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ULTIMATE-LOAD DESIGN OF AXIALLY AND
ECCENTRICALLY COMPRESSED
STRUCTURAL MEMBERS

U.D.C. 624.075.2

In Holland a new Code of Practice for reinforced concrete was introduced
last year (designated as G.B.V. 1962).

Under the new Code, structural members subjected to axial and to eccentric
compression should be designed by the ultimate-load method. The principles
and practical rules of this method are set forth in Clauses 47 en 48. The
theoretical considerations, verified by experimental results, on which these two
clauses are based are likely to be of interest to foreign readers also, and it
therefore appeared appropriate to devote an article to the subject.

In conjunction with the introduction of the new Code of Practice the notation
employed was brought into line with the recommendations of the Comité
Européen du Béton (C.E.B.). This notation has also been adopted in the
present article.

0 Introduction

In Clause 47 of the Netherlands Standard Code of Practice for Reinforced
Concrete (G.B.V. 1962) it is laid down that the ultimate-load method should
be used for the design of axially and eccentrically compressed structural
members. This method has been adopted because a number of objections had
arisen against the conventional design method (based on the modular ratio of
steel and concrete) as envisaged in the earlier Code (G.B.V. 1950). Thus, the
conventional method took no account of the fact that a member subjected to
bending in conjunction with direct force will deflect under the influence of the
loading, with the result that the bending moment will increase. The increase
will in turn produce a greater deflection, etc. This process, which is affected
also by the creep of the concrete, will continue until a state of equilibrium is
reached or until failure of the member occurs. The amount of deflection de-
pends, inter alia, upon the slenderness of the member. In the conventional
design method the effect of the slenderness is not sufficiently taken into account,
as is, for example, apparent from tests performed by GAEDE on columns provid-
ed with hinged ends and having a length/width ratio (l/A:) of approx. 30. The
columns were subjected to a constant eccentric compressive force for more or
less long periods of time. The ultimate load (failure load) was found to be
only about two-thirds of the permissible load calculated in accordance with
the German regulations. A similar tendency was ascertained in tests carried
out on reduced-scale slender columns by the T.N.O. Institute for Building
Materials and Structures (I.B.B.C.). In actual practice, however, the bound-
ary conditions are often likely to be more favourable. For this reason, in accord-
ance with the French regulations and a recommendation of the Comité Euro-
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péen du Béton (C.E.B.), in Clause 47 of G.B.V. 1962 the effective lengths have
been made dependent upon the boundary conditions.

In buildings the theoretical height (length) of the member (/;) is the distance
measured from top of floor to top of next floor. The effective length (/) which
enters into the stability analysis is equal to /; in the following cases:
if the member is hinged at both ends;
or if it is restrained (i.e., fixed or encastré) at both ends but one end is never-
theless free to undergo displacement in the plane of bending in a direction
perpendicular to the longitudinal axis of the column.

The other cases indicated are:

[. = 2{; for a member restrained at one end and free at the other;

lo = 0.7]; for a member restrained at one end and hinged at the other; this
value may also be adopted if — in a framed rigid-jointed structure, for example —
the column is rigidly connected to the foundation or to beams having a moment
of inertia at least equal to that of the column and which are furthermore
rigidly secured by other structural connections;

le = 0.9/; should be adopted in other cases.

As the conventional design method takes no account of the non-linearity of
the relation between the load, on the one hand, and the deformations and
stresses on the other, the consequences of continually increasing the per-
missible stresses cannot be assessed with this method, even if we maintain a
constant ratio between the permissible stress in a material and the strength of
that material. And this inability to assess the consequences is all the greater
because the computational quantities occurring in the conventional method
are not measurable, so that experimental verification is very difficult or
impossible.

Finally, it is known that the use of high-tensile steel with the conventional
method is advantageous only if the eccentricity of the load is large. With
better means of tackling the problem and deeper insight into the nature
thereof it will also become possible to judge more reliably the merits of using
steels of that kind.

The above-mentioned drawbacks have also made themselves felt in other
countries and within the C.E.B., and attention has accordingly been directed
to the adoption of the method which allows of relatively simple experimental
verification: the ultimate-load method. With this method it is endeavoured to
predict the ultimate load (failure load) of a member as accurately as possible,
starting from the rules of mechanics, a few simple assumptions, and the avail-
able knowledge regarding the mechanical properties of the materials con-
cerned. The permissible load is then quite simply determined by introducing
a factor of safety (or “load factor”). In the present article this line of thought
will be further explained. By ‘“ultimate load” of an axially or eccentrically
compressed structural member is to be understood that constant compressive
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force which the member is still just able to resist for an indefinite length of time.
In the treatment of the subject the following variables will be introduced:

the eccentricity of the load;

the dimensions and shape of the member in cross-section;

the slenderness ratio;

the amount of reinforcement (also asymmetrical reinforcement);

the concrete cover to the reinforcement;

the steel quality;

the concrete quality.

IR

The member is conceived as being provided with hinged connections at both
ends. The treatment of the problem relates to the case where the eccentricity
of the load is constant over the entire length of the member. Indications for
carrying out the analysis in the case of varying eccentricity are given, however.
Finally, the centre of compression is assumed to be located on an axis of sym-
metry of the cross-section (so-called simple bending).

