strength (negative) is lower
than the tensile strength (positive), however. These smaller values of —S, too, are
associated with hyperbolas; in Fig. 23 it is indicated how the original total region of
permissible combinations of G and P between the boundary lines +S and —S is
diminished if the negative strength successively amounts to —0.85, —0.65, etc. The
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region within which, in the diagrams plotted in this way, permissible combinations of
G and P have to be located will, in the following, be referred to as the ““stress region”.
It should be noted that, besides stresses, G and P may also represent forces, moments,
etc.

3.2 Some characteristic properties of the curves obtained

Before further elaborating the curves of the form represented in Fig. 23 for particular
values of the respective variables, it will be appropriate to describe some general
properties of these curves, whereby an insight can be gained into the influence of some
of the quantities involved. In so far as that may be necessary, a value of 2.5 or 3 will
be assigned to the statistical safety index f;,. As appears from Chapter 2, the values
of f,, for various materials are located approximately within these limits.

a. The intersections with the axes

The intersections of the hyperbola, associated with a strength S, with the P-axis are
determined from:

5 LBV =00 (L=/iv))
1- vai

Of these the smaller value is of importance.

The intersection with the G-axis is obtained by replacing v, by v, and P by G in
the formula.

In Fig. 24 these intersections with the axes are indicated for various cases and are,
for simplicity, interconnected by straight lines. Since in all cases we have chosen
v, > v, the intercept on the horizontal axis is always smaller than that on the vertical
axis.

For f,, = 3, which is indicative of a higher degree of safety than f;, = 2.5, the inter-
sections with the axes are closer to the origin. Attention is called to the decreasing
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Fig. 24. The intersections of the hyperbola with the axes -G and -+ P for various values of the
variables. For simplicity the points of intersection have been joined together by straight lines.

slope of the lines for increasing values of vy; for the largest value chosen for v, these
lines are sloped at nearly 45° if G and P are plotted to the same scale on the axes. In
practical terms this means that, for materials with little dispersion in the strength,
there is reason to make a distinction between the stresses and other force actions due
to dead load, on the one hand, and those due to live load, on the other, if it may be
assumed that v, differs from v,. For materials with a large dispersion there is hardly
any reason for such a distinction. The fact that for certain materials there may be
other reasons (e.g., time effects) for making such distinctions has already been dis-
cussed earlier on.
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Fig. 25. Straight line through O for § = 0. The portion
prl situated below the P-axis is cancelled by the truncating
{ line which here coincides with the P-axis.
~

Fig. 26. The straight line for S = 0 for various values of
the variables f; and v,; v, = 0.10.
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b. The compressive strength (—=S) = 0

In the foregoing a distinction was made between positive (e.g., tensile) strength and
negative (e.g., compressive) strength. Usually a structural component will have a
positive as well as a negative strength, which strengths are not necessarily numerically
equal. Consider, for example, a lattice member in which a tensile force is produced
by the dead load; to resist this force a certain tensile strength +35 is necessary. If a
compressive force is additionally produced in that same member by a live load, then
there arises the question as to how large this compressive force can permissibly be
before the member in question must also be required to have a compressive strength.
In the line of reasoning that has been followed, a line for S = 0 denotes the combi-
nation of G and P for which it is just not yet necessary to take account of compression.

For this value S = 0 the hyperbola degenerates into two straight lines through the
origin (see Fig. 25). Of these lines only the portion drawn as a full line in the diagram
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Fig. 27a. Stress region for a cord (+5;0). Fig. 27b. Stres_s region for stone with zero tensile
strength (0; —S). The area of the stress region
increases considerably if the material can attain
some tensile strength.

is of interest; the other portion is cancelled because the truncating line coincides with
the P-axis. The equation of this line is:

1-— sfvj

This line has been plotted for various values of v, in Fig. 26. In both the graphs
presented here v, = 0.10; for f;, two values have again been chosen, namely, 2.5 and 3.
The slope of the lines always exceeds 45° (even for v, = v, = 0.10). This is because
the variation in the loads has been included in the consideration of the problem; the
magnitude of the coefficients of variation v, and v, determines the slope of these
straight lines. This slope is therefore independent of the construction material
employed.

By way of example, in Fig. 27 the stress regions are represented for two cases where
the line S = 0 is significant.