1 General analysis

1.1 Ultimate load of an eccentrically compressed member

1.1.1  Principles

The analysis is based on the following principles:

a. the tensile stresses are resisted by the steel only;

b. the tensile and compressive strains of the fibres due to bending are directly
proportional to their distance from the neutral axis;

c. the relation between the steel stress o4’ (04) and the strain &,'(eq) is, for
simplicity, diagrammatically represented by two straight lines, as indicated
in Fig. la; modulus of elasticity E, = 2.1 108 kg/cm?;

d. the relation between the concrete compressive stress " and the strain &’
conforms to a quadratic parabola whose apex corresponds to a maximum
concrete compressive strain &, = 3.50/¢0 (see Fig. 1b). This assumption is
the same as that adopted at the 3rd C.E.B. Congress at Madrid in 1956.
Since in tests with loading of short duration the maximum compressive
strain of the concrete is generally less than 3.50/40 (viz., approx. 20/go), it is
assumed that the effect of the creep of concrete is taken into account in the
stress-strain diagram adopted by the C.E.B. The ultimate compressive
stress o, is taken as 0.6 times the cube strength at 28 days. The magnitude
of this factor is based on the following considerations:

1. In the actual structure the quality of the concrete will be more truly

represented by the prism strength or the cylinder strength than by the
cube strength. On the basis of ample information given in the literature
it may be assumed that: prism strength a cylinder strength ~ 0.85 X
cube strength.
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Fig. la. Assumed stress-strain dia-

S
gram for steel (E,=2.1x 10%kg/cm?). ¢
f ¢
}
. 0=
o/(a.) o
Fig. 1b. Assumed stress-strain dia-
gram for concrete = quadratic para-
bola:
& Eb/ bgtgE ,
oy = cruf;u/ (2 — 8—;) 0 el(e) ey O Ty ———
Fig. la. Fig. 1b.

2. It is known that, on the one hand, the compressive strength is some-

what reduced by the effect of a sustained or a varying load, but that, on
the other hand, the strength increases in consequence of continued hard-
ening of the concrete. In general, in the literature a value of between 0.8
and 1.0 is indicated for the reduction coefficient for taking account of the
effect of sustained loading. In the present case a value of 0.9 has been
adopted.

3. The quality of concrete cast in situ will show a certain dispersion or

scatter. In the U.S.A., for example, starting from a normal distribution,
a coeflicient of variation (cv) of 10-159, (average 12.59,) is taken to indi-
cate good workmanship and a coefficient of variation of 15-209, (average
17.5%) is taken to indicate moderately good workmanship. Further-
more, again starting from a normal distribution and a given value of the
coeflicient of variation, it is possible to determine a compressive strength &
as a function of the average compressive strength ¢, below which the
strength is likely to fall with a given probability. Thus, for example, for 5%,
probability of falling short of this value:

T 1 164cv
Om

and for 109, probability:
7 —1-198¢v
Om

For a coeflicient of variation of 159, the reduction factor associated with
the 59, and 109, short-fall probability is 0.754 and 0.808 respectively.
On multiplying this factor by the factors indicated under points 1 and
2, we obtain, for the above-mentioned short-fall probabilities, the respec-
tive values 0.576 and 0.618 for the ratio between the guaranteed ultimate
compressive strength o, and the average cube strength ay,,". In the Dutch
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regulations a value of 0.60 has therefore been adopted as a reasonable
average.

e. A sinusoidal shape has been adopted for the deflection curve of an
eccentrically loaded member with hinged ends. From GAEDE’s tests and
tests performed by the I.B.B.C. it appears that this shape is within the
accuracy of measurement, even in the cracked range.

1.1.2 Equilibrium conditions

When a load on a structural member is increased, the conditions of equilibrium
should continue to be satisfied right up to the instant of failure. Fig. 2 indicates
a state of strain associated with a compressive force N’ acting eccentrically
upon a rectangular section. The state of strain is determined by certain values
&1 and e at the two extreme fibres of the section. For the steel the strains and
therefore the stresses can readily be established. In the literature the com-
pressive stress diagram for the concrete is generally characterised by two

1
’
A znhlz

Fig. 2. Strains and forces associated with Fig. 3. Strains and forces associated with
eccentric load on a rectangular section. eccentric load on a circular section.
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parameters ¢ and f. The volume of the diagram thus becomes Dy = abxa,’,
the distance of the resultant from the extreme compressive fibre being y=ph;.

In connection with the following derivations these parameters have been
modified to:

x
o —

hy

g = 0.5—p

From the conditions XN = 0 and XM = 0 the following equations are ob-
tained (positive algebraic signs denote compression) :

XN=0 N = o) bhi+oi o bhi+oaw bhs 1)

o = and

' o'
or ——,—-~=a'—i—o‘a/——,—|—o‘a-—,...............(1)
Oy b/lt Oy Oy
SM =0 M= N-yn—= aoy bhy-Bhi--0a'er’ bhe(3—0)hi—0aubhe(3—0)he
M N o )
— ¢ — == ! ! ’_ ﬁ—a - l‘———‘a . . .
or Uu’ bhtz O'u’ b}lt }lt alg +Ga' Gul (2 ) Oa O"I.l,l (2 ) (2>

On dividing equation (2) by (1/z—¢) and on adding the equation thus obtained
to, or on subtracting it from, equation (1), we obtain:

Jm
N/ ht a// 6()’
— 1 — ' + 4 2 3
o b LTI T T (3)
[ O]
N he o«'p »
11— — 0 — 20— ... (4
Pyl e v el S L ®)

Similar conditions can be established for a member of circular cross-sectional
shape. In the case of symmetrical reinforcement the latter can be conceived as

an equivalent thin-walled cylinder having the same cross-sectional area (see
Fig. 3). Then:

SN=0 N’ == a'~%nhtzau'—l—&ae/wt'-%nhtz

Ay .
where w; = and A4, = total reinforcement
%ﬂ}ltz
N’ o
or — = o' }do, B e
%Tcktz'gu, ‘ Uu/ ( )
XM =0 M= Nypn=cd tah? phi-oi+aoe - Bhi-wi - Lrh?
N Im 1 o1 3 wtl
or — " =aftafo — . .. ... .. (2
%nhtz-au' }lt ﬁ ﬁ 4 Uu’ ( )

') Where necessary, the notation of G.B.V. 1962 has been adhered to, except that w = A/bh,
and not w = 1004/b%;%, as in G.B.V. 1962.
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These states of stress arise in a structural member loaded by a direct force
(longitudinal force) N’ with a certain initial eccentricity ¢y which is provision-
ally assumed to be constant over the entire length of the member.

As already stated, the deflection due to this loading is assumed to be sinus-
oidal in shape. Taking the deflection at the centre (¥ = 0) as being y = f, we
obtain the general expression for the deflection:

X X
Y = Im cosnf = (eo+f) cos T
For x = 3, we have y = ¢, so that: 1
) 7
€o :ymcos%—: (eo+f) cos - = (eo+1f)0O T
I} )
where 9 = Zc and cos% = 0. "L‘:rms of member
Hence it also follows that: '
- N E——
1 — cos T—? *—:I-—f
fo 2\ (1 —@> (5)
= & s = €0 ) . .
cos —
Al
It can be shown that:
dzy 72 X
qe = L 1

and for x = 0 (critical section):

dj _ 12 _ _(e +f) @ 2 (6) Fig. 4. Deflection of an
da? Jm 12 0 l, © o eccentrically loaded mem-
ber with a constant initial

If furthermore: eccentricity ¢, along the
axis of the member.
(7)

l o dzy . E€1— &9

o ez ky
(for x = 0 the values of & and e should be those associated with that partic-
ular section), then it follows from equations (6) and (7) that:
Im B eo—l—f (81—-82)/12
he T e
where 4 = [y/h;.
On substituting equation (5) into equation (8) we obtain:
S (e1—e2)22  (e1—en) R
he w2 @
1—6

(8)
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while:

o o (81—82)/12 O (81——82)/’12 (61—82)/12

e o T 6= mpE = N )
C]
Equation (8) can, finally, be written as follows:
fl_’t":e"}jf:<:;+%>(el—az)zz N
where: 11 = : .
E © a2

The quantities ©, 5 and @ are functions of ¢ = [,/L only. From Table I it
appears that for ¢ = 1.0, i.e., lo = L, the value of & — oo and therefore
eo — 0. Associated with this is a value @ = a2, so that we have for the de-
flection:

om f (e1—e2)2
L S 10
/l; }lt 7'62 ( a>
For 9 — 0, and therefore [, <« L, we have & — 0 and consequently ¢y — oo.
Hence this approaches the case of pure bending without direct force, and in
this case we obtain for the deflection:

S N (e1—e2)22

— sinced—-80 . ... ... ... ... (l0b
ht 8 ( )
Table I
s L o _ o 11

=1 = ERT

1.0 0 0o 9.87(=n% |  0.1015

0.9 0.156 51.0 9.49 0.1251

0.85 0.234 30.5 9.30 0.1406

0.8 0.309 20.4 9.14 0.1585

0.7 0.454 10.64 8.85 0.2070

0.6 0.588 6.05 8.62 0.2815

0.5 0.707 3.48 8.42 0.406

0.4 0.809 1.95 8.26 0.635

0.3 0.891 1.00 8.15 1.123

0 1.000 0 8.00 [e%e)

This deflection corresponds to that which occurs in a member loaded over its
entire length (/) by a constant bending moment (M), since:

L e g b () (1
t

o B8EIh;  dw2 8k 8 \p
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The value of ym/h: as given by equation (8) or (8a) should be substituted into
the equilibrium conditions (3) and (4). The effect of slenderness is thereby
taken into account, and we thus obtain:

N (e1—e2)A2 ] a'p’ '
]. - ! I 2 a,, e e e e e s e 3,
o’ bht{ T oarg—s)) — ¢ T T Gy (3
N (e1—e2)A2 } a'p’ ®
1 _ - - a e s e s e e . 4"
u’ bht[ 20 ¢ T e T 2y *)

If all the dimensions of a structural member are given (i.e., w, ', b, k¢, [ and
d), and also ¢y and o/, then there remain four unknowns — N', &1, & and 9 —
in the equations (3'), (4') and (9). (Note that o', ', g4 and ¢," are dependent
only on & and e, while Z is solely a function of ). When a given load N’ is
applied to the member, the associated values of e, &2 and @ can therefore be
calculated with the aid of these equations. Any other value of N’ yields different
values of &, €2 and ¢. The relation between N, ¢ and e is indicated dia-
grammatically in Fig. 5a.

1.1.3 Ultimate load

As appears from Fig. 5a, it is, above a certain maximum value Ny, no longer
possible to satisfy the equilibrium conditions. Hence the value Ny’ obviously
represents the ultimate compressive force, .., the compressive force producing
failure of the member. In many cases, especially for fairly high values of the
slenderness ratio and of the initial eccentricity, the value of &2 will, at the in-
stant when Ny, is reached, be smaller than the maximum compressive strain of
the concrete &, = 3.59/g0. For small values of 4 and/or of ¢y, however, ¢z may
indeed attain the value of &,’. An example of each alternative possibility is
given in Fig. 5b and 5c. (The data on which these graphs are based have been
obtained from model tests — see 1.2.1).

Hence there are two criteria for the ultimate compressive force. In the case
where the maximum compressive strain of the concrete is attained, this is a
strength criterion for the ultimate compressive force Np'; in the alternative
case it is necessary to apply an equilibrium criterion, which could be for-
mulated by the conditions:

v =0 or ﬂ = 0, or, alternatively _ AV =0 .. (11)

dey des d(e1—e2)
Equation (11), in conjunction with equations (3’), (4’) and (9), would then be
sufficient for determining Ny’ (four equations with four unknowns). In
practice, however, this method of solution is found to yield very awkward and
almost insoluble equations. For this reason a different procedure was sought.
The following approach was adopted: Consider a structural member with
given dimensions (i.c., , ', b, ki, lc and d are known), while o, is also given.
In equations (3'), (4') and (9) there then remain five unknowns, namely,
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, a Fig. 5a. Diagrammatic representation of the relation
between N’, ¢, and &,.