Summarizing, it emerges from the foregoing that, on the basis of the formula for
the statistical safety index, permissible combinations of G and P can be plotted in a
graph with G and P as co-ordinate axes. These permissible combinations are located
within the region enclosed by two hyperbolas and by two horizontal straight lines
(Fig. 25). The diagram thus obtained is the “‘stress region’, as first mentioned in 3.1.

The slope of the hyperbolas in the diagram increases according as the coefficient of
variation v, is greater than v,. This effect becomes less pronounced, however, with
increasing v, and is therefore dependent on the construction material under con-
sideration.
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3.3 Stress regions for materials with time effects

In 1.5 attention was paid to the fact that strength and loading are not always quan-
tities that exist independently of each other, but that there may be an interaction be-
tween them. The example of timber was elaborated, this being a material for which
loads of long duration are more dangerous than loads of short duration. The line of
reasoning that was followed led to the formula (3):

So—1t,G—1,P

Ju N e
where 1, is considered to be associated with a service life of 100 years. In formula (3)
the term #,G occupies the same place as G in formula (1); similarly, ¢,P performs the
same function as P in formula (1). Accordingly, for particular values of 7, and 7, it is
possible to calculate stress regions in the same manner as before: here different values
of 7,G and 7,P are expressed in S,.

If it is desired to read G and P directly from the graph expressed in the short-term
strength S,, this means that the graph is, as it were, shortened in the ratio 7, in the
vertical direction; and in the horizontal direction a shortening in the ratio ¢, is

~N
~N

-

Py =a-1
(V) , |
| Pm=a+g

G/ =6,

Fig. 28. Deformation of a stress region as a result of introducing time factors ¢, and #,,.

stress region for non-time-sensitive material
————— stress region for time-sensitive material



Fig. 29. r:o_
a. Non-time-sensitive T
material 200
b. Dead load
c. Dead load-+snow
d. Dead load +wind A D
) 100 ° N
X{oo
‘ 100 200
—100 \ — P
\
\
\\
—100 + N
\
\
\
\
—200F
a
|
%]
o o
+ ‘{ T
T‘-100 %100 f,.mo
—P=— N\ —100 \ —100
—100 \ ) '
—100°F —100
b c d

applied. However, this statement as to shortening is not quite correct; the assumption

: 7
l—oc,j‘é 1-q,
O(!] al)

5l=35,- P (see formula 2)

would in effect, for opposite algebraic signs of S, and of G or P, signify an increase in
strength.

Now it seems illogical that, for example, the compressive strength of a member
should increase as a result of having been loaded in tension for a certain length of
time. This consideration leads to the supplementary condition that the strength in-
crease is caused only by loading of the same sign as the strength.'#) With regard to the
above-mentioned shortening or contraction of the stress region in the axial directions
it is therefore necessary to take this into account; this shortening should occur only
in so far as the total load has the same sign as the compressive strength. In the quad-
rants (+ G; +P) and (—G; — P) this presents no difficulties: in the G-direction the

1) It is conceivable that connections are adversely affected by such variations in the direction of
the load.
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values become 7, times as small, and in the P-direction they become 7, times as small
(see Fig. 28). In the quadrants where G and P are of different sign, G can be regarded
as a prestress which has to be exceeded by P before the strength S undergoes a reduc-
tion. The straight line through O, valid for S = 0, indicates the value of P which
— with the probability determined by f;, — will cancel the values of the prestress due to
G. So the shortening or contraction of the diagram begins only from this line. The
shortened stress region has now been determined.

By way of example these stress regions have, in Fig. 29, been drawn for the under-
mentioned cases, where it has been assumed that f;, = 2.5 and v, = 0.20:

S, (kg/cm?) v, t, 7 remarks

400 0.2 1 1 material without time effects

400 0.2 2 2 material with time effects; dead loads and live
loads treated alike: 1, = t, = 2

400 0.2 2 1.6 as above; time factor for dead loads again

taken as 7, = 2; time factor for live (or super-
imposed) loads, e.g., snow, has been taken
ast, = 1.6.

400 0.2 2 1.4 as above, but time factor for live loads, e.g.,
wind, has been taken as 7, = 1.4

The considerable reduction of the permissible stresses in consequence of the time fac-
tor is clearly manifested, while a further striking feature is the altered shape of the
diagrams when the time factors 7, and ¢, are not equal. As a result of this latter situa-
tion the various boundary lines in the quadrants (+G; +P) and (—G; —P) will
slope less steeply according as the live load is of shorter duration, i.e., according as 7,
becomes smaller. The “kinks’ at the horizontal axis are due to the assumption that a
load cannot exercise a favourable influence upon the strength.