—Z

Nor’ Fig. 5b. Relation between N, ¢, and ¢, as obtained
from a model test (see 1.2.1) for a member of circular
section (b = 25 cm; [, = 500 cm; [/h, = 20;
QR(n) 40; w;/o,’=1x10"% cm?/kg; e, = 5 cm;

. . d = 3.75 cm).
Fig. 5c. Relation between N’, ¢, and &, as obtained
from a model test (see 1.2.1) for a member of rectan-
gular section (b, = 30 cm; [, = 900 cm; [ /h, = 30;
& QR(n) 40; w/o,” = w’/o,” = 0.5x 10-* cm?/kg;
& (elongation) = 0 — > &/(shortening) ey =6 cm; d = 3 cm).
04 - 0.4
X b c e
03 N | os— /L NILZT N
£ &

0 0
4 3 2 1 0 1 2 3 4 4 3 2 1 0 1 2 3 4
€ (elongation) in ©[oo € (shortening) in Ofo, € (elongation) in 0/, & (shortening) in Ofoq

N', &1, e, 9 and ¢. Next, we start from a number of systematically chosen
states of strain. Each state of strain is determined by a value of & (compressive
strain), chosen between 3.50/g9 (max. compressive strain of the concrete) and
0.250/99. Furthermore, for each value of &2 the value of ¢ is varied from 3.50/00
(max. compressive strain) to — in some cases — an elongation of 300/. In this
way, therefore, the entire range of possible states of stress is covered. For an
assumed state of strain the values of N'/oy,’ bk and 9 can be determined from
the equations (3') and (4'). Thus the value of 5 (Table I) is known and then
¢o/hs can be calculated from equation (9). Because of the arbitrary assumption
as to the state of strain, the value found for N’ will, generally speaking, not
constitute a maximum associated with the value found for . However, the
relation between N’ and ¢y can, for any particular value of ¢, be plotted in a
graph. In this way a number of lines can be drawn in a graph of this kind. It is
found that all the lines together constitute an envelope which evidently indic-
ates the relation between Np" and ¢p. This is shown diagrammatically in Fig. 6.

Thus the ultimate compressive force Ny’ can be calculated as a function of
the initial eccentricity ¢p. The variables that have to be determined in advance
are:
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Fig. 6. Envelope formed by lines of ,
constant value of &, and indicating the N
relation between the ultimate load Ny,

and the initial eccentricity ¢, for a mem-

ber with given dimensions.

Ny,”

r

— cross-sectional shape (rectangular or circular);

— quality of steel (mild steel or high-tensile steel);

— percentage of reinforcement and distribution thereof over the compressive
and the tensile sides of the section;

— concrete cover to the reinforcement;

— slenderness ratio A = l¢/h.

As examples of the results so computed for a series of different values in 128
combinations of the above variables some diagrams are reproduced here
(Figs. 7-12).

In the cases where A4 = A’ it is found that the maximum value of Ny is
reached for ey = 0. This will readily be understood in the case 2 = 0. The
highest attainable load on a structural member is the load at which the com-
pressive strain has the value &, = 3.50/p over the entire section. In that case
o' = 1 in equation (1), while 64 = 04" = o, so that:

Ny’ o' +w

—_— T 1 !
ou bhi T ou’ oe

Since ' = 0 in equation (2) (Dp acts centrally) and therefore a'f" = 0,
equation (2) becomes:

N’ om B o' —w

od bl by ou

e’ ($—9)

In the case 2 = 0 no deflection occurs, so that ym = ¢ or:

be' €0 o' —w

o— = ! —1———(5
oo bhi b o o¢ (3—9)

Note. In the case of non-constant eccentricity along the length of a member
(see Fig. 13), the method of solution indicated in the foregoing can likewise
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Fig. 7-12. Diagrams showing the ultimate load N,,” and the factor of safety y against failure
as functions of the initial eccentricity ¢,. (For Fig. 11-12: p.t.o.).
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be used. Putting e,, = ¢, (where it is assumed that
ey > e, and therefore » < 1), we can write: "N
7l [
€y = JYm COS zg = Ym COS 7y . . . (12) 1 \
\
where /L = Oy \
al e
and bw = ey = Ym COS —L—w = Ym cos dy (13) ™ (\
where /L = Ou. T T \
. Y f
Hence it also follows that: - E
+ -l———n»'y
19‘ 29‘ . Zv+lw o ZC . /'9' I
v 0w = . 1Y ~ L N
By [
. . R L f
From equations (12) and (13) can be derived: j e of member
/
%Pm COS Ty = Ym COS Ty = Ym OS (P —) ]
or % cos wdy = cos @) cos wdy -+ sin wd sin wy
x—cos nd)
so that tan 7y = ———-—— . . . . . . (14) 1
sin 71

For an assumed state of strain, again characterized
by &1 and ez, the values of N” and yp, can, for exam-  Fig. 13. ll)leﬂclectignd of anb
ple, be solved from equations (3) and (4). The sccentrica’y oaced memper

. / with eccentricity not constant
associated value of ¢ can be calculated with the along the axis of the member.
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aid of equation (8). Hence, for a given value of x, the value of 9, can be
determined by means of equation (14), so that then ¥ is also known. The
values of ¢, and ¢, are thereupon obtained from equations (12) and (13). We
can now, in the manner already described, determine envelopes which give
the relation between Ny’ and, for example, ¢, for a given value of zx.

1.1.4 Effect of stress-strain diagram of concrete on ultimate load

In order to gain some idea of the effect of the stress-strain diagram of the con-
crete upon the ultimate load, the relation between Ny and ¢ for A = 0 has
been calculated in a few cases, both with the diagram in Fig. 1b and with the
diagram in Fig. 14. The latter could be taken as representing the stress-strain
diagram for a test with loading of short duration, in which the scatter in the
strength has not been taken into account (s, = prism strength a 0.85 gu,,’
—see 1.1.1). From Fig. 15 it appears that for small values of ¢ the difference
is quite substantial, but that this difference becomes smaller — absolutely as
well as relatively — with increasing values of ¢g. We can take it that we shall be
on the safe side with the stress-strain diagram represented in Fig. 1b.

RET~:)
. = E 1.8 T T T - "
Fig. 14. Assumed N QR 24 _ N
. . 16 cross-sectional shape |
stress-strain diagram. : 1t |
14 N d=d =01 h b
) \ e
8 \ |
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1.2 Experimental results

1.2.1 Model analogy
With a view to verifying the results of the calculations as represented in Figs.
7-31, a model analogy was used which is described in the preceding article in
this issue. This model analogy is based on
the same assumptions as those adopted in
the calculations. The results of the model ‘
tests are indicated in various diagrams by T o
means of dots. There is good agreement
with the calculated values. The columns
subjected to sustained loading tests by
GaepE — Report 129 of Deutscher Aus- e
schuss fiir Stahlbeton — were thereupon
analysed by means of the theory described
in the foregoing and checked with the
model analogy (see 1.2.2). Next, some l
T-section and trapezoidal section columns .
were analysed and also checked by means E
of model tests not described in this paper.