For materials with a time effect, such as timber, it might be desirable that with
regard to wind loading, for example, a distinction is made between a virtually per-
manent wind load (i.e., almost a “dead” load) and a maximum anticipated value
thereof. This is the case only when:

t,W <t W

where W is the wind load in accordance with the definition and W’ is a ““permanent”
wind load.

If W = 70 kg/m? and t, = 1.4, while 7, is taken as being equal to 1.8, introduc-
tion of the permanent wind load would be meaningful if its value exceeded 1.4 x 70/1.8
~ 55 kg/m?. Such a value of the wind pressure, corresponding to a wind velocity of
29 m/s, i.e., wind force 11-12 on the Beaufort scale, can certainly not be regarded a
as permanent, however. Hence, there would seem to be little point in introducing
permanent wind load of this kind.
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3.4 Application in regulations

The stress regions established in the foregoing can as such constitute a complete set
of regulations as to permissible stresses for a particular material. They provide a
clear and convenient indication of what stress combinations can and what stress
combinations cannot be permitted in conjunction with certain values of the strength
(positive and/or negative) °).

If it is not desired to include such graphs in the regulations for various materials
but, instead, to define permissible stresses, etc. in clauses, a fairly obvious step will be
to adopt straight lines as approximations to the theoretical curves. Having regard to
the fact that the numerical values of the variables concerned are only roughly known,
there can be no objection to such approximation.

Starting from some extreme values of the variables, the “true” stress region is in-
dicated in Fig. 30. In this diagram the permissible stress for dead load alone, i.e., for
d, = 0, has always been taken as 6, = 100. In that case the boundary lines are indi-
cated for four cases, namely, for f;, = 2.5 and f;, = 3, in both cases for v, = 0 and
vy = 0.25. If these chosen values are regarded as extremes, then the boundary lines
will range within the zones defined by them. (In all four cases the values chosen for
v, and v, are 0.10 and 0.20 respectively.)

The slope of the line through the origin, for which S = 0, varies very little for the
values chosen for f,; the equation of this line is approximately 0.6¢,+ 0, = 0.

In view of the rather steep slope of this line, it is uneconomical to give all the
boundary lines this same slope; it will therefore be necessary to make a distinction

Ty =100 = 0,1

N\
vy =0.10; v, = 0.20; N\
N
v, = 0 resp. 0.25
. s eeeen fi= \
Fig. 30. ,,True fo2s

stress region; all va-
lues in % of &,.

—100

%) As it is stated in 1.3 the “forces” G and P represent ““internal actions of forces”, e.g. forces,
moments or particularly stresses. In the following reference is made to Codes of Practice; therefore
the notations G and P are replaced by o, and o,, while instead of the strength S a part of the
ultimate stress is used, named opermiss-
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between the quadrants where g, and ¢, have the same algebraic sign and those where

these signs are different. It is proposed that in the quadrants I and III the course of

the boundary lines be adapted to the variation in strength and that in the other two

quadrants the slope of the boundary lines always be chosen parallel to that for S =0
Then stress regions as indicated in Fig. 31 will be obtained. The differences be-

tween Fig. 30 and Fig. 31 will thus, in extreme cases, not exceed about 109;. The

equations of the straight boundary lines obtained in this way are as follows:

- for ¢, and o, having the same sign: 6,+¢6, = permiss

~ for 6, and ¢, having different signs: ¢(0.60,+6,) = Gpermiss

For steel with a coefficient of variation v, = 0.10 to 0.15 for the strength, the value

of ¢ can be taken as 1.15; for timber with v, = 0.15 to 0.20 a value of 1.10 is appro-

priate for c. These assumptions are valid only in so far as no time effects have to be

allowed for.

zrg=100=o

; o
o o
% & X
>

permiss . Tk

—100

Fig. 31. Approxima-
tion of fig. 30 by
straight lines.

—100

For timber, however, it is necessary to consider the time effect: in the quadrants
I and IIT (see Fig. 32) the equation of the boundary line is 7,0, +ct,0, = G,, while the
corresponding equation in the other two quadrants is:

ct(0.60,+0,) =

The values of g, = &,/ therefore correspond to the usual permissible stresses.