I, = 29

b = 154
|
1
|
|

¥ 2] bp 7—>A! = 154 cm®
1.2.2 Tests by GAEDE and by the i

1.B.B.C. .
As the theory described in this paper is ff{géploii'lgo%ﬂ?;.gjﬂfdd?égﬁ;i
based on various assumptions, it appeared in cm.
expedient to check the results of that theory
against test results obtained with structural members subjected to sustained
loading. Unfortunately, there are only few investigations on record in which
members with reasonable slenderness ratios 1) were subjected to loading of
this kind. Some data were obtained from the investigations described in the
following.

GAEDE’s tests were performed on columns as illustrated in Fig. 16a. The
investigation comprised two series of tests, viz., series I in which eo/h; = 0.2
and series IT in which eo/#; = 0.5. Some data derived from the relevant report
are indicated in Table II.

In Table III are given the results of the calculations according to the theory
described here, and also the results of the model analogy. These results have,
finally, been referred to those obtained by GAEDE.

1) J.A.C.I, March 1961, contains an article by I. M. ViEsT, R. C. ErstNer and E. HoGNE-
sTAD, entitled: ,,Sustained load strength of eccentrically loaded short reinforced concrete
columns”. As the slenderness ratio was only about 8, the effect of this quantity on the ultimate
load was, in our opinion, inadequately manifested in that investigation.
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wabie T1. Data for columns tested under sustained loading by GAEDE.

g, o,/ in age at time

co- . I in kg/cm? kg/cm? s | Ny N of applica-| age at duration
lumn| —2 | 1=--¢% tensile compress. in in br tion of failure, | of loading,
No. | M h | reinforce- | reinforce- kg/cm?| kg | u bh load, in days in days

ment ment in days

I-2 102 | 294 3635 3195 255 | 6330 | 0.268 28 45 17

I-3 1 0.2 | 29.4 3762 3210 278 | 6500 | 0.254 28 35 7

I-4 102 | 294 2898 2731 398 | 6820 | 0.186 28 129 101

I-6 | 0.2 | 29.4 3000 2965 394 | 8060 | 0.222 25 63 38

I-7 0.2 | 29.4 2856 2975 382 | 8150 | 0.231 28 421/, 144/,
II-1 | 0.5 | 29.4 3550 3115 269 | 2500 | 0.103 28 137 109
II-2 | 0.5 | 29.4 3385 3210 282 | 3250 | 0.125 28 566 538
II-3 | 0.5 | 29.4 3585 3210 254 | 3200 | 0.137 28 563 535

It appears that the results of the calculations are in very close agreement with
those of the model tests. Discrepancies between the two sets of results may,
for example, arise from inaccuracies in the dimensions of the model. Except
in the case of column No. II-1 there is found to be fair agreement with GAEDE’s
results. Since column II-1 can, with regard to its material properties, be taken
as equivalent to columns II-2 and II-3 (see Table II), while the method of
loading was identical, the difference in behaviour between II-1, on the one
hand, and II-2 and II-3, on the other, cannot be explained from the data
published in Report 129 of the Deutscher Ausschuss fiir Stahlbeton.

The tests conducted by the I.B.B.C. were performed on columns constructed
to reduced scale. The dimensions of these model columns are indicated in
Fig. 16b. The slenderness ratio A = [¢/h; was 27.7 and 37.7. The yield point of
the steel was 3000 kg/cm?, and the average 28-day cube strength of the con-
crete was 423 kg/cm? (o0, = 254 kg/cm?). The maximum load attained with

Table ITII. Comparison of Ny'[oy bhs.

Nbr, Nbr/ Nbr/ d t'
column | 0,6k a, bh, /b &) @) | e
No. calculated according to according to (3) (3) ino dalr;g,
(1) model (2) | Gaepe (3) 4
12 0.268 0.271 0.268 1.00 1.01 17
I-3 0.255 0.250 0.254 1.00° 0.985 7
1-4 0.203 0.214 0.186 1.09 1.15 101
I1-6 0.206 0.221 0.222 0.93 0.993 38
I-7 0.214 0.209 0.231 0.925 0.905 141/,
II-1 0.149 0.148 0.103 1.445 1.43% 109
I1-2 0.142 0.134 0.125 1.135 1.07 538
II-3 0.155 0.150 0.137 1.13 1.09 535
average (except II-1) 1.03 1.03
average (with II-1) 1.08 1.08
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sustained loading, for an initial eccentricity eo/h; = 0.2, was established with
reference to a large number of test results. These are given in Table IV. In
this case, too, there is seen to be reasonably good agreement between the
calculated and the experimentally determined values.

b, = 3.0
e
Table IV. Comparison of Ny'[ou'bhs. S ' S
o l
/ Ny’ Ny’ (1) S "’_\}‘_'~_
b= o, bh, o, bh; @ ! ‘T
t calculated (1)|measured (2) - }_ !
® | ®
27.7 0.264 0.274 0.96° 05 | 05
et -
37.7 0.156 0.164 0.95 4o dmAl = 0.284
average 0.96 Fig. 16b. Columns to

reduced model scale tested
by the I.B.B.C. — dimen-
sions in cm.

1.3 Ultimate load of an axially compressed member

For the analysis of an axially compressed structural member the ENGESSER-
SHANLEY buckling theory, which makes use of the tangent modulus, was
primarily applied. The tangent modulus associated with a stress o is given
by E = do/de (see Fig. 17). If a material conforms to
Hooke’s Law, the value of E is independent of the

magnitude of the stress. The ENGESSER-SHANLEY theory
yields the lowest possible value of the buckling load.
For a member of rectangular cross-section, hinged at arc tan E
both ends, the following is true:
., m2El 1
Nk:lcz............(S) . -
where E denotes the tangent modulus. Furthermore: Fig. 17.  Definition

of tangent modulus.

Ni' = o0 -bhy+Aiod . . . . . . . . (16)

where 4;" denotes the total amount of reinforcement, which is conceived as
uniformly distributed along the sides & (Fig. 18). The quantities £, o’ and ¢4’
are all functions of the strain ¢’ which, for axial loading, is of course constant
over the entire cross-section. On equating (15) and (16) we obtain an equation
in &¢'. For a member with given dimensions the value of ¢’ can be calculated.
The value of N;' can then be determined.

In order to work out this procedure, we can, in the first place, transform (15)
by substitution of the tangent modulus, which can be obtained from the
stress-strain diagram.
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The quadratic parabola in Fig. 1b, representing the stress-strain diagram
of concrete, conforms to:

& & I
oy = oy _/(2 o _7) _ Gu'(27]—772) She Sh,
&y Eu |
&' - |
where n = —. i
g e’ o J_ |
The tangent modulus can be determined from this, since: |
|
doy’ 20/ & RETAE
E=_= " — 2, = 571430, (1—) A
€ Eu Eu Fig. 18

if e,/ = 3.50/00.
If no yielding of the steel occurs, we have for a member of rectangular section
and containing a steel cross-sectional area 4;" = w¢'bh;:

5714304/ (1—9)
a 12
where £, = 2.1 x 106 kg/cm?, so that:

EJ bhid+w¢' bhy(0.5h—0hs)2- By

EI = 6,/ bh3 |47.619—47.619;+2.1- 1062’—‘, (0,5—08)2| = oy’ bh?- K
u

Substitution of this value in equation (15) gives:

, 720y bhe?
r = —Zcz—_ or
Ny 9.8696
= K 17
O‘u’ b}lt ).2 ( )
where A = [;/h;.
The summation of (16) formula can be written as follows:
Ni' = 04/ (2n—n?) bhy+wi bhe' Eq/
or,since & = n-¢’ = n-3.5-1073:
N ! ’
S o R O T:)
Oy b}lt Oy
On equating (17) and (18) we obtain:
470 ! 2072.62-10% 470
72— <— -+ 7350 wt, |- 2> - mhdnibin i (05—5)2 +—=0 .. (19
A2 ou A2 ou’ A2

If w', 4, 6 and o, are known, then » and therefore ¢ can be determined from
equation (19). With the aid of (17) or (18) we can also find N'. However, if
the value of ¢’ obtained from (19) is found to be larger than &' (see Fig. la),
then the solution is incorrect because in that case yielding of the steel would
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occur, so that o," = o, and £, = 0. Equations (17) and (18) will then become,
respectively:

Ny’ 470

— = 1—y) . . ... (1T
N, ’

—,—k~=217—n2~]~ae’—a—)t—, C e e e e oo (18a)
Oy b}lt Oy

Fig. 19-22. Diagrams showing the ultimate load N,,” as a function of the slenderness ratio
A for e, = 0.
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On equating these expressions, we obtain:

[T ) A 1o
1717}'2 .y TR
Similar considerations are, of course, applicable to members of circular
cross-section.

The relation between N’ and 1 was calculated for 13 combinations. Figs.
19-22 are given by way of example. It appears that each graph comprises three
discontinuous portions. The curved portion on the left represents equation
(19a). Then comes a horizontal portion which is longer in proportion as the
steel percentage o’ is higher and which is connected to a second curved portion.
The latter represents conditions in which the steel does not reach its yield point
because the high slenderness ratio determines the load-carrying capacity of the
member.

It is known that stable states of equilibrium y,, 7% 0 may still occur at loads
in excess of the buckling loads calculated according to the ENGESSER-SHANLEY
theory. Starting from the theory of eccentrically compressed structural mem-
bers, the maximum values of these loads were calculated for ¢ — 0. These
loads have likewise been included in Figs. 19-22. In some cases, e.g., with mem-
bers of circular cross-section with a large quantity of reinforcement, these loads
were found to be substantially larger than the calculated buckling loads; in
other cases the buckling loads were found to constitute the maximum loads.
The full lines in the above-mentioned diagrams represent these maximum
loads (again designated by N,') as functions of 4. In these diagrams the
values of Ny, for, respectively, 4 = 0, 10, 20 and 30, of course correspond, in
similar cases, with those values which constitute the starting points (eo = 0)
of the various A-lines in Fig. 7-12.

1.4 Permussible load

1.4.1 Determining the additional eccentricities ¢; and ez

With each value of the ultimate load N/, as indicated in Figs. 7-12, is asso-
ciated a certain state of strain determined by the values of & and e». It appears
that in the theoretically extreme case A = [,/h; = 0 the ultimate load is always
reached when e = &,’ = 3.50/0. Hence if, for a member with given dimen-
sions, the value of y,, = ¢y (no deflection, since 2 = 0) in equations (1) and
(2) or (3) and (4) is assumed to be known, then there still remain two un-
knowns, viz., & and the ultimate load Np’. For 2 = 0 the relation between
Ny’ and ¢y can therefore readily be determined. For other values of 2 it often
occurs that ez 7 ¢,” when the maximum load is reached, so that in these cases
the envisaged relation is not so simple to calculate. However, by increasing the
initial eccentricity ¢ in these cases by an additional eccentricity ep that is de-
pendent on 2 (see Fig. 23), it is nevertheless sufficient merely to carry out a
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Fig. 23. Definition of the additional Fig. 24. Definition of the eccentricity e,

eccentricity e,. a Y, =0) 2.5
, = .
[b Vw=o) 1.8
z Z
— e1
\
N
AN
- Ny, AN
N, S
Q ~ ~ &
~
~= =
1
eO —_— e
eo 81

simplified calculation of the section (A = 0 and ez = 3.50/¢9) in order to deter-
mine the correct value of Ny associated with the given values of ¢y and 4.