3.5 Combination of three load components

The statistical approach to the problem of stru%ﬁtal safety has so far confined itself
to the combination of two load components. Combinations of more than two different
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Fig. 32. Deformation of a stress region as a result of introducing time factors ¢, and ty

stress region for non-time-sensitive material
————— stress region for time-sensitive material
(chosen: t, =2; t,=14)

loads are not inconceivable, however, so that such cases deserve some attention.
From the statistical point of view they make the problem more complicated because
now the possibility of the simultaneous occurrence of these loads will play an im-
portant part. No data concerning this are available, though some sets of regulations
do give rules which allow the live loads to be reduced if they are considered to occur
in combination with one another. Just as the permissible combinations of two load or
stress components ¢, and o, can be represented as a plane (two-dimensional) stress
region, so a spatial (three-dimensional) stress region can serve to indicate what com-
binations of three stresses - e.g., ,, 6, and o,, — are permissible. Any linear relation-
ship between these three stresses will represent a plane in the three-dimensional dia-
gram. For example, the condition ¢,+¢,+0, < & determines the boundary plane
indicated in Fig. 33. This requirement may be imposed if the risk of simultaneous
occurrence of the maximum values of ¢, and o, is to be regarded as considerable.

The other extreme case, namely, that no such risk exists, determines the boundary
planes shown by dotted lines in Fig. 33, these being associated with o,+0, = G and
o,+0, = o respectively. Together these planes form a pyramid. For the normal struc-
ture, for which the probability of the simultaneous occurrence of ¢, and ¢, will be
greater or less, a boundary figure will be situated somewhere between these two ex-
tremes shown in the diagram.

The spatial stress region may be useful in judging the limitations imposed by
various regulations.
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Fig. 33. a. First quadrant of plane stress region.
b. First octant of spatial stress region.

4 Summary

In the first part of this paper it is demonstrated that the application of a safety factor
in determining the permissible magnitude of forces, stresses, etc. provides only in a
limited sense a criterion of structural safety. Some idea of the degree of safety can,
however, be obtained by utilizing the concept ““probability of unserviceability’ of the
structure. This concept leads to the application of statistical methods to the study of
this problem, as has indeed generally been done in recent investigations in this field.

The probability of unserviceability is determined, on the one hand, by the reliability
with which the available strength can be predicted and, on the other, by the accuracy
with which the maximum forces and stresses that may occur can be calculated; a
certain difference between the mean values of strength and load is associated with a
probability. The “statistical safety index” f;, is introduced as a criterion of this
probability.

It has furthermore been endeavoured to give a good definition of the quantities
involved in the investigation of structural safety. A proper understanding of these
appears to be very necessary in discussions on the present subject. In the second part of
the paper an assessment is first made of the variations in the loads. Data on the actu-
ally occurring loads are scarce. Because of this, it is not possible properly to determine
the true probabilities. Nor would there, for the time being, seem to be much point in
striving to achieve great refinement in the calculations employed. This lack of ade-
quate information does, however, raisz the question whether a larger share of the
investigations relating to structures ought not to be aimed at collecting more know-
ledge concerning the loads that actually occur. The present author is of the opinion
that this question must be answered in the affirmative, because the accuracy with
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which the forces and loads liable to act on a structure are known is not comparable
with the accuracy with which information on the strength is obtained.

Having made the above-mentioned assessment of the variability in the loads, it is
then investigated what values the statistical safety index may assume for various
construction materials when certain foreign or Dutch codes of practice are applied.
Fig. 20 presents a survey of this; it appears that f;, is between approximately 2.5 and
3.5. Part of the dispersion (scatter) in the values of f;, is due to the fact that in some sets
of regulations no distinction is made between dead (permanent) load and live (vari-
able) load, whereas the present paper does make such a distinction.

In Chapter 3 the definition formula for the statistical safety index is graphically
elaborated, whereby so-called “stress regions” are determined in which the permis-
sibility of load combinations is represented.

The stress region is interpreted into formulae with which the permissibility of the
stresses, etc. can be judged. As a result of some simplifications and approximations
these formulae are reduced to fairly simple and conveniently manageable expressions.

Several times particular attention is called to the need to give sufficient considera-
tion to structural members in which live load produces forces of a different algebraic
sign from the forces due to dead load. Caution is necessary more particularly if the
prestress produced by the dead load alone must serve to resist the live load forces
acting in the opposite direction and the member itself lacks the strength properties
needed for this.

Finally, the possibility of combination of three load components is considered.
This problem is not dealt with statistically, but it is indicated how, with the aid of a
spatial stress region, it is possible to gain insight into this case.
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