To arrive at a permissible load, the ultimate load should be divided by a
factor of safety (load factor) y. It was considered necessary, in drawing up the
regulations, to adopt in the case of axial compression (¢ = 0) a higher value
for this factor (approx. 2.5) than in the case of bending without direct force
(60 — oo; y = 1.80). For example, it is clearly apparent from Fig. 7 (et seq.)
that a wrong estimation of the effective length (and therefore of 1) has a much
greater effect upon Ny’ for ¢p = 0 than it has for very large values of the
eccentricity. In Fig. 15 a possible wrong estimation of the strength exhibits a
similar tendency. It appeared to be desirable to provide a gradual transition
of the value of y for intermediate values of ¢. To achieve this, it is always pos-
sible, independently of the value of ¢, to make use of the value of y for ¢p— co
(viz., 1.80), provided that the initial eccentricity ¢ is increased by an additional
amount ¢; (see Fig. 24). In this way a reduced ultimate load N, is obtained,
which is therefore smaller than Np'. The permissible load will then always
be N’ = N,’/1.80.

The values of ¢; and ¢2 were determined from the results of all the cases
analysed (see page 24). It has been endeavoured to keep the formulas for these
quantities as simple as possible. To that end, in the case ¢ = 0, the safety
factor has been somewhat reduced for large, and somewhat increased for
small reinforcement amounts. This reduction or increase of the factor appeared
justified, since in these cases the steel resists a large or a small proportion of
the load respectively. The aim has been to obtain a value of the safety factor
y that would be reasonable in all cases, to ensure a gradual variation of this
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factor with increasing value of ¢, and in general to provide somewhat larger
values of y for large values of A. Having regard to these considerations, the
value of ¢; was found to present a substantially linear relation with A2, more
or less dependent on the steel quality (o.’), the cross-sectional shape (7), and
the initial eccentricity e¢. The value of ¢; was, in the main, determined for
the case 4 = 0 and was found to be mainly dependent upon the cross-sectional
shape (k). The two formulas are as follows:

e =078k . . . ... ..o (20)
where:

k1 = the (larger) core radius in the direction of bending of the non-reinforced,
uncracked section conceived as exhibiting linear elastic behaviour

(kl = Wmax/B)

and
023462
_<085+ o ) he ( b )2/; 21
=\ 16000/ i e\ \ 100k, " - e (2D
—(0.22+3 —
/Zt /lt
where:
¢ = the radius of gyration corresponding to the principal axis in the direction

of bending of the non-reinforced, uncracked section conceived as ex-
hibiting linear elastic behaviour

14

Fig. 25. Method of calculating the permissible load with the aid of

> the simplified calculation for an arbitrary slenderness ratio
¢ = Ny,” according to basic theory for 4 = 4, and ¢,
d = N,  according to the average calculation in which eyt =
eq+e,+e, is taken into account
.. — d ¢
¢ = permissible load N' = ——; v = - > 1.80
o 1.80 g
.
\
\
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Fig. 26. Behaviour and scatter of the safety
factor y as a function of ¢, for various values
of A.

a. A=0; b. 2=10; c. A=20; d. 1=30;
e. average factor of safety (Ygem)-

Fig. 25 gives a diagrammatic survey
of the way in which the various eccen-
tricities are taken into account and of
the determination of y. In Figs. 7-12
the behaviour of y as a function of e
is indicated for the cases considered in
those diagrams. For the cases with
asymmetrical reinforcement the peaks
of the A-lines in these diagrams, as
already stated, are not located on the
vertical corresponding to ¢ = 0; for
o' > o they are — because of the
asymmetry of the section — located at
values of eo/h; which are a little larger
than zero. In order to avoid undesir-
able (too low) values of y in this re-
gion, the regulations stipulate that for
an eccentricity eo/h; << 0.1 the mem-
ber must always be symmetrically re-
inforced.
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Table V. Factors of safety relating to columns tested by GAEpE and I.B.B.C.

= load
column No. ‘o A= l—c L Y duration,
hy t 0,'bhy in days
GAEDE
1-2 0.2 29.4 0.100 2.68 17
1-3 0.2 29.4 0.0955 2.66 7
I-4 0.2 29.4 0.059 3.15 101
1-6 0.2 29.4 0.060 3.70 38
1-7 0.2 29.4 0.060 3.85 14/,
II-1 0.5 29.4 0.059 1.75 109
1I-2 0.5 29.4 0.0535 2.34 538
II-3 0.5 29.4 0.0615 2.23 535
I.B.B.C. 0.2 27.7 0.100 2.75 fe%s}
I.B.B.C. 0.2 37.7 0.054 3.04 oo
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In Fig. 26, for various values of y, the average of y has been plotted as a
function of eo/h; for all the cases analysed by the L.LB.B.C. The zone within
which 959, of all the observations are located is also indicated. Table V gives
the values of y for GAEDE’s columns and for those tested by the I.B.B.C.
Starting from the data relating to the materials, the permissible loads were
determined in the manner described above and were divided by the exper-
imentally determined ultimate loads (see Tables II and IV). Except in the
case of GAEDE’s column II-1 the safety against failure is adequate in all cases.
But even for this column II-1 there is still a fair margin of safety, viz. 1.75.

The important new feature to emerge from the foregoing considerations is
that, for practical purposes, it is quite simply possible, by means of an addi-
tional eccentricity (e1), to take account of a safety factor that varies with ¢y. Sec-
ondly, the complex calculations that would have to be performed in the case
where the equilibrium criterion (page 22) is decisive, can be reduced to a sim-
pler analysis likewise by the introduction of an additional eccentricity (ez). In
the two equilibrium conditions (3) and (4) the quantity y, should, in that case,
be replaced by et = eo+e1-+¢2. For complete attainment of the maximum
compressive strain of the concrete at the most highly compressed fibre (&2 =
= &,/ = 3.50/00) the ultimate load Ny’ can then be calculated from the set of
equations:

_ ttot T
Nu/ }lt Oﬂlﬁ, w/
T 1 — ’ 2 ’ -, 3//
oy bhy L —I_%—(S- o —[—%—5_}_ Oq oo’ ( )
_ fiot ]
N/ hg a'p ®
v 1 - — o 2 . 4_”
ou' bhy L $—6 “ 1—9¢ + Uacru' (*)
Starting from equations (1’) and (2’) we thus obtain for members of circular

cross-sectional shape:

Nu’ , _ ,wtl ”
B
Oy Iﬂht Oy

N/ €tot =, o

rr - ! 14
} ———— =dp+afo — . . . oo (2
O‘uléﬂhgz By o’ ( )

The factor of safety (load factor) to be taken into account is 1.80 in all cases.

The method of analysis described in the foregoing is, of course, suitable for
the compilation of tables and graphs in a fashion similar to that applied in the
conventional method. Indeed, there is a good deal of similarity between the
two methods in so far as the calculation for determining the cross-section of the
member is concerned. The load-factor method, as distinct from the conventio-
nal method, however, makes use of a parabolic stress-strain diagram for con-
crete; on the other hand, the steel stresses are, generally speaking, easier to
determine since the yield stress is often reached.
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1.4.2  Procedure of the calculation

Design calculation. Given a structural member of rectangular cross-section
with dimensions & and k. Further known data are the design load N’, the
initial eccentricity ¢y, the slenderness ratio A = /./h:, the concrete cover d, and
the concrete and steel qualities. Determine w and o’.

We assume a state of strain for which e = &,” = 3.50/g9 and which is fur-
thermore determined by x = x; (see Fig. 27). Since N,’ = 1.80 N and ¢io1 =
= ¢y+e1+e¢2, there remain the unknowns w and o’ in the equations (3"’) and
(4""). These unknowns can now therefore be solved, or they may be obtained
from an appropriate graph. For each value of x we find an associated pair of
values of w and o’. Hence there is an infinite number of solutions. A unique
solution will be obtained only if we impose an additional condition, e.g.,
o = o' or o+’ = minimum (see Fig. 28).

Fig. 28.  and o’ as functions of x.

Fig. 27.

3,5 0/00

g,/ =

€2=

TI7 |

Check calculation. Given all the dimensions of the structural member, the initial
eccentricity e, and the concrete and steel qualities. Determine the permissible
load N'.

The magnitude of eyt = €9 +¢1-+e2isknown ;
the position of N, = 1.80 N’ is therefore
given. We shall again assume a state of strain X3
determined by &2 = &4’ = 3.50/pp and x = x;. %
All the internal forces and their positions are X, \
then known. Now we determine N,' and M,
in relation to the centroid of the section.
Then M,/N,' = e. Since x has been arbi-
trarily chosen, in general: ¢ = ¢to1. By varying
x, however, we find various associated values Fig. 29. Determination of N, for
of e. The correct value of x can, for exam- check calculation.
ple, be obtained in the manner indicated
diagrammatically in Fig. 29. The value of N,  associated with % gives the
permissible load N’ = N,’/1.80. There is only one solution.

X

€ = € —_—¢
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2 Approximations

Clause 48 of G.B.V. 1962 gives some approximate methods which aim at
reducing the amount of arithmetical work and/or making complex cross-
sectional shapes more amenable to analysis. As these approximations also
occur in foreign literature on the subject of failure, it would appear appropri-
ate to discuss briefly their arrangement and purport. In general, these pro-
cedures will involve the use of somewhat larger quantities of materials than
does the design method set forth in 1.4.1.

2.1  Rectangular stress-strain diagram for concrete

Instead of adopting a parabolic stress-strain diagram for concrete, as in Fig. 1b,
we may base ourselves upon the simplified diagram in Fig. 30. We shall con-
sider the consequences of this simplified assumption in the case of a rect-
angular cross-section of a structural member. In order to obtain the same value
for the magnitude of D, in both cases, the following relation must exist be-
tween x, (rectangular diagram) and x, (parabolic diagram) (see Fig. 31):

X = %xp

e,/ = 3,5%0

’
Ty

o, =
0,60,/ D, = %,-b-0,

o)
<
u

g/ =35 a/ou — &y’

Fig. 30. Simplified stress-strain
diagram for concrete.

D, = 3, b0/
* R
e
Fig. 31. Approximation of a parabolic com-
pressive stress diagram by a rectangular X = 2t
diagram. [ AL LA
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For a rectangular diagram the distance from Dy to the centroid of the section
is somewhat in excess, however, and so the contribution of Dj to the internal
moment is also somewhat greater.

Conversely, for determining the forces in the steel, the value of x, must be
increased by 509, in order to obtain the value of xp. The state of strain is
determined by xp and e = &,' = 3.50/¢0, and hence the steel stresses are also
determined.

The internal moment calculated on the assumption of a rectangular stress
diagram is therefore too large, whereas the direct force has the correct value.
The associated eccentricity of the direct force is therefore also too large. This
could quite simply be corrected by increasing the eccentricity of the external
load. As a result of introducing this additional eccentricity, the calculation is
performed with an eccentricity that is so increased that the correct value of
the ultimate load or the load that the member is able to carry (as the case
may be) is nevertheless obtained.

In the case of bending without direct force the introduction of a rectangular
stress diagram likewise yields too high a value of the ultimate moment. In
that case, however, in order to obtain nevertheless the correct value of the
permissible moment, it is simpler to divide the ultimate moment by a some-
what larger factor of safety. For this reason, the value of the factor of safety
has been increased from 1.80 to 1.85 in Clause 48.

To obtain a gradual transition to large values of ¢ for bending in combina-
tion with direct force, the increased value of y has been retained in this case.
Besides, it was found to be necessary, more particularly for small values of ¢, to
introduce an additional eccentricity es. The following expression for the value
of e3 was determined from all the 128 cases analysed:

}l2
e3=o.oo3ki.....................(22)

2

where k2 denotes the (smaller) core radius in the direction of bending of the
non-reinforced, uncracked section conceived as exhibiting elastic behaviour.
The results of the calculations for 4 = 0 are indicated by broken lines in the
relevant diagrams (Fig. 7-12).
To summarise, it can be stated that, if a rectangular stress diagram is
adopted, the total eccentricity is:

et = eo+e1+e2-te3
while the factor of safety (load factor) is 1.85.
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